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Research Project

The Interchange No. NCC2-5149 deals with the emerging technology of photonic (or optoelec-

tronic) integrated circuits (PICs or OEICs). In PICs, optical and electronic components are grown

together on the same chip. To build such devices and subsystems, one needs to model the entire

chip. PICs are useful for building components for integrated optical transmitters, integrated optical

receivers, optical data storage systems, optical interconnects, and optical computers. For example,

the current commercial rate for optical data transmission is 2.5 gigabits per second, whereas the

use of shorter pulses to improve optical transmission rates would yield an increase of 400 to 1000

times. The improved optical data transmitters would be used in telecommunications networks and

computer local-area networks. Also, these components can be applied to activities in space, such as

satellite to satellite communications, when the data transmissions are made at optical frequencies.

The research project consisted of developing accurate computer modeling of electromagnetic

wave propagation in semiconductors. Such modeling is necessary for the successful development

of PICs. More specifically, these computer codes would enable the modeling of such devices,

including their subsystems, such as semiconductor lasers and semiconductor amplifiers in which

there is femtosecond pulse propagation. Presently, there are no computer codes that could provide

this modeling. Current codes do not solve the full vector, nonlinear, Maxwell's equations, which

are required for these short pulses and also current codes do not solve the semiconductor Bloch

equations, which are required to accurately describe the material's interaction with femtosecond

pulses. The research performed under NCC2-5149 solves the combined Maxwell's and Bloch's

equations.



Research Accomplishments

The main objective of the Joint-Research Interchange NCC2-5149 was to develop computer codes

for accurate simulation of femtosecond pulse propagation in semiconductor lasers and semicon-

ductor amplifiers [ 1]. The code should take into account all relevant processes such as the interband

and intraband carrier relaxation mechanisms and the many-body effects arising from the Coulomb

interaction among charge carriers [2]. This objective was fully accomplished. We made use of a

previously developed algorithm developed at NASA Ames [3]-[5]. The new algorithm was tested

on several problems of practical importance. One such problem was related to the amplification

of femtosecond optical pulses in semiconductors. These results were presented in several interna-

tional conferences over a period of three years.

With the help of a postdoctoral fellow, we also investigated the origin of instabilities that can

lead to the formation of femtosecond pulses in different kinds of lasers. We analyzed the oc-

currence of absolute instabilities in lasers that contain a dispersive host material with third-order

nonlinearities. Starting from the Maxwell-Bloch equations, we derived general multimode equa-

tions to distinguish between convective and absolute instabilities. We find that both self-phase

modulation and intensity-dependent absorption can dramatically affect the absolute stability of

such lasers. In particular, the self-pulsing threshold (the so-called second laser threshold) can oc-

cur at few times the first laser threshold even in good-cavity lasers for which no self-pulsing occurs

in the absence of intensity-dependent absorption. These results were presented in an international

conference and published in the form of two papers.
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An algorithm has been developed that solves the semiconductor Maxwell-Bloch equations [1], without

making the standard approximations of a slowly-varying envelope (SVEA) and a rotating-wave (RWA). This

more exact formulation is applied to simulations of the propagation of ultrashort pulses for which the standard

approximations reach their limits. This development was motivated by the generation of optical pulses as

short as 8 fs, which has become possible due to recent progress in ultrafast technology.

Previously, an algorithm was developed for the Maxwell equations [2,3], without making the SVEA

for calculations of pulse propagation in nonlinear glasses, which exhibit Kerr-like instantaneous nonlinearities.

It was found that significant differences can occur when the SVEA is not made in Maxwell equations.

Specifically, light bullets, of 25 fs duration, were found to be stable [4] with the full Maxwell equations,

whereas previously, calculations with the nonlinear Schroedinger equation had shown them to be unstable

[5]. More recently [6], using the algorithm developed in references 2 and 3, calculations showed the formation
of shock waves on the optical carrier wave. Such results are impossible with the SVEA since the carrier wave
is eliminated from the calculations.

In this paper, this new algorithm is applied to studies of ultrafast optical pulse propagation in
nonlinear semiconductor materials, in which many-body effects due to Coulomb interactions are included. In

addition to the algorithm for Maxwell's equations, a new algorithm has been developed for the semiconductor

Bloch equations that does not make the RWA and the two algorithms have been combined into one for the

coupled semiconductor MaxwelI-Bloch equations. In the Bloch equations the relaxation-time approximation

[1] has been made for the various intraband scattering processes.

The Maxwell-Bloch equations for pulse propagation in one spatial dimension are the following.

Assume that the electric field of a pulse that is propagating along the z direction is polarized along the z

axis and ignore the transverse effects, then the Maxwell equations become

OD_ OH_ OHy _ OE_
Ot - Oz ' Po Ot Oz ' D_ = eoe, E_ + P_ ,

where Pa- is the induced polarization.

In the case of semiconductors, P_ is calculated by using the semiconductor Bloch equations [1], (a

two band model, one conduction band and one valence band).

dt r_ r_ dt re r_

dpl,_ _ Pl,_ + Akp2,k + f_,kw_ dp2,k = _P2,___.__.k_ A_pl,_ -- f_l,kwk
dt r2 dt 7"2

where n_ and n h are the occupation probabilities for electron and holes of the wave vector k in the conduction
and valence bands respectively, w_ = (n_ +n_-1) is the population inversion, PI,_ and P2,k are the dispersive

and absorptive components of the dipole moment Pk, of the wave vector k, pk = pl,k + ip2,k and the r

parameters govern various decay processes. The transition energy hw/_ is varied over a sufficiently large range
to accurately describe the interaction of an ultrashort optical pulse with the semiconductor, h_(t) and fi_(t)



are determined by first computing the chemical potentials pc(t) and ph(t) from n[(t) and n_(t) respectively

and then using the formula for a Fermi-Dirac distribution to find the quasi-equilibrium Fermi distributions

The generalized Rabi frequency fl_ = fll,_+i_2,k, the effective transition energy hAk, which includes

the band-gap renormalization, and the induced polarization P_ are given respectively by

06 = _(pEx(t)+ ___ Vl__qlpq), hAk = hook- _ VIk_ql(nqe + n_), P_:(t)= -_2Prio°° pl,_k2dk
qgk q#k

Initially an algorithm was developed for the simpler optical Maxwell-Block equations for two-level

atomic systems [7]. A calculation of self-induced transparency was made for a a 10 fs pulse [8]. Figure 1
shows the electric field of the pulse at several moments during its propagation inside the medium. The top

curve on the right side in figure 2 shows the corresponding population inversion at some location as the pulse

goes by. The top curve on the left side in figure 2 shows the resulting population inversion for self-induced

transparency when the SVEA and the RWA are made. The remaining curves are a comparison of the two
methods when the atomic transition frequency is detuned away from the optical carrier frequency. The exact

method is able to capture the off resonance details that the approximate method is incapable of modeling.

Next the semiconductor Maxwell-Block equations were solved [8] under the simplifications that the

Coulomb interaction terms were neglected (the free carrier assumption) and that there were no relaxation

terms in the equations for the evolution of n_ and n_. Figures 3-6 show colliding pulses, including constructive
and destructive interference. Figure 7 shows gain curves that were obtained under the free carrier assumption.

Finally figure 8 shows exciton results. Notice the ls and 2s absorption peaks in the case of the
2 ps dipole decay time. Here the population inversion was specified at minus one, the generalized Rabi

frequency was used but the transition energy was not renormalized. The presentation shall include additional

calculations of propagating and colliding pulses in which all the Coulomb and relaxation terms are included.

We would like to thank Rolf Binder, Optical Sciences Center, University of Arizona, for his many

helpful comments concerning algorithm development for the semiconductor Bloch equations.
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We investigate analytically the occurrence of modulation instability in doped fiber lasers and amplifiers using
a Maxwell-Bloch description for the dopants' and without making the usual parabolic-gain approximation.
We find a new modulation instability occurring near the Rabi frequency, which is not predicted by the conven-
tional complex Ginzburg-Landau model. We discuss the implications of this new instability for fiber ampli-
fiers and lasers and analyze the effects of the saturable host absorption on the laser instabilities. Atomic

detuning is shown to significantly enhance the new modulation instability, in both the normal- and the
anomalous-dispersion regimes. © 1997 Optical Society of America [S0740-3224(97)04610-9]

I. INTRODUCTION

The onset of instabilitiesin various kinds of lasers is gen-

erally studied by use of a rate-equation model based on

the Maxwell-Bloch equations suitable for a two-level

atomic system. I Such a model, often referred to as the

(detuned) Lorenz-Haken model, includes atomic polariza-

tion dynamics and has been used extensively over the

past two decades. Its use leads to the concept of the sec-

ond laser threshold, defined as the pump level at which

the continuous-wave (cw) operation of the laser becomes

unstable through a Hopf bifurcation,resulting in a self-

pulsing output. At higher pump levelsthe laser can en-

ter into a chaotic regime through a period doubling or an-
other route to chaos. 12

The advent of fiber lasers during the late 1980's forces

several changes to this standard model of laser instabili-

ties, mainly because the optical fiber, acting as a host to

the dopants, introduces group-velocity dispersion (GVD)

and self-phase modulation (SPM), both of which must be

incorporated for a proper description ofthe onset of insta-

bilitiesin fiber lasers.3 In fact,these two phenomena

lead to an instability,known as the modulation instability

(MI), even in an undoped and unpumped optical fiber.4

It is therefore reasonable to expect that the presence of

GVD and SPM in the host fiberwould change the nature

of instabilitiesin fiber lasers in comparison with other

kinds of lasers (gas and solid-statelasers) that are well

described by the standard Lorenz-Haken model. Apart

from this propagation-based instability,several other ex-

planations for the observed instabilitiesin rare-earth-

doped fiber lasers have been reported. It was shown

theoreticallyand experimentally that the existence of ion

clusters in heavily Er-doped fiberlasers leads to single-

mode cw or self-pulsing behavior, whereas the same

model isalso applicable to dual-wavelength or bipolarized

lasers,s's Other theories and experiments on Zr-doped fi-

ber lasers have shown self-pulsing,chaos, and antiphase

dynamics between the differentpolarization eigenstates

of the optical field.7's The explanation for the self-

pulsing behavior of Nd-doped fiber lasers has been re-

ported to be driven by the dynamics of the two field-

polarization eigenstates that depend on the birefringence

of the fiber, s'l° In this paper, however, we focus on the

propagation-driven MI phenomenon, and do not consider

any field-polarization dynamics.

In recent years, the MI phenomenon has been investi-

gated in doped (active) fibers used to make lasers and

amplifiers. 3,4'11'12 When doing so, one has to consider the

nonlinear interaction of the dopants with the optical field.

A natural choice is to model the dopants as a two-level

system with an atomic polarization dephasing time T 2

and a population relaxation time T1. By far, the most

popular model employs the parabolic-gain approximation,

leading to a complex Ginzburg-Landau (CGL) equation

for the optical field, a One study showed that in erbium-

doped fiber amplifiers, 11 the threshold for MI is consider-

ably lowered compared with that for undoped fibers. Re-

cently, Chen et al. 12 included gain dynamics (governed by

T1) as well as a fast saturable absorber in the model and

discussed the implications of MI for passively mode-

locked figure-eight lasers. The full atomic polarization

dynamics (governed by T 2) has, however, been neglected

so far.

In this paper we investigate the occurrence of MI be-

yond the Ginzburg-Landau approximation by considering

the full T2 dynamics. We introduce the theoretical

framework in Section 2 and discuss the consequences for

amplifiers in Section 3. There, we calculate the steady-

state solutions and derive a dispersion relation for MI.

The effectof the population relaxation damping time TI

and the dipole dephasing time T2 on MI are studied for

amplifiers. We find that by cooling the fiber amplifier,

the bandwidth and the strength of the MI can be greatly

reduced. In Section 4 we deal with fiber lasers and de-

rive the dispersion relationfor MI at resonance. The role

of saturable absorption in fiberlasers isinvestigated, and

we focus on the possibilityof MI occurring in the normal-

dispersion regime. We find indeed such an instability,

having itsorigin in the atomic coherence effectsrelated to

the atomic polarization dynamics. This new instabilityis

found to occur at rather low frequencies (-50 MHz) and

0740-3224/97/I02618-I0510.00 © 1997 OpticalSocietyofAmerica
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may explain the self-starting behavior of mode-locked Nd-

doped lasers. In Section 5 we discuss the effects of de-

tuning on the occurrence of MI and discuss the differences

between normal and anomalous operating regimes.

2. THEORETICAL FRAMEWORK

Our starting point is a set of Maxwell-Bloch equations

that describe the propagation of optical fields in a nonlin-

ear, dispersive medium doped with two-level atoms (or

ions). We write the electrical field if(x, y, z, t) and the

induced material polarization _(x, y, z, t) as

if(x, y, z, t) = ½ _F(x, y)A(z, t)

× exp[i(8oZ - w0t)] + c.c., (1)

J/)(x, y, z, t) = ½ _F(x, y)B(z, t)

x exp[i(Bo z - eo0t)] + c.c., (2)

where _ is the polarization unit vector of the light as-

sumed to be linearly polarized along the x axis, F(x, y) is

the fiber-mode profile, and 80 is the wave number corre-

sponding to the carrier frequency _0- We assume that

the field-polarization direction is preserved upon propaga-

tion and that we are dealing with a polarization-

preserving single-mode fiber. However, most of the re-

sults are expected to remain qualitatively valid for

conventional optical fibers. After substituting Eqs. (1)

and (2) into Maxwell's equations, and making the slowly-

varying-envelope and rotating-wave approximations, we

obtain the following equations for the slowly varying com-

plex amplitudes A and B (Ref. 4):

_A i 1 i82 c)2A
- B--aA

Oz 2 2 2 at 2

+ (0 + iT))AI2A, (3)

dB

T 2 --_ = (i5 - 1)B - lAg, (4)

dg
T1 -_ = go - g + Im(A*B)/Pso,, (5)

where g is the gain realized by pumping the dopants, a is

the optical loss, 82 is the GVD coefficient of the host fiber,

8 accounts for saturable host absorption, 7 is the fiber

nonlinearity, 5 = (_o - _)T2 is the scaled detuning be-

tween the carrier frequency wo and the atomic resonance

frequency _, go is the unsaturated gain, and P,a, is the

saturation power for the dopants modeled as a homoge-

neously broadened two-level system. We have written

Eqs. (3)-(5) in such a way thatA has units of _]'W, B has

units of _WL-I, and g has units of L-l where L is the

length of either the amplifier or the laser cavity.

It is important to note that Eqs. (3)-(5) are based on a

traveling-wave description rather than a standing-wave

approach that is employed in the conventional rate-

equation analysis. Since we adopt a traveling-wave ap-

proach, the optical fieldA(z, t) in Eqs. (3)-(5) in principle

can represent a very wide spectrum (or many longitudinal

modes). The detuning parameter 5 is thus interpreted as

the mismatch between the gain peak and the dominant

frequency of the laser spectrum. The main assumptions

in our model are the homogeneously broadened gain me-

dium and the neglect of spontaneous emission. The

former is not valid for all doped fibers, but for some types

of glass hosts it is a reasonable assumption. 4 Since we

are interested in deterministic instabilities, spontaneous

emission can be neglected without loss of generality.

There are two distinct origins of the nonlinear effects in

Eqs. (3)-(5). The fiber nonlinearity _ = n2wo/cAe_ ac-

counts for SPM effects induced by the host, where n2 is

the nonlinear refractive index (units m2AV), c is the speed

of light in vacuum, and Aeff is the effective fibercore area.

•For completeness we give the relation between n., and the

nonlinear susceptibility _i3> (units of meters squared per

volt squared) of the fiber

3

-- Re[x(3_(Wo)], (6)
n2 4_0n2c

where n is the background refractive index and Eo is the

permittivity of the vacuum. The dopant-induced nonlin-

ear effects are governed by the saturation power P_,t, de-
fined as

2cn eoAe_

Psat- 2_2TIT 2 , (7)

where ti is Planck's constant divided by 2_r and p is the

dipole moment of the atomic transition. Note that Eqs.

(3)-(5) are written in the frame of reference moving with

group velocity vg-_ 81-1, which means that t = T

- 81z, where T is the time in the rest frame. By doing

this, we eliminate the term 81(_A/aT) from the left-hand

side of Eq. (3).

We now briefly discuss the relation of Eqs. (3)-(5) with

the CGL model. 4'12 When the assumption is made that

the population relaxation time TI is much longer than all

other lifetimes, we can approximate the actual gain g by

its steady-state value g,. This allows Eq. (4) to be ex-

pressed in the Fourier domain as the well-known

Lorentzian-shaped nonlinear susceptibility:

B(Aw) -ig,

.4(Aw) 1 - i(AwT 2 + 5) (8)

where Aw = _o - w 0 is the detuning of the spectral com-

ponent from the carrier frequency. In the CGL model,

polarization equation (8) is approximated by a Taylor ex-

pansion near A o = 0 up to second order, leading to the

parabolic-gain approximation that is reasonably accurate

for small values of T 2 . In the time domain this corre-

sponds to (generally complex) corrections ASI and 5/32 of

the inverse group velocity 81 and the GVD coefficient 82
(Ref. 3):

1 1

ASI(_) = 2 g2T2 (1 - i5) 2' (9)

i

A82(5) = g.T22 (10)
(1 - i5) s"

From Eq. (9) we see that only at resonance (5 = 0) can
the resulting pulse propagation equation be written in the

reference frame moving with the new group velocity (81
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+ Afll)-I , because only at resonance is the correction

AB1 real. After writing the correction to the GVD as

A_2(0) -- ib _- ig_T22, the resulting equations of the

CGL model become

0.4 1 1 c)2A

_z = 2 (g - a)A + _ (b - i_2)

+ (0 + i_,)}A}2A, (11)

dg glAI _

Tl _- = go - g P_t ' (12)

Obviously, Eqs. (11) and (12) are good approximations of

the full model only if T1 is long enough and T2 is short

enough. In this paper we explore the shortcomings of the

CGL model for realistic fiber lasers and amplifiers and

find interesting behavior outside the realm of the CGL

model. We note that the CGL model is only useful for

amplifiers for which gain saturation can be neglected;

otherwise, the gain dispersion b would be z dependent,

which seems impractical at best.

The Maxwell-Bloch equations (3)-(5) can be applied to

both amplifiers and unidirectional (e.g., ring) lasers. In

the case of lasers, however, one should, in general, solve a

complicated boundary-value problem to account for the lo-

calized losses at the cavity mirrors, a task that requires a

numerical approach. In this paper we adopt the mean-

intensity approximation by replacing the localized mirror

losses with a distributed loss incorporated in the total op-

tical loss a. In the case of amplifiers, such a mean-

intensity requirement is not valid: the intensity is

strongly z dependent. Because the steady states are so

different for lasers and amplifiers, a modulation stability

analysis yields very different results. In the following,

we treat them separately.

G. H. M. van Tartwijk and G. P. Agr:

This differentialequation can be solved, resulting in

following transcendental equation for PA :

28P_t(1 + _2)z

c:_ ,,

C [P,4(z) - C.P..t(1 + ,_2)]
In) ........ E "|

+ _ [ Po- C.Put(l + a) ]

1 - C [P_(z)- C_P,at(I + 82)]

-- Inl ......... _ |,
+ C_ [ Po- C_P_,(I + 3) J

where the coefficients C and C* are given by

(]

1+C+
C=

C.-C_'

2C. = c 2 - 1 +- [(1 - c2) 2 - 4(c 1 - c2)] la, (1. (

go

cl = 20P,at(1 + _2)2' c2 = 20P,at(1 + _2)" (2C

In the absence of saturable absorption (8 = 0), the solu

tion of Eq. (17) is implicitlygiven by

3, MODULATION INSTABILITY IN

AMPLIFIERS

We consider an amplifier (or absorber) of length L with an

input power Po at z = 0. We first find the time-

independent (steady-state)solution of Eqs. (3)-(5). For-

mally, itcan be written as

As(z) = [P_(z)]mexp[i_s(z)], (13)

As(z)g,(z)

B,(z) = t_+ i ' (14)

g,(z) = go 1 + = 82)j . (15)

Using the imaginary part of Eq. (3), we can write the

phase profile _,(z) in terms of the power profile PA(z):

_,,(z)= _ dz'PA(z') + 82 dz'g,(z'). (16)o I+

From the real part of Eq. (3), and using Eq. (15), one finds

the following differential equation for the scaled power

profile f(z)-= PA(z)/[Put(1 + 82}]:

df g0 f
af + 20P_t(1 + ss)f2. (17)

dz 1 + $2f+ 1

[PA(Z)] go

= ln[-_o J a(1 + _2)

[ }PA(z) - P,,t(1 + 6s)[a(1 + 8 2)

× In

[ ,oPo - P_t( 1 + 82) a(1 + $2) 1

(21)

which, in the absence of opticalloss (_ = 0), reduces to

PA(z) - Po goz
+ = _ (22)

P_t 1 + ¢_2'

After the power profile PA(z) is found, the gain profile

g,(z) and the polarization profile B,(z) follow from Eqs.

(13)-(16).

To study the onset of MI, we follow a standard

approach 4 by considering the linear stability of the

steady-state (cw) solution given above. Considering
small perturbations u, v, p, q, and x from the cw state
defined as
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A(z, t) = [(Po) m + u(z, t) + iv_z, t)]

[PA'Z)] 1/2
× L_j exp[i_,(z)], (23)

gAz)

B(z, t) = & +-------7[(Po) _2 + p(z, t) + iq(z, t)]

[Pa(z)] m

× [-'-_o ] exp[i@.(z)], (24)

g(z, t) = [go + x(z, t)]ll

1-',
+ put( 1 + $2)J (25)

and linearizing Eqs. (3)-(5) in u, v, p, q, and x, we solve

the resulting five linear equations in Fourier space by in-

troducing

y(z, t)=Yo exp/if dzK(z)-iIlt],

y = u, v, p, q, x, (26)

where Yo is the initial amplitude, fi is the frequency, and

K(z) is the local wave number of the perturbation. The

resulting dispersion relation for arbitrary detuning 8 is

discussed for fiber lasers in Section 5. The dispersion re-

lation at resonance (8 = 0) is given by

{[2iK(z) + g,(z) - 48Pa(z)][2iK(z) + g,(z)]

+ ]_22fi2[ fI2 -}- sgn(_2)l_c2(z)]}(1 - iflT2)

× [(1 - ifiT1)(1 - ifiT 2) + l(z)]

- gs(z)[2iK(z) + g,(z)](1 - lilT2)

× [1 - lilT1 - I(z)] - g,(z)

× [2iK(z) + go(z) - 4SPA(Z)]

x [(1 - iflTl)(1 - iflT2) + l(z)]

+ g,2(z)[1 - ifiT1 - l(z)] = 0, (27)

where I(z) = PA(z)/Put, sgn(/32) = -1, and fie(z)

= [4yPa(z)/[B21] ta is the critical frequency, i.e., the

maximum frequency for which MI is found to occur in the

case of anomalous dispersion in a passive fiber. 4 Before

we examine the implications of Eq. (27) in various re-

gimes of parameter space, we note that the Rabi fre-

quency is somewhat hidden:

[ PA(z)l _
_-_Rabi(Z) ---_ [_j • (28)

The imaginary part of K(z) determines the local gain
experienced by the perturbation. It is useful to define

the total integrated gain at frequency fi as n

foh(ll) --- -2 dz Im[K(ll, z)], (29)

where the factor 2 converts h(ft) to power gain. MI oc-

curs whenever the wave number K has a negative imagi-

nary part. In the case of an amplifier, this means the
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perturbation grows faster than the steady-state power.

whereas for an absorber it means that the perturbation

dampens less quickly. Dispersion equation (27) reduces

to the previously reported ones in the appropriate limits.

In the absence of saturable host absorption (8 = 0), the

dispersion relation from Ref. 11 is obtained in the limit of

large T1 and short T2.

We now consider the occurrence of MI in various re-

gimes of parameter space for both amplifiers and absorb-

ers. Because our model has no restrictions with respect

to the magnitude of the lifetimes T 1 and T2, we can ex-

plore MI in regimes where the CGL model has no validity.

For simplicity, we only consider the local perturbation

gain because the integration in Eq. (29) can be performed

analytically in a few limiting cases only. a We also ignore

the possibility of saturable host absorption since two-

photon absorption is relatively weak in silica fibers, and

other sources of saturable nonlinearity are rarely present

in amplifiers. When we discuss MI in lasers, we show

how even relatively small amounts of saturable host ab-

sorption can affect the MI drastically.

We start by investigating the effect of the magnitude of

the dipole lifetime T 2 . For most fiber amplifiers, T2 is

estimated to be near 100 fs, corresponding to a wide gain

spectrum. Because T1 is usually in the range 0.1-10 ms,

the CGL equation is expected to be a good approximation.

However, by cooling the fiber, the polarization dephasing

process can be slowed down substantially, making values

of T 2 _ 10 ps readily attainable, la

In Fig. 1 we show for various values of T2 in the range

0.1-10 ps the MI spectrum for a typical fiber amplifier

with a 30-dB gain, i.e., exp(g0L) = 1000. All other pa-

rameters are given in the caption. Note that the satura-

tion power Psat is inversely proportional to T2 [Eq. (7)].

When Eq. (7) is satisfied for each value of T 2 , the Rabi

frequency remains a constant for all curves: fia_bi

= 1.29 × 10-afic . When the dephasing time T2 is in-

creased, two trends are observed.

First, as can be seen in Fig. 1, increasing T2 leads to a

shrinkage of the MI bandwidth, whereas the maximum

LO 0.6 1.0 I.,$

Fr_wncy [t'l/G )

Fig.I. Modulation instabilityspectrum foran erbium-doped fi-

ber amplifierat various values of T2 (indicatedin the figure).

Parameters are go = 6.91L -t, P0 = I roW, TI = 0.1 ms, 132

= -20pe2/L, _= 3W -IL -l, and P_t= 1roW when T2

= 0.1 ps. For undoped fibers,MI occurs up to flmt/2_r
= 3.9GHz
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Fig. 2. MI spectrum for the amplifier of Fig. 1, for even longer
dephasing times T 2 (indicatedin the figure). In the range 21
< T2 < 80 ps, MI is totallyquenched. When T2 approaches

100 ps, the MI spectrum startsto show a narrow, weak peak

around the Rabi frequencylqR.b,/fl_= 0.0013.

gain within the bandwidth decreases rapidly. When T2

= 100 fs (PA/Psat = 0.01), MI occurs for frequencies up

to flc/27r = 3.9 GHz, while the peak MI strength is found

near fl = ft c / _/'2. The peak strength is very close to the

analytical value 2 _'PA, which is found in the CGL limit.x1

Already when T 2 = 2 ps (PA/Psat = 0.2), the frequency

band where MI occurs has shrunk -40%, and near T2

= 8 ps (PA/Psat = 0.8), MI has almost ceased to occur at

all. Near T 2 = 21 ps (PA/P_ t = 2.1), the Ml band van-

ishes completely. Long before that happens, the strength

of MI is so weak that it is doubtful whether it can be ob-

served in a single-pass amplifier.

Second, during this MI spectrum shrinkage, another

phenomenon is occurring that is directly caused by the

two-level system since it involves frequencies close to

liR, b,, as is shown in Fig. 2. Near the Rabi frequency a

secondary, weak maximum in MI strength begins to form

for T 2 > 20 ps. This maximum becomes positive near

T2 = 80 ps (PA/Psat = 8) and grows with T2. When T2

is increased further, the MI spectrum slowly returns to its

original width and strength (out of scale in Fig. 2). Near

T 2 = 11.5 ns (PA/Put = 1150), the MI spectrum shows

again positive MI gain around II c , while maintaining a

narrow (but weak) peak close to lla, b_. At the highly im-

probable value ofT 2 - 1 #as (PA/P_t = l0 s} the MI spec-

trum is very close to the one at T._ = 100 fs, and we have

come full circle.

Thus we find four regimes of T._; in the first regime

(100 fs < T 2 < 21 ps), increasing Te leads to a total

quenching of MI. In the second regime (21 ps < T2

< 80 ps), no MI occurs, but the gain around the Rabi fre-

quency is growing. In the third regime (80ps < T2

< 11.5 ns), more and more MI occurs around the Rabi

frequency, while the gain around II c is growing toward a

positive value again. In the fourth regime, approaching

the long T 2 limit (1 #as < T_ < _c), the MI spectrum re-

covers fully to its original (small T 2) form. The bound-

aries between these regimes are, of course, strongly de-

pendent on the power level PA • For higher power levels

these boundaries rapidly decrease.

We further note that the MI band near ll_ is insensit

to changes in Tl, as long as it is accompanied by a char

in the saturation power P_at according to Eq. (7}. Flc

ever, if we keep the saturation power constant u_

changing Tx (this can be done by adjusting the dipole

ment #a), decreasing T_ leads to a stabilization of t

lower frequencies and eventually a reduction of MI al

gether.

We emphasize that the narrow MI peak around llR_ b

so weak that it is questionable whether it can be observ

in an amplifier. In the case of a laser, however, sucl_

weak gain may build to a substantial instability ox.

many round trips, as we discuss in the next sectic

Since it is not common to use an amplifier in the hig_

saturated regime, the emergence of the narrow MI bm

near the Rabi frequency is not very practical. Note, ho_

ever, that this narrow MI band near the Rabi frequen,

does not depend on the sign of/32; in both normal- ar

anomalous-dispersion regimes, thisinstabilityemerges :

relativelyhigh values of T_.

Apart from this new {and for realisticsystems, e>

trernely weak) instability,the fullMaxwell-Bloch rood,

agrees with the CGL model qualitatively rather well. (

course, the quantitative differences become larger as th

approximations leading to the CGL model (large T I an

short T 2) become more and more inappropriate. In th
next section we find that for lasers the situation can b

very different.

4. MODULATION INSTABILITY IN FIBER

LASERS AT RESONANCE

Equations (3)-(5) also describe the optical field and th_

gain in a laser, when one assumes that all losses can b(

thought of as being distributed along the cavity. Then

the steady-state solution is characterized by

z-independent power P0 and gain g.,, and can be writte_

as

A,(z) = (P0) I_ exp[i_.Az)], (30_

8-i

B_(z) = 1 + j2Asg,, (31_

I Po ] -_g,_ =go 1 + Put( ] -+ _2) "
(32)

Again, from the real and the imaginary part of Eq. (3), the

following expressions for the laser power Po and the

phase profile _,_(z) are obtained:

gs = (a - 2OPo)(1 + $2), (33)

= YPo + _ 1 +'_2 a . (34)

Since Eq. (33) is quadratic in P0 [with use of Eq. (32)], in

principle, two values for the laser power are found. One

of these is not physical and corresponds to the antilaser,

which is characterized by a huge gain and almost zero

power.

Similar to the amplifier case, we consider small pertur-
bations u, v, p, q, and x from the cw state, defined as

b_

I
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A(z, t) = [(Po) m + u(z, t)

+ iv(z, t)]exp[i_s(z) ], (35)

8-i

B(z, t) = 1 + 82[(P°)m +p(z't)

+ iq(z, t)]gsexp[i_os(z) ], (36)

g(z,t)= [go +x(z,t)] 1 + Put(l+ 82) . ' (37)

and linearizing Eqs. (3)-(5) in u, v, p, q, and x, we solve

the resulting five linear equations in the Fourier space by

introducing

y(z, t) -- Yo exp[i(Kz - lit)I,

y = u, v, p, q, x, (38)

where Y0 denotes the initial amplitude of the perturba-

tion. Note that because because both laser power P0 and

gs are z independent, the wave number K is also z inde-

pendent. At resonance (8 = 0), the resulting dispersion

relation reads

{[2iK + a - 6_Po](2iK + a - 28Po)

+ 1322F/2[fl 2 + sgn(/_2)flc2]}(1 - iflT2)

× [(1 - i12T1)(1 - il2T2) + I0]

- gs(2iK + a - 28Po)(1 - i12T2)

× [1 - il2T1 - Io] - gm(2iK + a - 60/>0)

× [(1 - if_Tl)(1 - i12T2) + I0]

+ g_2( 1 - i12T1 - Io) -- 0. (39)

Here, Io = Po/Put, sgn(_B2) = - 1, and 12c

= (47Po/1_21) 1/2 is the critical frequency, i.e., the maxi-

mum frequency for which MI is found in the case of

anomalous dispersion in a passive fiber. 4 This dispersion

relation is identical to Eq. (27) when one replaces K, P0,

and gs by their z-dependent counterparts, and Eq. (33) is
used.

Dispersion relation (39) reduces to the one previously

reported by Chen et al., 12 who employ the CGL model, in

the appropriate limit.

Before we proceed with examining the implications of

Eq. (39) in various regimes of parameter space, we note
that the Rabi frequency is now given by

( Po /
12a.bi _ _ Pu'_IT2] " (40)

Merely comparing the relative strengths of the critical

frequency 12¢ with the Rabi frequency 12_bi does not pro-

vide much information about the effect of atomic coher-

ence on MI. The interaction between the fiber nonlinear-

ity, the GVD, and the two-level system is much more

involved.

In contrast with the amplifier case described in the pre-

vious section, lasers generally operate in the heavily satu-

rated regime. This means that the instability near the

Rabi frequency is now more likely to play a significant

--_ 0.0

_- .0.1

-0.2

(a_ f _---_.

,
/ ' I

/

-0.1 0.0 0.1
DY2xITHz]

0.2

(b)0.1

.0.!

-0.2 _ -
-0.7 .0.5 -0.3 .0. I

net MI gain [-2 Ira(K)]

Fig. 3. MI analysis for a figure-eight laser• Solid curves indi-
cate the results of the full model, while dashed curves show those
of the CGL model. Top figure shows the net MI gain spectra,
while the bottom figure shows the corresponding trajectory of the

eigenvalue K on the complex plane. Parameters are a

= 0.4L-l, go= 6L -1, B2 = -0.09p s2L-l, 8= 0.1W-1L -1,
= 0.008W -1L -1, T2 = 1.27ps, TI = l0 sps, and Put = 10
mW.

role. Furthermore, many fiber laser systems, e.g., a

figure-eight laser, contain an effective saturable absorber

that causes mode locking.

We first compare the predictions of Eq. (39) with the

CGL-based expression. 12 To facilitate comparison, we

used the same parameters as in Ref. 12. In Fig. 3 we

show the differences for the case of a figure-eight laser.

Although the trajectories of K in the complex plane as a

function of frequency F/ are quite different for a figure-

eight laser, the resulting net MI gain spectra agree quite

well, at least in the central region. The frequency range

over which positive net MI gain occurs is underestimated

by 10% by the CGL model. Both models show vanishing

gain at 100 kHz [indicated by the vertical line at 12 _ 0 in

Fig. 3(a)], whereas the frequency with highest gain is

near 200 kHz. The Rabi frequency in this case is 12a, bi

= 55 MHz, and the_critical frequency is 12c = 37 GHz.

They differ by almost three orders of magnitude. Even

so, MI occurs for frequencies almost twice as large as 12c-

The results for the dye-laser parameters are shown in

Fig. 4. Our model predicts that MI occurs in a narrow

band near 30 GHz, whereas the CGL model predicts no

instability at all! The Rabi frequency 12R, bi and the criti-

cal frequency 12c are both close to 24 GHz, which explains

why the interaction between the fiber and the two-level

system is so highly nonlinear.

Here we find the first meaningful qualitative difference

between the full Maxwell-Bloch model and the CGL

model. Not surprisingly, the laser power in Fig. 4 is _60

times the saturation power Put, which makes the Rabi

frequency of the same order as the critical frequency 12c .
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So for the dye laser of Fig. 4 the interaction between the
two-level system on the one side and the GVD and the
SPM on the other side cannot be described within a

parabolic-gain approximation.
The pump value go at which the cw state loses its sta-

bility is often classified as the second threshold, 1as it an-
nounces the onset of unstable behavior. Similarly, we

can identify the MI threshold as the gain above which MI
occurs. At this threshold, MI occurs only at the fre-

quency corresponding to the peak gain in the MI spec-
trum, which can be compared with the frequency with
which perturbations grow at a Hopf bifurcation. In Figs.
5 and 6 we show the dependence of the MI threshold as a
function of 0 for the case of the figure-eight laser (Fig. 5)

and the dye laser (Fig. 6). The effect of saturable absorp-
tion is very dramatic in the case of the figure-eight laser

,g

0.005

o.ooo

.0.005
-0.05

(a) -!

0.00 0.05
t-Y2n[THz]

0.10

_" 0.00

.0.10 I'
-0.20 -0.15 .0.10 .0.05 0.00 0.05

net MI gain[-2 Ira(K)]

Fig. 4. MI analysis for a dye laser. Similar as in Fig. 3, except
for the parameters: a = 0.1L -1, go = 3L -1, _2= -O.09ps 2
L-1, 0= 0.O01W-IL -1, 3,= 0.O08W-1L -], T2 = 2.45ps, T)
= lOs ps, and Put = 1 roW.
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Fig. 5. MI threshold as a function of saturable absorption 0 for
the fiber laser of Fig. 3.
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Fig.6. MI thresholdasa functionofsaturableabsorption0for
thedye laser of Fig. 4.
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Fig. 7. Comparison of net MI gain spectra in the absence of
saturable absorption ( 0 = 0), for the cases of normal and anoma-
lous dispersion. Other parameters of the fiber laser are the
same as in Fig. 3.

parameters: when 0is largerthan 10-eW-IL -I. MI oc-

curs immediately afterthe first(lasing)threshold. A

qualitativelysimilardependence isfound forthe dye la-
ser,where the MI thresholdgain decreasesfrom _ 9 to

1.5 at 0 = 0.1. This featureexplainswhy a relatively

weak saturableabsorber can lead to passivemode lock-

ing. Although the presence of a saturableabsorber is

evidentlyvery usefulfor the generationof mode-locked

pulses,itsomewhat obscuresour investigationofthe in-

teractionbetween the two-levelsystem and the fibernon-

linearityand dispersion.This explainswhy forboth the

figure-eightlaserand the dye laserofFigs.3 and 4,the

resultshardlychange ifwe considernormal dispersion.
We thereforeexamine the case 8 = 0,so that we can

considerthe soleinteractionbetween the fibernonlinear-

ityand the two-levelsystem occurringin the absence of
saturable absorption. The interestingquestion is
whether atomic coherence can lead toMI in the normal-

dispersionregime of the fiber. According to the CGL

model, thisisnot possible.
In Fig,7 we show, again fora fiberlaser,but without

saturableabsorption(ring-cavityinsteadof figure-eight

I l II II
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geometry), the net MI gain spectra for f12

= _+0.09 ps 2 L -1. For anomalous dispersion, we find an

approximately 4-GHz-wide MI band centered near 2.5
GHz and a much narrower and much weaker MI band

centered near 50 MHz. While the MI band near 2.5 GHz

vanishes in the case of normal dispersion, the narrow low-

frequency band survives. So, contrary to what the CGL

model predicts, the presence of dopants can cause MI in-

stability in the normal-dispersion regime of the fiber.

Furthermore, in contrast to the amplifier case (Section 2),

any positive value of -2 Ira(K) should be taken seriously,
since, in a laser, even the smallest growth of a perturba-

tion may cause a significant change in the output signal

after many round trips in the cavity.

Figure 8 shows the peculiar dependence of this new MI

at normal dispersion when the population relaxation time

TI is decreased from 10/_s to 1.375 _s. Upon decreasing

T_, the new MI band initiallygrows stronger,while shift-

ing to higher frequencies. Decreasing T I further causes

the band to weaken and finally to vanish abruptly at

-1.35 _s.
We stress that our results indicate that a fiber ring la-

ser, operating in the normal-dispersion regime, may show
unstable behavior at high pump levels, even in absence of

additional saturable absorbing mechanisms. At reso-

nance, the strength of the MI in the normal-dispersion re-

gime is rather weak, which would imply that the instabil-

ity needs to build up during many round trips in the ring

laser. In the next section we discuss the effect of detun-

ing on the strength and the nature of this new instability.

5. MODULATION INSTABILITY IN
DETUNED FIBER LASERS

With various experimental techniques, e.g., through the

use of gratings, one can force a fiber laser to operate away

from the gain peak. In our theory this means that we
have to deal with the effect of detuning 3. Recall that

there is no CGL version for the detuned case, as the group

velocity becomes complex in the parabolic-gain approxi-

mation. For arbitrary detuning, dispersion relation Eq.

(39) reads

I0'*

i0 +

4--
..,+

tO+

i0 "m

{lOOI

I0""
0 100 20@ _ 4100

Fr_lmmO' IMHzl

Fig. 8.

I..WS)

New MI band at normal dispersion as a function of popu-
lationrelaxationtime Tt (indicated).Other parameters ofthe
fiberlaserare the same as thosein Fig.3.

( 2iK

+

×

+

+ 32 48P o 2iK +1+ 1

( + !]fl2122 1 + 32]/B2"Q2 + 4YP° 1 + 82

{(1 - iflT2)[(1 - if/Tz)(l - iflT2) + I0]

32(1 - illTt)} + _ 2iK +1+ 1+_

x [(1 - if/Tt)(1 - iflT2)

iftT2 _ lilT1) )-(1 f7_2)10 + a=(1 -

+ +52 2iK + +52 40Po1+ 1+ ,,

( iflT2321x (I - inTz)(1 - iflT2) + 1 _ + -_!lo

l gs2+ 32(1 - i_lTz) + 3--------_1+

x [(1 + a2)(1 - iflT 1) - Io]

+ 2iflT2g, 1 + 32 2iK+ 1 + 32 28Po

[ '01x l-inT_ (1 +32 )

+ _e2fl2
I+B 2 1+32 ]

X [(1 + 32)(1 - iflT1) - I0]

+ 32 f12 _'_2 + 4yP01 + 1 + 32]

× [(1 + 32)(1 - il'lT l) + (1 - ilRT2)Io] = O, (41)

where lo = Po/P_t. Equation (39) is recovered by put-

ting 3= 0 andg, = a- 20P0. Equation (41) can be

applied as well for amplifiers by treating P0, g,, and K as

z-dependent quantities.

We now use Eq. _(41) to investigate the effect of detun-

ing on the MI spectra shown in Fig. 7. The introduction

of 3 into the problem makes the situation even more com-

plex. Instead of only two frequencies, i.e., the critical fre-

quency ft c and the Rabi frequency ftR_bi, the problem

now is governed by the interaction of three frequencies.

In Figs. 9 and 10 we show the effect of detuning on the

bandwidth and the strength of MI for normal and anoma-

lous dispersion, respectively. Clearly, small detunings

have a large effect on the occurrence of MI, and the sign of

the detuning also matters. This spectral asymmetry is
due to the fiber host nonlinearities. When GVD and

SPM are absent, Eq. (41) is symmetric in detuning 3. In

the anomalous-dispersion regime (Fig. 10), a small value

of the detuning connects the two MI bands, one owing to
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Fig. 9. Effect of detuning on the new MI in the normal-

dispersionregime. Parameters identicalto thosein Fig.7.
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Fig. 10. Similar to Fig. 9, except that the laser now operates in
the anomalous-dispersionregime.

the passive fiber MI and the other owing to two-level dy-

namics. Upon increasing the absolute value of the de-

tuning, the MI bandwidth and the strength increase loga-

rithmically. At large detuning ($ = 0.1), there is no

distinction between the normal- and anomalous-

dispersion case. For large detuning the instabilityis ap-

parently dominated by the two-level dynamics.

quite substantial. We show that by cooling the fiber am-

plifier and thereby increasing the dipole dephasing time.

the occurrence of MI can be quenched. For heavily satu-

rated amplifiers, we find a new instability located in a

narrow frequency band around the Rabi frequency. The

CGL model does not predict such an instability. The

strength of this new instability is very small, and it is

questionable that its effect can be detected in a single-

pass amplifier.

In lasers, a different picture emerges, since any grow-

ing perturbation may build up over many round trips

within the laser cavity. Furthermore, the presence of a

weakly saturable absorbing mechanism is shown to.

greatly enhance the instability. We compare our results

with those of Chen et al., 12 who used the CGL model to

investigate MI in a dye laser and a figure-eight laser. 12

Our results for the figure-eight laser agree rather well.

whereas we find disagreement for the dye laser, which in

our model is predicted to have an instability of _30 GHz.

Further indication that the CGL model should be used

with caution is given when systems without saturable ab-

sorption are studied: for a fiber ring laser operating in

the normal-dispersion regime, a narrow MI band of low

(_50-MHz) frequencies is found, which is not predicted

by the CGL model. This may explain the self-starting of

mode-locked Nd-doped fiber lasers.

The effect of detuning on the strength and the band-

width of the new instability can be substantial, since non-

zero detuning effectively introduces a new frequency into

the problem. Even for a relatively small detuning, the

strength and the bandwidth of MI increase logarithmi-

cally, whereas the difference between normal and anoma-

lous dispersion becomes smaller. The fiber nonlineari-

ties cause the MI spectrum to become asymmetric with

respect to detuning.
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6. CONCLUSIONS

We have analyzed the occurrence of modulation instabil-

ity (MI) in fiber lasers and amplifiers by considering the

self-phase modulation, group-velocity dispersion, and the

saturable host absorption. The gain spectrum has been

fully considered, in contrast to the parabolic-gain approxi-
mation employed in the complex Ginzburg-Landau

(CGL) model. We have derived analytical expressions for

the MI dispersion K(ft) that naturally reduce to previ-

ously reported research for both lasers and amplifiers.
For amplifiers, operating not too heavily saturated and

in absence of saturable absorption, no qualitative differ-

ences with the CGL description are found, even in re-

gimes where the basic approximations of that model are

violated. Quantitatively, however, the differences can be
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Absolute Instabilities in Lasers with

Host-Induced Nonlinearities and Dispersion
Guido H. M. van Tartwijk and Govind P.._kgrawal, Fellow, IEEE

Abstract--We analyze the occurrence of absolute instabilities
in lasers that contain a .dispersive host material with third-
order nonlinearities. Starting from the MaxwelI-Bloch equations,
we derive general multimode equations to distinguish between
convective and absolute instabilities. We find that both self-phase
modulation and intensity.dependent absorption can dramatically
affect the absolute stability of such lasers. In particular, the serf-

pulsing threshold (the so-called second laser threshold) can occur
at I'es_ times the first laser threshold even in good-cavity lasers for
which no self-lmising occurs in the absence of intensity-dependent
absorption.

Index Terms--Laser stability, nonlinear optics, optical fiber
lasers, optical Kerr effect, optical pulse generation, optical prop-
agation in dispersive media.

I. !NTRODUCI'ION

I_MOST immediately after the advent of the laser, it

was recognized that laser output can become unstable,

rcsuhing in irregular power spikes even at a constant pumping

levct [11. Over the last 30 years or so. laser instabilities

have bccn studied extensively both from the fundamental and

applied viewpoints 12], 13]. The fundamental studies have led

to the flourishin._.z field ot optical chaos. On the applied side,

the development of techniques for controlling chaos are being

used to make lasers tailored for specific applications (high

power, short pulses, clean far field, etc.).

Since deterministic chaos is studied in a wide variety of

disciplines, the understanding of laser instabilities can be

improved by referring to plasma and fluid instabilities that

have been studied for a long time. A famous example is

provided by the Loreaz-Haken equations which are named

after the fluid dynamicist l.orenz and the laser theorist Haken

[31. [4]. In fluid dynamics, instabilities are categorized into

two types: convective and absolute [5]. Convective instabilities

are characterized by the growth of localized perturbations

upon propagation inside a nonlinear medium, while absolute

instabilities exhibit purely temporal dynamics. Absolute laser

instabilities have been studied for more than 30 years. The

l_.orcnz-Haken equations describe the dynamics of a homo-

gencously broadened gain medium in a unidirectional ring-
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cavity. Although rarely stated explicidy, the Lorenz-Haken

equations can only show absolute instabilities. The fundamen-

tal concepts such as second laser threshold, stir-pulsing, Hopf

bifurcation, and different routes to chaos are all formulated

within the context of absolute laser instabilities [3].

In the last 15 years or so. new laser systems have been

designed that are not easily modeled by the Lorenz-Haken

equations. Examples of such lasers are fiber lasers and solid-

state (e.g.. Ti : sapphire) lasers, which are capable of producing

ultrashort optical pulses through passive mode locking while

operating at a constant pump power. What these lasers have in

common is that the gain is provided by atoms or ions doped

inside a host material. As a result, the cavity contains not

only a gain element but also other nonlinear dements, which

are respons_le for nonlinear processes such as self-phase

modulation (SPM) and intensity-dependent absorption (IDA)

[6]. Also, _oup-vdocity dispersion (GVD) of the host medium

plays a nonnegligible role. Because of the dispersive and

nonlinear effects, evolution of the optical field over a single

round trip must be considered, contrary to the Lorenz-Haken

model in which such effects are ignored. This means that the

convective nature of any instability must be considered while

discussing instabilities for such lasers.

A well-l_aown example of a convective instability occurs

in nonlinear fiber optics [6]. Optical fibers, without any

gain dement and without any longitudinal resonances (no

cavity), show a convective instability known as the modulation

instability. When the power of a CW optical beam becomes

sufficientl._ large, the combination of SPM and anomalous

GVD causes the CW beam to break up spontaneously into

a pulse tra in (and eventually into optical solitons) whose rep-

etition ratt depends on the fiber parameters. Mathematically,

a linear stability analysis _ows that perturbations of the form

exp[-iIi2t - Kz)] grow exponentially as exp(gz) with a

growth rate g = -ImIK ) that depends on the frequency

of perturbation. The repetition rate of the resulting pulses

corresponds to the frequency fl for which the growth rate g

is maximum.

Adding gain to the system, e.g., by doping the fiber with

rare-earth ions and pumping it optically, can affect consider-

ably the conditions under which modulation instability arises

[7]. The instability, however, remains convective in nature.

When such a host material (with or without gain) is put into a

cavity, the resulting boundary conditions at the cavity mirrors

can change the nature of the instability from convective to

absolute. Feedback is a necessary ingredient for absolute

instabilities to occur. A well-known example is the Ikeda

0018.-9197/98510.00 _ 1998 If:EE
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instability [8]. which arises when a Kerr medium is placed in

a unidirectional ring cavity. Even without gain and dispersion,

the feedback mechanism provided by the cavity results in an

absolute instability.

in this paper, we discuss under what conditions a convective
instability becomes absolute in a laser. In Section IL we
derive, starting from the Maxwell-Bloch equations, a set of

Lorenz-Haken-type multimode equations capable of describ-

ing the temporal evolution of a laser whose cavity includes
optical elements exhibiting dispersion and nonlinearities. The
usefulness of this new set of equations is illustrated in Section

Ill by considering a relatively simple case of a single-mode
laser. We discuss the stability of that mode as a function of
host nonlinearities.

II. MAXWELL-BLOCH EOUATIONS

For definiteness, we focus on a fiber laser although the

analysis can be applied to any solid-state laser with some

modifications. Our starting point is a set of Maxwell-Bloch

equations describing the propagation of optical fields in an

optical fiber, doped with rare-earth ions. We v,wite the optical
field { ,_nd the dopant-induced polarization _ as

1
,a(_..u, :, t) = _-F(_-, .u)A(_, t) exp[i(K0_ - ,o0t)] + c.c.

(1)
l

75(a", u, z, t) -- _arF(x, y)B(z, t) exp[i(Koz -w0t)] + c.c.

(2)

where X is the polarization unit vector of light assumed
t() be linearly polarized along the x axis, F(x, y) is the

transverse protile of the fundamental fiber mode, and K0 is
the wavenumber corresponding to the optical frequency wD.

Wc assume that the field-polarization direction is preserved

upon propagation. After substituting (1) and (2) in Maxwell's
equations, modeling dopants as a homogeneously broadened

two-level system, and making use of the slowly varying

envelope and rotating-wave approximations, we obtain the fol-

lowing equations for the slowly varying complex amplitudes
+4 and /3 [6]:

OA 1 0,4 i 1 ig_, 02A

O: v_ Or -2B- _A 2 Of" +iTIAI_A (3)

dB {1 - ib)B - lag (4)T: at -

do
T_ -_ -- 9: - .q + Im(A* B)/P, (5)

where 9 is the gain realized by pumping the dopants, o_ is the
optical loss of the host fiber. Tt is the population lifetime

of the dopants. 7". is the dipole-dephasing time. vg is the
group velocity, f12 is the GVD coefficient of the host fiber,

the complex parameter 7 accounts for the host nonlinearities
responsible for SPM and IDA. /_ ----{w0 -wa)T2 is the scaled

detuning between the optical frequency w0 and the atomic

resonance frequenc3., wa..q0 is the unsaturated gain. and P+ is

the saturation power for the dopants. We have written (3)-I'5)
in such a way that A has units of _, B has units of

v/"_ • m -t. and .q has units of m-t.

The main assumptions in our model are the use of a
homogeneously broadened gain medium and the neglect of

the stochastic nature of spontaneous emission. The former is

not valid lbr all dopants but is a reasonable assumption for

many types of dopants [6]. The latter can be justified ff one is

interested only in deterministic instabilities.
There are two distinct origins of the nonlinear effects in

(3)--(5). The host nonlinearity 3' _ 7' + i7" accounts for SPM

and IDA effects induced by the silica fiber. The SPM effects
are governed by "/" = n2wdeAeft, where n.-, is the nonlinear-

index coefficient, e is the speed of light in vacuum, and A_ is

the effective mode area [6]. The effects of IDA are accounted
for by 7". When 7n > 0, the loss in the cavity increases with

intensity, modeling processes such as two-photon absorption
[6]. In contrast, negative values for "if' imply a decrease in

cavity losses with increasing intensity and model fast saturable

absorption. The dopant-induced nonlinear effects are governed
by the sattLration power P+ -- h2cneoAefr/(2p2TiT_,,), where

h is Planck's constant divided by 2a', _u is the dipole moment

of the atomic tmnsition_ and n is the background refractive
index.

The Maxwell-Bloch equations, together with the boundary

conditions imposed by the laser cavity, provide the most

general fntmework for studying laser instabilities. They are

capable of handling both convective and absolute instabilities
and can show transitions between them. However, their solu-

tions require a numerical approach. Without host nonlinearities

(7 = 0) and without GVD 03,. = 0), the steady-state solutions
can be obtained, and their linear stability properties have been

studied [9]. However, such an approach is quite cumbersome,
and it is not easy to carry out the analysis after the inclusion

of host nonlinearities and GVD. If one is interested only in

absolute instabilities, an analytic approach can be developed,
as discussed in the next section.

HI. MULTIMODE LASER EQUATIONS

Rather than solving (3)--(5) numerically, we make use of

the fact that any cavity supports a set of longitudinal modes

whose field distribution fra(z, t) reproduces itseff after each
round trip inside the cavity. These modes can be obtained by

solving (3) with B = 0 (no gain in the fiber cavity) and using

the appropriate boundary _conditions at the cavity mirrors. For
a high-Q laser cavity, one can distribute the mirror losses

throughout the cavity and replace the fiber loss _ in (3) with

r_T = rv + r_M, where o_r is the distributed mirror loss. The

boundary condition then simply becomes A(L, t) = A(O, t),

where L is the cavity length. For a Fabry-Perot cavity with

mirror reflectivities R1 and R2, aM" is given by

aM = __ In . (6)

The approximation that the localized mirror loss can be

replaced by a distributed loss only holds for a high-Q laser

cavity [2].

When dealing with a unidirectional ring laser without host
dispersion and nonlinearities, the form of fro[z, t) becomes

simply exp[-iwm(t - z/vg)], where ,am are the mode fre-

quencies and the loss term has been ignored. In the presence of


