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SUMMARY

Reliability modeling and parametric yield prediction of GaAs/AlGaAs multiple
quantum well (MQW) avalanche photodiodes (APDs), which are of interest as an ultra-
low noise image capture mechanism for high definition systems, have been investigated.

First, the effect of various doping methods on the reliability of GaAs/AlGaAs
multiple quantum well (MQW) avalanche photodiode (APD) structures fabricated by
molecular beam epitaxy is investigated. Reliability is examined by accelerated life tests
by monitoring dark current and breakdown voltage. Median device lifetime and the
activation energy of the degradation mechanism are computed for undoped, doped-
barrier, and doped-well APD structures. Lifetimes for each device structure are
examined via a statistically designed experiment. Analysis of variance shows that dark
current is affected primarily by device diameter, temperature and stressing time, and
breakdown voltage depends on the diameter, stressing time and APD type. It is
concluded that the undoped APD has the highest reliability, followed by the doped well
and doped barrier devices, respectively.

To determine the source of the degradation mechanism for each device structure,
failure analysis using the electron-beam induced current method is performed. This

analysis reveals some degree of device degradation caused by ionic impurities in the
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passivation layer, and energy-dispersive spectrometry subsequently verified the presence
of ionic sodium as the primary contaminant. However, since all device structures are
similarly passivated, sodium contamination alone does not account for the observed
variation between the differently doped APDs. This effect is explained by dopant
migration during stressing, which is verified by free carrier concentration measurements
using the capacitance-voltage technique.

Reliability modeling provided the estimation of performance metrics as a function
of process variables. Since literally millions of these devices must be fabricated for
imaging arrays, it is critical to evaluate potential performance variations of individual
devices in light of the realities of semiconductor manufacturing. Even in a defect-free
manufacturing environment, random variations in the APD fabrication process lead to
varying levels of device performance. Accurate device performance prediction requires
precise characterization of these manufacturing variations.  Therefore, a novel
methodolvogy for modeling the parametric yield prediction of GaAs MQW APDs has
been presented.

The approach described requires a model of the probability distribution of each of
the relevant process variables, as well as a model to account for the correlation between
this measured process data and device performance metrics. The availability of these
models enables the computation of the joint density function required for predicting
performance using the Jacobian transformation method. The resulting density function
can then be numerically integrated to determine parametric yield. Since they have

demonstrated the capability of highly accurate function approximation and mapping of
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complex, nonlinear data sets, neural networks are proposed as the preferred tool for
generating the models described above. In apply this methodology to the MQW APDs,
it was shown that using a small number of test devices with varying active diameters,
barrier and well widths, and doping concentrations enables accurate prediction of the
expected performance variation of APD gain and noise in larger populations of devices.
This approach will ultimately allow device yield prediction prior to high volume
manufacturing in order to evaluate the manufacturability rely on both design

specifications and process capability.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

As semiconductor manufacturing technology continues to rapidly develop, device
dimensions decrease and the speed of computing and communication systems increases.
Therefore, analyzing the sensitivity of the yield and performance of these systems to
fluctuations in manufacturing processes is important. These fluctuations can influence
the statistically distributions of device model parameters, which result in statistically
varying performance characteristics in finished integrated circuits. Although small
process fluctuations may not always cause catastrophic failures, they often cause systems
not to meet certain specifications. ICs are often categorized (or priced) according to
specific performance criteria, and these criteria are directly influenced by variations in
individual device parameters (such as géin or noise in an avalanche photodiode). It is
therefore crucial for circuit and device designers, as well as manufacturers, to account for

statistical variations early in the design level, thereby aiding in production scheduling and

planning.



Recently, device simulators such as ATLAS [l] have been used to predict

performance during the design phase. These simulators rely on analytical expressions and

deterministic algorithms to Nsimu’rléte the behavior of semiconductor devices. For
example, in the case of avalanche photodiodes (APDs), the breakdown voltage, dark
current, light current and ionization rates for elec_t;ons and holes computed by ATLAS are
based on nominal values of device model and manufacturing process parameters, and the
effects of random parameter fluctuations are usually disregarded. This can cause a
misleading interpretation of the results, since circuit behavior can be affected significantly
by seemingly insignificant changes in a few critical model] parameters.

| It is thé;efore 1mportantfor a designer tor be able 7t<')77;'erifyr the behavior of a system
not only under nominal conditions, but also when appropriate changes are made to the
device model parameters to reflect process fluctuations. Statistical process simulators
such as FABRICS [2][3] have been developed to account for variations in device
parameters. However, most attempts made in this direction thus far rely on Monte Carlo
simulations to predict parametric yield. In Monte Carlo techniques, a large number of

pseudo-random sets of values for the device model parameters are generated based on the

;ne-ahs andst;mdard ide:?virat;irons cﬁ(trac;féd:f;om eie&idféal test data. For each set of
parameters, a simulation is performed to obtain information about the behavior of the
circuit, and performance distributions are then extracted from the set of simulation
;esults. Thus: élthc;tilgh'they are currently used in many appiiéafions, Monte Carlo

techniques suffer from several drawbacks.
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The most obvious disadvantage of the Monte Carlo approach is that it requires large
numbers of simulations, and is therefore very computationally expensive. More
importantly though, Monte Carlo simulations typically vary each device parameter
independently, and in so doing, ignore the highly correlated nature of device parameters.
The result of this oversight is often overly pessimistic and inaccurate performance
predictions. Another disadvantage of Monte Carlo simulations is that they must assume a
specific statistical distribution a priori in order to "randomly" generate sets of device
and/or process parameters. In most cases, a normal distribution (with a given mean and
variance) is assumed. For a mature, well-characterized fabrication process which has
been used to manufacture large numbers of ICs, this assumption might be acceptable.
However, newly developed or highly specialized processes often exhibit non-standard
statistical behavior. Distributions of parameters from such processes as this may possess
significant skew or kurtosis, or they may not even be normal at all. Thus, simulation
methods which attempt to account for parameter variation should not assume normally
distributed data arbitrarily, but should instead more accurately reflect the statistics of the
fabrication process used.

The approach presented in this thesis seeks to develop a statistical device simulation
and modeling tool that will allow designers to observe and account for the effects of
parameter fluctuations early in the design cycle, providing significantly more
manufacturable products. This will be accomplished by computing circuit parametric

yield numerically from integrals of the form:



fp(y)dy = , (1.1)

where y is a particular device performance characteristic (such as gain or noise) and p(y)
is its probability density function (pdf). P(y) can be derived by: (1) measuring or
simulating a statistically significant sample of device parametric data; (2) using neural
networks to encode the probability distributions of the measured data, obtaining the joint
probability density function of all the marginal pdf’s of the measured parameters; and (3)
computing p(y) directly from the joint pdf using a standard mathematical transformation.
This approach advances the state-of-the-art in IC parametric yield prediction due to

the following: (1) the use of éctural' measured data, rather than mathematical models, to

~ generate statistical device parameter density functions [4]; (2) the innovative use of

neural networks, rather than adaptive local fitting techniques, to model the density
functions [5]; and (3) the direct computation of the device performance distributions,
thus avoiding slow, computationally intense, and potentially inaccurate Monte Carlo

techniques.

Current methodology for predicting parametric yield involves computationally

intensive Monte Carlo simulations of parameter variations. One of the major advantages

of the new methodology will be to eliminate the need for such simulations, and to replace
these methods with the use of actual probability distribution models generated from
measured test data. Upon successful completion, this methodology is expected to provide

device designers with the ability to understand the manufacturability of various design
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options and enable process engineers to extrapolate the consequences of process
modifications by processing a relatively small set of test structures.

These capabilities will ultimately allow device yield prediction prior to high-volume
manufacturing in order to evaluate the impact of both design decisions and process
capability. In the applying this methodology to the MQW APDs, it is shown in this thesis
that using a small number of test devices with varying active diameters, barrier and well
widths, and doping concentrations enables accurate prediction of the expected

performance variation of APD lifetime, gain and noise in large populations of devices.

1.2 Reliability Modeling

One of the two main objectives of this thesis is to accurately model the reliability of
GaAs multiple quantum well (MQW) avalanche photodiodes (APDs). Reliability
modeling of undoped, doped-barrier, and doped-well GaAs MQW APDs has been
performed via accelerated life testing, and failure mode analysis was conducted using the
electron beam induced current (EBIC) method, energy dispersive spectrometry (EDS)
analysis and capacitance-voltage measurements. Since an increase in dark current results
in a reduction of APD signal-to-noise ratio and breakdown voltage determines the
operational voltage range of the device, these two parameters represent the most sensitive
indicators of the characteristic degradation in these devices. Thus, dark current and

breakdown voltage were the parameters monitored. The results of the life testing were



used to estimate device lifetime by assuming an Arrhenius-type temperature dependence
[6). Using the median device lifetime and its standard;dgviation as parameters, a failure
probability model of these devices was derived using a lognormal failure distribution [7].
Reliability modeling allows the prediction of device lifetime as a function of
process variables, but even in a defect-free manufacturing environment, random
variations in the fabrication process will lead to varying levels of device performance.
These manufacturing variations result from the fluctuation of various physical parameters
(i.e. - doping concentration, layer thickness, etc.), which in turn manifest themselves first
as variations in APD device operation (as characterized by breakdown voltage or dark
current), and finally as variations in device performance metrics (such as gain, noise and
device lifetime). Therefore, to enhance the manufacturability of GaAs MQW APDs, the

effect of manufacturing parameters on the reliability of MQW APDs has to be identified.

1.3 Overview of Parametric Yield Prediction

The second objective of this work is to develop a methodology for statistical yield
prediction of the parametric performance of these devices given the realities of the
fabrication process. From the reliability modeling, —accurate comprehensive device
performance prediction requires precise characterization of variations in device
performance metrics. Therefore, a methodology for modeling parametric performance

based on manufacturing variations needs to be developed.
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This first requires a model to be developed which reflects the probability
distribution of each of the relevant process variables. This model can be obtained directly
from measured process data. A second model is then required to account for the
correlation between this measured process data and device performance metrics. This can
be derived either from the evaluation of analytical expressions relating process variables
to performance or through device simulation. The availability of the above models
enables the computation of the joint probability density function required for predicting
performance using the Jacobian transformation method [8], which converts the process
variable distributions to the device performance metric distributions. The resulting
density function can then be numerically integrated to determine parametric yield. Since
they have demonstrated the capability of highly accurate function approximation and
mapping of complex, nonlinear data sets, neural networks are proposed as the preferred

tool for generating the models described above [9-12].

1.4 Thesis Organization

The remainder of this thesis is constructed to explore the reliability modeling of
various GaAs MQW APD structures and to investigate the statistical prediction of
paramctrié performance. Chapter 2 provides a brief summary of previous work regarding
the characterization and modeling of avalanche photodiodes and a detail device

description and an explanation of the operation of APDs investigated here. Chapter 3



describes the reliability modeling of various GaAs MQW APD structures in detail and
investigates the device lifetime of each APD structure. Chapter 4 explains the ATLAS
device simulator and demonstrates how ATLAS simulatibns can be calibrated to closely
match measurement data. Chapter 5 discusses device modeling using neural networks.
Using data generated from the ATLAS simulator, performance metrics, such as gain,
noise, and device lifetime, were modeled and the sensitivity of each performance metrics
was also investigated. T oo

The modeling results described above can be used to predict the parametric yield of
each performance metric with respect to the manufacturing parameters. A methodology
for doing so is presented in Chapter 6 where a detailed explanation of the procedures
necessary to calculate parametric yield is provided. In addition, this mgthp;}ology to
predict parametric yield is compared with Monte Carlo method. Finally, Chapter 7 draws

conclusion regarding this work and provides suggestions for future work.
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CHAPTER 2
AVALANCHE PHOTODIODES

2.1 Historical Development

The widespread development of high-speed detector applications, such as optical
fiber communication systems and high definition systems, has been responsible for
renewed interest in compound semiconductor photodetectors [13]. For these applications,
a photodetector is an important component, and the following crucial requirements must
be met by these devices: 1) detectio-n and transformation of the incoming light pulse
stream at high quantum efficiency (the number of electron-hole pairs generated per
incident photon), high speed, and with low dark current, low capacitance, and low noise,
2) amplification of the electrical signal to levels high enough that thermal noise of the
electronics ‘becomes neg]}_giblc, 3) provxslonof an apprppria;e intgrface to the main
electropics [14][15].

Among photodetectors, avalanche phbtodiodes (APDs) are considered an
alternative to photomultiplier tubes (PMTs) in some apprlications because of enhanced
sensitivity. One of the main advantages of APDs is their high signal-to-noise ratio due to

internal gain resulting from the avalanche multiplication process, even though



multiplication can also generate excess noise. Avalanche photodiodes have been

developed in various semlconductor matenals mcludmo elementary semiconductors such

as silicon and germanium, as well as binary, ternary and even quarternary [0-V and 1I-VI
compound semicondueenr;. For the wavelength range of 1.3 to 1.55 pum, photodetectors
are primarily made out of II-V materials, such as AlGaAs/GaAs, InGaAs/InP,
InGaAs/GaAs, InGaAsP/InP GaAlAsSb/GaSb, GaAs/InP, and InP/GaAs, because dark
current is inversely propomonal to the energy gap and these materials have relatively
wide bandgaps. Other key factors in selecting the appropriate material system for a
detector include the operational wavelength range and gain and noise performance.

Silicon APDsprovxde a high ratio of electron and hole ionization coefficients
which results in optimal performance at the 0.8-um wavelength region. Silicon APDs
were first 1nvest1gated by Heltz et al. [16], and Kaneda [17] surveyed reach-through
et;'ucture and characterlstlcs of Si APDs. In silicon APDs multiplication noise decreases
as the nvalanche region length increase because the hole-to-electron ionization coefficient
ratio also decreases. In addition, quantum efficiency is improved as the depletion length
increases, which leads to increased the breakdown voltage. However, silicon is not
sensitive t(")‘;h; 13:to 1.6;um -\vnﬂlelengrths:anel sinee tne ionizafinn c;efﬁrc‘:ient ratio is a
function of the electric ﬁeld, impact ionization must be initiated by electrons to reduce
the electric field in the avalanche region and to minimize the excess noise.

Germanium APDs are useful in the wavelength range from 1 0 to l 6 um and

since these APDs provide high quantum efficiency, they are suitable for fiber optic
10
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systems [18]. However, they yield a poor signal-to-noise ratio because the ionization
coefficients of electrons and holes are almost equal, and the dark current of germanium
APD at room temperature is relatively high due to its smaller bandgap.

InP APDs have also been reported as a component in optical communication
systems because they have excellent characteristics, including low noise and high

sensitivity in the 1 - 1.6 pm wavelength range [19]. These characteristics are crucial

requirements for receivers in optical communication systems. However, InP structures
have suffered from high leakage currents. This problem arises from the nearly equal
values of electron and hole ionization coefficients in InP.

To improve the sensitivity of APDs, the ratio of ionization coefficients must be
increased. As demonstrated by MclIntyre (1966), a large difference in the ionization rates
for electrons and holes is essential for a low-noise APD [20]. APD performance is
enhanced by minimizing the excess noise generated by carrier multiplication. This excess
noise is reduced when the ratio of the ionization rate of electrons to that of holes (or vice-
versa) is large. Chin et. al. first proposed a means of artificially enhancing the ratio of
electron-to-hole ionization coefficients through use of a MQW structure in the
GaAs/AlGaAs material system [21]. Later, Brennan and Summers analyzed the use of
the doped quantum well APD as a photomultiplier [22], and Aristin et. al. evaluated
various MQW APD structures, including the uridoped, doped-barrier, and doped-well
devices [23]. These new structures enablez very low noise and high-speed performance.
However, the noise performance of MQW APDs is limited by dark currents due to both

thermionic emission and field-assisted tunneling of carriers out of quantum wells.

11



Therefore, increased dark current can severely limit the long-term reliability of these
devices.

Reliability assessment of avalanche photodiodes has been performed by several authors.
Sudo et al. conducted accelerated life tests on germanium APDs to measure their failure rates
under practical use conditions [24]. This author also used bias temperature tests and the
light-beam induced current method to evaluate lifetime and analyze the failure modes of
InP/InGaAs APDs [25][26]. Kuhara likewise investigated the long-term reliability of
InGaAs/InP photodiodes passivated with polyimide films [27], and Bauer and Trommer
performed a similar investigation on devices passivated with silicon nitride [28]. Finally,
Skrimshire, et. al. performed accelerated life tests on both mesa and planar InGaAs

photodiodes for comparison purposes [29].

2.2 Applications

High-speed, high-sensitivity APDs are used in variety of applications including
fiber optic communication systems, and high definition imaging systems [30}{31].
Recently, APDs have been‘usgd:; irr};}‘xigh-bgnrgl\gjggb7rec¢iver :modul_gs for fiber optic
communication systems to provide greater signal-to-noise ratio. To increase high bit rate
in fiber optic communication networks requires the enhancement of suitable high
performance optoelectronic component. The APD is used at the receiving end of the fiber

to convert the optical signal into an electrical current which can be processed to recover
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the original data. For low bit rate and short range applications such as a local area
networks, the strict device performance is not necessarily needed. However, for high bit
rate and long distance applications, the high-speed and reliable device performance is
required. For these applications, preamplifier input noise can limit the receiver
sensitivity. To alleviate this problem, an APD is used to provide signal gain before the
preamplifier input. The enhanced signal-to-noise ratio permits effective processing of the
output by a subsequent receiver.

Another application for APDs is in the development of imaging systems for both the
visible and non-visible portions of the spectrum. While fiber optic communication
systems are usually limited to the 1.3-1.55 um spectral range, the imaging systems can
utilize a wide range of materials to operate in a variety of optical ranges depending on the
application. In such systems, the APD can capture the optical images and amplify the
signal using its internal gain properties.

Currently, a high definition television imaging system is under investigation at the
Georgia Tech Microelectronic Rgsga{qp Center. This system faces a number of unique
manufacturing challenges. The system uses a 1920 x 1080 imaging array of superlattice
avalanche photodiodes as its image capture mechanism operating at wavelengths below 1

um. GaAs/AlGaAs multiple quantum well (MQW) avalanche photodiodes (APDs) are of

interest as an ultra-low noise image capture mechanism for this system. In this
application, the image capture stage must have sufficient optical gain to enable very

sensitive light detection, but at the same time, the gain derived during detection must not

13



contribute additional noise. Various APD structures, including doped-barrier, doped-

well, and undoped devices have been fabricated, and these structures are all being -
considered as candidates for this application. ;
?
2.3 Device Description of the GaAs/AlGaAs MOW APD -
-
-
=
|
AuZn(0.2um) =
SiNx passivation (0.1um) lum thick AuGe-Ni-Au %
P+-GaAs 500A-100A-700A
1-3um thick =
AlGaAs/GaAs -
SL-structure l
1.5um thick n+-GaAs .
0.2 um thick Al{x)Ga(l-x)As : x>0.5 %
n+-GaAs
Substrate =
%
Figure 1. Cross sectional view of GaAs/AlGaAs MQW APD -
%
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The device structure of the photodiodes investigated in this thesis is shown in
Figure 1. The devices were grown by molecular beam epitaxy (MBE) in a Varian Gen-II
system at the Georgia Tech Research Institute. The basic strructurc is that of a p-i-n diode
where the intrinsic region is composed of the MQW superlattice structure. All APDs
were composed of a 1 pm Be-doped p+ top layer and a 1.5 pum Si-doped n+ backside
layer. The p and n contact layers are d'opéci’at a level of 10'® cm [23]. The device
configuration allows for both electron and hole injection because both p* and n* layers

can be illuminated.

The devices were fabricated on 2x10™ cm® mesa structures with an active diameter
in the range of 75-130 pm using standard photolithographic techniques. Since both the p
and n layers can be illuminated by removing the substrate, the device configuration
allows for electron or hole injection [32]. A silicon nitride pagsivation coating suppresses
surface leakage current and provides the device with very low dark currents. The
fabrication process for these structures is summarized in Figure 2. The choice of the
various doping techniques indicated in this figure has a significant effect on device

performance.
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Substrate Preparation & Mounting

|
Deoxidation

I
Prebake & cooling to growth temperature
[ ,
Doping n+GaAs substrate by Si
J _
Doping GaAs N contact layer by Si
I

Growth of superlattice by MBE
[ I
Undoped APD Doped Barrier APD Doped Well APD
I I | ]
Grow p+h+ doped Grow undoped
Ay ndoped | | junctionin AlGaAs | | AlGaAs barrier &
multilayers barrier & undoped | |p+n+ doped junction
GaAs well in GaAs well
[ | |

Doping GaAs P contact layer

|

Mount P+ contact

I

Etch Mesa structure

Mount N+ contact

I
Deposit passivation layer (SiNx)

Figure 2. The fabrication process for various APD structures
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For the doped-barrier MQW APD:s, the 1-3 um thick GaAs/AlGaAs superlattice

region c§nsists of 25 periods of 200 A GaAs quantum wells separated by 800 A AlGaAs
barrier layers. One complete period consists of a 300 A 'hi:g'h-ﬁcld AlGaAs regién doped
at 3x10'® cm™, the 200 A undoped GaAs layer, and a 500 A undoped AlGaAs layer. The
I-V characteristics indicate a low dark current and a low breakdown voltage to be
betwéeﬁ 6 and 8 V, more than an order of mégnitude lower than that of conventional
MQW APD structures. The low voltage operation is due to the localized breakdown

arising from the fully depleted p-i-n regions within each unit cell. Consequently, the

doped barrier structures are more efficient devices than conventional APD structures, and

thesé structures are better suited to on-chip, low power environments.

In the doped-well devices, high electric fields are achieved in the narrow bandgap
GaAs wells of the avalanche region by the introduction of 50 A thick p+ and n+ layers
doped at 1.5x10"® cm™ [33]. The doped quantum well MQW APD structure is
complementary to the doped barrier APD devices and possibly allows more stable doping
characteristics. The breakdown voltages of doped-well MQW APDs are slightly higher
than the doped barrier devices because of the use of lower doping. The electron to hole

ionization ratio is between 10 to 33 at low gains but decreases for gains higher than 5 to

approximately 5. These results confirm that, at low bias voltages, the built-in field due to

the doping produces lower noise, and at higher bias voltages, the applied field makes the
electron and hole ionization rates more equal. Consequently, superior performance of the
doped structures with lower bias voltage, higher gain, and lower excess noise than the

undoped conventional MQW APDs has been suggested [34].
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) The nndoped MQW APD d:esirgn is sirnilar, but with the MQW region replaced by a
2.57pm intrinsic GaAs layer. I;or the nndoped MQW structure, dark current decreases
with :decreasing well width, and the nhotocurrent increases slowly with the applied bias
voltaoe becomes constant between 25-35 V and finally increases exponentially above 50
VV In addmon the breakdcwn— vc’lta;e:v Vé, lncreases from 70 to 85 V as the barrier
(AlGaAs layer) width is mcreased frorn 200 A to 800 A These results indicate that the
~dark current is due to the generaticn-recombinaticn of carriers in the narrow bandgap
:GaAs layer combmed wrth therrmomc errussmn of the carriers over the bamers The
carriers are generated in the well since the dark current increases when the well vudth
increases. However the [thk barrrers do not permxt carriers to tunnel and carriers need to
Hoam enough energy from the applxed field to be mjected over the barriers and avoxd being
trapped at the AlGaAs/GaAs interface. Therefore, MQW structures with narrow well

widths have increased barrier height, resulting in lower dark currents.

2.4 Device Operation of GaAs MOW APD

Although electron-hole pairs created in the depletion region are ’QUickly eeparated

by the electrrc field at the juncuon in homostructure PIN photodlodes heterostructure

APDs transform an optlcal mput srgnal into an electric output signal using an avalanche

gain mechamsm. In APDs avalanche gam s achneved when the mcrdem or
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photogenerated free carriers obtain sufficient energy from the electric field to generate
secondary free carriers by impact ionization of the valence electrons into the conduction
Band, leaving free holes in the valence band; Secondary carriers can then be accelerated
by the electric field and generate more carriers by impact ionization of other valence
electrons. The generation of electron-holc pairs and avalanche gain depend on the impact
ionization rates and the electric field, and the electric field required to observe impact
ionization depends on the band gap of the material. As a result of impact ionization, a
large number of electron-hole pairs are generated, and a considerably large output signal
can be obtained even for relatively small input signals [35].

The band diagram of multiple quantum well APD (shown in Figure 3) illustrates
alternating layers of high-gap and low-gap materials and represents the restriction of
ionizing collisions to the low-gap regions. Carriers accelerate and gain energy but do not
ionize in wide-gap regions. On entering the next well, a free electron gains enough energy
from the conduction-band discontinuity AEc to ionize. However, the valence-band
discontinuity AEv is not large enough to supply a similar energy boost to free holes. Thus,
electrons enter the well with a higher kinetic energy than holes, so that electrons ionize

more efficiently than holes if AEc>AEv. Hence, a small input optical signal can generate

a substantial electrical output.

19



Figure 3 Schematic band diagram of multiple quantum well APD

Reduction of excess noise is crucial if an APD is to detect the low power levels of
input signals that result from long wavelength applications. Avalanche multiplication,
however, inherently creates extra noise, which adds to the shot noise of the incident
carriers. This excess noise results from fluctuation of the avalanche gain. To limit the
excess noise caused by avalanche multiplication, holes and electrons must ionize at vastly
different rates. Using the multiple quantum well structure, one can artificially tailor the
ratio of the ionization coefficients and therefore, reduce excess noise [36]. Examplcs of
the gain and excess noise factors for the MQW APDs investigated in this study are shown

in Figures 4 and 5.
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Figure 4 - Gain versus the ratio of reverse bias to breakdown voltage for the
undoped, doped-barrier, doped-well MQW APDs under investigation.
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Figure 5 - Excess noise factors for the undoped, doped-barrier, doped-well

MQW APDs under investigation.
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APD gain and signal-to-noise ratio (SNR) are limited by the dark current in the
device. The resulting increases in dark current due to carrier multiplication lead to
reduced SNR. Dark current is therefore perhaps the most important performance
parameter used to evaluate APD device reliability. The dark current density in general has

the following form [37}]:

nL
J:qn‘[ — +2VZJ+JT+qt7¢B 2.1)

where q is the electron charge; n; and n, are the intfinsic carrier and majority carrier
concentrations, L, and T, are the minority carrier diffusion length and lifetime, W is the
depletion region width, t, is the lifetime of the average of the excess minority carrier
electron and hole lifetimes (i.e. - T, = ‘(‘tp‘o + t,.,o)/Z), n is the quantum efficiency, ¢s is the
background photon flux, and Jt is the tunneling current. The first, second, third and
fourth terms represent the diffusion, generation-recombination, tunneling and background
radiation current densities, respectively.

From Equation (2.1), the diffusion current density is proportional to (L,/T;), and the
generation-recombination (g-r) current density is proportional to the depletion region
width W. Since W is a function of the reverse-bias voltage, the g-r current density is also
dependent on that voltage. This is especially significant for APDs operating at the }-ﬁgh

fields. This factor limits the utility of small band-gap semiconductors for APDs because
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they must be operated at high reverse bias voltage. For effective detector performance,
low breakdown voltage is a necessity and the three current densities in (2) must be

minimized.

2.5 Summary

The historical development and current applications of AP‘D»sr have been presented.
Also, the detaii description and the operating principle of GaAs/AlGaAs MQW APDs,
which are of interest as ultra-low noiserimargc capture mechanism for high definition
system, have been introduced. In the next chapter, rrreliabirlirty study of FhArrgrerdi‘fferem
GaA,S/A,I,G?A,S MQW APD structures, doped-barrier, doped-well, énd undoped structure,
wﬁiﬂb;inves.tig“atlcid Qia acceleréted lifé t:esting;.l | In chapter 4 bécause of | limited
experimental data, the effect of variations in manufacturing parameters on performance
metrics, such as device lifetime, gain, and noise, is investigated using simulated data. In
Vcrhap-tc:rr 5 the ;na};pxng from the manurfaértrtixir;irﬁg paréiﬁeters to the performance metrics is
realized by neural networks using the simulated data sets. Parametric yield calculation of

each performance metric is presented in chapter 6.
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CHAPTER 3

RELIABILITY MODELING OF GaAs MQW APD

3.1 Introduction

In this chapter, accelerated life testing of undoped, doped barrier, and doped well
APD device structufes ié described with the objective of estimating lo»ril.g-term device
reliability. Since an increase in dark current results in a reduction of the APIj signal-to-
noise ratio and breakdown voltage determines the operational voltage range of the device,
these two parameters represent the most sensitive indicators of the characteristic
degradation in these devices. Thus, dark current and breakdown voltage were the
parameters monitored here. Degradation in these parameters was investigated via high
temperature storage tests and accelerated life tests, and the results of thgse tests were used
to estimate device lifetime by assuming aﬁ Arrhenius-type temperaiﬁfe dépcndcnce [6].
Using the median device lifetime and its standard deviation as parameters, a failure

probability model of these devices was derived using a lognormal failure distribution [7].
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Lifetimes for each device structure were examined via a statistically designed

experiment. A comparison of the rellabllxty of the various APD structures was then

performed using the analysxs of variance (ANOVA) technique [38]. Results of the
ANOVA study revealed which input factors were found to have an significant effect on
each response. Dark current was mainly dependent on device diameter, temperature and
stress time. Breakdown voltage was primarily impacted by diameter, temperature and
APD type. Based on the results of this investigation, it has been concluded that the
undoped APD structure yields devices that exhibited the highest reliability, followed by
the doped well and doped barrier devices, respectively.

Following devxce 7stressm ,”an analysiswas conducted to determine the failure
rnechamsm Potential failure mechanisms were evaluated usxng scanning electron
mlcroscopy (SEM) and the electron-beam induced current (EBIC) method [39] 7 Based on
SEM and EBIC analysis, the presence of ionic impurities comammatmg the passivation
layer at the junction perimeter was proposed as a potential failure mechanism. Energy-
dispersive spectrometry (EDS) [40] was subsequently used to identify ionic sodium as the
source ofr contamination. HdWevef, 511 three device structures are passivated using the
sanme procedure; rTherefore, sodium contamination alone could not account for the
observed variation be;ween the differently APD device types. On the contrary, this result
is explamed by dopant mlgratlon durmg stressing, whmh was verified by the
measurement of free carrier concentration before and after stressmg nsxng the

capacitance-voltage (C-V) technique [41].
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3.2 Accelerated Life Testing

3.2.1 Life Test Conditions

Accelerated life tests for the three different APD structures were performed on
several different devices of each type with a constant reverse current of 10 pA for 200
hours at three different ambient 7tremperaturc levels: 100, 150 and 200 °C. These

conditions are summarized in Table 1.

Table 1. Accelerated Life Tests Conditions

Temperature Current Number of Samples Stress Time
[°C) [LA] [hour]
100 10 4 200
150 10 6 200
200 10 6 200

The accelerated life tests measured the failure rate under stressful operating
conditibns. To maintain a constalﬁ IOuA.cprrent,' ihé rever:;e BiaS voltéges for the
doped-barrier, doped-well and undoped APD were approximately 8, 10 and 80 V,
respectively. The activation energy for the failure mechanism and the average device

lifetime were subsequently computed. It was assumed that the temperature dependence

of the device failure rate (R) obeys the following Arrhenius law [6]:
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R =R, *exp(-E, / kT) 3.1

where R, is a temperature-independent pre-exponential failure acceleration factor, E, is

the activation energy, T is the absolute temperature, and k is Boltzmann’s constant.
During these tests, dark current and breakdown voltage svere measured at room
temperature (300 °K) after high-temperature stressing. The breakdown voltage was
obtained from the device I-V curve using the tangential line method. Typicﬁad:oreakdown
voltages were 7.5 - 9 V for the doped-barrier APD, 10 - 12 V for the doped-well APD,
and 70 - 85 V for the undoped APD. The devices were classified as failing when the dark

currents at room temperature and 90% of the breakdown voltage exceeded 1 HA.

3.2.2 Life Test Results

Several observations were made as a result of the high temperature storage tests and

accelerated llfC tests for the GaAs/AlGaAs APDs First, unblased bakmg of the APD

samples rcsulted in sxgmﬁcantly less degradanon Wthh is demonstrated by a comparison
of Figures 6 and 7 Dark current increases due to thermal overstress under bias for the

doped -barrier devices were generally found to be exponentiaily dependent on the time of

exposure to the reverse—blas field. The doped -well and undoped devxces exhibited similar

behavior. This fact is shown Figures 8-10(a), in which the dark current at a given
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reverse-bias voltage increases significantly as a function of stress time. On the other

hand, breakdown voltage was shown to be nearly linearly dependent on stressing time, as

shown in Figures 8-10(b).
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Figure 6. Room-temperature I-V curve of an doped-barrier APD sample after 0, 50, 100,
and 200 hours of unbiased baking at 200 degrees C.
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Figure 7. Room-temperature I-V curve of an doped-barrier APD sample after 0, 50, 100,
and 200 hours of biased baking at 200 degrees C.
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Figure 9. (a) Dark current and (b) breakdown voltage variations of doped-well APDs
after accelerated life testing at 200 degrees C.
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Figures 11-13 depict the percent of cumulative failures for the doped-barrier, doped-
well, and undoped devices, respectively, versus the lognormal projection of the device
time-to-failure after accelerated life testing. Although the sample size is small, in each
case the data appears linear, which indicates that the failure mode 1s the wearout type.
Failures obey the rlégnorma] distribution relatively: well. Median lifeﬁmes for the doped-
barrier devices at 100, 150, and 200 °C were estimated to be 1400, 250, and 78 hours,
respectively, with a standard deviation of 1.84. For the doped-well APDs, median
lifetimes at 100, 150, and 200 °C were estimated to be 4204, 315 and 86 hours,
respectively, with a standard deviation of 1.94. Finally, in the undoped case, the median
lifetimes at 100, 150, and 200 °C are estimated to be 8590, 495 and 84 hours,
respectively, with a standard deviation of 2.13.

The Arrhenius plot of median lifetimes as a function of reciprocal aging temperature
is shown in Figures 14-16. From these plots, the thermal activation energy of the device
aging process is computed to be 0.44, 0.60, and 0.71 eV for the doped-barrier, doped-well
and undoped devices, respectively. Using these activation energy levels, the median APD
lifetime for the doped-barrier device under practical use conditions can be estimated to be
3.7x 10" hours (approximately 4.3 years) at room _t;mpgrgggggzzwith a standard deviation
of 116 hours. Lifetime estimates for the Adoped-wemllrand undoped cases were 3.4x10°
hours (approximately 39 years) with a sfandard deviation of 343 hours and 1.7x10° hours

(approximately 197 years) at room temperature, with a standard deviation of 1031 hours.
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Figure 11. Lognormal projection of tirrn?ér-rtrb-rt:ailuferversﬁs percg;li of cumulative failures
for doped-barrier APDs after life testing at 100, 150, and 200 degrees C.
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Figure 13. Lognormal projection of time-to-failure versus percent of cumulative failures
for undoped APDs after life testing at 100, 150, and 200 degrees C.
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It is interesting to note that the doped-well APD, which is a complementary structure of
the doped-barrier APD, has a significantly longer median lifetime. A summary of life test

results is shown in Table 2.

Table 2. Summary of Life Test Results

Device Type Activation Median Lifetime (at 300 °K) Standard
Energy _ Deviation

Doped-barrier APD 0.44 eV 3.7x10* hours 116 hours
Doped-well APD 0.60 eV 3.4x10° hours _ 343 hours
Undoped APD 0.71 eV 1.7x10° hours 1031 hours

Due to the lognormal degradation_behavior of the APDs, the failure probability of
each device as a function of time, P(t), ma&r be computed from the lognormal failure

model by using the average device lifetime () and its standard deviation (o) as [42]:

1 1 T (nr-py 3.2)
P(t)—as/'ﬁ{te)(p[ 20° ]dr

Along with the }ggr}prmal plot, this expression provides a quantitative method of

evaluating the likelihood of failure for a given device as a function of its age.
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3.3 Performance Comparison of APD Structures

Statistical experimental design [38] was used to quantify the impact of each factor
on APD reliability and to determine whether the differences between device structures
were statistically significant. Due to the mixture of qualitative and quantitative input
factors, a D-optimal experimental design w1th 24 runs was selected to identify the effect
of input parameters on the measured responses [43]. The factors investigated in this
experiment were device type, diameter of the actiye area, aging temperature, and stress
time. A summary of these input factors is shown in Table 3. Dark current, breakdown

voltage, and device lifetime were the measured responses.

Table 3 - Input Factors

Parameter T ___Values
Doped-barrier APD (DB)
APD Type Doped-well APD (DW)
Undoped APD (UND)
Aging Temperature 100-200 °C
Stress Time 50-150 hour
Diameter 75-130 um

A comparison of the various APD structures in terms of reliability was performed
using the analysis of variance (ANOVA) technique. Experimental data was analyzed
using the RS/Discover commercial software package [44]. Using this approach, it was
verified that the different processes used to fabricate the three APD structures did indeed

significantly impact the reliability of the devices. Using the ANOVA technique, the
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statistical significance of each mput reflects the degree to Wthh the parameter contributes
to the variation of the mearsured responses I the value of the statxstlcal significance is
less than 5%, then the input contribution to the variation of the measured response is
considered significant with 95% confidence. Table 4 shows the significance of each

factor on the two responses.

Table 4 - Results of D-optimal Experiment

Statistical Significance
Factor Dark Current Breakdown Voltage | Device Lifetime
(Ip) (V) (Tp)
Diameter 0.0132 0.0141 0.3151
Temperature 0.0009 0.2192 0.0008
Stress time 0.0013 0.0218 0.4128
APD type 0.2288 0.0001 0.0035

Results indicate that dark-current variation is affected primarily by diameter,
temperature, stressing time, and to a lesser degree by the APD type. Breakdown-voltage
:warxatlon depends on the drameter stressing time and APD type. InterestmOIy, the stress
temperature did not have a significant effect on the change in breakdown voltage.

Finally, the device lifetime is impactecr most srigniﬁcantly by stress temperature and APD
type.

From these results, it may be concluded that the doping process ‘used in the

fabrication of the APD structure has a profound impact on device reliability. Since the
undoped devices exhibit the highest degree of reliability, it can be assumed that doping,

while enhancing device performance in other ways [23], makes the device less reliable.
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Specific causes for the observed differences in device degradation are explored in Section

3.4 below.

3.4 Failure Analysis
3.4.1 SEM and EBIC Analysis

Failure analysis on the thermally stressed doped-barrier, doped-well and undoped
devices was carried out using scanning electron microscopy (SEM) and the electron-beam
induced current (EBIC) method [39]. Prior to this analysis, the presence of contaminants
in passivating nitrides at the junction was hypothesized as a possible cause for dark
current increases during stressing.

Figure 17 shows an SEM image of a doped-barrier device prior to accelerated life
testing. This image shoWs no discemib]e defeéts. Howéver, defects causing device
failure were detected in each typé' of ;de;v:ic-:'é;at;ter ﬁfe testing (scer'Figure 18). Similar

results were observed in the doped well and undoped devices. Using EBIC analysis, local

defects at the junction region change the electron-beam current indicating the reason for
the device failure. Defects near the area of the junction were detected in the EBIC
images, and nearly all the SEM images exhibit a similar pattern of defects in the exposed

junction area as well. The only exception was the SEM image of an undoped device after

life testing, which showed only a small defect in the junction.
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Figure 18. (2) SEM and (b) EBIC images of doped-barrier GaAs MQW APD after
accelerated life testing at 200 degrees C.
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3.4.2 EDS Analysis

From SEM and EBIC analysis of the degraded samples, it was determined that the
dark current increase could be partially explained by the presence of ionic impurities or
contamination in the silicon nitridei Vpassivation layer at the junctioq perimeter. Such
contamination generates a leakage path shorting the junction under an electric field. This
hypothesis is supported by the fact that unbiased baking of the APD samples resulted in
significantly less degradation, which is demonstrated by a comparison of Figures 6 and 7.
It has been suggestedr that these type of dewf;rct;c;crérur at metal-rich précipitates, some of
which occur at crystal dislocations [25-27]. The cause of the gradual reduction in
breakdown voltage, on the other hand, is not known explicitly, but presumably involves
the field-assisted and/or temperature-assisted drift of some impurity species or defects to
localized sites in the pn junction.

A common contaminant for silicon nitride passivating films is ionic sodium.
Energy-dispersive spectrometry (VEDiS)”was lszerdr to dg:lg;rnine whether sodium was the
source of contamination in these devices [45]. Using EDS analysis, the composition of a
sample and the quantity of each element of a composite material can be obtained. In this
case, EDS confirmed the presence of ionic sodium and verified that sodium is the primary
contaminant (see Table 5). It is believed that this sodium originated from the APD

processing environment or the personnel involved in fabrication. In addition, ionic

potassium was detected in the doped-barrier device. (The significant amount of
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phosphorus detected in the undoped device was probably due to the etching of the mesa

structure).

Table 5 - EDS Results for the Doped-barrier, Doped-well, and Undoped MQW APDs.

Element Doped-barrier Doped-well Undoped
MQW APD MQW APD MQW APD
i} __Weight [%]

Na 13.68 18.39 14.48

In - 3.72 1.21

P 4.38 - 21.79

Cl 1041 - -

K 11.31 - -

3.4.3 Dopant Migration Effects

Although ionic contamination is a plausible explanation for device degradation, this
effect alone does not account for the statistically significant variations in lifetime among
the diffe;c;nﬂy doped APD structures. Since the same passivatiori process was applied to
each structure, one would expect that each would have roughly the same lifetime if
contamination were the sole cause of degradation. However, it was observed that the
undoped devices were clearly more reliable, followed by the dobcd well and doped
barrier devices, respectively. Therefore, it was theorized that dopant migration might also
play a significant role in the device degradation mechanism. This theory was investigated
by analyzing dopant migration using capacitance-vbltage (C-V) measurements to extract

the free carrier concentration in the APD multiple quantum well region before and after

46

R N

| [ | 1 )]

B0 mW e o



l

L AR VIV U ¥ S KV :

ti |

i

Bl

LI

i L1l

Ul

!

1

life testing. C-V measurements were performed at 1 MHz using an HP4277A LCZ
meter.

For the doped-barrier APD, the free carrier profile in the depletion region is shown
in Figure 19. Before life testing, the depletion region width under a reverse bias near the
breakdown voltage is approxrimatelryi O.lﬁQSpm. After life testing, the free carrier
concentration significantly increases in the barrier region, and the deplertrion width
decreases to 0.14 um under reverse bias. Similarly, for the doped-well APD, the free
carrier profile before and after life testing appears in Figure 20. Before life testing, the
depletion region width under reverse bias is about 0.185 um. After life testing, the free
carrier concentration again increases, and the depletion width shrinks to 0.17 pm.

The free carrier profiles in Figures 19 and 20 are similar to those reported by Aristin
et. al. for a doped-barrier MQW APD structure [34]. That paper stated that as the doping
concentrations in the barrier increase, dark current increases and breakdown voltage

decreases. In the present investigation, the free carrier concentrations increased in doped

barrier layers after life testing as well, resulting in comparable increases in dark current.
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From the results of the C-V measurements, it is hypothesized that during the life
test, the thermally and electrically excited dopants obtain sufficient energy to migrate into
the passivation layer, which causes an increase in free carrier concentration in this region.
After entering the passivation layer, these dopants behave similarly to positive surface
charges. Because of the accumulation of positive charge, the depletiqg width is reduced
and the electric field in the region where the i;-n junction imérsects the passivation layer
is more intense. Dark current is increased by both the positive charge accumulation as
well as the intensified electric field in the narrow depletion region gssociated with the
passivation layer. These increases accelerate the degradation of the ‘device, eventually
resultir;g m failure. The effect is more pronounced in the doped barrier devices since the
observed shrinkage in the depletion region width is greater in these devices than in the
doped well APD.

_This chapter has presented accelerated life tests of dopedr-ba;rrrrier,i doped-well, and
undoped AlGaAs/GaAsr rhultiple quantum rwell avalanche photodiodes from the
viewpoint of evaluatmglong-term ;elivél‘:;’iiiﬂtvy.' From the life test results, the activation
energy of the degradation mechanism and median lifetime of these devices was
determined. In addition, the failure probability of the devices was computed from the
log-normal failﬁre model by using the average lifetime and the standard deviation of that

lifetime as parameters.

50

TE

g LIl

il

i W

4 ]

I

Ll



G

l

(

Ll

o]

i

Using the ANOVA technique, a comparison of the reliability of the various APD
structures was undertaken. Based on this investigation, it was concluded that the doping
process used in the multiple quantum well APD fabrication has a significant effect on
device reliability. It was found that the undoped APD structure yielded devices that
exhibited the highest reliability, followed by the doped well and doped barrier devices,
respectively.

Subsequent failure analysis using the SEM and EBIC methods clarified that the dark
current increase was in part brought about by the presence of ionic contaminants in the
passivation layer at the junction perimeter that generate a leakage path which shorts the
junction under the effect of electric field. EDS analysis identified the primary
contaminant as ionic sodium. In addition, dopant migration under stress was theorized as
a means to explain the observed reliability differences between the device structures.
This dopant migration was investigated using C-V measurements, which verified that the
redistribution of free carriers after stress is indeed a plausible explanation for reliability
differences.

Even though reliability modeling establishes a mapping between processing
parameters and a performance metric (APD device lifetime), only limited measured data
can be obtained from the long lifetime measurements. Therefore, in the next chapter, an
effort to use simulated data as a supplement of experimental data will be described for

investigating the effect of manufacturing parameters on performance metrics.
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CHAPTER 4

DEVICE SIMULATION

_ 4.1Introduction

The life testing and reliability modeling effort described in the previous chapter
represents a first step in deriving a quantitative mapping between device parameters and
___APD lifetime. However, the number of APD samples measured was restricted, and they
had very limited variation in device diameter and barrier width. Furthermore, the exact
doping profiles for APD devices were not available. The objective of the APD
simulation effort outlined in this chapter is to use simulated data as a supplemental aid to
experimental data for understanding the effect of variations in manufacturing parameters

on lifetime, as well as on other measures of device performance such as gain and noise.

4.2 ATLAS :bevirceVSimulator

Accurate device simulation requires that measured data first be sufficiently
calibrated with the simulation tool. Simulation of APD operation was performed using
the ATLAS I device simulation package [46]. This tool is very useful for simulating

compound semiconductor devices such as photodiodes. ATLAS 1I is powerful enough
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that even the multiple quantum well structure can be accurately simulated. It
provides a comprehensive set of models and fully integrated features. For multiple
quantum well APD simulation, two major sub-modules, BLAZE and LUMINOUS, are
required [46].

BLAZE is a general simulation tool for heterojunction devices. "This module
accounts for the effect of position-dependent band structure by modification to the current
approximations in a drift-diffusion model. Therefore, BLAZE can be applied to a broad
range of device applications including heterojunction photodetectors (APDs, solar cells,
etc.), heterojunction diodes, high electron mobility transistors (HEMTs), and light-
emitting diodes (LEDs). LUMINOUS is a tool for calculating intensity profiles within
the semiconductor device that are translated into photogeneration rates in the device
simulator.r Simulated electronic”responsé' to optical signals for a broad range of
photodetectors can be obtained by this module. Hence, LUMINOUS can supply the
capabilities required to simulate the performance of optoelectronic devices.

The electrical properties of semiconductor device junctions can be expressed by
Poisson’s equation (Equation 4.1) as well as the continuity equations for both electrons

and holes (Equation 4.2a and 4.2b) as follows [35]:

V-(Vy)=-L(p,-n, +N;-N;) @.1)
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%:G"—Un-f;';v-]" (4.2a)
%ﬂ;p_up_%v.h | (4.2b)

where  is the intrinsic Fermi potential, ND’; and ﬁA' represenf thé 7donor and acceptor
ionized impurity concentrations, G, énd G, are the electron and hole generatiron rate,
respectively, and Uy, and Uy, are the electron and hole recombination rate, respectively.
~In the ATLAS I s:mulatlons, IS?Y"E?P’S two-carrier metppd is qsed fo; solving
Poisson’s and the continuity equations. Newton's method is very effective when the
system of cquatiopi 1s§trongly ;Quplcd. The program can find numerical solutions to the
equations by calculating the values of unknown variables on a pre-determined mesh
points within the device structure. The original continuous model is converted to a
discrete non-linear model which is an approximation of the original model. This discrete
‘model can be solved by an iterative procedure after an initial guess. The iterative process
continues until the result meets cr:enrainrconvergence criteria, or until it does not converge
for a certain number of iterations. The initial guess for the variables to be evaluated is
important to achieve convergence. During the bias ramp procedure in I-V and C-V
calculations, the initial guess for any bias point is obtained by ihe ex&apolation of the two

previous results. This method will generally provide good results when the variables to

be measured have linear characteristics. However, problems can occur when the
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variables behaves nonlinearly such as is the case with current near breakdown or
threshold. This will normally require repeated simulations to determine the threshold
point at which the voltage steps must be reduced to obtain convergence.

In these simulations, the avalanche multiplication process caused by impact
ionization is the most important process during the junction breakdown. Under the effect
of an electric field, a incident carrier (electron or hole) acquires sufficient energy to
produce an electron-hole pair (EHP). These new produced carriers are accelerated by the
field and can acquire high-energy themselves, creating more electron-hole pairs. If
insufficient energy was obtained, impact ionization does not occur, and the obtained
energy is usually dissipated by heat. In addition, carriers can lose energy by non-ionizing
scattering mechanism before obtaining sufficient energy for impact ionization process.
The scattering rate can be different for electrons anrd holes. The impact ionization process
is modeled according to the Selberherr model [47]. The generation rate of electron-hole

pairs due to impact ionization can be expressed as follows:

n.IJ" +a,,-|i‘i (4.3)
q q

where o, and o, are the electron and hole ionization rates, respectively. These ionization

rates are expressed as a function of electric field as:
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Ecm B 7 ' -
o, =a, - - — 4.4
. . - €XPD) ( F ) (4.4a)
A Et‘n'l ﬁ,, i )
ap = a; - exp —[ ;: ] (44b)

where E irs the ele;:tfic held cémponent Virrrlrt'he current ﬂow direction. All other ;impact
ionization pafémeieré are depéridént on the material.

In addition, carriers are accelerated by the local electric field, but release some
mbmeﬁtum due fo various scattéfihg mechamsms m the juhction regioh. These scaétering
e'vents Vcan be caused by imp[xr&ties, lattice vibratioﬁs, and other material ‘imperfections.
The scattering mechanism can impact the low-field mobilities, which are functions of the
local electric field, the lattice temperature and the local doping concentrations, etc. At
low electric field, when the dopihg concentration increases, impurity scattering increases
which causes mobility to decrease. For high electric field, the mobility decreases because
carriers with high energy will actively participate in scattering process. The‘mobility
models used in ATLAS simulations are both doping-dependent and field-dependent.

Light I-V characteristics are modeled using a 1mW/cm? monochromatic light source
operating at 800 nm. From this simulation tool, dark current (Ip), photo current (Ip), and
impact ionization rates for electrbns (a) and holes (b) Eah be calculated. The

multiplication gain is given by [35):

56

Ll

L

i wEr W o«

mi



IR
i dii W

i

r
L]

HEENE

i

il

i1l

{1

Gl

&l

L]

Ll

i

1
i

M(V)=M 4.5)

ILO

where I.(V) is photocurrent at the applied bias voltage V, Ip(V) is dark current at the
applied bias voltage V, and I, is the photocurrent at unity gain. The impact ionization

rate ratio (k) for electron injection defined by [35]:

R

k=—"L 4.6)
a’l

where o, and o, are the electron and hole jonization rate, respectively.
In order to simplify the models and to reduce program execution time, the following

assumptions were made regarding the simulated structures:

1) All devices have a rectangular geometric configuration.

2) Only SRH and Auger recombination is considered (Optical and surface
recombinatioﬂs ére ’irgnored).

3) The p and n contacts are assumed to be perfect ohmic contacts.

4) Doping imbalances in fhe MQWs aré constant throughout the entire structure.

5) The effect of bandgap narrowing in AlGaAs is similar to that in GaAs.
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4.3 Comparison between Simulation and Experimental Results

Figure 21 shows that the results of the ATLAS II simulation for a 10-period, doped-
well MQW APD. The simulated gain vs. breakdown voltage curve ‘matched the
experimental data quite well, indicating that device characterization can be performed

using data simulated by ATLAS II as a supplement to experimental data.

30 L) L T J L] L

Experimental data
x: 200-um APDs
25 0:75-um APDs

Solod line: 200-um 1.5¢18-doping 10-period
I doped-well APD (Simulated) 4
20 [ Dashed line: 75-um 1.5¢17-doping 10-period
doped-well APD (simulated)

£ -
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Figure 21 - Experimental & Simulated results of gain vs. breakdown voltage curve for 10-period,

doped-well MQW APDs
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4.4 Summary

In this chapter, the ATLAS II device simulation framework was described. . It
provides a comprehensive set of models useful for simulating simulate the heterojunction
-V compound optoelectronic devices such as photodiodes. It was shown that properly
calibrated ATLAS 1I simulations can be a useful supplement to experimental data in
device characterization. In the next chapter, using the data sets generated from ATLAS I
device simulator, neural network models which map manufacturing parameters such as
device active diameter, barrvierr width, Vanvd doping profile, to device performance metrics

(gain, noise, and APD lifetime) will be derived.
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CHAPTER 5

DEVICE MODELING USING NEURAL NETWORKS

5.1 Introduction

The ATLAS TI simulations described in the previous chapter have been used to
generate data sets frqm which to build neuAral» Bngork models whicb map the variations in
device diameter, doping, and barrier width to device performance. For goth g:ain and
noise index, neural network modeling can be accomplished by a direct approach using the
results obtained from the ATLAS simulator. Several simulations can be performed using
a systematic experimental design to achieve sufficient coverage of the input parameter
space, and the results of these simulations can be used to train a neural network to model
gain and noise index as a function of the process parameters (see Section 5.3 below).

However, no device simulator presently exists from which similar information
regarding the variation of device reliability and lifetime can be extracted. In addition,
although extensive lifetime measurements have been performed on MQW APD samples,

the devices measured had very limited variation in active diameter and barrier width, and

exact doping profiles for these devices are not available. Therefore, in order to extract
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and model the variation of device lifetime with these parameters, a less direct approach is
required.  Specifically, the lifetime model has been extracted by establishing two
cascaded sequential mappings (see Figure 22). First, the manufacturing parameters are
varied in a designed experiment, and ATLAS is used to model the pre-stress values of the
dark current and breakdown voltage of the device for each combination of parameters.
Subsequently, the pre-stress dark current and bréakdown voltage are used as indicators of
device lifetime. These pre-stress dark current and breakdown voltage values are then

mapped to device lifetime, again using a neural network. This network is trained to
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model this relationship using the measured lifetime data obtained in Chapter 3.

*Mean value of
doping concentration
+Standard deviation of
doping concentration

breakdown
voltage

Neural Network Mapping

Manufacturing Device Performance
Parameters Parameters Index
*Diameter *Pre-stressed

—> dark current
e Prestressed ] +Device lifetime

Figure 22 - Scheme used to model device lifetime as a function of manufacturing process

parameters.
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5.2 Experimental Design

Using ATLAS I simulations, designed experiments were performed to obtain the

data necessary to construct neural network models of APD gain, noise, pre-stress dark

current, and pre-stress breakdown voltage as a function of device diameter, barrier width,
and the mean and standard deviation of th:rbg’xfrier (or wcll)rdogixr}rg.i Gain, nqisg, and
lifetime were the key factors used in this irilivgs:trigggorn to quantify MQW APD
performance. However, as has been previously stated, although gaix; and ngise can be
simulated directly using ATLAS 11, lifetime cannot. Therefore, the designed Ve?(periment
is used to characterize the pre-stress values of dark current and breakdown voltage.

The gain index (G) is defined herein as the area under the plot of gain versus

reverse bias up to the breakdown voltage. The noise index (N) is defined by the electron-

_to-hole impact ionization rate ratio which is closely related to the excess noise factor of

MQW APDs. The pre-stress dark current is defined as the dark current of a device

“measured prior to life testing at 90% of its breakdown voltage. The pre-stress breakdown

voltage is defined as the breakdown voltage of the device measured prior to life testing

from its I-V curve using the tangent line method.

Table 6 - Input Factors forr the gain and noise characterization

Parameter l Values
Active Diameter 75-130 pm
Barrier Width 200-800 A
The Mean doping 107-10" cm”
The Standard deviation of doping (0.1-2) 10" cm™
62
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The four input factors varied in the gain and noise characterization simulations and
their respective ranges of variation are shown in Table 6. The ranges were selected to
account for the variety of potential operating conditions used in device fabrication. Only
three input factors (diameter, and the mean and standard deviation of barrier or well

doping) were varied in the pre-stress dark current and breakdown voltage characterization

simulations. Their respective ranges of variation are the same as those shown in Table 7.

Table 7 - Input Factors for the device lifetime characterization

Parameter | Values
Active Diameter 75-130 pm
The Mean doping 10"-10" cm’
The Standard deviation of doping 0.1-2) 10" em™

Among the many available approaches for statistical experimental design, the D-
optimal design technique was selected for this set of experiments. D-optimal designs
factorial designs). They are typically used to select a specified number of runs from a
predetermined design space. The nurilgér of runs are selected in such a way as to
minimize variances in subsequently estimated modgl qoefﬁcients [48]. In addition, the
number of experiments can be adjusted a;ccording to the experimental budget or schedule.
The D-optimal design matrix for the gain and noise characterization simulations appears
in Table 8(a), and the design matrix for pre-stress dark current and breakdown voltage

characterization is shown in Table 8(b).
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Table 8(a) - The design matrix for the gain and noise characterization

Run 1DIAMETER | 2 BARRIER_WIDTH | 3DOP_MEAN | 4DOP_STD
[um] | (A [10e17cm-3] | (10e17cm-3]
1 ~ 130 800 10 2
2 75 200 5 1
3 200 500 1 2
4 130 800 1 1
5 130 500 5 0.1
6 75 800 1 2
7 75 200 10 2
8 75 800 1 0.1
9 75 800 5 0.1
10 75 800 10 0.1
11 200 200 1 0.1
12 130 200 10 2
13 200 200 10 0.1
14 75 500 1 0.1
15 130 200 10 0.1
16 130 200 1 3
17 200 200 1 2
18 75 500 5 2
19 75 200 10 0.1
20 200 800 5 2
21 200 _ 200 5 1
22 200 800 10 0.1
23 200 800 1 2
24 200 200 10 2
25 75 200 1 2
26 75 800 10 2
27 75 200 1 0.1
28 200 800 10 2
29 200 800 1 0.1
30 200 500 10 1
31 75 500 10 1
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Table 8(b) - The design matrix for the pre-stress dark current and breakdown voltage

characterization

Run Diameter Mean_doping Std_doping
[um] [10e17cm-3] [10e17¢cm-3])
1 130 1 1
2 100 5 0.1
3 75 1 0.1
4 130 1 2
5 130 10 0.1
6 100 R 2
7 130 5 1
8 100 10 1
9 75 10 0.1
10 130 10 2
11 75 5 1
12 100 10 1
13 100 1 0.1
14 100 5 2
15 130 10 2
16 75 1 1
17 130 5 0.1
18 75 10 0.1
19 130 5 2
20 130 1 0.1
21 75 1 2
22 130 1 2
23 75 1 0.1
24 75 10 2
25 130 10 0.1
26 75 1 2
27 75 10 2
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5.3 Neural Network Modeling

Neural networks possess the capability of learning complex relationships between
groups of related parameters [49]. Such learning capabilities are attributed to the fact that
neural networks, possessing many simple parallel processing units (called "neurons”),

crudely resemble the architecture of the human brain. Neurons in a network are

interconnected in such a way that knowledge is stored in the weight of the connections

bctween them.

The most popular method of training feed forward neural networks is the error back
propaéation (BP) algorithm. This algorithm has been shown to be every effective in
leammg arbitrary nonlmear mappings between norsy ‘sets of input and output vectors. BP
networks consist of several layers of neurons Wthh receive, process, and transmit critical
inforrnation regarding the relnrionships between th; "input parameters and corresponding
responses (see Figure 23). Each neuron contains the weighted sum of its inputs filtered by
a nonlmear 51gm01dal transfer function. These networks incorporate "hidden" layers of
neurons which do not interact with the out51de world, but assrrt in performing
classification and feature extraction tasks on information provided by the input and output

layers.
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Figure 23- Typical feed-forward error back propagation neural network.

Inputs to the gain, noise and pfe-stress dark current and breakdowﬁ voltage neural
network models include device active diameter, barrier width, the mean value of the
doping concentratibn, and the standard deviation of doping concentration. A separate
network is used to map the pre-stress darkr current and breakdqwn voltage (inputs) to the
device lifetime (output). The manufacturing parameters are mapped to device lifetime
using both networks in a cascaded féshion (see Figure 22 above). Back-propagation

neural networks have been used to build models of each response.

5.3.1 Gain and Noise Modeling

The neural network models for gain and noise index described in Section 5.2 were

established from 31 ATLAS I simulation runs from the D-optimal experimental design.
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A three-layer neural network with four inputs. five hidden neurons, and two outputs was
used. The network was trained using ObOrNNS ("Object-Oriented Neural Network
Simulator), a C++ program developed by the Intelligent Semiconductor Manufacturing
group here at Georgia Tech. Table 9 provides an overview of the network structural and
learning parameters, and Figure 24 shows a comparison between training error and
prediction for the gain and noise models were 0.619 and 0.057, respectively, and the

prediction errors were 0.779 and 0.017, respectively.

Table 9: Neural Network Parameters for Gain and Noise Models

Response |  Architecture | Learning rate Momentum
Gain 4-5-1 0.01 0
Noise 4-5-1 0.01 0

= 0: Training data 1. o: Training data
= gt
Z 1 0
z 2, K¢
» [ ]
o S 1
£ | E 1.
'S Training RMSE=06189 | 2, “Training RMSE =0.057
© TexRMSE=0778 | 2 Test RMSE =0017
40 45 50 11 A1J.2 . 14 _1-.6 18 2
Gain index (sirmulated data) Noise Index (simulated data)
(@) (b)

Figure 24 - Neural network modeling results for: (a) Gain index; (b) Noise index.
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Based on the results of the neural network modeling, the effect of the various
manufacturing parameters on gain and noise index can be quantitatively investigated.
- Figure 25 shows 3-D contour plots of gain and noise index versus an active diameter and
th¢ mean yalue ,of doping concentration. In each case, barrier width and the standard
deviation of doping concentration remaig constant at their mid-range value. Here it is
evident that increasing the mean doping concentration results in higher gain. In addition,
increasing the active diameter of the APD along with the mean doping concentration
results in a higher noise index. These results occur partly due to the fact that increasing
the doping concentration can cause more carrier multiplication during the avalanche
process, which can increase impact ionization rate ratio (k). As k increases, both the gain
and noise index increase as well. These results are in agreement with experimental
measurements performed by P. Aristin, et. al. for similarly structured AlGaAs/GaAs

MQW APDs [23].
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Gain Index
Noise Index

(@ ®)

Figure 25 - Contour plots of neural network models of: (a) gain index; and (b) noise index
as a function of mean doping concentration and device diameter. Barrier width and
doping standard deviation are set 10 their mid-range values.

In addition to the above models, "inverse” neural network models are also needed
for calculating the parametric yield using the procedure described in Section 3.6. The
description of the parameters for the inverse neural network models is provided in Table
10. Note that in order to achieve a one-to-one mapping between device outputs and
process inputs, two "dummy” device output variables are required for the inverse models.
These dummy variables are not directly involved in parametric yield calculations, but are
necessary to derive a proper Jacobian determinant [8). The training and prediction results

for the inverse models are shown in Figure 26.
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Table 10: Neural Network Parameters for Gain and Noise Inverse Models

Response

b

Gl

L Cill G

{i

{11

{ I

| Architectu;; J Learning rate ]

Momentum ;I

Active Diameter 4-7-1 03(-)1 0.0005
Barrier Width 4-7-1 0.003 0.001
140 L) ¥ L] L) L L)
Training RMSE - 3.301 ) X
120} Test RMSE - 5.2113
& o X
< X
° )
a 100} o
: 0 g5
g 8o 2 0 - training data
- X - test data
60 A A 1 A A 1
70 80 90 100 110 120 130 140
measured data
(a)
1000 r T Y T
Training RMSE - 18.7021
. 800 Test RMSE - 16.6597
T
°
3 600}
pe=]
)
‘é’ 400+ o - training data
X - test data
20 7 i L 1 i A
200 300 400 500 600 700 800

measured data

(b

Figure 26 - Gain and Noise Inverse neural network modeling results for: (a) active
diameter; (b) barrier width.
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5.3.2 Device Lifetime Modeling

The neural network models of device lifetime for doped-barrier and doped-well
MQW APDs described in Section 5.2 were established from two cascaded models. The
first model constructed from 27 ATLAS I simulation runs from the D-optimal
experimental design. A three-layer neural network with three inputs (diameter, mean
doping, and standard deviation of doping), seven hidden neurons, and two outputs (pre-
stress dark current and pre-stress breakdown voltage) was used and trained using
ObOINNS. The second model evaluated using the measurement data from life testing. A

three-layer neural network with 2 inputs, three hidden neurons, and one outputs was used.

Table 11: Neural Netwak Parameters of Device lifetime Models

The first model
Response I Architecture Leamning rate l Momentum
Pre-stress dark current | 3-7-1 I ___0.002 | ] 0.001 |
Pre-stress breakdbwn voltage | ) 3.7-1 6005_ 0.001 ]
7 The second model
_‘ Response | Archj_te_ct;rc | Leamingm? Momentum
T Device Lifetime | 231 [ o001l | 0.005

Table 11 provides an overview of the network structural and learning parameters,
and Figure 27 shows a neural network modeling results for doped-barrier APDs. It was
found that the training erf()_r for the pré-stress dark current, pre-stress breakdown voltage,
and device lifetime models were 0.0316, 3.3578, and 25.4, respectively, and the

prediction errors were 0.0228, 2.0921, and 17.8, respectively. Figure 28 shows a neural
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network modeling results for doped-well APDs. It was found that the training error for
the pre-stress dark current, pre-stress breakdown voltage, and device lifetime models
were 0.0420, 2.2316, and 36.3871, respectively, and the prediction errors were 0.0839,
3.0852, and 65.5723, respectively. The results of neural network modeling for the doped-

barrier and the doped-well APDs are summarized in Table 12.

Table 12: Neural Network Parameters for device lifetime Models

_ Doped-barrier APD model
) Pre-stress dark | Pre-stress breakdown Device
. _ current | voliage lifetime
Training Error 00316 | 33578 25.4
Prediction Error 0.0228 2.0921 17.8
Doped-well APD model
Pre-stress dark Pre-stress breakdown Device
current voltage lifetime
Training Error 0.0420 2.2316 36.3871
Prediction Error 0.0839 3.0852 65.5723
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Figure 27 - Device Lifetime Neural Network Modeling Results for Doped-barrier APDs:
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(a) Pre-stress dark current and breakdown voltage model; (b) lifetime model.
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Figure 28 - Device Lifetime Neural Network Modeling Results for Doped-well APDs: (a)
Pre-stress dark current and breakdown voltage model; (b) lifetime model.

a1l

75

{



In addition to the above models, "inverse" neural network models are also needed
for calculating the parametric yield using the procedure described in Chapter 6. The
description of the parameters for the inverse neural network models is provided in Table
13. Note that in order to achieve a one-to-one mapping between device outputs and
process inputs, two "dummy" device output variables are required for the inverse models.

The training and prediction results for the inverse models of doped-barrier APDs and

doped-well APDs for three dxfferent tcmperature models are shown in Figure 29 and

! | g q

Figure 30, respectively.

Table 12: Neural Network Parameters for device lifetime Inverse Models

Doped-bamer APD model

Response I Archntecture Leammg rate] Momentum
Device Diameter | 3-9-7-1 [ 0001 | 0.005

Doped-well APD model

TY1:

Response “Architecture Learning rate Momentum
Device Diameter 3-9-7-1 0.0005 0. 0005
76



J—

)

(

{5

T T T T T T Y 180 T T T T T T T T
134 . ? ¢ wo b
+ - training data . . + - training data
0 - test duta (4 b o - test data .
1200 &
r e 5
g .’ 4 & 130pF 'y O
E *
110e » g
a o ’ s o« d ¢
1o . el B o :
2 y $
. '§ .
§ Y 8 FA A" 100 ¢ y 40
- . *te g 4
g " ot Trauning (+) error a 11,9452 9 } LY Trainng (+) error = B 2838
i s, Pradiction (o) error = 22.4635 Prediction (o) error = 26 4615
80 F
ro}
op *
&0 i A L y St e i " 2 " ' i . i L
[ 70 [ ] %0 100 10 120 130 140 GO‘O 70 0 100 110 320 130 140 1530 180
Measured data Measured data
(a) (b)
‘w L) LJ Ll LJ L) L L] L) L)
150
+ - training data
140 p
o - test data
(3
gl ;
3 '
t20p
& t *
g 1109 ° .
. [}
L *
g 10 . '0
% .
0] 3 ? *
¢ * Teaining (+) emmor » 18,1495
wb et ¢ Prediction (o) error = 28.8964
70
. a PO S S

80 0 80 90

100 110 120 130 140 180 160

Measured dalga

(c)

Figure 29 - Lifetime Inverse Neural Network Modeling Results of diameter for doped-
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3.4 Sensitivity Analysis

Sensitivity analysis is useful to analyze the response of the neural network models
derived above. The sensitivity of one input value with respect to the other inputs is found
by calculating the normalized partial derivative of that response with respect to the input
of interest while maintaining the other input variables as constants [50]. If f is a function
of two input variables, x; and x,, and a response y = f(x,,X2), then the sensitivity of x; is

given by [51]:

[f (x, + 8x,x) = f(x, %) X,
S(f.x,) = o
(f.x)) Ax, If(xnxz)|

.1

IA\:I -0

where f is the functional rclationshié encoded in the neural network model, dx, is an
incremental perturbation of x;, and x,/f(x;,X;) is a normalization factor. For neural
network process models, sensitivity analysis consists of using a specific vector of the
inputs and making incremental changesrtor oﬁé input of interest. All other input variables
remain constant. The first (unperturbed) vector is then used to calculate the neural
network output by trained neural network model. The sensitivity is simply the ratio of the
difference between the network output fér the initial input vector and the perturbed input
vector to the increment multiplied by the normalization factor. The results of sensitivity
analysis are used to determine which input factors have the relatively more impact on the

particular response.
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5.4.1 Gain and Noise Modeling

Using the methodology described above, sensitivity analysis for gain and noise
index was also performed. The sensitivity of each parameter was defined in terms of a
10% deviation from nominal (or mid-range) values. The results of the sensitivity analysis
showing the relative influence on gain and noise index of each process parameter is
shown in Figure 31. It can be seen that the gain index is impacted primarily by the active
diameter and the barrier-width. The noise index is impacted most by active diameter,

barrier-width, and the mean value of the doping concentration. The standard deviation of

the doping concentration has almost no effect on the noise index.

Gain Index

0.04 4

> .0.02]
3
§ -0.04 1
0.064
0084
0.1

Sensitivity

Noise Index

0.10000
0.08000 1
0.06000
0.04000
0.02000 4
0.00000
+0.02000 1
-0.04000
+0.06000
+0.08000

=0.10000

®

Figure 31 - Results of sensitivity analysis for: (a) Gain index; (b) Noise index.
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5.4.2 Device Lifetime Modeling

Sensitivity analysis of device lifetime for both doped-barrier and doped-well MQW

APDs was also illustrated. Three lifetime models for each case were evaluated. The

sensitivity of each parameter was defined in terms of a 5% deviation from nominal (or

mid-range) values. From the results shown in Figure 32, it can be seen that the device

lifetime for both the doped-barrier and doped-well models is negatively impacted by the

active diameter and the mean value of doping concentration. It was also found that the

lifetime of the doped-well MQW APD is more sensitive than the doped-barrier MQW

APD. The standard deviation of the doping concentration has almost no impact in both

cascs.

!
Sensitivity Analysis of Lifetime Model for i
Doped-barrier MQW APDs

Sensitivity Analysis of Lifetime Model for
Doped-well MQW APDs

i
I' 05
05 :
g s g ?
£ & :
5  J- B R 0
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Figure 32 - Results of sensitivity analysis for: (a) Doped-barrier APDs; (b) Doped-well

APD:s.
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5.5 Summary

In this chapter, neural network models for gain, noise, and device lifetime were
evaluated from ATLAS I device simulation runs from the D-optimal experimental
deswn In adrfjixrnon sensmvxty analysns of these models was also performed to analyze
the response of the neural network models. It was found that these results are good in

agreement with experimental measurements and previously established physical trends.
In the next chapter parametnc yleld predxctxon of each performance metric (gain, noise,

and devxce hfetxme) will be accomplxshed using these neural network models.
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CHAPTER 6

STATISTICAL PREDICTION OF PARAMETRIC
PERFORMANCE OF GaAs MQW APDs

6.1 Introduction

In this chapter, a systematic methodology for modeling the parametric performance
of GaAs MQW APDs is presented. The approach described first requires a model to be
developed which reflects the probability distribution of each of the relevant process
variables. This model can be obtained directly from measured process data. A second
model is then required to account for the correlation between this measured process data
and device performance metrics. This can be derived either from the evaluation of
analytical expressions relating process variables to performance or through device
simulation. The availagility of the above rﬁoéels enables the computationr of the joint
probability density function required f01; predicting performance using the Jacobian
performance metric distributions. The resulting density function can then be numerically
integrated to determine parametric yield. Since they have demonstrated the capability of
highly accurate function approximation for mapping complex, nonlinear data sets, neural

networks have been used for generating the models described above [52].
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This methodology will provide device designers with the ability to understand the
manufacturability of various design options, and will enable process engineers 1o
extrapolate the consequencesfof orocess modifications by processing a relatively small set
of test structures. These capabilities will ultimately allow device yield prediction prior to
high- volume manufacturmg in order to evaluate the 1mpact of both design decisions and
process capablllty In the applymg thls methodolo gy to the MQW APDs, it is shown
herein that using a small number of test devices with varying active diameters, barrier and

well widths, and doping concentrations enables accurate prediction of the expected

performance variation of APD gain and noise in larger populations of devices.

6.2 Statistical Variation of Manufacturing Parameters

For MQW APDs fabrication, a few of the relevant parameters which may vary in a
typical manufacturing process include the active diameter (A), barrier width (B), the
mean value of doping concentration M) anbdr its standard deviation (S). Usually, it is
assumed that these‘:maoufacturing parameters will vary according to the normal
distribution. However, this may not always be the case in reality [53]. Several commonly
occurring dxstrxbunons in sermconductor dev1ce fabncatlon are shown in Flgure 33.

These deviations from the ideal Gaussian shape regularly appear in IC fabrication.
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Figure 33 - Commonly occurring distributions in semiconductor device fabrication.

The bell-shaped distribution is the standard normal distribution. Skewed, truncated,
and edge-peaked distributions are asymmetric distributions which typically occur when a
process specification limit exists on one side and is relatively close to the nominal value.
Double-peaked and isolation-peaked distributions are bimodal patterns suggesting the
presence of two overlapping Gaussian processes, resulting in a valley in the middle of
range of data. The plateau distribution is a flat-topped pattern, such as the uniform
distribution, indicating multiple process conditions affecting the distribution which have

not yet to be sufficiently isolated. The comb distribution is consists of regularly
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alternating high and low values of the probability density function caused by
measurement errors, rounding errors, Or errors in the method of grouping the data. It is
important to consider each of these as possible distributions in APD fabrication in order

to accurately characterize fluctuations in parametric yield.

6.3 Generating Joint Density Funétions of Process Variables

The histograms described in Section 6.2 provide models of marginal probability
density functions (pdfs) for each device ﬁérémétérs. Since the random variables of the
discrete type is investigated as device parameters, these marginal pdfs are related to the

joint probability density function for all parameters as follows [8]:

f,(x|)=J'...J.f(xl,xz,...,xn ydx,...dx, =2---2f(x,,x2....,xn) 6.1

where fi(x,) is the marginal pdf for parameter X, and f(X1,X2,...,Xn) is the joint pdf for n
different device parameters. In the present work, the random variables x;'s are the
7 7x:ﬁénrhfactrl.lfrirriﬂg bﬁiéiﬁéters A,B, M, and S.

As an example, consider the joint pdf for two random variables. Multiple integrals
of the joint pdf using Equation (6.1) provide probability information along several

dimensions in the same way that integrating a marginal pdf gives the probability of

” ﬁhding a single variable in given interval (see Figure 34).
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Figure 34 - A joint density function of two variables. The probability of finding x, is
between a; and b, and simultaneously finding x; is between a; and b; is given by the

shaded volume.

The joint pdf can be found by determining the relative frequency of device
performance along several dimensions. This can be accomplished by partitioning the
device parameter space into divisions with appropriate granularity, counting the number

of devices in each category, and dividing by total number of devices measured (The last

~ step insures that joint pdf is normalized). To illustrate this process, consider Table 14,

which describes a hypothetical bivariate distribution of barrier width and mean doping for
a population of devices. When tabular histograms such as this are properly normalized,
the resulting data can be plotted to give a surface (such as in Figure 25) which

approximates the form of the joint pdf. This procedure can be extended to as many
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dimensions as desired, and the resulting hypersurface likewise approximates the

multidimensional joint pdf.

Table 14 - Hypothetical Bivariate Histogram for Barrier Width and Diameter

 Barier Width (1017 m]

_ 200-320 | 320440 | 440-560 | 560-680 | 680-800

E 8 26 24 24 20 26

5 _ 8293 195 180 180 150 195

E 93104 299 276 276 230 299

a 104115 182 168 168 140 182
115-126 78 72 72 60 78

e mi N

il

(AT (] |
111 I\ ‘ ‘

Since the exact form of the manufacturing parameter distributions is difficult to
predict, the usual assumption of normal behavior may be inadequate. In order to
circumvent this difficulty, neural networks are again proposed as a mechanism to encode
the functional form of the overall joint parameter distribution directly from measured (or
simulated) data. BP networks can be readily used to learn the mapping between
manufacturing parameter values (inputs) and their corresponding relative frequency
(output). In this way, the joint parameter density function will be encoded in the network.
The validity of this approach has recently been demonstrated by Gibson and et. al. in [54],

where it was shown that BP neural networks can successfully model both normal and

non-normal pdfs. In fact, for the non-normal case, it was shown that neural nets modeled

i
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the underlying distribution with significantly greater accuracy than can be achieved using

traditional multinormal statistics.

6.4 Generating Joint Density Function of Device Parameters

Once the joint pdf of the device parameters has been computed, the next step is to
derive the joint pdf for functions of these parameters. For example, if the joint pdf of
active diameter (A) and barrier-width (B) is known, we would like to use this information
to calculate the joint pdf of device performance characteristics such as gain index (G) or
noise index (N), since each of these performance measures are functions of A and B.
Often, we will be interested in functions of several manufacturing parameters, but for the
sake of simplicity, we will consider only two. Let us consider two sets of random
variables X; (representing the manufacturing parameters) and Y; (representing the

performance metrics), where the Y;’s are functions of the X's:
x,=Ax,=B,y, =Gy, =N (6.2)

The functional relationship between the manufacturing process variables and

performance metrics can be expressed as:

yl =H1(x|9x2)

6.3
Y, = Hy(x),x;) (63)
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where H, and H, are continuous, differentiable functions.

Now x, and X, can be solved in terms of y, and y» to obtain:

x, =G (y,¥;)
x, =G, (¥, ¥2)

(6.4)

where G, and G, are also continuous and differentiable. The joint pdf of random

variables y, and y», u(y,,y2), is given by [8]:

u(y, y,) = Fx 5 (s ¥ (6.5)

where f(x,=G,(y1,y2). Xa-G»(yl,yo)) is thc _|omt pdf of x; and xz, and J(yl,yz) is the

Jacobian of the transformatxon The Jacoblan is given by the followmg deterrmnant

dy dy
d dy

J(y,y)= di:] diz (6.6)
dy, dy,

Recall that the joint pdf of the manufacturing parameters, f(x,x7) is available from

the previously obtained neural network models of the joint pararnefe} density.
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6.4.1 Results for Gain and Noise Modeling

To construct a joint density function for the four processing parameters, four
different statistical distributions from those shown in Figure 33 were selected, and
random numbers were generated according to these four distributions using MATLAB
[55]. The arbitrarily selected distributions were the bell-shéped, truncated, plateau, and
combed distribution for device diameter, banier-width, mean value of doping
concentration, and standard deviation of dbping concentration, respectively. Under more
realistic conditions, actual input distributions would be derived from in-line
measurements in a manufacturing environment, but these commonly occurring
distributions were selected merely in order to demonstrate the yield prediction
methodology. The histograms of the inpﬁt parameters are shown in Figure 35.

Using data derived from these distributions as training data, a back-propagation
neural network with a 4-9-1 (input-hidden-output) architecture was used to model the

joint density function for all four input variables. The parameters for this network are

shown in Table 15. To verify this model, the marginal density functions for each input
variable were reproduced as shown in Figure 36. As this Figure shows, the marginal

distribution of each input parameter is well-matched with the neural network predictions.
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6.4.2 Results for Device Lifetime Modeling

For the device lifetime modeling, three processing parameters were used to
construct a joint density function. The arbitrarily selected distributions in this case were
the bell-shaped, truncated, and combed distribution for device diameter, mean value of
doping concentration, and standard deviation of doping concentration, respectively. The

histogram of the input parameters are shown in Figure 37. ..

. Diameter: Bell Shape 'D(mean): Truncated
4 — 0.5 ,
B
03 0.4
N Al | — 0.3
0.2 3
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Figure 37 - Histograms of input parameters for lifetime modeling.
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Using data derived from these distributions as training data, a back-propagation
neural network with a 3-7-1 (input-hidden-output) architecture was used to model the
joint density function for all three input variables. The parameter for this network are
shown in Table 16. To verify this model, the marginal density functions for each variable
were reproduced as shown in Figure 38. As this figure illustrates, the marginal

distribution of each input parameter is well-matched with the neural network predictions.

Table 16 - Network Parameters for lifetime Joint pdf Model
Response Architecture Learning rate Momentum

Joint pdf 4-7-1 __0.002 0.001

6.5 Parametric Yield Calculation

Once u(y,,y2) has been calculated from Equation (6.5), then the marginal densities
of the device performance metrics (gain index, noise index or lifetime) may be calculated

as follows:

II(Y1)=I“(Y1'Y2)dY2 =2u(y,,y2)
™ (6.7)
L(y2)=[uly.y2)dy, = X u(y,,y:)
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where Ii(y1) and Ix(y:) are the marginal pdfs of the performance characteristics. The
parametric yield of the circuit with respect to a given performance measure is then

derived from the marginal pdfs as:
b, n-l
PY, = [L(y)dy, = X L(3) (s = 3) (6.8)
a, i=0

where a; and b; represent the limits of integration surrounding regions of interest, and PY;
provides the probability of the device satisfying a particular performance criterion. Using
this methodology, the parametric yield of gain, noise and device lifetime can be predicted

based on the variation of the manufacturing parameters.

6.5.1 Results for Gain and Noise Modeling

In order to calculate the parametric yield using the joint density function, the
Jacobian determinant is must be calculated. The derivatives required for the Jacobian
matrix were estimated in the same vu}ay th;t sensitivity analysis was performed using the
change in the output quantity with respect to a 5% deviation in the parameter of interest.
Following the computation of the Jacobian determinant, parametric yield may be
calculated using Equation (6.8). Figure 39 shows the resulting distribution of gain and

noise index.
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In order to validate this approach, these results can be compared with the Monte
Carlo method. Toward that end, simulations consisting of 20,000 randomly generated
instances of data were used for calculating parametric yield using the Monte Carlo
technique. These randomly generated data sets were fed into the neural network models
for gain and noise to calculate the device response. Using the output of the neural
network model for each instance of input data, the distribution of gain and noise can be
calculated. The two different Monte Carlo simulations were performed. The first
approach assumed that all input parameters were independent and normally disfributed,
ignoring any correlations which might exist between the input parameters. The second
Monte Carlo simulation, however, did make use of the different input distributions
provided in Figure 35. The Monte Carlo results are also shown in Figure 39.

As expected, Figure 39 shows that the Monte Carlo method performed without
considering the correlation of input parameters cannot predict parametric yield accurately.
For example, if the uncorrelated Monte Carlo approach is used, the number of devices
achieving a gain index between 45 - 47 is severely overestimated. Likewise, the number
of devices with a gain index from 47 - 49 is underestimated. In either case, this approach
gives misleading information about the effect of the APD manufacturing parameters on
device performance.

On the other hand, the newly proposed methodology for parametric yield
calculation is comparable to results achieved using the Monte Carlo method that does
consider different (and potentially correlated) input distributions, but with significantly

fewer simulations. Although some computational overhead is incurred in deriving the
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neural network pdf and jpdf models, the§e models only need to be derived once. In
contrast, the Monte Carlo procedure will always require an inordinate number of
simiulerutiﬁrnrs.ﬁ Fuﬁhermore, it is alsd asserted here that since the Monte Carlo method uses
the same distribution for each input parameter and does not account for possible
correlations between :parameters, some degree of accuracy is inherently lost. By
modeling the input pdfs and their joint pdf directly, thé proposcdrrnéthod overcomes this

shortcoming.

6.5.2 Results for Device Lifetime Modeling

Since the devices investigated in the APD lifetime study exhibited very limited
variation in active diameter and their exact doping profile was unknown, the parametric
yield prediction of device lifetime was investigated using the cascaded model described in
Section 51 Initially, neural network models and inverse neural network models for two
cascaded mappings was developed and tested using the OBORNNS simulator. Then, a
simulated joint probability density function of the relevant input manufacturing
parameters (i.e. - active diameter, and mean and standard deviation of doping
concéntration), was generated from these models. Finally, parametric yiéld estimation of
APD device lifetime was performed via the Jacobian transformation method. Two APD

structures (doped-barrier and doped-well) were investigated using this procedure.
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6.5.2.1 Doped Barrier MQW APD

Using the Jacobian matrix and the cascaded neural network models, the parametric
yield for doped-barrier APDs is calculated using Equation (6.8). The neural network
models with three different temperatures, 100°C, 150°C, and 200°C, were evaluated for
calculating parametric yield. Figure 40 shows the resulting distribution of device lifetime
for doped-barrier APDs.

In order to validate this approach, these results are again compared with the Monte
Carlo method consisting of 20,000 randomly generated instances of data. These
randomly generated data sets were fed into the neural network models for device lifetime
to calculate the device response. Using the output of the neural network mode! for each
instance of input data, the distributions of device lifetime for three different temperatures
can be calculated. The two different Monte Carlo simulations were also performed. The
first assumed that all input parameters were independent and normally distributed,
ignoring any correlations which might exist between the input parameters. The second
Monte Carlo simulation made use of the different input distributions provided in Figure
37. The Monte Carlo results are also shown in Figure 40.

As expected, Figure 40 shows that the Monte Carlo method performed without
considering the correlation of input parameters cannot predict parametric yield accurately.
For example, if the uncorrelated Monté Carlo approach is used, the number of devices

achieving a device lifetime (log-scale) at 100°C between 3.12 - 3.18 is underestimated,
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and the number of devices with a device lifetime at 100°C from 3.18 - 3.24 is

overestimated.

6.5.2.2 Doped Well MQW APD

Using the same methodology described in Section 6.5.2.1, the parametric yield for
doped-well APDs is also calculated using Equation (6.8). Figure 41 shows the resulting
distribution of device lifetime for doped-barrier APDs. -

As expected, Figure 41 shows that the Monte Carlo method performed without
considering the correlation of input parameters cannot predict parametric yield accurately.
For example, if the uncorrelated Monte Carlo approach is used, the number of devices
achieving a device lifetime at 150°C between 2.30 - 2.46 is overestimated and the number

of devices with a device lifetime at 150°C from 2.54 - 2.70 is underestimated.
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6.6 Sensitivity of Parametric Yield to Distributions of
Manufacturing Parameters

6.6.1 Overview of Problem

Based on the preliminary results of the APD gain, noise and device lifetime yield
calculation, it becomes desirable to investigate how different distributions of the
manufacturing parameters impact parametric yield. For example, truncated distributions
are often found in manufacturing due to the application of statistical process control
procedures. The "tightness" of process specifications determines where the distribution is
truncated (i.e. +/- 3-sigma, etc.). It is useful to evaluate the sensitivity of the parametric
performance of the device to the choice of truncation point. In addition, it is valuable to
search for regions in the yield space which are relatively insensitive to changes in the
distributions of the input parameters. In such regions, the performance of the device will
be relatively robust to manufacturing variations. One possible approach to accomplish
this is to: 1) perform sensitivity analysis on each output response, finding the insensitive
region for each input parameter; 2) generate pseudo-random data sets of input parameters
in the insensitive region; and 3) use these distributions to calculate the parametric yield
and check the distribution of each output response. This analysis will allow the process
engineer and device designer to work together to define performance metrics which are
insensitive to process fluctuations, thereby ensuring high parametric yield.

In this section, three different hypothetical scenarios will be investigated. First, the

effect of different ranges of input parameter distributions on the parametric yield is
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discussed. This will allow the prediction of the ranges of the input parameter
distributions which can reduce process variations and increase parametric yield. Second,
the impact of different distributions of input parameters on the parametric yield is
examined. Finally, the sensitivity of the parametric performance to the choice of

truncation point is evaluated for truncated distributions.

6.6.2 Res'l:x'lt and Discussion :

6.6.2.1 Effect of range of input distribution

The first scenario involves three normal distributions of device diameter with
different mean values which were constructed to evaluate parametric yield. The
histograms for these distributions are shown in Figure 42. The distributions for barrier
width, mean value of doping concentration, and standard deviation of doping are the same
for each of these cases. From these input distributions, the proposed methodology was
applied to calculate the parametric yield. Figure 43 illustrates the resulting distribution of

gain and noise for doped-well APDs.
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The results in Figure 43 show that the different ranges of device diameter
significantly impacted parametric yield. These results are in good agreement with Figure
21, which indicates that large diameter devices exhibit higher light current compared to
smaller devices. In other words, a larger diameter device can convert more optical energy
to the light current, resulting in a higher gain index. If the desired range of gain index is
no less than 44, then case (c), Wﬁich contains larger diarﬁé;ef devices, provides the
highest yield. Likewise, if the desired rangé of noise index is between 1.5] - 1.54, then
case (a), which contains smaller diameter devices, shows the highest yield.

Three statistical distributions of the | mean value of doping concentration with
different mean values were also constructed. The histograms of these distributions are
shown in Figure 44. The distributions for device diameter, barrier width, and standard
deviation of doping are the same for these cases. From these input distributions, the new
methodology was again applied to calculate the parametric yield. Figure 45 illustrates the
resulting distribution of gain and noise for doped-well APDs.

The results in Figure 45 show the effect of mean value of doping concentration on

parametric yield. More dopants can participate in the impact ionization process for the

higher doping case. This results in iarger light current and higher gain index. In addition,
since more dopants participatingrinb the avalanche process can contribute to the ionization
rate, noise index also increases with higher doping. If the desired range of gain index is
no rless than 45.5, thén casre} (a) whlchcontams d&icés with: smaller mean value of
doping concentration, exhibit the highest yield. Likewise, if the desired range of noise

index is no less than 1.54, then case (c), which contains devices with larger mean value of
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doping concentration, can obtain highest yield. There is obviously a design trade-off
between higher gain index for a small mean value of doping concentration and higher

noise index for a large mean value of doping concentration.

6.6.2.2 Effect of Different Distributions

For this scenario, three different statistical distributions (normal, truncated and
uniform distribution) of ,dev_%_cg _‘_diaglet,er are investigated to evaluate parametric yield.
The histograms of these input distributions ére shown in Figure 46. The distributions for
barrier width, mean vaiﬁé of dc;bing éoncentraiion, and standard deviation of doping were
the same for these cases. Figure 47 illustrates the resulting distribution of gain and noise
for doped-well APD:s.

The results shown in Figure 47 prove different distributions of device diameter do
impact parametric yield in the case of gain. For exafnple, if the higher gain index is
desired, thep case (c), which contaigs_r truncated distribution of diameter, shows the
highest yield since the trur#:ated dris;:ibutio; has a large population in larger device
diameter. However, noiéé index isv;relati—fely insensitive to the different diameter
distributions. From the ﬁngldistribgtipg of noise index in Figure 47, it is seen that noise
index is fairly insensitive to the different distributions in device diameter.

In addition, simulationér involving three different statistical distributions of mean
value of doping concentration were also performed to evaluate parametric yield for gain

and noise. The histogram of these input distributions are shown in Figure 48. The
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distributions for device diameter, barrier width, and standard deviation of doping are the
same for these cases. Figure 49 shows the resulting parametric yield distribution of gain

and noise for doped-well APDs.
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The results shown in Figure 49 verify that different distributions of mean value of
doping concentration can impact parametric yield. These results also shows a good
agreement that truncated distribution with a larger population in large mean value of
doping concentration exhibit the highest yield. Note that since the large noise index
(which means a large ionization coefficient ratio) is required for reducing excess noise, a

high mean value of doping concentration is preferred for higher parametric yield.

6.6.2.3 Effect of Truncated Distributions

Finally, the sensitivity of the parametric performance of the device to the choice of
truncated point for truncated distributions was investigated. Truncated distributions are
often found in manufacturing due to the application of statistical process control
procedures. Since any manufacturing process contains inherent process fluctuation, quick
detection of out-of-control states is required to maintain product conformance. Usually,

the process specifications serve to control the process by truncating the distribution of the

measured parameter. It can therefore be useful to evaluate which truncated point provides

the highest yield.

Three different truncation points pf device diameter were investigated to evaluate
parametric yield for gain and noise. The histograms of these input distributions are
shown in Figure 50. The truncation points for case (a), case (b), and case (c) are [73,
121], [81, 115], and [90, 108], respectively. The distributions for barrier width, mean

value of doping concentration, and standard deviation of doping were the same for each
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case. Figure 51 illustrates the resulting parametric yield distribution of gain and noise for
doped-well APDs.

From these results, it was found that different truncation points of device diameter
do not significantly impact parametric yield. Regardless of different truncated points in
diameter distributions, both gain and noise are insensitive to these distributions.

Different truncation points for the mean value of doping concentration were also
studied to evaluate parametric yield for gain and noise. The histograms of these input
distributions are shown in Figure 52. The truncated points for case (a), case (b), and case
(c) are [0.1, 9.9], [2.5,_ 7.5), and [3.75, 6.25], respectively. The distributions for device
diameter, barrier width, and standard deviation of doping are the same for these cases.
Figure 53 shows the resulting yield distributions of gain and noise for doped-well APDs.

These results confirm that different truncation points of mean value of doping
concentration impact parametric yield. If the truncation points are very tight, the resulting
yield distribution is also tight. If parametric yield for noise is desired in the range of
[1.51, 1.57], case (b) and case (c) yield 92% and 96%, respectively. Therefore, if the
process is hard to control, then distributions with wide truncation points can yield nearly
similar results to distributions with narrow truncation points. It is also noted that
parametric yield of gain is almost insensitive to the different truncation points in the mean

value of doping concentration.
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Different truncation points of the standard deviation of doping concentration were
also performed to evaluate parametric yield for gain and noise. The histograms of these
input distributions are shown in Figure 54. The truncated points for case (a), case (b), and
case (c) are [0.1, 1.9], [0.4, 1.6), and [0.75, 1.25], respectively. The distributions for
device diameter, barrier width, and standard deviation of doping were the same for each
case. Figure 55 shows the resulting yield distribution of gain and noise for doped-well
APDs.

The results shown in Figure 55 confirm that different truncation points for the
standard deviation of doping concentration can also impact parametric yield. Case (c),
which corresponds to narrow truncation points, exhibits the highest yield of gain. Thus,
delta doping, which is conceptually similar to narrow truncation limits, can be a great
advantage in improving parametric yield. Therefore, precise control of the doping profile
is a key factor to fabricate high performance devices. Noise index, on the other hand, is
fairly insensitive to the placement of the truncation points in the standard deviation of

doping concentration.
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6.7 Summary

In this chapter, a system’g{ic' methodology for the parametric yield prediction of

GaAs MQW APDs has been pggsenged. It was shown that using a small number of test

devices with varylng dev1ce dlameters barrier and well widths, and doping

concentrations enables accurate predlctlon of the expected performance variation of APD
gain, noise and devicg_»lifg;im_e'_v in larger populations of devices. Neural networks are

successfully used for gcncratmg the modcls to charactenze the manufacturing variations.

This approach provides device desxgner with the ability to understand the
manufacturability of various design options and enables process engineers to determine
the consequences of process modiﬁcations.‘ This will ultimately allow device parametric
yield estimation prior tohlgh-volume mé.nufacturing in order to evaluate the

manufacturability rely on design decisions and process capability.
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CHAPTER 7
CONCLUSION

- 7.1 Summary

Throughout this thesis, reliability modeling and parametric yield prediction of
GaAs/AlGaAs multiple quantum well (MQW) avalanche photodiodes (APDs) have been
presented. These devices are being considered as a potential candidate for an ultra-low
noise image capture mechanism application for high definition systems.

First, the effect of various doping methods on the reliability of GaAs/AlGaAs
multiple quantum well (MQW) avalanche photodiode (APD) structures fabricated by
molecular beam epitaxy (MBE) was investigated. Reliability was examined by
accelerated life tests by monitoring dark current and breakdown voltage. Median device
lifetime and the activation energy of the degradation mechanism were computed for
undoped, doped-barrier, and doped-well APD structures. Lifetimes for each device
structure were examined via a stati-sti'calrlyr désigned éxperiment. Analysis of variance
showed that dark current is affected primarily by device diameter, temperature and
stfeSsiﬁg time, and brealncdowrrx;\rlroiliérg;éHépérids on the diametér, stressing time and APD

type. It was concluded that the undopédhAPD has the highest reliability, followed by the
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doped well and doped barrier devices, respectively. To determine the source of the
degradation mechanism for each device structure, failure analysis using the electron-beam
induced current method was perfoxifnéd. Thi§ analysis revealed some degree of device
degradation caused by ionic impurities in the passivation layer, and energy-dispersive
spectrometry subsequently verified the presence of ionic sodium as the primary
contaminant. However, since all device structures were similarly passivated, sodium
contamination alone did hot account for the observed variation between the differently
doped APDs. This effect was ggglg@ppd by dopant r;xig;g;ion duriqg §UQ§siqg, which was
verified by free carrier concentration measurements using the capacitance-voltage

technique.

Reliability modeling provided one method for estimating device performance as a

func‘_‘tiongf process Ya;iablgs. Since literally millions of these devices must be fabricated
for imaging arrays, it is critical to evaluate potential performance variations of individual
devices in light of the fact that even in a defect-free manufacturing environment, random
Accurate device performance prediction requires precise characterization of these
manufacturing variations. Therefore, a novel methodology for modeling the parametric
yield prediction fo _GaAs MQW APDs has also been presented. The approach described
requires a model of the probability distribution of ;ach of the relevant process variables,
as well as a model to account for the correlation between this measured process data and
device performance metrics. The a\.{ailability,ojr these models enables the computation of

the joint density function required for predicting performance using the Jacobian
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transformation method. The resulting density function can then be numerically integrated
to determine parametric yield. Since they have demonstrated the capability of highly
accurate function approximation and mapping of complex, nonlinear data sets, neural
networks has been used as a too! for generating the models described above. In apply this
methodology to the MQW APD:s, it was shown that using a small number of test devices
with varying active diameters, barrier and well widths, and doping concentrations enables
accurate prediction of the expected performance variation of APD gain and noise in larger
populations of devices. This approach will ultimately allow device yield prediction prior
to high-volume manufacturing in order to evaluate the manufacturability rely on both

design specifications and process capability.

7.2 Suggestions for Future Work

Neural network modeling for parametric yield of GaAs MQW APDs have been
accomplished in this thesis. However, it was a nontrivial effort to obtain the inverse
neural network models required for estimating the parametric yield based on device
lifetime. Usually one hidden layer is enough to build a neural network model, but two
hidden layers were required to build accurate models for device lifetime modeling. One
task that needs to be performed in thé future is neural network model optimization.
Genetic algorithms has been successfully used for parameter optimization of neural

networks and recipe synthesis in semiconductor manufacturing process [56]. Thus, if
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genetic algorithms are applied for neural network optimization in this application, more

accurate and Verfﬁcient neural network models should be achieved.

Another task to be pursued in the future is to utilize the methodology for calculating
parametric yield described in this thesis to semiconductor devicc; fabricated by other
certain manufacturingw processes. For ins;ance, parameter variation for the high electron
mobility transistor (HEMT) fabricated in molecular beam epitaxy can be investigated
using this methodology. The device variable can be modeled by measured data or device
simulations, such as ATLAS.

In addition, this methodology can also be applied for modeling circuit performance.
For example, the parameter variation for CMOS circuit can be predicted using this
approach. The circuit variables can be modeled by measured data or SPICE circuit
simulations. It was shown that this approach is superior to the prevailing Monte Carlo
method by reducing thé computatién load and relaxing the assumption of a specific
statistical distribution. If parametric yield prediction for newly developed circuits using a
given manufacturing process is needed, this new methodology can predict parametric
yield with a small number of test structures prior to high-volume manufacturing in order
to evaluate the impact on manufacturability of both design specifications and process

capability.
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APPENDIX A

Calculation of Free Carrier Concentration from the
Capacitance-Voltage Technique for MQW APDs

Let assume that the APD considered as a parallel-plate capacitor. Let A is the

device area and ¢ is the semiconductor permittivity and Cj, is the package capacitance and

Co s the measured capacitance from the HP LCZ meter. Let assume M measured

-

capacitance are obtained from HP LCZ meter and assume two measured capacitance

Cmxs1) and Cm.1 at two different bias voltage Vi.i and Vi, respectively.

The actual capacitance (Cu) is calculated by
Ch=Cn—-C, for k=1,...,.M. (A.1)

Hence, the depletion width is expressed in the following:

W, = i _ (A2)

Now, we can approximate d( 1/C*)/dV by using A(1/ C?) and AV as follows:

AV, =V, — Vi, (A.3)
A(_l_] - - (A.4)
C2 k (C'u2 )(kq) (Cuz)(k-”

Hence, the net carrier concentration can be calculated by the approximation:
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2-AV,

g€ A*-a[1/CY) (A->)

NW,)=

Therefore, from the equation (A.2) and (A.5), the distribution of net carrier
concentration with respect to the depletion region can be obtained.
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APPENDIX B

Sample ATLAS Simulation Program

Light Current and Noise Index Simulation of 10-period
Doped-well MQW APDs

$

$ 10-period Doped-well MQW photodiode

$

$ Mesh construction

$

mesh rect smooth=4 diag.flip

x.mesh loc=0 s=75

x.mesh loc=75.0 s=75

y.mesh loc=0.0 s=0.4

y.mesh loc=0.96 s=0.4

y.mesh loc=0.97 s=0.0025

y.mesh loc=1.525 s=0.0025

y.mesh loc=2.08 s=0.0025

y.mesh loc=2.09 s=0.4

y.mesh loc=3.05 s=0.4

$

$ Structure Definition

$

region number=1 x.min=0 x.max=75 y.min=0 y.max=1.0 gaas

region number=2 x.min=0 x.max=75 y.min=1.0 y.max=1.05 gaas

region number=3 x.min=0 x.max=75 y.min=1.05 y.max=1.1 material=AlGaAs
x.composition=0.42 '

region number=4 x.min=0 x.max=75 y.min=1.1 y.max=1.15 gaas

region number=5 x.min=0 x.max=73 y.min=1.15 y.max=1.2 material=AlGaAs
x.composition=0.42 '

region number=6 x.min=0 x.max=75 y.min=1.2 y.max=1.25 gaas

region number=7 x.min=0 x.max=75 y.min=1.25 y.max=1.3 material=AlGaAs
x.composition=0.42 '

region number=8 x.min=0 x.max=75 y.min=1.3 y.max=1.35 gaas

region number=9 x.min=0 x.max=75 y.min=1.35 y.max=1.4 material=AlGaAs
x.composition=0.42

region number=10 x.min=0 x.max=75 y.min=1.4 y.max=1.45 gaas
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region number=11 x.min=0 x.max=75 y.min=1.45 y.max=1.5 material=AlGaAs
x.composition=0.42
region number=12 x.min=0 x.max=75 y.min=1.5 y.max=1.55 gaas

~_ region number=13 x.min=0 x.max=75 y.min=1.55 y.max=1.6 material=AlGaAs

x.composition=0.42

region number=14 x.min=0 x.max=75 y.min=1.6 y. max=1.65 gaas

region number=15 x.min=0 x.max=75 y.min=1.65 y.max=1.7 material=AlGaAs
x.composition=0.42

region number=16 x.min=0 x.max=75 y.min=1.7 y.max=1.75 gaas

region number=17 x.min=0 x.max=75 y.min=1.75 y.max=1.8 material=AlGaAs
x.composition=0.42

region number=18 x.min=0 x.max=75 y.min=1.8 y.max=1.85 gaas

region number=19 x.min=0 x.max=75 y.min=1.85 y.max=1.9 material=AlGaAs
x.composition=0.42

region number=20 x.min=0 x.max=75 y.min=1.9 y.max=1.95 gaas

region number=21 x.min=0 x.max=75 y.min=1.95 y.max=2.0 material=AlGaAs
x.composition=0.42

region number=22 x.min=0 x.max=75 y.min=2.0 y.max=2.05 gaas

region number=23 x.min=0 x.max=75 y.min=2.05 y.max=3.05 gaas

$

S Node Definition

$

electrode name=cathode number=1 top

electrode name=anode number=2 bottom

$

$ Doping configuration

h)

doping uniform conc=3e18 p.type direction=y regions=1

doping uniform conc=1.65¢18 p.type direction=y y.min=1.115 y.max=1.120
doping uniform conc=1.5¢18 n.type direction=y y.min=1.130 y.max=1.135
doping uniform conc=1.65e18 p.type direction=y y.min=1.215 y.max=1.220
doping uniform conc=1.5e¢18 n.type direction=y y.min=1.230 y.max=1.235
doping uniform conc=1.65¢18 p.type direction=y y.min=1.315 y.max=1.320
doping uniform conc=1.5¢18 n.type direction=y y.min=1.330 y.max=1.335
doping uniform conc=1.65¢18 p.type direction=y y.min=1.415 y.max=1.420
doping uniform conc=1.5e18 n.type direction=y y.min=1.430 y.max=1.435
doping uniform conc=1.65e18 p.type direction=y y.min=1.515 y.max=1.520
doping uniform conc=1.5¢18 n.type direction=y y.min=1.530 y.max=1.535
doping uniform conc=1.65¢18 p.type direction=y y.min=1.615 y.max=1.620
doping uniform conc=1.5¢18 n.type direction=y y.min=1.630 y.max=1.635
doping uniform conc=1.65e18 p.type direction=y y.min=1.715 y.max=1.720
doping uniform conc=1.5¢18 n.type direction=y y.min=1.730 y.max=1.735
doping uniform conc=1.65¢18 p.type direction=y y.min=1.815 y.max=1.820
doping uniform conc=1.5¢18 n.type direction=y y.min=1.830 y.max=1.835
doping uniform conc=1.65¢18 p.type direction=y y.min=1.915 y.max=1.920
doping uniform conc=1.5¢18 n.type direction=y y.min=1.930 y.max=1.935
doping uniform conc=3e18 n.type direction=y regions=23
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$

$ Model Definition

$

material material=GaAs taupO=1.e-9 taun0=l.-9 wooivoiiiv .o .
impact  selber an1=299400 an2=299400 bn1=684800 bn2=684800 ap1=221500 ap2=221500
bp1=657000 bp2=657000 betan=1.6 betap=1.75 egran=222000

models material=GaAs srh auger conmob fldmob print

$ Light source definition

$

beam num=1 x.origin=37.5 y.origin=-1.0 angle=90.0 wavelength=.8 min.window=-9.0
max.window=9.0

$ Find initial solution

$

symb  newton carr=0
solve init

symb newton carr=2

method trap autonr climit=75000 ctolt.fact=500.0 maxtrap=10

solve prev o - o ,
output e.field j.electron e.velocity e.mobility h.mobility gss e.temp h.temp val.band con.band
qfn gfp impact recomb tot.doping

save outf=MQWIV7s2a2.out

solve  bl=l

$

$ Find I-V curve using voltage ramp

$

log outf=MQWIV7s2a2.log master

solve prev  v1=0.0 vstep=-2 _vfinal=-20elect=1
solve prev vl=-21  vstep=-1 vfinal=-36elect=1
solve prev vi=-36.2 vstep=-0.05 vfinal=-38.5 elect=1
save outf=MQWIV39a2.out :
tonyplot MQWIV7s2a2.log
$

$ Calculation of alpha(n) and alpha(p) o

plot.1d alphan a.x=37.5b.x=37.5 a.y=1 .0 b.y=3.05 points outfile=andw1.dat ascii

plot.1d alphap a.x=37.5 b.x=37.5 a.y=1.0 b.y=3.05 points outfile=apdw1.dat ascii
end I S : ' -
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