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Transition and Breakdown to Turbulence

in Incompressible Boundary Layers

P. Balakumar

Aerospace Engineering Department,

Old Dominion Universi_, Norfolk, Virginia 23529-0247

Abstract

We have developed a code where the nonlinear terms are treated implicitly. The equations

are discretized using the two-point fourth order compact scheme in the y-direction and the

backward Euler method in the x-direction. We investigated the transition process in a Blasius

boundary layer due to fundamental type breakdown. With 8 modes in the a,, and 3 planes, we

could compute the evolution of disturbances up to Rex=910, which is well into the strongly

nonlinear region. The transition onset point is located around Rex=850. The comparison with

the measurements and with the DNS computations are very good up to Rex=880.

1. Introduction

Breakdown from laminar to turbulent flow in zero and mild pressure gradient boundary layers

is caused by Tollmien-Schlichting (viscous) instability. Though there exist several mechanisms

and routes to go from a laminar to a turbulent state, all of them in general follow these

fundamental processes:

Receptivity

Linear instability

Nonlinear stability and saturation

Secondary instability

Breakdown to turbulence



In thereceptivityprocess,theunsteadinessin theenvironmentandtheinhomogeneitiesin the

geometrygenerateinstabilitywavesinsidetheflow. In quietenvironments,the initial amplitudes

of theseinstabilitywavesaresmallcomparedto anycharacteristicvelocity andlengthscalesin

theflow. Goldstein(1983a) theoreticallyexplainedusingasymptoticmethodshowtheTollmien-

Schlichtingwaves(T-S waves) aregeneratednear a leadingedgeof a flat plateby the long

wavelengthacousticdisturbancesand in a companionpaper(1985)describedthe scatteringof

T-S wavesfrom the acousticdisturbancesby the streamwisevariationsin surfacegeometries.

In the secondstage,the amplitudesof theseinstability wavesgrow exponentiallydownstream

and this processis governedby the linearizedNavier-Stokesequations.Furtherdownstream,

theamplitudesof thedisturbancesbecomelargeandthenonlineareffectsinhibit theexponential

growthandtheamplitudesof thedisturbanceseventuallysaturateor attainsingularvalues.In the

next stage,thesefinite amplitudesaturateddisturbancesbecomeunstableto two- and/orthree-

dimensionaldisturbances.This is calledsecondaryinstabilityandbeyondthisstagethespectrum

broadens,dueto complexinteractionsandfurther instabilities,andthe flow becomesturbulent

in a shortdistancedownstream.In this paper,we investigatedthe later stagesof transitionin

BlasiusboundarylayersusingParabolizedStability Equations( PSE) approach.

The ParabolizedStability Equations(PSE) approachcurrently can predict the first three

stagesof thetransitionprocess,linearinstability,nonlinearstabilityandsaturationandsecondary

instability, accuratelyand very efficiently, Herbert(1997). After the skin friction rise the PSE

computationsceaseto converge.Theremaybe two sourcesfor theprogramnot to convergein

this region. Oneis that the PSEapproximationitself maynot be valid in thehighly nonlinear

region. The othermay be that the iterationon the nonlinearterms,at presentthey aretreated

explicitly and iteratedtill they converge,may not be converging. In this work, we will treat

the nonlinearterms implicitly and will investigatehow far downstreamwe can continuethe

PSEcomputations.If wecancomputeup to theskin friction maximumin thetransitionregion,

this will help us in developingnew transitionmodelingandin developingimprovedtransition

predictionmethods.We alsoobservedthat in somePSEcomputations,e.g.,Gortler instability,



crossflowinstability, at the later stages,the meanflowdistortionterm convergesvery slowly.

Hence,in thesecasesthe implicit formulationwill improvetheconvergence.

2. Formulation

In the parabolized stability equations (PSE) approach, one attempts to construct an approxi-

mate solution of the full Navier-Stokes equations. The idea was first introduced by Herbert(1991)

and applied to linear and non-linear Blasius boundary-layer flow by Bertolotti (1992). Now it

has been developed and has been applied to two and three-dimensional incompressible and com-

pressible boundary-layer flows (Chang et.al. 1994, Matik et.al 1994). Herbert (1997) in a recent

review described the development and the application of PSE to different problems and here we

give the governing equations and the procedure that we use to solve the equations.

We investigate the transition process in a Blasius boundary layer over a flat plate. Let us

denote the Cartesian coordinate system by xi (i=1,2,3), the velocity components by iti and the

pressure by /5. We decompose the total flow quantities as the sum of the mean flow and the

disturbance quantities.

,_.(x, t) = U0i(x) + ¢.(x, t),

_,(x, t) = P0(x) + p,(x, t),
(l)

where, U0i are the mean velocity components which are the solution of the Blasius equation

and P is the mean pressure. Substituting these expressions into the Navier-Stokes equations we

obtain the nonlinear equations for the disturbances in the form

Ott i
-- _ O_

Oxi

Oui OU0i Oui Oui _ Op 1 O2ui

o--i-+ _'j -g-_j + Uo__ + .j Oxj o._, + R_ o,rjox j '

(2)

where the Reynolds number

Re -- (3)



, ('_ is the freestream velocity, and L is a reference length.

To derive the PSE equations, we write the dependent variables ul, u.2, u3,p as the sum of

normal modes

MB MO

q = Z Z qmn(Xl'X3)ei fc,,..dzlJdzl+tm3x2-i,,wt (4)

m=-'_I B n=-MO

Here ,_ is the frequency of the disturbance,/3 is the spanwise wave number, and Omn(Xl) is the

wave number in the axial direction, qmn(Xl ,x3) is the amplitude function for the mode (m,n)

, MO is the total number of modes kept in the frequency domain in one quadrant and MB is

the number of spanwise modes. Substituting this expression into the disturbance equations and

making the PSE approximation, we obtain PSE equations for each mode (re,n).
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OX3 OXl

Ox OUol )={Re -in_' + iam_Uox + _ + im3Uo2

._ .dam n -

+ m232 + a_ - z_}Ulm,_

0Ulmn 0U01 .

+ ReUo30x------_ + Re'-"Z----U3mnux3 + _CtrnnPmn

Ottlmn OPmn

+ (Rd;Ol - Ox----Y+ Re

/ Ottl O_t I Oltl_

(6)

02tt2mn = t_e alto n
Ox_

+ {Re(-in,a + iOlmnUo1 + irn'_[:02)

. o .damn.

-4-m23 2+Omn-t--J-_xl }U2mn

Ou 2m_____ OUo'2
+ ReUo3 0x3 + Re '-;V---'U:3mnax3 + im3pmn

Oll'2m n

+ (ReUol - 2iamn) Oxl

/ Ou, \
-4- RC \ ttl _x l -4- tl'2 _ -}- tt3 ."&"_- ] •- (J:r3 / mn

(7)



- - ox---T + _c_m,,uo:_

+ Uoaim3u2mn

_t I m n

+ {i n_, - i c_.+. (% t -im 3 ("02
0U.3

O;r3

+ (-.+'_ 3-' " .dam.'_

iCtrnn 0ttlrnn irr+A Ott2rnn

Re Oxz Re Ox+

OUlmn ( 2iamn ) OU3mn+ U03 Ox----_ + -Urn + Re Oxl

1 02ttlmn

Re OxtOxa

O?t 3 Ott 3 0?21 0 tt', \- ul_+ u.,-- ua ua,+-_-] •" OX2 -_Xl 03:2 / rnn

(8)

At present, the nonlinear terms Smn are evaluated from the values obtained at the previous

iteration step and using the FFT technique. In the implicit formulation, these terms are function

of Qm,, and the system of equations becomes a set of coupled nonlinear equations. This nonlinear

coupled equations will be solved using Newton - Raphson iteration technique Balakumar (1997).

3. Solution procedure

The eqs. (5-8) are solved using the two-point fourth order compact scheme, Malik et. al

(1982), derived by means of the Euler-Maclaurin formula

+k +k-I hk ( d+'k d_'k-1) hl ( d2y)k d2t_'k-l)=5-\-gV + 2V -'+ (9)

where. ,_,k = ¢,(y)¢) and hk = Yk- }"k-1.

To apply the above scheme to this problem, we have to rewrite eqs. (5-8) as a system of

first order equations. The eqs. (5-8) can easily be written as

(/.,., = F,,,m(g,,Y) n = -MB to MB, m= -MO to MO. (10)



} I ,t ) Twhere, _, = t_,T ,,T and ¢, { u,,,,n, tv,_.m, tc n,m, _ ,_,,,,,1 ,,,,, }-MB,-MO'"" V MB,MO n,m = ttn,m,

I?n,m and Fn,m are (6 x 1) complex column vectors and _7' is a (6 x (2MB + 1)*(2MO + 1))

complex column vector. From eq. (10), we get

,, OF [OFn,m]F,
C-',,,m = 0).----=+ t fO_"

(11)

F f_F T F T ]t Substituting eqs. (10) and (11)into (9), we obtainwhere, = -MB,-MO,'", MB,MO •k J

,,k ,,,k-1 hk (Fk Fk_l"__",,,m -- V',i,m = y n,,, + ,,.m l

l',_ F'_,,,,+ \ _ ) F_- _'-dm'

for n =-MBtoMB,

OFn,m)k-lFk-1)o,;, )
m=-MOtoMO andk=2, N+l,

(12)

where, N + 1 is the total number of grid points in the normal direction. This is a system of

non-linear algebraic equations which is solved using the Newton-Raphson iterative method. We

write (',,,m = _'o,,,m + A_'n,_ and substitute into the eq. (12) and linearize in A_,, to obtain

/¢)k ,' k ,,,k-I , k-1on,m "t- "-_g'rt,m -- g on,rn -- A tJ n,m

h,_( k Fk_ l {OFonm)=-r_- F_n,m+ o,_,,_+\

h_ ,k F k
12 F°'_'m

-°",_ - t, 0_ 'A_- t,

Ofonrn'_ k-10fon,m) k-1 (02rorl) k-1
_' ) (t _ ) AI/')k-1- k_)

Fko-I,A_, k-1 }

for rt = O, MB. m = O,"ilO, and k = 2, N + 1.

k (OFo_m)k-1)

+, )

0 ,_ _e_+k _ )
(13)



Collectingthe terms we obtain a linear systemof equationsfor A_. ,k and A_ _--t which can

be written as

Ak_ 'k-1 + Bk-X6 ,k = Dk for k = '2, N + 1, (14)

where Ak, Bk are complex matrices of size ((MB + 1)x(MO+ 1) x 6, (2MB + l)x(2MO+ 1) x 6) and

Dk is a complex vector of size (MB + l)x(MO+l) x 6. Using the property A6,,,.,n = __kt.,*_,,_ m

A_-',,,m = A_¢'-n,m (where * stands for complex conjugate), we can rewrite this equation in real

and imaginary parts of A_.,,,,m(r_ = 0, ..., MB, m = O, ..., MO).

,4k A¢i +/3k A_,i =/)k, /,. = "2,(S + t), (15)

where -4k, /3k are real matrices of size (MB + l)x(MO+l) x 12. The boundary conditions can

be written as,

{ }1/_1 _/_'f =1_)1 (16)

and

AN+el A_'T } N+Il A_,i =/3 _+.,, (17)

where, /71 and -4N+2 are ((MB + l)x(MO+l) x 6, (MB + 1)x(MO+l) x 12) real matrices and

/)1, /9,v+2 are ((MB + 1)x(MO+l) x 6) column vectors. Combining eqs. (15-17) we can form

a block tridiagonal system or can write it as a banded system, both of which can be solved

very efficiently.



4. Computational efficiency

In order to discuss the efficiency and the robustness of the implicit solution method in

comparison with the explicit method, this section will show results from an application of both

methods to the Swept Hiemenz flow problem. Relevant parameters and the mean flow profiles

are given in Malik, Fei and Chang (1996). For a Reynolds number in the spanwise direction

of Reo = 500, a steady disturbance with a spanwise wave number of 31 = 0.4 and an initial

amplitude of A=0.1% is introduced at the streamwise position of Reo : 150.

Figure l shows the growth rates tzl based on the disturbance component in the spanwise

direction that are obtained from the explicit and the implicit method. Additionally, the linear

growth rates are plotted. Besides the perfect agreement of the results obtained from the different

methods, it is noted that the nonlinear effects modify the growth rate starting at a Reynolds

number of Re=400. It is further seen that the explicit method ceases to converge at Re=570 for

an SUR-parameter (Successive Under Relaxation) of 1.0., whereas the implicit method continues

to converge well beyond the plotted region. It is noted that a Reynolds number of Re=570

corresponds to the region where the stationary disturbances saturate, and hence, the nonlinear

effects are indeed strong at the point where the explicit method stops converging for an SUR-

parameter of 1.0.

The number of iterations on the nonlinear terms necessary to obtain converged solution, and

the convergence history at Re=570 are shown in figures 2 and 3, respectively. There, the residue

is defined as the maximal difference in the shape functions of the primary disturbance obtained in

two consecutive iterations. The extremely rapid convergence of the implicit method is visualized

in the figure 3 and shows the superiority of the implicit method in the developed nonlinear region.

Two observations can be made from these plots. First, in the region of linear disturbance

growth (Re<400), the explicit method needs as many iterations on the nonlinear terms as the

implicit method. Since the explicit method iterates just on the primary disturbance, whereas the

implicit method computes all disturbances simultaneously, the explicit method is expected to be

much more efficient in that region. With an increasing effect of the nonlinear terms for Re>400,



however,this similar performanceof the two methodsis alteredsignificantly. The numberof

iterationson the nonlineartermsusingtheexplicit methodincreasesexponentially,whereasthe

performanceof the implicit codebasicallyremainsunchanged.

It is concludedthat the implicit methodprovidesa powerful tool to conductnonlinearPSE

computationsin theregionsof highlynonlineardisturbancegrowth.Themosteffectivetechnique

in applyingthedevelopedalgorithmsis seenin combiningtheexplicit andimplicit methodsby

starting the computationswith the explicit method,and once a critical numberof nonlinear

iterationsis reached,by continuingwith the implicit method.

5. Transition due to Klebanoff type breakdown

Next we investigated the transition process in the Blasius boundary layer due to fundamental

breakdown process (K-type). We simulated one of the experiments performed by Saric et al.

(1981) and the parameters are given in Table I.

F = .76 * 10 -4

= .142

Re0 = 710

(ttO, 1 )maz : .00338

(Ul,1)max = .00024

(18)

Here, the variables are nondimensionalised by

velocity : Free stream velocity U_

length : u_zo
Y u_

(19)

Here, F is the non-dimensional frequency frequency defined by

27ru f
F-

rL ,
(20)



andReois the Reynoldsnumberat the initial locationx=xo. TheReynoldsnumbersRex.RE,,

and the skin friction coefficient cf are defined by

RE_ -

Tw

cf -- _7 •

(21)

Figure 4 shows the variation of the maximum rms fluctuations for the streamwise velocity

with the Reynolds number. The results are compared with the experimental results of Saric et.

al. (1984) and with the DNS results ofLiu et. al. (1995). We used 8 and 12 modes, MB=MO=8,

12 in these computations. With the SUR parameter ( Successive under relaxation) equals to i.0,

the explicit code ceases to converge beyond Rex=860, and with SUR=.25, we can extend the

computations up to Rex=880 and with the implicit code up to Rex=905 with 8 modes. With the

12 modes, the explicit code stops converging at Re×=880 and we did not have enough memory

in the computer to continue further using the implicit code. It is seen that the computed results

are in good agreement with the experiment and with the DNS results.

Figure 5 shows the distribution of Urms in the y-direction at different axial locations Rex=855,

865,875, 885 and 890. Rex=855 is approximately the transition onset point. We observe that the

location where Urms peaks increases with the downstream direction. This is in good qualitative

agreement with the Klebanoff et. ai. (1961) measurements.

Figure 6 shows the variation of the skin friction coefficient cf with the Reynolds number. For

comparison, we also plotted the skin friction coefficient for the Blasius boundary layer. We note

that the transition onset point is located at Rex=855 and beyond this point skin friction increases

sharply. These results show that we can compute the transition process in the fully nonlinear

region using PSE approach. In figure 7, we plotted the modified mean velocity profile and the

unmodified Blasius boundary layer profile at Rex=890. It is seen that the velocity increases in

10



the regioncloseto the wall and decreasesin the outerpart of the boundarylayer. Hencethe

boundarylayer profilesgraduallybecomefuller in the fully nonlinearregion.

In figure8, weplottedthevariationof unsteadyu fluctuationsatthemaximumrmslocations

with timeatdifferentReynoldsnumbers.Theresultsshowthatup to Rex=875,theoscillationsare

approximatelysinusoidalandbeyondthis stagethedisturbanceshavesmallerpositiveamplitude

and larger negativevalue. At Rex=890, the maximum positive value is about 0.1 and the

minimum value is -0.2. Hence it shows that the evolution of the disturbances approach 1

"spike" stage according to Klebanoff et. al. (1961).

In figures 9(a-i) we plotted the evolution of different modes in the streamwise direction.

Each figure shows the results for at a fixed m_ for different n'3 where n=0 to 8. Figure 9(a)

shows the results for MO=0 and figure 9(i) depicts the results for MO=9. First observation is that

the amplitude of the disturbances gradually decreases with increasing m_,. Up to this Reynolds

number Rex= 890, the important modes are the steady waves MO= 0 and the fundamental wave

MO=I. Second observation is that beyond the secondary instability region, the disturbances

saturate and there is no explosive growth nor any instability of the disturbances. This agrees

with the DNS computations of Krist and Zang (1987).

6. Conclusions

We have developed a PSE code where the nonlinear terms are treated implicitly. The

equations are discretized using two-point fourth order compact scheme in the y-direction and the

backward Euler method in the x-direction. We investigated the transition process in a Blasius

boundary layer due to fundamental type breakdown. With the 8 modes in ,,, and 3 planes, we

could compute the evolution of disturbances up to Rex=910, which is well into the strongly

nonlinear region. The transition onset point is located around Rex=850. The comparison with

the measurements and with the DNS computations are very good up to Re=880.

In future, we have to repeat this computations with larger number of modes. This will require

large memory and may not be possible to increase the modes beyond a limit. One solution is

II



to look for efficient iterative schemesto solve the coupledequations.Secondly,we haveto

perform thecomputationsfor severaldifferent casesto concludethe effectivenessof the PSE

approachin the fully nonlinearregion.
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Figure 9(a-i). Evolution of the maximum amplitudes of different modes.


