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Transition and Breakdown to Turbulence
in Incompressible Boundary Layers

P. Balakumar

Aerospace Engineering Department,
Old Dominion University, Norfolk, Virginia 23529-0247

Abstract

We have developed a code where the nonlinear terms are treated implicitly. The equations
are discretized using the two-point fourth order compact scheme in the y-direction and the
backward Euler method in the x-direction. We investigated the transition process in a Blasius
boundary layer due to fundamental type breakdown. With 8 modes in the w and 3 planes, we
could compute the evolution of disturbances up to Rex=910, which is well into the strongly
nonlinear region. The transition onset point is located around Rex=850. The comparison with

the measurements and with the DNS computations are very good up to Re,=880.

1. Introduction

Breakdown from laminar to turbulent flow in zero and mild pressure gradient boundary layers
is caused by Tollmien-Schlichting (viscous) instability. Though there exist several mechanisms
and routes to go from a laminar to a turbulent state, all of them in general follow these

fundamental processes:
Receptivity
Linear instability
Nonlinear stability and saturation
Secondary instability

Breakdown to turbulence



In the receptivity process, the unsteadiness in the environment and the inhomogeneities in the
geometry generate instability waves inside the flow. In quiet environments, the initial amplitudes
of these instability waves are small compared to any characteristic velocity and length scales in
the flow. Goldstein (1983 a) theoretically explained using asymptotic methods how the Tollmien-
Schlichting waves (T-S waves ) are generated near a leading edge of a flat plate by the long
wavelength acoustic disturbances and in a companion paper (1985) described the scattering of
T-S waves from the acoustic disturbances by the streamwise variations in surface geometries.
In the second stage, the amplitudes of these instability waves grow exponentially downstream
and this process is governed by the linearized Navier-Stokes equations. Further downstream,
the amplitudes of the disturbances become large and the nonlinear effects inhibit the exponential
growth and the amplitudes of the disturbances eventually saturate or attain singular values. In the
next stage, these finite amplitude saturated disturbances become unstable to two- and/or three-
dimensional disturbances. This is called secondary instability and beyond this stage the spectrum
broadens, due to complex interactions and further instabilities, and the flow becomes turbulent
in a short distance downstream. In this paper, we investigated the later stages of transition in

Blasius boundary layers using Parabolized Stability Equations ( PSE ) approach.

The Parabolized Stability Equations (PSE) approach currently can predict the first three
stages of the transition process, linear instability, nonlinear stability and saturation and secondary
instability, accurately and very efficiently, Herbert (1997). After the skin friction rise the PSE
computations cease to converge. There may be two sources for the program not to converge in
this region. One is that the PSE approximation itself may not be valid in the highly nonlinear
region. The other may be that the iteration on the nonlinear terms, at present they are treated
explicitly and iterated till they converge, may not be converging. In this work, we will treat
the nonlinear terms implicitly and will investigate how far downstream we can continue the
PSE computations. If we can compute up to the skin friction maximum in the transition region,
this will help us in developing new transition modeling and in developing improved transition

prediction methods. We also observed that in some PSE computations, e.g., Gortler instability,



crossflow instability, at the later stages, the meanflow distortion term converges very slowly.

Hence, in these cases the implicit formulation will improve the convergence.

2. Formulation

In the parabolized stability equations (PSE) approach, one attempts to construct an approxi-
mate solution of the full Navier-Stokes equations. The idea was first introduced by Herbert(1991)
and applied to linear and non-linear Blasius boundary-layer flow by Bertolotti (1992). Now it
has been developed and has been applied to two and three-dimensional incompressible and com-
pressible boundary-layer flows (Chang et.al. 1994, Malik et.al 1994). Herbert (1997) in a recent
review described the development and the application of PSE to different problems and here we
give the governing equations and the procedure that we use to solve the equations.

We investigate the transition process in a Blasius boundary layer over a flat plate. Let us
denote the Cartesian coordinate system by x; (i=1,2,3), the velocity components by u; and the
pressure by p. We decompose the total flow quantities as the sum of the mean flow and the
disturbance quantities.

wi(x,t) = Upi(x) + ui(x,t),

(1)
pi(x,t) = Po(x) + pi(x. 1),

where, U are the mean velocity components which are the solution of the Blasius equation
and P is the mean pressure. Substituting these expressions into the Navier-Stokes equations we

obtain the nonlinear equations for the disturbances in the form
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where the Reynolds number

Re = U \ (3)




, U is the freestream velocity, and L is a reference length.

To derive the PSE equations, we write the dependent variables uy, w2, u3,p as the sum of

normal modes

MB MO
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Here w is the frequency of the disturbance, 3 is the spanwise wave number, and an,(X;) is the
wave number in the axial direction. qmn(X; ,X3) is the amplitude function for the mode (m,n)
, MO is the total number of modes kept in the frequency domain in one quadrant and MB is
the number of spanwise modes. Substituting this expression into the disturbance equations and

making the PSE approximation, we obtain PSE equations for each mode (m,n).
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At present, the nonlinear terms Spp are evaluated from the values obtained at the previous
iteration step and using the FFT technique. In the implicit formulation, these terms are function
ofQmn and the system of equations becomes a set of coupled nonlinear equations. This nonlinear

coupled equations will be solved using Newton - Raphson iteration technique Balakumar (1997).

3. Solution procedure

The egs. (5-8) are solved using the two-point fourth order compact scheme, Malik et. al

(1982), derived by means of the Euler-Maclaurin formula
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where, % = (Y) and hy = Yi — Yi_;.
To apply the above scheme to this problem, we have to rewrite eqs. (5-8) as a system of

first order equations. The egs. (5-8) can easily be written as

u“';‘m =Fym(,Y) n==-MBtoMB, m=-MO to MO, (10)
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W'n.m and Iy, , are (6 x 1) complex column vectors and v’ is a (6 x (2ZMB + 1)*(2MO + 1))

complex column vector. From eq. (10), we get
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where, F' = {F—T;’UB,—MO' FATIB,MO}- Substituting egs. (10) and (11) into (9), we obtain
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for n=—-MBtoMB, m=-MOtoMO and k=2, N + 1,

where, N + 1 is the total number of grid points in the normal direction. This is a system of
non-linear algebraic equations which is solved using the Newton-Raphson iterative method. We

Write Uy m = Con.m + Ntn.m and substitute into the eq. (12) and linearize in Ay, to obtain
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for n=0,MB. m=0,MO, and k=2, N + 1.



Collecting the terms we obtain a linear system of equations for Av* and Av*~! which can

be written as
A ATy BlAv =Dy fork=2 N + 1, (14)

where Ay, By are complex matrices of size (MB + 1)x(MO+1) x 6, (2MB + 1)x(2MO+1) x 6) and
Dy is a complex vector of size (MB + 1)x(MO+1) x 6. Using the property A, ,, = At _

At'pm = A¢_p.m (Where * stands for complex conjugate), we can rewrite this equation in real

and imaginary parts of Ay, ,(n =0,...,.MB, m=0,...,MO).
_ Ahvr k-1 _ {Auvr }k _
A + B ‘ =Dy, k=2(N+1) 15
k{Am} L Ay ks ( ) (15)

where Ay, B; are real matrices of size (MB + D)x(MO+1) x 12. The boundary conditions can

be written as,

_ (A )Y o
B = Dy, 16
1{&“} 1 (16)
and
_ Ad)r N+l _
AN+2{ L\u”z} = Dy 42, (17)

where, By and AN+2 are (MB + Dx(MO+1) x 6, (MB + 1)x(MO+1) x 12) real matrices and
Dy, DN+-2 are (MB + 1)x(MO+1) x 6) column vectors. Combining egs. (15-17) we can form
a block tridiagonal system or can write it as a banded system, both of which can be solved

very efficiently.



4. Computational efficiency

In order to discuss the efficiency and the robustness of the implicit solution method in
comparison with the explicit method, this section will show results from an application of both
methods to the Swept Hiemenz flow problem. Relevant parameters and the mean flow profiles
are given in Malik, Fei and Chang (1996). For a Reynolds number in the spanwise direction
of Reg = 500. a steady disturbance with a spanwise wave number of J; = 0.4 and an initial

amplitude of A=0.1% is introduced at the streamwise position of Reg = 150.

Figure 1 shows the growth rates o; based on the disturbance component in the spanwise
direction that are obtained from the explicit and the implicit method. Additionally, the linear
growth rates are plotted. Besides the perfect agreement of the results obtained from the different
methods, it is noted that the nonlinear effects modify the growth rate starting at a Reynolds
number of Re=400. It is further seen that the explicit method ceases to converge at Re=570 for
an SUR-parameter (Successive Under Relaxation) of 1.0., whereas the implicit method continues
to converge well beyond the plotted region. It is noted that a Reynolds number of Re=570
corresponds to the region where the stationary disturbances saturate, and hence, the nonlinear
effects are indeed strong at the point where the explicit method stops converging for an SUR-
parameter of 1.0.

The number of iterations on the nonlinear terms necessary to obtain converged solution, and
the convergence history at Re=570 are shown in figures 2 and 3, respectively. There, the residue
is defined as the maximal difference in the shape functions of the primary disturbance obtained in
two consecutive iterations. The extremely rapid convergence of the implicit method is visualized

in the figure 3 and shows the superiority of the implicit method in the developed nonlinear region.

Two observations can be made from these plots. First, in the region of linear disturbance
growth (Re<400), the explicit method needs as many iterations on the nonlinear terms as the
implicit method. Since the explicit method iterates just on the primary disturbance, whereas the
implicit method computes all disturbances simultaneously, the explicit method is expected to be

much more efficient in that region. With an increasing effect of the nonlinear terms for Re>400,



however, this similar performance of the two methods is altered significantly. The number of
iterations on the nonlinear terms using the explicit method increases exponentially, whereas the

performance of the implicit code basically remains unchanged.

It is concluded that the implicit method provides a powerful tool to conduct nonlinear PSE
computations in the regions of highly nonlinear disturbance growth. The most effective technique
in applying the developed algorithms is seen in combining the explicit and implicit methods by
starting the computations with the explicit method, and once a critical number of nonlinear

iterations is reached, by continuing with the implicit method.

5. Transition due to Klebanoff type breakdown

Next we investigated the transition process in the Blasius boundary layer due to fundamental
breakdown process (K-type). We simulated one of the experiments performed by Saric et al.

(1981) and the parameters are given in Table 1.

F=.76%10""*
3 =.142
Reg = 710 (18)

(uovl)maz =.00338

(ul,l)mar = .00024
Here, the variables are nondimensionalised by

velocity : Free stream velocity Uy
VT (19)

length : i~

Here, F is the non-dimensional frequency frequency defined by

2rvf

Uz

F=

(20)



and Reg is the Reynolds number at the initial location x=xg. The Reynolds numbers Rey, RE

and the skin friction coefficient ¢y are defined by

Rez = D’OOI
14
Ut
RE, = (21
14
Tw
cf = )
i

Figure 4 shows the variation of the maximum rms fluctuations for the streamwise velocity
with the Reynolds number. The results are compared with the experimental results of Saric et.
al. (1984) and with the DNS results of Liu et. al. (1995). We used 8 and 12 modes, MB=MO=8,
12 in these computations. With the SUR parameter ( Successive under relaxation) equals to 1.0,
the explicit code ceases to converge beyond Re =860, and with SUR=.25, we can extend the
computations up to Re,=880 and with the implicit code up to Re,=905 with 8 modes. With the
12 modes, the explicit code stops converging at Re,=880 and we did not have enough memory
in the computer to continue further using the implicit code. It is seen that the computed results

are in good agreement with the experiment and with the DNS results.

Figure 5 shows the distribution of uyy in the y-direction at different axial locations Rex=855,
865, 875, 885 and 890. Re,=855 is approximately the transition onset point. We observe that the
location where urms peaks increases with the downstream direction. This is in good qualitative

agreement with the Klebanoff et. al. (1961) measurements.

Figure 6 shows the variation of the skin friction coefficient ¢f with the Reynolds number. For
comparison, we also plotted the skin friction coefficient for the Blasius boundary layer. We note
that the transition onset point is located at Rex=855 and beyond this point skin friction increases
sharply. These results show that we can compute the transition process in the fully nonlinear
region using PSE approach. In figure 7, we plotted the modified mean velocity profile and the

unmodified Blasius boundary layer profile at Re,=890. It is seen that the velocity increases in

10



the region close to the wall and decreases in the outer part of the boundary layer. Hence the

boundary layer profiles gradually become fuller in the fully nonlinear region.

In figure 8, we plotted the variation of unsteady u fluctuations at the maximum rms locations
with time at different Reynolds numbers. The results show that up to Rex=875, the oscillations are
approximately sinusoidal and beyond this stage the disturbances have smaller positive amplitude
and larger negative value. At Re, =890, the maximum positive value is about 0.1 and the
minimum value is —0.2. Hence it shows that the evolution of the disturbances approach 1

“spike” stage according to Klebanoff et. al. (1961).

In figures 9(a-i) we plotted the evolution of different modes in the streamwise direction.
Each figure shows the results for at a fixed mw for different n3 where n=0 to 8. Figure 9(a)
shows the results for MO=0 and figure 9(i) depicts the results for MO=9. First observation is that
the amplitude of the disturbances gradually decreases with increasing mw. Up to this Reynolds
number Rex= 890, the important modes are the steady waves MO= 0 and the fundamental wave
MO=1. Second observation is that beyond the secondary instability region, the disturbances
saturate and there is no explosive growth nor any instability of the disturbances. This agrees

with the DNS computations of Krist and Zang (1987).

6. Conclusions

We have developed a PSE code where the nonlinear terms are treated implicitly. The
equations are discretized using two-point fourth order compact scheme in the y-direction and the
backward Euler method in the x-direction. We investigated the transition process in a Blasius
boundary layer due to fundamental type breakdown. With the 8 modes in «w and 3 planes, we
could compute the evolution of disturbances up to Rex=910, which is well into the strongly
nonlinear region. The transition onset point is located around Re,=850. The comparison with

the measurements and with the DNS computations are very good up to Re=880.

In future, we have to repeat this computations with larger number of modes. This will require

large memory and may not be possible to increase the modes beyond a limit. One solution is



to look for efficient iterative schemes to solve the coupled equations. Secondly, we have to

perform the computations for several different cases to conclude the effectiveness of the PSE

approach in the fully nonlinear region.
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