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SUMMARY

This report contains a description of a lateral-directional control law designed for the NASA High-

Alpha Research Vehicle (HARV). The HARV is a modified McDonnell-Douglas F/A- 18 that began flight

evaluation in mid-calendar year 1991. The main modification for the initial phase of this program was the

addition of a research flight computer, spin chute, and thrust-vectored controls in the pitch and yaw axes.

After initial evaluation flights were completed, revised control laws (designated NASA-1A) were installed

on the HARV. Two separate design tools, CRAFT and Pseudo Controls, were integrated to synthesize the
revised lateral-directional control law. This report contains a description of this lateral-directional control

law, analyses, and nonlinear simulation (batch and piloted) results. Linear analysis results include closed-

loop eigenvalues, stability margins, robustness to changes in various plant parameters, and servo-elastic

frequency responses. Step time responses from nonlinear batch simulation are presented and compared to

design guidelines. Piloted simulation task scenarios, task guidelines, and pilot subjective ratings for the

various maneuvers are discussed. Linear analysis shows that the control law meets the stability margin

guidelines and is robust to stability and control parameter changes. Nonlinear batch simulation analysis

shows the control law exhibits good performance and meets most of the design guidelines over the entire

range of angle of attack. The control law was extensively exercised in piloted simulation and shown to

possess good flying qualities and to be very departure resistant. This control law was flight tested during

the Summer of 1994 at NASA Dryden Flight Research Center.

INTRODUCTION

Advances in weapons and aircraft technology are significantly changing air combat. In the past, air

combat engagements often resulted in tail-chase fights measured in minutes; now they are measured in

seconds with combatants using all-aspect weapons. Future fighters may have to operate in environments

where enhanced maneuverability and controllability throughout a greatly expanded flight envelope, including

high angle of attack, are requirements. Studies involving piloted and numerical air combat simulations

(Herbst and Krogull 1972; Herbst 1980; Hamilton and Skow 1984; Ogburn et al. 1988; Doane et al. 1990;

Fears et al. 1997) have shown that fighters with this capability are able to perform combat maneuvers in

shorter time and in less space and thus achieve a tactical advantage. New control effectors, such as thrust-

vectoring and actuated nose strakes, offer the capability to expand the flight envelope with greater control
than previously obtainable. Success in the fighter combat arena of the future will demand increased

capability from aircraft technology.

As part of NASA's High Alpha Technology Program (HATP), key high angle of attack technologies
were demonstrated on the High-Alpha Research Vehicle (HARV). One such technology is advanced control

concepts including thrust-vectoring and advanced aerodynamic controls. The HARV is a modified

McDonnell-Douglas F/A-18 that began flight evaluation in mid-calendar year 1991. The main aircraft

modification for the initial phase of this program was the addition of a research flight computer, spin chute

and thrust-vectoring in the pitch and yaw axes; resulting in an aircraft that is approximately 4 100 pounds

heavier than an unmodified F/A-18. The HARV is designed to operate at angles of attack up to 70 degrees.

The original thrust-vectoring control laws, developed jointly by NASA and McDonnell Aircraft Company,

were used during the initial high angle-of-attack HARV flight evaluations that included flight envelope

expansion and maneuvering capability. Revised control laws that use advanced control design
methodologies (Davidson et al. 1992, Ostroff et al. 1994) were then installed on the HARV (after the initial

evaluation flights were completed). Initial versions of these control laws (designated NASA- I A) were flight

tested during the Summer of 1994 at NASA Dryden Flight Research Center. This report describes the
NASA-1A lateral-directional control law.

This report contains a description of the lateral-directional control law, results of analyses, and

nonlinear simulation (batch and piloted) results. Linear analysis results include closed-loop eigenvalues,

stability margins, robustness to changes in various plant parameters, and servo-elastic frequency responses.

Batch simulation results include step-input time responses at selected design conditions and a comparison of



performancewithdesignguidelines(Homeret al. 1994).Taskscenarios,taskguidelines,andCooper-
HarperRatings(CooperandHarper1969)forthevariousmaneuversarepresentedin thepilotedsimulation
section.Thefinalsectionpresentsconcludingremarks.
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DESCRIPTION OF FACILITIES

Aircraft Configuration

The configuration used for this design is a F/A-18 modified to have multi-axis thrust-vectoring for
additional pitch and yaw control power. This modified F/A-18 is referred to as the High-Alpha Research
Vehicle (HARV) (Figure l) and is discussed in more detail in Gilbert and Gatlin 1990. The F/A-18 is a

twin engine, single-place, fighter/attack airplane with (by today's standards) good low-speed, high angle-of-

attack maneuvering capability. It is powered by two modified General Electric F404-GE-400 afterburning
turbofan engines, each rated at approximately 16 000 pounds static thrust at sea level. The HARV has five

conventional aerodynamic control surfaces - stabilators, rudders, ailerons, leading-edge flaps, and trailing-

edge flaps. Maximum control surface position and rate limits are presented in Table 1. Thrust-vectoring

capability has been added to the basic F/A-18 aircraft by removing the divergent flap portion of the engine

nozzles and adding externally mounted engine thrust vanes (three for each engine) for deflection of the

exhaust plume. Major dimensions and features of the HARV are shown in Figure 2.

The HARV is approximately 4 100 pounds heavier than an F/A-18. The weight of the thrust-

vectoring system (approximately 2 200 pounds), spin chute, emergency systems, and ballast is

approximately 3 700 pounds. The remaining weight is due to equipment and wiring not directly associated
with the thrust-vectoring system. A comparison of the physical characteristics of a F/A-18 and the HARV
is presented in Table 2.

A Research Flight Control System (RFCS) consisting of a new longitudinal control law (Ostroff and

Profitt 1993; Ostroff et al. 1994) and the lateral-directional controi law discussed herein replaced the existing

F/A-18 control system. The thrust-vectoring commands from the RFCS go to a vane control system

known as the Mixer/Predictor (Bundick et al. 1996). The Mixer/Predictor converts pitch, yaw, and roll

thrust-vectoring commands into equivalent commands for the six thrust-vectoring vanes to yield the required
jet plume deflection.

Batch Simulation

The HARV nonlinear batch simulation was built from nenlinear aerodynamic, engine, and control

system models of the production F/A-18 obtained from McDonnell-Douglas Aerospace (MDA). The

original MDA aerodynamic data base covers the angle of attack range from -10 to 90 degrees, the sideslip

range from -20 to 20 degrees, altitudes up to 60 000 feet, and speeds up to Mach 2.0. Aerodynamic

increments were added to the database to account for the addition of thrust-vectoring vanes, actuator

housings, and spin chute. Jet induced effects were added to account for the change in airflow over the
airframe due to thrust-vectoring (Bowers et al. 1990).

The engine model incorporated thrust-vectoring capability an¢ included the effects of Mach, altitude, and

the dynamic response of engine thrust. Also included were the effects of angle of attack and vane deflection

on thrust. Gross thrust and ram drag were tabulated separately allowing thrust-vectoring to act on gross
thrust only.

The simulation nominally used the HARV weight and inertias with 60% internal fuel. Heavy

(maximum fuel) and light (minimum fuel) conditions were also evaluated; however only results from the
nominal configuration are shown in this report. Weights, inert as, and center-of-gravity locations for all
three weight conditions are shown in Table 3. The F/A-I 8 simul ttion on which the HARV model is based

is discussed in detail in Buttrill et ai. 1992, and the HARV thntst-vectoring capabilities are discussed in
Mason et al. 1992.
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Piloted Simulation Facilities

The piloted portion of the control law design effort was conducted using the NASA Langley

Differential Maneuvering Simulator (DMS). The DMS is a fixed-base simulator that has the capability of

simulating two airplanes as they maneuver relative to each other and the Earth. A wide-angle visual display

is provided for each pilot. The general arrangement of the DMS hardware is shown in Figure 3. The DMS

consists of two forty-foot diameter projection spheres each enclosing a cockpit, airplane image projection

system, and Computer Generated Image (CGI) sky-Earth-sun projection system. Each pilot is provided a
projected image of his opponent's airplane, giving range and attitude cues. A detailed (but not current)

description of the DMS is given in Ashworth and Kahlbaum 1973.

The DMS is driven by a real-time digital simulation system built around a CONVEX 3800 computer.
The dynamics of the airplane and control system were calculated by using six-degree-of-freedom rigid-body

equations of motion with an 80 Hz frame rate. Data communication between the computers and the

simulation hardware were conducted at a 40 Hz frame rate. Overall transport delay between the cockpit

controls and the visual scene display is approximately 110 milliseconds.

A photograph of one of the cockpits and target visual display is shown in Figure 4. Each cockpit

incorporates three Cathode Ray Tube (CRT) head-down displays and a Head-Up Display (HUD) with a

computer-driven gunsight representative of current fighter aircraft equipment. For this study, a fixed reticle

projected on the HUD was used for tracking. The displays provided to the pilot are similar to standard F/A-

18 displays with some minor modifications to facilitate some of the test maneuvers and tracking tasks.

A movable center stick was provided for pitch and roll commands from the pilot. Longitudinal and

lateral stick forces and gradients were configured to model those of the F/A-18. Longitudinal stick travel

was 2.5 inches forward and 5 inches aft with a force gradient of seven pounds per inch and a two pound

breakout force. Lateral stick travel was +3 inches with a force gradient of three pounds per inch and a two

pound breakout force. The pedal travel was ±1 inch with a force gradient of 100 pounds per inch and no
breakout force.

CONTROL LAW DESIGN

Design Methods

Two separate design tools, CRAFT (Murphy and Davidson 1991) and Pseudo Controls (Lallman

1985), were integrated to synthesize the lateral-directional control law. This combined CRAFT/Pseudo

Controls design approach is a hybrid technique that combines both linear and nonlinear design methods.

Pseudo Controls Method

The purpose of Pseudo Controls is to coordinate a number of physical controls in order to provide

independent channels of control of aircraft motions. The Pseudo Controls method results in algorithms to

organize the aerodynamic and thrust-vectoring control activity so that rolling commands cause body-axis

rolling moments with a minimum of yawing moment and yawing commands cause body-axis yawing

moments with a minimum of body-axis rolling moments (See Figure 5). A benefit of this technique is
that the feedback controller is required to generate fewer outputs (commands), and thus the number of

feedback gains is reduced.

For the HARV, the three primary aerodynamic controls used for lateral-directional control are: ailerons

that are deflected differentially, twin rudders that are deflected collectively, and horizontal stabilators that are

deflected differentially. These controls produce varying amounts of rolling moment, yawing moment, and

sideforce depending on flight condition (especially dynamic pressure and angle of attack). The thrust-

vectoring apparatus produces control moments that are proportional to the vane deflection angles and the
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thrust of the engines. The Pseudo Controls method organizes tl-e aerodynamic and thrust-vectoring control

activity to cause moments about the airplane axes that satisly the demands of stability augmentation

feedback loops, pilot commands, and inertial decoupling.

In the HARV design, the Pseudo Controls method converts stability-axis angular acceleration

commands into coordinated control deflections. The acceleration commands are distributed to the physical

control effectors in proportions that are scheduled according to flight condition. Automatic engagement of

the thrust-vectoring controls is based on calculations of their control moment producing capabilities relative

to that of the aerodynamic controls. When engaged, the thrust-vectoring controls are driven in proportion to

the aerodynamic controls with the magnitudes of the conventional control deflections adjusted to account for

the increased control power. Because of concern about possible over-heating of the thrust turning vanes,

steady-state thrust-vectoring commands are replaced by increased deflections of aerodynamic controls where

possible.

An early development of the Pseudo Controls methodology can be found in Lallman 1985, and its

application to the lateral-directional control of the HARV can be found in Lallman et al. 1998.

CRAFT Design Method

The design method used to synthesize feedback gains is referred to as CRAFT which stands for the

design objectives addressed, namely, Control power, Robustness, Agility, and Flying Qualities Tradeoffs

(Figure 6). This method provides the designer with a graphical tool to simultaneously assess metrics from

the four design objective areas. The strength of this approach comes from the use of eigenspace assignment

(Srinathkumar 1978), which allows direct specification of eigenvalues and eigenvectors in the design, in

combination with graphical overlays of metric surfaces which capture the design goals in a composite

illustration on the design space. In this approach, design tradeoffs are made by interpreting graphical

overlays of metric surfaces that quantitatively characterize each design goal. Numerous metrics can be

applied simultaneously from each of the four design objective _ or any area for which metrics can be

expressed in engineering terms. Graphical overlays of the metric surfaces show the best design compromise

for all the design criteria and display the "cost" of changing from that design point. This can greatly

enhance the designer's ability to make informed design tradeoffs.

CRAFT is summarized in block diagram form in Figure 7. The design process begins by selecting, as

the design space, a reasonable range of frequency and damping for the closed-loop dynamics of interest.

Within this range, a grid of design points is chosen to systematically cover the design space. Some

metrics may be known before the closed-loop design, such as flying qualities specifications. However, the

control power, robustness, and agility metrics require determiration of the closed-loop system. Using

Direct Eigenspace Assignment (DEA) (Davidson and Schmidt 1986) as the control design algorithm,

feedback gains are computed to achieve the desired placement of tne eigenvalues for the closed-loop system

at each design point. With eigenspace assignment, the designer also must define eigenvectors; eigenvectors
are chosen to shape the system response or provide modal decoupiing.

Once the desired closed-loop systems are determined for a desired set of frequency (to) and damping (0

pairs, each control design metric can be evaluated and plotted producing a surface over the _-to design

space. Viewing the metric surface in a 2-dimensional contour ph,t highlights the most desirable region to

locate the closed-loop pole with respect to the particular metric s_udied. The individual metric surfaces are

an indication of the sensitivity of that metric to closed-loop pole ocation. A final overlay plot of desirable

regions from each metric surface can then be obtained. This is represented by the second block from the

right in Figure 7. The intersection of desirable regions provide the best design compromise for all the

design criteria considered. Often desirable regions may not overla_ and some compromise will be required.

Further details of the method and control design metrics can be found in Murphy and Davidson 1991,

and its application to the HARV can be found in Murphy and Dax idson 1998.



CRAFT Design Metrics

The flying qualities criteria used to design the lateral-directional control law are drawn from several

sources. For low angle of attack, the Mil-STD 1797A (Aeronautical Systems Division 1990) and the

fighter-specific study of Moorhouse and Moran 1985 were used. For high angle of attack, virtually no

information was available to define flying qualities specifications at the beginning of this effort.

Consequently, NASA sponsored McDonnell Douglas Aerospace (MDA) to develop longitudinal and lateral

flying qualities criteria (Wilson et al. 1993b) using fixed-based simulation at 30, 45, and 60 degrees angle

of attack. A generic fighter aircraft model was used during the simulations, and a wide range of closed-loop

responses were evaluated. These criteria, presented in both low-order equivalent system modal parameter and

Bode envelope formats, are summarized in Wilson and Citurs 1996.

The metric chosen to characterize control power is based on a Euclidean norm of feedback gains and

indirectly represents a measure of control power required to achieve each desired pole location. The

assumption is made that larger gains generally correspond to a demand for greater control deflection or

deflection rate and this, in turn, reflects a demand for greater control power. For this metric smaller values

are more desirable since small gains reflect reduced control power demands.

A third design objective area of interest is agility. Agility in this study is restricted to airframe agility;

the agility metrics, unlike many in the literature, do not reflect pilot compensation effects. This was done

intentionally to allow separation of flying qualities and agility metrics. Some controversy exists on the

exact definition of agility and which parameters best describe it. Even without the precise definition, many

agree that accelerations characterize an important aspect of transient agility. For this reason a roll

acceleration metric was the agility metric used for the HARV design.

A variety of metrics can be used to indicate the regions in _-to space with the greatest tolerance to

model error. For the HARV design, structured uncertainties, in the form of diagonal multiplicative error

models at the input and output, were used. Structured uncertainties take advantage of user knowledge of the

uncertainties and provide a less conservative measure for robustness.

Design and Evaluation Flight Conditions

The Pseudo Controls design was based on the available aerodynamic and thrust vectoring control

coefficient data. This design was based on the nominal HARV weights and moments of inertia for altitudes
between 10 000 and 50 000 feet, angles of attack between -10 and 90 degrees, and airspeeds between 0.2
and 0.8 Mach.

The CRAFT feedback gain design conditions were chosen based on the HARV flight test envelope
which was limited to altitudes from 15 000 to 35 000 feet and Mach number less than 0.7. The feedback

gains were designed at twelve design flight conditions ranging from 5 to 60 degrees angle of attack (every 5

degrees), all at lg and 25 000 feet (See Table 4). These design points were found to be sufficient for the

flight test envelope. Linear models at these design flight conditions are given in the Appendix. The

nominal design weight (35 765 pounds) represents the HARV with 60% fuel load. A plot of the trim

values of angle of attack versus dynamic pressure for these design conditions is given in Figure 8. Open-

loop eigenvalues for these flight conditions are given in Table 5. An additional 110 flight conditions were

used for control law evaluation via linear analyses. These conditions ranged from 2.5 to 65 degrees angle of
attack, 15 000 to 40 000 feet altitude, I g to 4g loading, and three weights. These evaluation conditions
are listed in Table 6.
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Design Eigenvalues and Eigenvectors

At low angle of attack there are three classical rigid-body lateral-directional eigenvalues: a lightly

damped oscillatory pole referred to as the dutch roll pole (Adr), _ first order pole with a long time constant
referred to as the spiral pole (As,,t), and a first order pole with a _latively short time constant referred to as

the roll pole (A_u). Although with increasing angle of attack the system's eigenvalues tend to lose their

classical characteristics, these terms will still be used to refer to the eigenvalues at high angle of attack that
originated as classical modes at low angle of attack.

Values for desired closed-loop roll eigenvalue at the desiga flight conditions were chosen using the

CRAFT method. Since high angle-of-attack specifications do not exist for the spiral and dutch roll modes,

it was assumed that these modes should satisfy the low angle-of-attack Mil-Std 1797A specification for

Level One dynamics throughout the alpha range. At each desiga angle of attack, the dutch roll eigenvalue

was chosen to have a damping ratio of 0.7, while maintaining the open-loop natural frequency. The desiied

spiral eigenvalue was chosen to be stable and close to the origin. Desired closed-loop eigenvalues are listed
in Table 7.

The desired roll and dutch roll eigenvectors were chosen to decouple the roll and dutch roll modes in the

roll rate and sideslip responses. The desired spiral eigenvector was chosen to eliminate spiral mode
contributions to sideslip. The approach used to specify eigenvectors was to set each element of the

eigenvector to be 0 or 1 as appropriate to achieve the desired decoupling of the aircraft rigid-body modes.
Initial choices for eigenvectors were chosen as shown in Table 8. In this table, the "x" indicates elements

not weighted in the cost function and therefore are free to be determined by the eigenspace assignment
algorithm. At each design condition, the phi-to-beta ratio in the dutch roll eigenvector was chosen to

minimize gain magnitudes. A detailed description of the optirrization approach used is given in Murphy
and Davidson 1998.

Design Process

An iterative design process was used to obtain the final control law reflecting the difficult nature of

flight control design for piloted nonlinear systems. Linear designs were completed by using CRAFT in

combination with a linear form of Pseudo Controls. In the design process for HARV, due to the frequency

separation between the rigid-body and higher-order modes, the f_x_dback design was performed on 4th-order

rigid-body lateral-directional models without actuator models, seasor models, or any higher order elements

such as aero-elastic models and corresponding structural filters. This allowed extensive computations over

the flight envelope and over the CRAFT design space to be performed rapidly. Gain and phase margins
were analyzed with a 26th-order linear system model of the plant and control law. The 26th-order model

included 4 rigid-body states, 6 actuator states, 10 measurement structural filter states, and 6 command filter

states. After linear analyses were completed, a full nonlinear simulation analysis of the HARV was

performed. Nonlinear simulation allowed designers to uncover any limitations inherent in the linear

analysis and allowed tuning of critical elements such as pilol command gains. This portion of the

development was followed by extensive piloted simulation where pilot-in-the-loop requirements were

satisfied. Before going to flight with the control law a series ot hardware-in-the-loop tests were performed

to further increase the likelihood of success in flight. At each _tage of design, revisiting a previous step
was performed as required.

The control law was designed in the continuous domain. Col_tinuous domain dynamics were discretized

using a Tustin transformation at 80 Hz. This control law wzs primarily implemented using Matrix-X

SYSTEMBUILD * . Code was generated for nonlinear and pilcted simulation by using the FORTRAN
Autocode Generator. The control law was translated into mctt for implementation on the HARV. A

complete description of the control law specification is given in l tARV Control Law Design Team 1996.

t Integrated Systems Inc.
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CONTROL LAW DESCRIPTION

Figure 9 shows a functional overview of the lateral-directional control law. The control law can be

thought of as consisting of three main elements : a pilot command path, a feedback path, and a feedforward

path (Pseudo Controls blending). The control law accepts pilot commands for stability-axis roll rate

through lateral stick deflections and for sideslip angle commands through pedal deflections. Pilot inputs are

limited and shaped before being multiplied by input gains and summed with feedback signals which have

been passed through structural filters and multiplied by feedback gains. The feedback measurements are

body-axis roll rate, body-axis yaw rate, lateral acceleration, and estimated sideslip rate. The sum of pilot

inputs and feedback commands produce stability-axis roll and yaw acceleration commands. These lateral and

directional commands are distributed by the feedforward (Pseudo Controls) portion of the control law into

the optimum blend of control deflections. The controls being used are aileron, rudder, differential stabilator,

and yaw thrust-vectoring. The control law does not use differential leading-edge and trailing-edge flaps.

Roll thrust-vectoring is not used, but a capability exists to use this control if desired.

Within the feedforward portion of the control law, measured body-axis angular rates and nominal

inertial values are used to provide inertial coupling compensation. Thrust-vectoring is engaged based on its

control moment producing capabilities relative to that of the aerodynamic controls. As the available

aerodynamic moment decreases the thrust-vectoring increases to "fully on" at the point that the available

aerodynamic moment is equal to the available thrust-vectoring moment. When the available aerodynamic

moment is twice the available thrust-vectoring moment, the thrust-vectoring is turned off. To reduce

potential problems due to thrust-vectoring vane heating, whenever sufficient aerodynamic control moment

is available to replace yaw thrust-vectoring control, the yaw thrust-vectoring is faded out.

The three main elements of the control law (pilot command path, feedback path, and feedforward path)

are discussed in more detail in the following sections.

Pilot Command Path

The function of the pilot command path is to map pilot input commands into pilot lateral and

directional commands. A block diagram representation of the pilot command path is given in Figure 10a.

The lateral stick input (-3 to +3 inches) is first passed through a d_d and shaping function chosen

to provide appropriate stick characteristics to the pilot. The deadband is set to i-0.025 inches. The

parabolic shape function, given in Table 9, normalizes the stick input. The output is bounded to :t:1.0.

The stick command limit is composed of two limiters - a rate limit and a dynamic limiter. The stick

rate limit is provided to compensate for the lack of turn coordination occurring due to different actuation

rates available on the ailerons and rudders. The rate limit is 12 inches/second (0 to maximum lateral stick

in 0.25 seconds). The stick dynamic limiter is designed to reduce sideslip excursions that can occur during

aggressive recoveries from maximum performance rolls where a large stick deflection is used. Functionally,

this element allows stick deflections up to 70 percent of full throw to be passed directly, with larger

deflections having the signal passed through a first-order lag. Roll Trim is added to the signal after the stick

dynamic limiter.

The roll override function is designed to compensate against inertial pitch-out during rapid rolls.

Commanded symmetric stabilator deflection is monitored and compared against a threshold which is a

function of angle of attack. When the symmetric stabilator exceeds a preset threshold, the lateral stick
command is reduced.

Yaw rates beyond that required for coordinated rolling, may be produced with yaw thrust-vectoring. To

prevent excessive rates a yaw rate limiter is incorporated into the stick command path. This element

monitors body-axis yaw rate (sensed yaw rate) and begins reducing lateral stick commands when yaw rate

exceeds 35 degrees/second. This reduction is increased to a maximum when yaw rate reaches 60

degrees/second. The yaw rate limiting is not applied when angle of attack is negative.
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Lateral stick command gains adjust the pilot commands for changes in control power with flight
condition. A block diagram of this element of the pilot command path is given in Figure 10b. The lateral

stick-to-lateral command gain is a function of available body roll and yaw control moments. The command

gain (pds_max) is calculated in the Pseudo Controls portion of the control law. Two functions (AFUNC

and GFUNC) adjust the command gain for changes in angle of attack and load factor. The angle-of-attack

adjustment gains (AFUNC) were designed at the twelve linear design flight conditions (every 5 degrees from

5 to 60 degrees angle of attack). These values were chosen based upon desired roll rate and sideslip

guidelines. Values between design points are determined by linear interpolation. The load factor adjustment

gains (GFUNC) prevent excessive roll rates at elevated load factors. This adjustment begins at load factor

of 1.5g and reaches a maximum command reduction of 35 percent at a load factor of 3.5g. These values

were chosen based upon piloted simulation.

The lateral stick-to-directional command cross gains were determined to minimize steady-state sideslip

due to lateral stick commands. These gains are functions of angle of attack and were designed at the twelve

linear design flight conditions. Values between design points are determined by linear interpolation.

The pedal input (-100 to +100 pounds) is first passed through a deadband and shaping function chosen

to provide desirable pedal characteristics to the pilot. The deadband is set to ± 1.0 pounds. The parabolic

shape function, the same as that in the standard F/A-18, is given in Table 9. The Yaw Trim signal is added

after the pedal shaping function. After addition of the yaw trim, the signal is limited to ±1.0. The pedal-

to-directional command gains and pedal-to-lateral command cross gains are functions of angle of attack.

These gains were designed at the twelve linear design flight conditions. Values between design points are

determined by linear interpolation.

Feedback Path

A block diagram representation of the feedback path is given in Figure 11. Sensed body-axis roll and

yaw rates are first passed through second-order structural notch filters (Table 10). After filtering, these rates

are transformed to stability-axis rates. Gravity compensation terms are calculated and added to stability-axis

yaw rate. The sensed lateral acceleration is passed through two notch filters to attenuate structural modes.

A correction term is added to the filtered acceleration signal to compensate for the sensor being located off-

axis. Sideslip rate is passed through a second-order structural notch filter.

The filtered feedback signals are multiplied by feedback gains and summed to yield feedback commands.

The lateral and directional feedback gains are functions of angle o3 attack. Values between design points are

determined by linear interpolation. Feedback gain values are give a in Table 1 I.

The lateral and directional feedback commands are passed through second-order structural filters (Table

12) and first-order roll-off filters (25 radians/second). After filtering, the lateral feedback command is

summed with the lateral pilot command to yield the lateral acceleration command. The directional feedback

command is summed with the directional pilot command to yield the directional acceleration command.

Feedforward Path

The feedforward path (the Pseudo Controls portion of tht control law) translates the lateral and
directional acceleration commands into an optimum combination ¢_fcontrol surface and yaw thrust-vectoring

deflections to provide stability-axis roll and yaw accelerations. "Re control blending and distribution is a

function of flight condition.

A block diagram representation of the feedforward path is given in Figure 12. The feedforward path can

be divided into two main parts: an Interconnect and a Distributor Functional block diagrams of these are

shown in Figures 13 and 14, respectively. The Interconnect conw:rts the stability-axis roll and yaw angular

acceleration commands into body-axis roll and yaw angular acceleration commands, provides compensation
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for inertial coupling, provides compensation for the roll moment produced by yaw thrust-vectoring due to

the engine nozzle displacement in the z-direction, and outputs roll and yaw commands in the form of pseudo

control variables. These pseudo control variables (Vroll and Vyaw) are the commanded, normalized body-

axis roll and yaw moments. These variables are a fraction of the available roll and yaw moments. The

available moments are calculated in the Interconnect as functions of angle of attack, airspeed, altitude, Mach

number, and symmetric stabilator deflection. The Interconnect also provides logic to engage the thrust-

vectoring controls as a function of engine power and flight condition. The yaw thrust-vectoring can be

disabled by an external input signal.

The Distributor apportions the roll and yaw pseudo control commands to the aerodynamic surfaces

(aileron, rudder, and differential stabilator) and to the thrust-vectoring system (Mixer/Predictor) according to

the effectiveness of the controls scheduled as functions of angle of attack and symmetric stabilator deflection

and according to the yaw thrust-vectoring engage signal from the Interconnect. To prevent over-heating of

the thrust-vectoring vanes, the Distributor provides "vane relief" logic to transfer slowly-varying and steady-

state thrust-vectoring commands to the aerodynamic control surfaces. Thrust-vectoring is always used for

transient maneuvers when permitted by the yaw thrust-vectoring engagement logic, and thrust-vectoring is

used in steady-state when the aerodynamic surfaces cannot supply the required moments.

The aerodynamic surface deflection commands generated by the feedforward path are position limited.

The aileron is limited to ±25.0 degrees. The rudder is limited to +30.0 degrees. The differential stabilator

is limited to ±10.0 degrees. The yaw thrust-vectoring signal to the Mixer/Predictor is not limited.

LINEAR ANALYSIS OF CONTROL LAW

Closed-loop Eigenvalues and Eigenvectors

Closed-loop eigenvalues for the twelve design flight conditions are given in Table 7. The closed-loop

roll, spiral, and dutch roll eigenvalues have been placed at the desired locations for all design conditions.

The desired roll and dutch roll eigenvectors were chosen to decouple the roll and dutch roll modes in the

roll rate and sideslip responses. One method of measuring the amount of decoupling achieved is to assess

the cancellation of the dutch roll pole in the roll rate-to-lateral stick transfer function. The equivalent low

order roll rate-to-lateral stick transfer function is given by

p L6 s(s2+ 2_to$ +to$2)e-WS

6lat (S + Asprl_S+ Aroll_S2 + 2_drtOdr +tOdr2 )

where )'dr = _dr°dr + JWdr_l -_2r "

When the dutch roll pole is canceled ( O_dr = c%b, _dr = _q_ ), the roll response is not contaminated by the

dutch roll mode. A measure of cancellation is therefore given by the ratios ( co0 / O_dr ) and
(_cp CO(p) / (_dr OOdr). The closer the ratios are to unity, the better the dutch roll pole cancellation.

The values of these ratios for the closed-loop system, at each design condition are given in Table 13.

As can be seen, there is an almost complete cancellation of the dutch roll pole in the roll rate response at

most of the design flight conditions.

Stability Margins

Single-loop stability analysis was done at both the aircraft inputs and outputs. The gain and phase
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margins were obtained by breaking an individual loop while leaving the remaining loops closed. The input

analysis was done by breaking the individual physical control input commands to the actuators (aileron,

rudder, differential stabilator, yaw thrust-vectoring) (See Figure 15). The output analysis was done by

breaking the physical measurements used for feedback (body-axis roll rate, body-axis yaw rate, lateral

acceleration, and estimated sideslip rate). Gain and phase margins for 5 to 60 degrees angle of attack for

15 000, 25 000, and 35 000 feet altitude at lg are given in Figure 16. Gain and phase margins for 5 to 60

degrees angle of attack for 25 000 feet altitude at lg, 2g, and 4g loading are given in Figure 17. As these

figures show, the gain and phase margins are much better than the design guidelines of ± 6 dB and ± 45

degrees, respectively. These margins exclude the very low frequency range of the spiral mode. The gain and

phase margins for the evaluation conditions (Table 6) were also within the guidelines for all cases.

Robustness Analysis

A real structured singular value analysis was used to assess the sensitivity of closed-loop stability to

simultaneous variations of selected aircraft stability and control derivatives (Figure 18). The uncertainty

model A associated with each derivative is the standard multiplicative one, where the inverse real structured

singular value, (_tR)-', evaluated at some complex frequency is indicative of the smallest percentage

derivative change required to move a pole of the closed-loop system to that complex frequency. The

stability analysis generally arises from evaluating the inverse of ',he real structured singular value along the

jto-axis in the complex plane. The minimum value along this path is the upper bound on the allowable
percentage derivative change such that the system remains stable

The general stability robustness test assumes that the nominal closed-loop system is stable. One

caveat of the present stability robustness analysis, however, was the fact that the nominal closed-loop
system was technically unstable due to a low frequency right-half plane spiral pole at some flight

conditions. To accommodate this pole, the path along the jto-axis was initially indented into the right-half

plane about the unstable pole position (Figure 19). The analysis determined the allowable percentage

derivative change such that the closed-loop spiral pole did not make an excessive (greater than s=0.2

radians/second) further migration into the right-half plane and the other closed-loop poles remained stable.

Due to the short duration of high alpha maneuvering, however, lack of robustness at low frequencies was

later not considered important. The analysis considered only close, d-loop pole excursions into the right-half

plane for frequencies beyond 0.5 radians/second, which includes ditch roll frequencies.

The stability robustness analysis was performed at eight angles of attack (5, 10, 20, 35, 40, 45, 50,

and 60 degrees), at three altitudes (15 000, 25 000, and 35 000 feet) at lg, and at 25 000 feet for 2g and

4g. To consolidate the results, the lowest values of (_tR)-' from the ensemble of flight conditions

corresponding to each altitude/normal acceleration pair (i.e. worst case across 5 to 60 degrees angle of

attack) were plotted verses frequency. To identify key flight conditions, the angle of attack corresponding to

minimum values are denoted on the plot. Figure 20 depicts the stability robustness with respect to four

uncertain stability derivatives (Yv, Nv, Lp, and N r) and Figure 21 depicts the stability robustness with

respect to four uncertain control derivatives (Lai 1, Nrud, L_stab, .tnd Nyjet). The minimum margin across
all flight conditions and parameter variations considered (the r linimum inverse real structured singular

value) occurred for uncertain control derivatives at 40 degrees angle of attack at 25 000 feet and a loading of

4g. The value for this case is 0.83 at a frequency of 2.95 radians/second. This indicates the system will

remain stable in the face of up to 83% simultaneous change in tt_e four control derivatives. This result is

considered quite good. Tables 14 and 15 summarize the mar/<ins and critical frequencies for all flight
conditions considered.

Servo-Elastic Analysis

A servo-elastic analysis was conducted to assess the effect of _tructural modes on closed-loop stability.

For this analysis, a 50th-order servo-elastic model was placed ir parallel with the series combination of
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rigid-bodyplantandactuatordynamics.Marginswereobtained by breaking an individual loop while

leaving the remaining loops closed. The input analysis was done by breaking the individual input

commands (commanded stability-axis roll and yaw accelerations). The output analysis was done by

breaking the physical measurements used for feedback (body-axis roll rate, body-axis yaw rate, lateral

acceleration, and sideslip rate) (See Figure 22).

This analysis revealed that the system failed to meet the -10 dB structural margin requirement. Worst

case was found to be at 40 degrees angle of attack. Structural filters were designed to notch-out high

frequency structural modes and achieve the required structural margin at this flight condition (Tables 10 and
12). The analysis was then repeated with the structural filters. The output servo-elastic frequency responses

with and without filters for 5, 20, 40, and 60 degrees angle of attack are given in Figures 23-26. The input

servo-elastic frequency responses with and without filters for 5, 20, 40, and 60 degrees angle of attack are

given in Figures 27 and 28.

NONLINEAR BATCH SIMULATION RESULTS

Evaluations were conducted by using the nonlinear batch simulation described earlier to assess roll

performance, bank angle overshoot, and angle-of-attack and sideslip excursions. These evaluations were

conducted using the longitudinal control law described in Ostroff et al. 1994.

Step Input Time Responses

System time responses for a full lateral stick deflection to command maximum roll rate are given in

Figures 29-31 for 5, 35, and 60 degrees angle of attack to illustrate system performance. The input is

maximum lateral stick, input at one second and removed at 9 seconds. The time responses plotted are

lateral stick input, stability-axis roll rate (degrees/second), and sideslip angle (degrees). Time responses are

shown for altitudes of 15 000, 25 000, and 35 000 feet. The following summarizes performance results for

25 000 feet. At 5 degrees angle of attack the maximum stability-axis roll rate at Cw of 90 degrees is

approximately 165 degrees/second. The time to roll through 90 degrees ¢_v is 0.99 seconds. At 35 degrees

angle of attack the maximum stability-axis roll rate at Cw of 90 degrees is approximately 45

degrees/second. The time to roll through 90 degrees ¢_wis 3.25 seconds. At 60 degrees angle of attack the
maximum stability-axis roll rate at q_w = 90 degrees is approximately 35 degrees/second. The time to roll

through 90 degrees _v is 4.6 seconds.

Comparison with Nonlinear Design Guidelines

Nonlinear guidelines, used as performance metrics for large amplitude maneuvers, were developed using

previous experience from simulations at NASA Langley combined with knowledge of HARV characteristics

(Hoffler et al. 1994). These guidelines are therefore a blend of HARV control law design goals and what are

currently considered (by the authors) good preliminary roll and pitch agility requirements for an aircraft

capable of post-stall maneuvering. In the following discussion some of the nonlinear guidelines are
summarized, and some direction on making trade-offs between them is given. HARV and F/A-! 8 (A

Model) simulation performance are also shown relative to selected guidelines.

Nonlinear guidelines used for the roll axis included maximum wind-axis roll rate (Pw-max) during a roll

through A¢w = 90 °, time to bank through Adpw = 90* (tAdPw = 90°), wind-axis bank angle overshoot
¢Pos, and maximum ct and fl excursions. Values for these guidelines for Ig trim throughout the a range

were defined as well as values for Mach 0.6 from low ct to a = 35 degrees.

The lateral-directional coupling guidelines for full-lateral stick with longitudinal stick fixed are shown

in Table 16. These guidelines were met with the control law throughout the flight envelope.
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The tallow = 90* and Pw-max guidelines and performance achieved for the F/A-18 and the HARV are
shown in Figures 32 and 33. The HARV met both of these guidelines through 35* a, and the Pw-max

guideline was nearly met throughout the angle-of-attack range. The F/A-18 failed to meet both guidelines

above approximately 15" ct.. It falls short of the guideline due to insufficient directional control power

required to coordinate rolls above a - 10". The HARV tAq_w = 90* performance fell outside the guideline
above 35* a primarily due to lack of available control power. However, time to bank could be improved

for a > 20* if all available performance was used without regard to another guideline addressing

controllability and predictability.

Wind-axis bank angle overshoot is a guideline developed during the HARV control law design effort

that directly addresses lateral-directional predictability at moderate to high angles of attack. Wind-axis bank

angle overshoot is defined here as the amount of wind-axis bank angle used to stop a maximum performance

roll with a full stick reversal applied when passing through 90 degrees wind-axis bank angle change. If the

overshoot is excessive, pilots will have difficulty judging the lead required to capture the desired bank or

heading angle. The result would be poor predictability and a tendency to overshoot or undershoot the target

bank angle.

Figure 34 shows the wind-axis bank angle overshoot criteria and the achieved values. Because the

available control power is fixed there is a direct trade-off between bank angle overshoot and maximum roll

rate. The bank angle overshoot as defined herein equates to p_lot lead requirement necessary to make a

capture within desired tolerances. Maximum lead of around 40 to 45 degrees was considered acceptable by

the pilots in this design effort. Although the pilots could learn to consistently predict different lead

requirements (< 45*) at each a, in air combat maneuvering (ACM), angle-of-attack may not always be

known by the pilot and constantly changes. Therefore, it was considered important to have fairly consistent

overshoots throughout the moderate to high angle-of-attack range making predictability consistent anytime

lateral stick inputs produced significant amounts of yaw rate. High body yaw rates as opposed to body roll

rates serve as a visual cue to the pilot that angle of attack is higr without having to refer to the ct display.

As can be seen from Figure 34, the HARV meets the guideline with fairly consistent overshoots

throughout the moderate to high angle-of-attack range.

Complete descriptions of the high alpha nonlinear design guidelines can be found in Foster 1991.

NONLINEAR PILOTED SIMULATION RESULTS

Pilot-in-the-loop evaluations were conducted using NASA Langley's Differential Maneuvering

Simulator and the nonlinear HARV model described earlier. The evaluations used a series of piloted tasks

designed to test the longitudinal and lateral-directional contr¢l systems throughout the HARV flight

envelope. The tasks were designed for this effort with the inten_ of having broad applicability because no

concise set of maneuvers previously existed to evaluate configurations in the moderate to high angle-of-

attack regions. The lateral-directional piloted evaluation maneuvers included heading captures, large

amplitude rolls with bank angle captures, and target gross acquisition and tracking tasks.

The piloted maneuver set was developed with goals of allow ing evaluation of each axis of the control

law individually where possible, using consistent maneuvers and task guidelines across the flight envelope

when possible, and obtaining piloted evaluations in a short time. A brief discussion of the maneuvers and

associated Cooper-Harper task tolerances (Cooper and Harper 19 59) include piloting technique, associated

task criteria, and pros and cons of the maneuvers. The task tolerances were intentionally restrictive to make

pilot gains high, thus aggravating any Pilot Induced Oscillatior (PIO) tendencies that might exist. The
very tight criterion also tends to produce less favorable pilot st:bjective ratings (Cooper-Harper rating's).

The maneuvers were conducted at altitudes from 15 000 to 40 0139 feet, but only results from 25 000 feet

are presented. Cooper-Harper ratings from simulation are show_ for the control law design flown on the

HARV in the Spring of 1994. Preliminary flight test results are described in Murphy et al. 1994.

Five NASA test pilots were involved in this study. Two, have extensive air combat training and

experience, and all have high performance aircraft experience. Or e pilot has many years of experience with
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simulatedhigh-aairplanes,andonehasextensiveexperienceinsimulatedaswellasactualhigh-acapable
airplanes.Twoof theotherpilotshaveatleastthreeyearsofexperiencewithsimulatedhigh-aairplanes.
Theseevaluationswerethefirstexperienceperformingsomeofthesetaskswithanairplanecapableof agile
andprecisemaneuveringathigh-aforonepilot. Fourof thefivepilotshaveexperiencewiththeuseof
simulatedwithin-visual-rangeair-combatscenariosof high-ctairplanesagainstoneor twoconventional
airplanes.

Theevaluationswereconductedasfollows:Initiallythetaskwasflownrepeatedlyforfamiliaritywith
therequiredpilotingtechniques,flight condition,andconfiguration.Oncethepilotsfelt theywere
proficient,thetaskwasrepeatedafewtimestorateit. Aftertheevaluationswerecompletedwithallpilots,
limitedone-versus-onesimulatedengagementswereflownagainstabasicF/A-18.Thecontrollawwas
extensivelyexercisedduringtheone-versus-oneengagementsandfoundto beverydepartureresistant.The
one-versus-oneresultsarenotpresentedherein,butcontrolsystemrelatedpilotcommentsandobservations
fromtheone-versus-onearediscussedinHoffleretal.1994.

ResultsfrompilotedsimulationmaneuversarepresentedintermsofCooper-HarperRatings(CHR)and
pilotcomments.TheCHRscaleisanumericalscalefromonetotenwithonebeingthebestratingandl0
theworst(Figure35).InpracticeCHR'sfromI through3 arereferredto as"LevelOne",ratingsfrom4
through6arelabeled"LevelTwo",andratingsfrom7to9 areconsidered"LevelThree".CHR'slessthan
orequalto4 indicatedesiredperformancewasachieved.Forspaceconsiderations,onlybarchartsshowing
theaverageratingfromthefivepilotsinvolvedareshown.All ratingsareshownin tabularformin Table
17.

TheCooper-HarperratingvariationbetweenpilotsisshowninTable!8. Forall fivepilotsthespan
betweenthemaximumandminimumratingwaslessthanorequaltothree(±1.5frommeanvalue)92%of
thetime.Onfourofthemaneuversthepilotwithnopriorexperienceflyinghigh-ctairplanesgaveratings
significantlydifferentfromtheotherfour.Neglectingthosefourratings,differencesgreaterthan3werenot
seenand84%of themaneuversyieldeddifferenceslessthanorequalto 2 (+l fromthemeanvalue).
Overalltheratingspreadwassmallimplyingthetasksarewelldefined(CooperandHarper1969).

Sevensingleairplanemaneuvers(maneuverswherenotargetwasinvolved)weredeveloped.Earlyin
thedesignprocessthesemaneuverswereusedalmostexclusivelybecausetheycouldbedoneveryquickly
andtherewasonly onedynamicsystem(theairplane)affectingtheresult. Thismadeassessmentand
correctionofanyproblemsmorestraight-forwardthanif atargetairplanewereinvolved.Thetasksfell into
twocategories:I) Maneuversthatprimarilyisolatedthe longitudinalaxis;and2) Maneuversthat
concentratedonthelateral-directionalaxisbutaddressedinertialandkinematiccoupling.Onlythelateral-
directionalaxismaneuversarediscussedinthisreport.

Single Aircraft Lateral-Directional Evaluation Maneuvers

The lateral-directional evaluation maneuvers consisted of rolls to capture target bank angles at various

flight conditions. Angle-of-attack control was required during the rolls because ct changes during the rolls

can significantly alter aircraft roll performance and energy state as well as lead to departures. Also during
gross acquisition tasks (pointing) at moderate and high angle of attack, both the lateral-directional and

longitudinal axes directly affect the capture due to the coning motion (Figure 36). Therefore during the roll

tasks the pilots were required to give CHR's on two sub-tasks, ct regulation and the wings-level $ capture.

The pilots were required to maintain the target a within ±2* for desired and ±6* for adequate performance
during all roll tasks. They were also required to capture the desired $ within ±10" for desired and ± 20 ° for

adequate performance, with no overshoots or undershoots. These task tolerances were intentionally tight to
keep the pilot's gain high.

lg 360* Roll Tasks

A complete 360 ° roll was used because it gave the pilots a convenient bank angle to capture, wings
level with the horizon, thus simplifying the task both from a piloting and data analysis point of view. It is

recognized that this is an extreme maneuver, beyond what would normally be done in air combat
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maneuvering (ACM) (rolls beyond 180° are not expected in A('.M). The lg 360* roll maneuvers started

from lg trim at the desired ct. If not already at maximum thrust, maximum thrust was applied, time was

allowed for the engine to reach maximum thrust, then maximum lateral stick was applied.

This task exposed roll coordination and predictability proble ms and lateral-directional PIO sensitivities

in the control system. Average CHR's for the lg rolls from the simulation are shown in Figure 37. The

majority of the ratings were in the Level One region with a few results edging into the Level Two handling
qualities region. The roll rating at ct = 5° was Level Two primarily because of the task itself. Maxl_r:um

stick rolls here produce very high roll rates making _ captures difficult. The high rates made predictabdicy
difficult, and given the simulation transport delay the results at this ct may be unreliable. With less thaal

maximum lateral stick input the maneuver could be done within the desired parameters by all pilots. The
pilots pointed out that maximum roll rate at low angles of attack would only be used defensively, that is,

for offensive maneuvers maximum roll rate would not likely be achieved at this flight condition. At 15" ct,

desired criterion was met by most pilots in both axes. But, # crpture difficulty was still seen due to high
roll rates. Average ratings were Level One, and desired criterion was met by all pilots from 25* through 65*

ct with the exception of the roll rating at 65*. Here the yaw vectoring control power is limited, and
predictability became a problem.

Loaded Roll Tasks

Loaded rolls were conducted at Mach 0.4 and 0.6 and various angles of attack. These maneuvers started

with the airplane trimmed at lg and typically faster than the desired Mach. The pilot rolled to a _ _,f
around 60* (varied with target a) and pulled to the desired a, then waited to decelerate to the desired Mach

number. At the desired Mach, maximum lateral stick input was applied to roll back through wings level

and capture _ = 90*. This gave a Aq_ of approximately 150* for the task. The Cooper-Harper criteria for
the two sub-tasks was the same as the lg 360* rolls.

Average ratings from the five pilots are shown in Figure 38. The ratings are similar to the lg roll

ratings and generally on the Level One/Level Two boundary. These tasks were significantly more difficult
to carry out than the lg roll tasks because of the set up required to get to the initial condition. The desired

ct had to be captured quickly due to the high Mach bleed rate seer at the higher a's required for these loaded
evaluations.

Target Tracking and Acquisition Tasks

With the single airplane maneuvers completed, simulated target acquisition and tracking tasks were
conducted.

Moderate Angle-of-Attack I Elevated-g Tracking l'asks

These tasks were developed to look at tracking in the 15" to 75 ° angle-of-attack range. Two tasks were

used, both tracking a target maneuvering at 3g, one with a Mach range from 0.55 to 0.65 (Mach 0.6 task)
and one from Mach 0.4 to 0.5 (Mach 0.45 task). Initial range t_ the target was 600 feet and a maximum

range of 1800 feet was allowed during the task. During these tasks the target roiled into a left 3g turn and
held it for 30 seconds; at 30, 40, and 50 seconds elapsed time the _rn direction was reversed with a smooth

moderate rate reversal. The total task time was 70 seconds. The pilots gave both a longitudinal and lateral-
directional rating for each maneuver.

The Cooper-Harper task tolerances used for this task were to keep the target within a 12.5 milliradian

reticle (_-0.36" of aim point) 50% of the time for desired and 10% _f the time for adequate performance. The
reticle was depressed 35 milliradians. Tracking time during tte reversals was not counted. This is a
precision tracking task.

Average CHR's from the five pilots showed desired perforrrance was generally achievable in the roll

axis (all but one pilot) (Figure 39). The pilots considered the control law to have good tracking
characteristics. The only significant lateral-directional problem with this version of the control law is some

"wandering" in the roll axis.
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High Angle-of-Attack Tracking and Acquisition Tasks

These tasks were developed by McDonnell Douglas Aerospace under contract to NASA Langley and

were used during this control law development. Longitudinal and lateral tasks have been developed at 30,

45, and 60 degrees angle-of-attack; however, only the 30 and 45 degree angle-of-attack tasks were available

at the time of this evaluation. A general description of the maneuvers follows. Detailed task descriptions

can be found in Wilson et al. 1993a and 1993b. The tasks were used to evaluate longitudinal and lateral-

directional target acquisition and tracking characteristics. For all tasks the target started in front of the

HARV and rolled into a nose low descending right turn at a specified a, airspeed, and power setting. This
was done to put the target in the proper position for the HARV to acquire or track at the desired a. Pre-

recorded target time histories were used for the target aircraft and therefore were perfectly repeatable.

Tracking: For the tracking tasks the HARV selected maximum afterburner (A/B) and roiled in behind

the target. The HARV delayed a pitch toward the target so that pulling to the target would result in a

HARV angle of attack near the desired a to begin tracking. When the a required to track the target was

more than 5* from the desired a , the task was terminated. Desired a's of 30 and 45 degrees were used.

Desired criteria for these tasks required keeping the pipper within +5 milliradians of the aim point 50% of

the time and within +25 milliradians of the aim point the rest of the time with no objectionable PIO.

Adequate criteria required keeping the pipper within +5 milliradians of the target 10% of the time and within
+25 milliradians the remainder of the task. For both tasks concentric 12.5 and 50 milliradian diameter

reticles depressed 80 milliradians were provided to the pilot.

Average lateral-directional ratings from the five pilots are shown in Figure 40 for both ct's. The

lateral-directional ratings were mostly Level Two. Desired criteria were met by all but pilot five; his

ratings were not far from the others. A difficulty in tracking at these conditions is that lateral-directional

and longitudinal motions couple in a way foreign to pilots with no high-a experience. At these (extreme

by current airplane capabilities) a's, a roll input significantly affects the longitudinal tracking due to the
nose moving around the "cone" (Figure 36).

Acquisition: For the high-a acquisition tasks the targets flew paths similar to those used in the

tracking tasks. The lateral-directional acquisition tasks required the HARV to pull to the desired a and then

to roll at that a to capture the target. These tasks were similarly dependent on target turn rate and HARV

motion and for the 45* a tasks, the target was out of view below the nose during part of the task. These

tasks required precise timing in order to make the acquisitions at the desired a. With practice the pilots
could do the tasks consistently, and the tasks worked well.

The Cooper-Harper desired performance criteria for the 30 ° a acquisition tasks required aggressively
acquiring the aim point within ±25 milliradians laterally of the reticle with no overshoot and in a desirable

time to accomplish the task. Adequate performance criteria allowed one overshoot/undershoot. A 50

milliradian reticle depressed 35 milliradians was provided to the pilot for these tasks. The Cooper-Harper

task tolerances for the 45 ° a acquisition tasks were similar except the criteria was within +40 milliradians

of the aim point. An 80 milliradian reticle depressed 80 milliradians was provided to the pilot for these
tasks.

The average CHR's from the 5 pilots for the lateral-directional acquisitions at both a's are shown in

Figure 41. Most ratings for all these tasks were Level Two. Predictability was a problem in both axes.

Pilot five gave ratings that were significantly different from the other four pilots for the 45" roll acquisition

tasks. For all pilots, unless timing was precise, typically one overshoot occurred followed by a good
acquisition.
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CONCLUDING REMARKS

This report contains a description of a lateral-directional control law designed for the NASA High-

Alpha Research Vehicle (HARV). This control law was designed using two separate design tools, CRAFT

and Pseudo Controls. The combined CRAFT/Pseudo Controls design technique is a hybrid technique that

combines both linear and nonlinear design methods. The CRAFT (Control Power, Robustness, Agility,

and Flying Qualities Tradeoffs) design process is a linear desigr approach based on eigenspace assignment

for determining measurement feedback gains. The CRAFT design approach makes use of Direct Eigenspace

Assignment, which allows direct specification of closed-loop dynamics, in combination with graphical
overlays of metric surfaces which capture important design objectives. Pseudo Controls is a nonlinear

control blending strategy for distributing control system commands in a near-optimal fashion to the

appropriate control effectors. In this method, flight controls are ganged together to generate body-axis roll
and yaw moments as independent commands.

Results of linear analyses, nonlinear batch simulation, and piloted simulation of this control law show
the following:

1) The combined CRAFT/Pseudo Controls methodology has been demonstrated to be a useful

technique for aircraft control law design. The control laws developed with this approach have demonstrated
good performance, robustness, and flying qualities in piloted simulation.

2) The closed-loop system meets the single-loop gain and phase margin guidelines of +6 dB and 45
degrees, respectively, at both the plant inputs and outputs.

3) Based upon a real structured singular value analysis, the dosed-loop system has good robustness to
changes in plant stability and control derivatives.

4) With the addition of the structural filters, the control law meets the structural mode attenuation
guideline of-10 dB.

5) Nonlinear batch simulation analysis shows the control law exhibits good performance and meets
most of the design guidelines over the entire range of angle of attack.

6) The control law has been extensively exercised in piloted simulation and shown to be very departure

resistant. The characteristics predicted from piloted simulation generally held true during flight test.
Piloted simulation results are summarized in the following by ta: k:

Roll Tasks

lg 360 Degree Rolls: The majority of the Cooper-Harper rating's were in the Level One region with a

few results edging into the Level Two handling qualities region. This task did a good job of uncovering
roll coordination and predictability problems and lateral-directional Pilot Induced Oscillation (PIO)
sensitivities in the control system.

Loaded Rolls: Average Cooper-Harper rating's from the fi, e pilots are similar to the lg roll ratings

and generally on the Level One/Level Two handling qualities toundary. These tasks were significantly
more difficult to carry out than the lg roll tasks because of the set up required to get to the initial condition.

Moderate Angle-of-Attack (! 5-25 degrees)/Eievated-g Tracking and Acquisition Tasks

Average Cooper-Harper rating's from the five pilots showed desired performance was generally

achievable in the roll axis. The pilots considered the control law °.ohave good tracking characteristics.

High Angle-of-Attack (30 and 45 degrees) Tracking and Acqt isition Tasks

Tracking: Average lateral-directional Cooper-Harper rating's from the five pilots were mostly Level

Two. Desired criteria were met by all but pilot five; his ratings were not far from the others. A difficulty

in tracking at these conditions is that lateral-directional and longitudinal motions couple in a way foreign to
pilots with no high angle-of-attack experience.
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Acquisition: The average Cooper-Harper rating's from the five pilots for the lateral-directional

acquisitions at both angles-of-attack were mostly Level Two. Predictability was a problem in both axes.

For all pilots, unless timing was precise, typically one overshoot occurred followed by a good acquisition.

This control law was flight tested during the Summer of 1994 at NASA Dryden Flight Research
Center. Flight test results are presented in Murphy et al. 1994.

NASA Langley Research Center

Hampton, VA 23681-0001
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APPENDIX

This Appendix presents the twelve linear lateral/directiona_ design models. The models are based on

steady-state wings-level trim flight conditions at 25 000 feet. They include the four standard lateral-

directional rigid-body degrees of freedom.

The models are given by:

J¢ = mot X + nap _ (system dynamics)

= Gfl u (blended control inputs)

z = Mot x + Nco I u (system measurements)

uc ,=Gz (feedback control law)

u = up + uc (total control input)

Up = pilot input

The system states are:

X = [ V Pstab /'stab _ IT

Pstab = stability-axis roll rate (rad/sec), rstab = stability-axis yaw ratewhere v = side velocity (ft/sec),

(rad/sec), and _p= bank angle (rad).

The physical controls are:

_ =[¢_ait _rud _dt _ytv] T

where _ail = aileron deflection (deg), 6r,_ = rudder deflection (deg), 6a, = differential stabilator deflection

(deg), and 6r, = yaw thrust vectoring deflection (deg).

The system controls are:

U = [aro u ayaw ]T

where aroll = stability-axis roll acceleration (rad/sec 2) and ayaw = stability-axis yaw acceleration
(rad/sec2). The system, expressed as a function of system states and blended control inputs, is given by:

J¢= Aol x + Bap G fl u = Aol x .- Bcol U

The measurements used for feedback are:

Z = [ Pstab rstab ay _ IT

where Pstab = stability-axis roll rate (rad/sec), rstab = stabiiity-axis yaw rate (rad/sec), ay = lateral
acceleration (g's), and/3 = sideslip rate (rad/sec).
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Angle of attack (ALPHA) = 5.0 (degrees)

Dynamic Pressure (QBAR) = 191.07 (psf)

Trim Velocity (VTOT) = 598.07 (ft/sec)

AOL =

-0.1305 0.1512 -597.582 32.1667

-0.0187 -1.5271 0.6757 0.0000

0.0050 0.1152 -0.1529 0.0000

0.0000 1.0000 0.0000 0.0000

BAp =

-0.0551 0.2975 -0.1025 0.2463 0.0024

0.2746 0.0314 0.2225 -0.0059 0.0177

-0_283 -0.0242 -0.0161 -0.0294 -0.0019

0.0000 0.0000 0.0000 0.0000 0.0000

GFL =

4.0251 2.4502

-5.6822 -62.0789

0.8580 4.8530

0.0000 0.0000

0.0000 0.0000

BCO L =

-2.0005 -19.1022

1.1179 -0.1941

0.0096 1.3527

0.0000 0.0000

MOL =

0.0000 1.0000 0.0(030 0.0000

0.0000 0.0000 1_000 0.0000

-0.0021 0.0535 -0.0462 0.0000

-0.0002 0.0003 -0.9992 0.0538

NCO L =

0.0000 0.0000

0.0000 0.0000

-0.0614 -0.0669

-0.0033 -0.0319

Angle of attack (ALPHA) = 10.0 (degrees)

Dynamic Pressure (QBAR) = 94.53 (psf)

Trim Velocity (VTOT) = 420.67 (ft/sec)

AOL =

-0.0955 0.1610 -420.288 32.1678

-0_194 -0.8687 0.6852 0.0000
0.0062 0.1333 -0.1871 0.0000

0.0000 1.0000 0.0000 0.0000

BAp =

-0.0286 0.1409 -0.0358 0.2499 0.0004

0.1350 0.0146 0.1010 -0.0085 0.0178
-0_261 -0.0130 -0.0161 -0.0290 -0.0032

0.0000 0.0000 0.0000 0.0000 0.0000

GFL =

6.9740 2.5229

-21.1742 -116.8032

2.2404 8.4609

0.0000 0.0000

0.0000 0.0000

BCO L =

-3.2622 -16.8276

0.8596 -0.5050

0_561 1.3108

0.0000 0.0000

MOL =

0.0000 1.0000 0.0000 0.0000

0.0000 0.0000 1.0000 0.0000

-0.0012 0.0295 -0_392 0.0000

-0_002 0.0004 -0.9991 0.0765

NCO L =

0.0000 0.0000

0.0000 0.0000

-0.0527 -0.0305

-0.0078 -0.0400
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ALPHA = 15.0 (degrees)

Dynamic Pressure (QBAR) = 69.71 (psf)
Trim Velocity (VTOT) = 361.25 (ft/sec)

AOL =

-0.0702 0.1331 -361.025 32.1679

-0.0185 -0.5227 0.6580 0.0000

0.0069 0.1218 -0.2358 0.0000

0.0000 1.0000 0.0000 0.0000

BAp =

-0.0198 0_873 -0.0149 0.2488 -0.0012

0.0817 0.0078 0.0618 -0.0105 0.0173

-0.0236 0.0089 -0.0160 -0.0280 -0.0045

0.0000 0.0000 0.0000 0.0000 0.0000

GFL =

10.2115 -0.9327

-27.6436 -103.1960
3.2085 6.6783

-3_905 -11.0352

0.0000 0.0000

Bco L =

-3.4330 - l 1.8391

0.8502 0.3483
0.0403 1.1444

0.0000 0.0000

MOL =

0.0(030 1.0000 0.0000 0.0000

0.0000 0.0000 1.0000 0.0000

-0.0007 0.0169 -0.0407 0.0000

-0.0002 0.0004 -0.9994 0.0890

NCO L =

0.0000 0.0000

0.0000 0.0000

-0.0434 0.0220

-0.0095 -0.0328

Angle of attack (ALPHA) = 20.0 (degrees)

Dynamic Pressure (QBAR) = 59.58 (psf)
Trim Velocity (VTOT) = 333.97 (ft/sec)

AOL =

-0.0559 0.0400 -334.021 32.1674

-0.0236 -0.2995 0.6025 0.0000

0.0095 0_932 -0.2797 0.0000

0.0000 1_000 0.0000 0.0000

BAp =

-0.0076 0.0559 -0.0082 0.2393 0.0039

0.0464 3.0037 0.0454 -0.0120 0.0159

-0.0183 - 3.0061 -0.0169 -0.0261 -0.0062

0.0000 3.0000 0.0000 0.0000 0.0000

GFL =

15_221 -5.6111

-33.4460 -90.6366

3.6615 2.6429

-6.9681 -18.4940

0.0000 0.0000

BCO L =

-3.6822 -94746

0.8233 -).2519

0.0488 !.0950

0.0000 ).0000

MOL =

0.00013 1.0000 0.0000 0.0000

0.0000 0.0000 1.0000 0.0000

-0.0005 0.0069 -0.0477 0.0000

-0.0002 0.0001 - 1.0002 0.0963

NCO L =

0.0000 ).0000

0.0000 ).0000

-0.0411 ).0243

-0.0110 -).0284
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Angle of attack (ALPHA) = 25.0 (degrees)

Dynamic Pressure (QBAR) = 50.67 (psf)

Trim Velocity (VTOT) = 308.00 (ft/sec)

AOL =

-0.0472 -0.0569 -308.198 32.1682

-0.0191 -0.2337 0.5856 0.0000

0.0 !03 0.0901 -0.3405 0.0000

0.0000 1.0000 0.0000 0.0000

BAp =

0.0108 0.0375 0.0061 0.2568 0.0022

0.0315 0.0005 0.0354 -0.0158 0.0173

-0.0162 -0.0035 -0.0179 -0.0263 -0.0085

0.0000 0.0000 0.0000 0.0000 0.0000

GFL =

15.3733 -15.0921

-41.2548 -84.1465

3.5039 -1.3391

- 10.5999 -22.0790

0.0000 0.0000

BCO L =

-4.0828 -8.9986

0.7569 -0.2134

0.1112 1.1441

0.0000 0.0000

MOL =

0.0000 ! .0000 0.0000 0.0000

0.0000 0.0000 1.0000 0.0000

-0.0002 0.0007 -0.0544 0.0000

-0.0002 -0.0002 - 1.0006 0.1044

Nco L =

0.0000 0.0000

0.0000 0.0000

-0.0267 0.0297

-0.0133 -0.0292

Angle of attack (ALPHA) = 30.0 (degrees)

Dynamic Pressure (QBAR) = 42.48 (psi-)

Trim Velocity (VTOT) = 282.00 (ft/sec)

AOL =

-0.0403 -0.1337 -282.258 32.1549

-0.0099 -0.3858 0.7811 0.0000
0.0060 0.2001 -0.5262 0.0000

0.0000 1.0000 -0.0280 0.0000

BAp =

0.0195 0.0270 0.0182 0.2530 0.0013

0.0211 -0.0006 0.0287 -0.0170 0.0172
-0.0137 -0.0022 -0.0185 -0_249 -0.0103

0.0000 0.0000 0.0000 0.0000 0.0000

GFL =

15.2351 -24.5759

-47.9817 -75.1111

2.9207 -5.1282

-14.1410 -23.8682

0.0000 0_000

BCO L =

-4.5212 -8.6376

0.6768 -0.2130

0.1948 1.1910

0.0000 0.0000

MOL =

0.0000 1.0000 0.0000 0.00(_

0.0000 0.0000 1.0000 0.0000

-0.0007 0.0041 -0.0675 0.0000

-0.0001 -0.0005 - 1.0009 0.1140

NCO L =

0.0000 0.0000

0.0000 0.0000

-0.0145 0.0296

-0.0160 -0.0306
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Angle of attack (ALPHA) = 35.0 (degrees)
Dynamic Pressure (QBAR) = 38.17 (psf)

Trim Velocity (VTOT) = 267.31 (ft/sec)

AOL =

-0.0423 -0.2075 -267.564 31.9378

-0.0027 -0.3023 0.8107 0.0000

0.0019 0.1766 -0.6487 0.0000

0.0000 1.0000 -0.1202 0.0000

BAp =

0.0246 i).0214 0.0250 0.2490 0.0013

0.0155 -0.0011 0.0245 -0.0187 0.0160

-0.0124 -1.0015 -0.0196 -0.0232 -0.0117

0.0000 0.0000 0.0000 0.0000 0.0000

GFL =

14.9838 -35.8822

-59.0482 -69.9067

1.7375 -8.9323

- 16.4497 -22.9385

0.0000 0.0000

BCO L =

-4.9497 -_.3163

0.6501 -O.2688

0.2488 i.257|

0.0000 o.0000

MOL =

0.0000 1.0(O 0_000 0.0000

0.0000 0.0000 1.0000 0.0000

-0.0012 -0.0048 -0.0715 0.0000

-0.0002 -0.0008 -1.0010 0.1195

NCO L =

0.0000 0.0000

0.0000 0.0000

-0.0058 0.0298

-0.0185 -O.0311

Angle of attack (ALPHA) = 40.0 (degrees)

Dynamic Pressure (QBAR) = 36_52 (psf)
Trim Velocity (VTOT) = 261.48 (ft/sec)

AOL =

-0.0435 -0.2705 -261.691 31.4209

0.0003 -0.3069 0.6522 0.0000

-0.0018 0.2127 -0.6252 0.0000

0.0000 1.0000 -0.2193 0.0000

BAp =

0.0257 f.0181 0.0277 0.2457 0.0013

0.0125 -(.0018 0.0210 -0.0202 0.0148

-0.0123 -( .0008 -0.0207 -0.02 l 4 -0.0129

0.0000 £ .0000 0.0000 0.0000 0.0000

GFL =

17.1216 -50.0765

-72.7024 -55.6999

0.8089 - 13.0617

- 18.0346 -21.0078

0.0000 0.0000

BCO L =

-5.2843 -7.8158
0.7229 -G.3767

0.2184 1.3802

0.0000 0.0000

MOL =

0.0000 1.0000 0.0000 0.0000

0.0000 0.0000 1.0000 0.0000

-0.0018 -0.0081 -0.0628 0.0000

-0.0002 -0.0010 - 1.0008 0.1202

Nco L =

0.0000 0 0000

0.0000 0 0000

-0.0016 0 0377

-0.0202 -00299
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Angle of attack (ALPHA) = 45.0 (degrees)

Dynamic Pressure (QBAR) = 36.54 (psf)

Trim Velocity (VTOT) = 261.54 (ft/sec)

AOL =

-0.0383 -0.2061 -261.391 30.5801

-0.0105 0.1843 0.0830 0.0000

0.0088 -0.2481 -0.1543 0.0000

0.0(O 1.0000 -0.3264 0.0000

BAp =

0.0079 0.0162 0.0264 0.2404 0.0013

0.0109 -0.0030 0.0247 -0.0215 0.0135

-0.0129 0.0004 -0.0269 -0.0194 -0.0140

0.0000 0.0000 0.0000 0.0000 0.0000

GFL =

21.0191 -66.8294

-88.2694 -33.0892

-5.9323 - 17.0833

- 19.0749 - 18.650 !

0.0000 0.0000

BCO L =

-6.0103 -5.9983

0.7541 -0.6494

0.2208 1.6680

0.0000 0.0000

MOL =

0.0000 1.0000 0.0000 0.0000

0.0000 0.0000 1.0000 0.0000

-0.0012 -0.0350 -0.0210 0.0000

-0.0001 -0.0008 -0.9994 0.1169

NCO L =

0.0000 0.0000

0.0000 0.0000

-0.0045 0.0831

-0.0230 -0.0229

Angle of attack (ALPHA) = 50.0 (degrees)

Dynamic Pressure (QBAR) = 36.59 (psf)

Trim Velocity (VTOT) = 261.71 (ft/sec)

AOL =

-0.0333 0.0412 -261.3256 29.4799

-0.0077 -0_330 0.2272 0.0000

0.0084 -0.0162 -0.3423 0.0000

0.0000 1.0000 -0.4366 0.0000

BAp =

-0.0118 0.0147 0.0370 0.2348 0.0012

0.0087 -0.0035 0.0242 -0.0227 0.0121

-0.0129 0.0014 -0.0292 -0.0174 -0.0150

0.0000 0.0000 0.0000 0.0000 0.0000

GFL =

19.4371 -77.3519

-102.6940 -9.2118

-10.7424 -13.7265

-20.3969 -16.7274

0.0000 0.0000

BCO L =

-6.9250 -3.6611

0.7313 -0.5911

0.2730 1.6771

0.0000 0.0000

MOL =

0.0000 1.0000 0_000 0.0000

0.0000 0.0000 1 _000 0.0000

-0.0008 -0.0122 -0.0208 0.0000

-0.0001 0.0002 -0.9985 0.1126

NCO L =

0.0000 0.0000

0.0000 0.0000

-0.0156 0.1270

-0.0265 -0.0140
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Angle of attack (ALPHA) = 55.0 (degrees)

Dynamic Pressure (QBAR) = 37.70 (psf)

Trim Velocity (VTOT) = 265.67 (ft/sec)

AOL =

-0.0381 0.1644 -265.408 28.4186

-0.0065 -0.0508 0.2138 0.0000

0.0087 0.0197 -0.3784 0.0000

0.0000 1.0000 -0.5303 0.0000

BAp =

-0.0145 0.0143 0.0725 0.2314 0.0012

0.0064 -0.0030 0.0312 -0.0235 0.0106

-0.0124 0.0011 -0.0383 -0.0154 -0.0158

0.0000 0.0000 0.0000 0.0000 0.0000

GFL =

14.2148 -87.3157

- 116.8494 13.2775

-2.1579 -1.6464

-22.8541 - 15.6222

0.0000 0 .0000

BCO L =

-7.3162 -2.2816

0.9062 -0.2810

0.1303 1.4012

0.0000 0.0000

MOL =

0.0000 1.0000 0.0000 0.00190

0.0000 0.0000 1.0000 0.0000

-0.0009 -0.0050 -0.0240 0.0000

-0.0001 0.0006 -0.9990 0.1070

NCO L =

0.0000 0.0000

0.0000 0.0000

-0.0110 0.1410

-0.0275 -0.0086

Angle of attack (ALPHA) = 60.0 (degrees)

Dynamic Pressure (QBAR) = 40.61 (psf)

Trim Velocity (VTOT) = 275.72 (ft/sec)

AOL =

-0.0472 0.1523 -275.577 26.6070

-0.0058 -0.0638 0.2364 0.0000

0.0089 0.0320 -0.3957 0.0000
0.0000 1.0000 -0.6794 0.0000

BAp =

-0.0156 0.0144 0.1020 0.2223 -0.0045

0.0051 -0.0022 0.0229 -0.0233 0.0104

-0.0131 -(.0001 -0.0298 -0.0127 -0.0145

0.0000 (.0000 0.0000 0.0000 0.0000

GFL =

15.5391 -108.1458

-115.8728 16.6490

0.0000 0.0000

-23.7783 -13.3737

0.0000 0 .0000

BCO L =

-7.1960 -1.0435

0.8933 -0.2756

0.1146 1.5810

0.0000 (.0000

MOL =

0 .0000 1 .0000 0.0000 0.0000
0.0000 0.0000 1.0000 0.0000

-0.0013 -0.0083 -0.0097 0.0000

-0.0002 0.0006 -0.9995 0.0965

NCO L =

0.0000 0.0000

0.0000 0.0000

-0.0029 0.1866

-0.0261 -0.0038
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Figure 36. Coning motion during high-_ngle-of-attack rolls.
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Table 1. Control Surface Position _nd Rate Limits

Surface

Stabilator

Trailing Edge Up

Trailing Edge Down

Position Limit (deg)

Trailing Edge Up

24

Rate Limit (deg/sec)

40

10.5

Aileron 100

25

Trailing Edge Down 45

Rudder

Trailing Edge Left 30

Trailing Edge Right

Trailing Edge Flap

8

30

45
Trailing Edge Up

Trailing Edge Down

Leading Edge Flap

Leading Edge Up 3

Leading Edge Down 33

60
Speed Brake

Trailing Edge Up

82

18

15

~20 to 30
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Table 2. Physical Characteristics of Unmodified F/A-18 * and HARV*

Parameter II Unmodified HARV

Weight (Ibs) 31 980 35 765

Reference wing area (ft 2) 400 400

Reference MAC _ (ft) 11.52 11.52

Reference Span (ft) 37.4 37.4

Center of Gravity (% MAC *) 21.9 23.3

Roll inertia (slug-ft 2) 22 040 22 633

Pitch inertia (slug-ft 2) 124 554 174 246

Yaw inertia (slug-ft 2) 139 382 189 336

Product of inertia (slug-ft 2) -2 039 -2 132

Overall length (ft) 56 5 6

Wing aspect ratio 3.5 3.5

Stabilator span (ft) 21.6 21.6

Stabilator area (ft 2) 88.26 86.48

t A Model F/A-18

* 60% fuel condition, landing gear up, clean configuration with pilot and support equipment
:_Mean Aerodynamic Chord

Table 3. HARV Weights, Inertias, and Center of Gravity Locations

State Weight Xcg Zcg (W.L.) Ixx Iyy Izz Ixz

(lbs) (%MAC) (slug-ft 2) (slug-ft 2) (slug_ft 2) (slug_ft 2)

Light 31 618 26.6 103.4 22 163 172 238 186 823 -2 043

Nominal 35 765 23.3 105.4 22 633 174 246 189 336 -2 132

Heavy 37 619 23.3 105.9 22 938 179 130 194 003 -2 507
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Table 4. Lateral-Directional Design tqight Conditions

Angle-of-Attack

(degrees)

10

15

20

25

30

I] Altitude(feet)

25 000

25 000

I,oad Factor

(g's)

1

25 000 1

25 000 1

25 000 1

25 000 1

35 25 000 1

40 25 000 1

45

Weight*

5O

55

6O

* See Table 3

Nominal

Nominal

Nominal

Nominal

Nominal

Nominal

Nominal

Nominal

25 000 1 Nominal

25 000 1 Nominal

25 000 1 Nominal

25 000 1 Nominal

Table 5. Open-Loop Eigenvalues

Angle-of-Attack
(de_rees) II

10

15

20

25

30

35

40

45

Spiral

.004

.011

.006

-.033

-.019

-.055

.151

-.075

Roll

-1.4

-.74

- .46

-.28

- .24

-.20

( 0.15 , 0.91 )*

-.36

-.21

Dutch roll

frequency, (rad/sec)
1.67

1.58

1.56

1.77

1.77

1.25

0.61

0.41'

1.53

50 ( 0.11 , 0.91 )* 1.47

55 ( 0.09 , 0.90 )* 1.51

60 -.036 -0.14 1.56

* Coupled roll-spiral mode ( frequency, damping )
t"Real dutch roll mode

Dutch roll

damping

0.12

0.13

0.12

0.09

0.10

0.28

0.59

-1.17'

-0.09

0.07

0.10

0.11
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Table6. Lateral-DirectionalEvaluationFlightConditions

Angle-of-Attack I[ Altitude(degrees) (feet)
2.5 25000
5
10
15
20
25
30
35
40
45

15000, 35
15000, 35
15000, 35
15000, 35
15000, 35
15000, 35
15000, 35
15000, 35
15000, 35

000
000

15000, 35

000
000
000
000
000
000
000

LoadFactor
(g's)

Weight*

Nominal
Nominal
Nominal
Nominal
Nominal

Nominal

Nominal

Nominal

Nominal

Nominal

50 15 000, 35 000 1 Nominal

55 15 000, 35 000 1 Nominal

60 000 1 Nominal

2,4

2,4

2,4

2,4

2,4

25 000

25 000

25 000

25 000

25 000

25 000

25 000 2,4

25 000

65

5

10

15

20

25

30

35 2,4

Nominal

Nominal

Nominal

Nominal

Nominal

Nominal

2,4

Nominal

Nominal

40 25 000 2, 4 Nominal

45 25 000 2, 4 Nominal

50 25 000 Nominal

25 000

25 000

25 000

25 000

25 000

25 000

2,455

60

5

10

15

20

25

30

35

2,4

Nominal

Nominal

Heavy, Light

Heavy, Light

Heavy, Light

Heavy, Light
25 000 1 Heavy, Light

25 000 1 Heavy, Light
25 000 1 Heavy, Light

Heavy, Light40 25 000 1

45 25 000 1 Heavy, Light
50 25 000 1

55

6O

Heavy, Light

25 000 1 Heavy, Light

25 000 1 Heavy, Light
* See Table 3
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Table 6. Concluded

Angle-of-Attack Altitude Load Factor Weight*

(degrees) (feet) (g's)

5 40 000 1

10 40 000

15 40 000 1

20 40 000 1

25 40 000 1

30 40 000 1

35 40 000 1

40 40 000 1

45

50

55

60

40 000

40 000

40 000

40 000

Heavy, Nominal, Light

Hear),, Nominal, Light

Heavy, Nominal, Light

Heavy, Nominal, Light

Heav),, Nominal, Light

Heavy, Nominal, Light

Heavy, Nominal, Light

Heav),, Nominal, Light

Heavy, Nominal, Light

Heavy, Nominal, Light

Heav_¢, Nominal, Light

Heavy, Nominal, Light
* See Table 3

Table 7. Desired Closed-Loop Design Eigenvalues

Angle-of-Attack [[ Spiral Roll Dutch roll Dutch roll

(degrees) II F_equency (ra_sec) Damping

5 -.004 -2.2 1.6721 0.7

10 -.010 -2.0 1.5810 0.7

15 -.005 -1.9 1.5632 0.7

20 -.030 -2.2 1.7663 0.7

25 -.018 -2.1 1.7734 0.7

30 -.050 -1.4 1.2935 0.7

35 -.100 -1.0 1.00 0.7

40 -.100 -1.0 1.00 0.7

45 -.070 -0.7 1.5792 0.7

50 -.100 -0.7 1.4759 0.7

55 -.080 -0.7 1.5135 0.7

60 -.030 -0.7 1.5609 0.7

62



Table 8. Desired Eigenvectors

System States II Dutch Roll Mode Roll Mode Spiral Mode

II(Magnitude, Phase(deg))

Sideslip (1 , 0) 0 0

Stability-axis Roll Rate (x , x) 1 x

Stability-axis Yaw Rate (x , x) x x

Bank Angle (0 , 0) x 1

x denotes elements not weighted in the cost function

Table 9. Lateral Stick and Pedals Shaping Functions

Pilot Input 1[ Shape Function

Lateral Stick

Pedals
Output=( 1-0.4788 * ( 1-0.3361 *abs(input)))*0.3361 *Input

Output=0.01 *(2.34838e-03*abs(Input)+0.763225)*Input

Table 10. Measurement Structural Filters t

Measurement Numerator

Frequency

(rad/sec)

Stability-axis 80
roll rate

Stability-axis 150

yaw rate
Lateral 58

acceleration

80

Sideslip rate 80

t Filters have unity steady-state gain

Numerator

Damping

0.08

Denominator

Frequency

(rad/sec)

80

0.08 150

0.08 5 8

0.08 80

0.08 80

Denominator

Damping

0.7

0.7

0.7

0.7

0.7
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Table11.LateralandDirectionalFeedbackGains

Angle-of-Attack
(degrees)

LateralFeedbackGainTable t

Stability-Axis
Roll Rate Gain

Stability-Axis
Yaw Rate Gain

5 -0.6112 -0.7420

10 -1.3001 -0.9917

15 -1.5267 -0.8051

-2.093420 -1.4072

25 -2.2762 -1.1051

30 -1.4900 -1.7434

35 -1.1466 -1.9652

Lateral

Acceleration

Gain

-0.0019

-0.1014

-0.0005

-0.6063

Sideslip
Rate Gain

-0.3825

-0.1852

-0.6436

-1.2320

0.3622 -1.1257

0.1121 -1.2376

-0.2291 -0.9062

40 -1.0211 -1.3905 0.0175 -0.4289

45 -0.9574 -0.2758 -0.6353 -1.0400

50 -0.8741 -0.5382 -0.2759 -0.9231

55 -0.7826 -0.3339 -0.0765 -0.7941

60 -0.6847 0.0901 -0.3657 -0.1400

Directional Feedback Gain Table t

Angle-of-Attack

(degrees)
Stability-Axis Stability-Axis Lateral Sideslip

Roll Rate Gain Yaw Rate Gain Acceleration Rate Gain

Gain

5 -0.0524 0.1184 0.0524 1.7372

10 -0.0122 0.1826 0.0607 1.7539

15 0.0857 0.2316 0.0600 1.5931

20 0.2006 0.3522 0.2004 1.9451

25 0.2903 0.4131

30 0.1704 0.7166

35 0.1384 0.7926

40

45

50

-0.0608

0.3635

0.3420

0.4468

0.1073

O.3262

0.0183 2.1152

-0.0254 1.6765

-1.3296 1.3411

-2.0258

-0.2938

0.2016

55 0.3158 0.3086 0.1557

60 0.3007 0.1606 0.2077

1.2669

.5237

! .3646

1.5059

1.3010

t Gains are for roll rate in (rad/sec), yaw rate in (rad/sec), lateral acceleration in (g's), and sideslip rate in
(rad/sec)
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Acceleration

Command

Lateral

Directional

Table 12. Acceleration Command Structural Filters*

Numerator Numerator Denominator Denominator

Frequency Damping Frequency Damping

(rad/sec) (rad/sec)

140 0.74 40 0.6

140 0.74 40 0.6

*Filters have unity steady-state gain

Table 13. Closed-Loop System Dutch Roll Cancellation

Angle-of-Attack

(degrees)

(_ co_ / _ar _Odr) (o_epI O_clr)

5 1.01 1.00

10 1.03 1.00

15 0.92 1.01

20 0.87 1.01

25 0.95 1.00

30 1.00 1.00

35 1.04 1.02

40 1.06 1.02

45 1.00 1.00

50 0.92 0.99

55 0.92 0.99

60 0.98 0.91
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Table 14. Stability Margins for

Angle-of-Attack

(degrees)

lg-15k ft

(i.tR)-t/freq

Variations of Stability Derivatives: Yv, Nv, Lp, and Nr

1g-35k ft
lg-25k ft [(laR)-'/freq (laR)-Tfreq

4g-25k ft

(_tR)-qfreq

5 3.99/0.52 4.25/0.52 4.22/0.52 4.57/0.52

10 3.25/0.52 3.61/0.52 3.90/0.52 3.73/0.52 3.51/0.52

20 3.36/0.52 4.88/0.52 6.04/4.90 3.68/6.09 2.78/6.54

35 2.99/0.52 2.76/0.52 2.43/0.52 1.54/0.52 1.23/0.69

40 4.14/0.52 3.34/0.52 2.15/0.52 1.39/0.52 0.95/0.74

45 5.81/0.52 5.51/0.52 4.52:0.52

50 4.25/3.40 4.53/3.94 5.20/4.23

4.53/3.94 4.86"4.2355

1.35/0.78 0.97/2.20

3.85/3.66

Frequency in units of radians/second

Table 15. Stability Margins for Variations of Control Derivatives: L_ail , Nrud, L_istab, and Nyje t

Angle-of-Attack II lg-15k ft lg-25k ft lg-35k ft 2g-25k ft 4g-25k ft

(degrees) II (VtR)-t/freq (kt_)-'/freq (tx_)-Tfreq (_t_)-_/freq (_tR)-t/freq

5 1.11/1.42 1.09/1.53 1.09/1.53 1.17/1.90

10 1.04/1.23 1.01/1.23 .98/l .23 1.15/1.65 1.11/2.05

20 1.34/1.15 1.31/1.15 1.27/1.15 1.51/1.65 1.65/2.05

35 2.19/0.52 2.33/0.52 2.49/0.74 2.62/0.80 2.51/2.95

40 1.46/1.06 1.32/1.53 1.15il .90 1.08/2.20 0.83/2.95

45 2.32/0.69 2.53/0.80 2.64/0.69 3.31/.92 3.14/6.54

50 2.87/0.60 2.73/0.64 2.62/0.52

55 4.72/0.86 5.02/0.92 8.58/0.99

Frequency in units of radians/second

Table 16. Lateral-Directional Coupling Guidelines

ACw
Maximum Excursion From

Target Condition

Act A_
90* +6" 7* adverse

1° proverse

90* =_ 360* +10 ° 7 ° adverse

! ° proverse
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Table 17. Co0per-Harper Ratings from Five Pilots for all Maneuvers

Maneuver

1-g 360* roll

with bank angle

capture

and a regulation

from target a

Loaded roll at M=0.6

with bank angle

capture

and a regulation

Target

5=5 °

a= 15°

a= 25 °

a= 35 °

a= 45*

a= 55 °

5= 65 °

Loaded roll at M=0.4

with bank angle

capture

and a regulation

Target tracking
M=0.6

Target tracking
M=0.45

Lat./Dir. target

acquisition

Target tracking

Pitch

Rating*

Pl [ P2 [ P3 [ P41 P5

2 2 2 2 2

5 4 4 4 4.5

P1 ]P2

4.5 4

5 3

Roll

Rating*

P31 P4[P5

5 3 5

3 3 5

4 3 2.5 3 2.5 3 3 2.5 3 3

3 2 3 3 2 3 3 2.5 3 3

3 3 3 3 2 2 3 2.5 3 3

2.5 3 2.5 2 2 2 3 3 3 3

3 3 2.5 3 2 4 3 4 3 4.5

3 2 2 2 4.5 4 5 3 5

4 3 4 3 3 4 4 5 3 3

_=5 °

5=15 °

5= 25* 3 3 4 3 3 3 3 4 3 3

5=15 ° 4 5 4 3 5 4 3 3 3 3

a = 25 ° 3 4 3 4 4.5 3 3 3 4 3

a =35 ° 3 4 3 3 3 3 3 3 3 2

3-g Target 3 5 4 4 5 2 4 3 3 4.5

7 4 4 3 3 4.53-g Target 4 6 3 4

a =30*

5= 30 ° 5 4 5 5

5 5 4 4 6

7 4 3 4 3 5.5

5 5 4 4 7

4.5 5.5 5 5 8 3 4 4.5 3 6

Lat./Dir. target ct = 45*

acquisition

Target tracking a = 45 °

t Pi denotes rating from pilot number i

Table 18. Percentage of Ratings where CHR Spread was less than a Given Value

Difference between Percent of ratings from 5 pilots minus 4

max. and min. CHR 5 pilots outlying points from

1 pilot

< 1 40% 46%

<2 76% 84%

<3 92% 100%

<4 98%

<5 100%
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