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Abstract

Determination of all the coefficients in the crack tip field expansion for monoclinic

materials under two-dimensional deformation is presented in this report. For monoclinic

materials with a plane of material symmetry at x3 = 0, the in-plane deformation is decoupled from

the anti-plane deformation. In the case of in-plane deformation, utilizing conservation laws of

elasticity and Betti's reciprocal theorem, together with selected auxiliary fields, T-stress and

third-order stress coefficients near the crack tip are evaluated first from path-independent line

integrals. To determine the T-stress terms using the J-integral and Betti's reciprocal work

theorem, auxiliary fields under a concentrated force and moment acting at the crack tip are used

respectively. Through the use of the Stroh formalism in anisotropic elasticity, analytical

expressions for all the coefficients including the stress intensity factors are derived in a compact

form that has surprisingly simple structure in terms of one of the Barnett-Lothe tensors, L. The

solution forms for degenerated materials, orthotropic, and isotropic materials are also presented.

Introduction

The use of fracture mechanics to assess the failure behavior in a flawed structure requires

the identification of critical parameters which govern the severity of stress and deformation field

in the vicinity of the flaw, and which can be evaluated using information obtained from the flaw

geometry, loading, and material properties. In the linear elastic solids, stress intensity factors, ki (i

= I, ]I, m), represent the leading singular terms in the Williams eigenfunction expansion series

near a crack tip. ki are often assumed to be unique parameters associated with crack extension.

The physical implications of the higher-order non-singular terms have been noted by Cotterell

(1966). Especially, the so-called T-stress, second term of the crack tip stress field which

represents the constant normal stress parallel to the crack surfaces, has been found as an

additional parameter in characterizing the behavior of a crack (Larsson and Carlsson, 1973; Rice,

1974). Cotterell and Rice (1980) showed that T-stress substantially influences the fracture path

stability of a mode-I crack. The stress biaxiality parameter (Leevers and Radon, 1982; Sham,

1991) has been tabulated as a function of relative crack lengths and overall geometry in many

fracture test specimens for the isotropic solid using computational techniques (e.g., Kfouri, 1986

and Sham, 1989 and 1991). Kardomateas et al. (1993) examined the third-term of the Williams

solution and concluded its significance in the center-cracked and single-edge specimens with

short crack lengths.

In anisotropic linear elastic solids, Gao and Chiu (1992) examined the T-stress term of a

crack in infinite orthotropic solids under mode-I loading. Because of the material anisotropy



involved, theT-stresstermis affectedby thematerialproperties.It is alsoexpectedthat,in
general,mixed-modecrackbehaviorandthebiaxialityparameterarealsodependenton the
materialanisotropy.Thus,it is essentialto developefficientcomputationaltechniquesto
determineT-stresstermcoefficients including the stress intensity factors in anisotropic cracked

materials with finite geometry. In this report, two methods based on the J-integral and Betti's

reciprocal theorem are proposed to obtain compact forms in calculating all the stress coefficient

terms in the crack tip field expansion for monoclinic materials with a plane of material symmetry

at x3 - 0. To determine T-stress term using the J-integral, the method by Kfouri (1986) is

extended to anisotropic solids. The closed form solution of the auxiliary field, a point force

acting at the crack tip, is derived for this purpose. A path-independent integral based on the

Betti's reciprocal work concept has been used for determining the stress intensity factors by

Stern, Becker, and Dunham (1976), Hong and Stem (1978), Sinclair, Okajima, and Griffin

(1984) for isotropic materials; Soni and Stem (1976) for orthotropic materials; and An (1987) for

rectlinearly anisotropic materials. This path-independent line integral is also extended to

determine all the stress coefficient terms with auxiliary fields.

Mathematical Formulation

In a fixed Cartesian coordinate system xi, (i = 1, 2, 3), consider a two-dimensional

deformation of an anisotropic elastic body in which the deformation field is independent of the x3

coordinate. In this report, attention focuses on the monoclinic material having three mutually

perpendicular symmetry planes and one of the planes coinciding with the coordinate plane x3 = 0.

In this case, the in-plane and out-of-plane deformations are uncoupled. For in-plane deformation
the strain and stress relations can be written as

e =s'<7 (1)

where e = [e_, e2, y_2] r, o- = [o'_, 6_2, o'_2]r

or

J

e i=s oct j, i,j=I, 2,6

where s U = sji are reduced compliance coefficients defined bys o = sij - si3sj3 [ $33.

Throughout the report, all indices range from 1 to 2 and the summation convention is

applied to repeated Latin index unless otherwise noted. The bold-face letters are used to represent

matrices or vectors. A comma stands for differentiation; overbar denotes complex conjugate. A

symbol Re stands for real part; kn for imaginary part.

In the absence of body forces, general solutions of the displacement vector u, the stress

function _, and stresses _ for in-plane deformation, according to Stroh formalism (Ting, 1996),

can be represented by

:1 | ]'



or

where

u= Re[_.aa,_do, f (z,_)]
_=1

2

gp= Re[__b,_d,_f(z,_)]
0_=I

(2)

u : Re[A(f (z)>d]

(p : Re[B(f (z))d]
(3)

cr,, = -_.,2, o'_2 = _,, (4)

<f(z)) = diag[f(z,), f(z2)]

z,_ = xl + I.t,,x2 , Im[_ ] > 0

flz) is an arbitrary function, d is a unknown complex constant vector to be determined./.tc_,

aa, and be, are the Stroh eigenvalues and corresponding eigenvectors determined by elastic

constants only. For in-plane deformation, u_ are given by the roots of the characteristics

equation:

t 2 ,, t
S;lr/l 4 -- 2S;6/.t 3 + (2S;_, + $66)],1 - 2s26/.t + s:: =0 (5)

with positive imaginary pans. From energy consideration, Lekhnitskii (1963) showed that the

roots are either complex or purely imaginary and cannot be real. A and B are Stroh matrices

given by

[1 ] [;B=[bl, b2]= , I-tz B_I_ i 1
1 ' I.tl - I1,. _

t 9

--SI6J"/'a + SI_ ' qa = -$26p_ = . sl2_ + s22/I-t,_. (8)

The eigenvectors aa and ba are unique to an arbitrary multiplier. Introducing normalization

factors ka, we have

A Lkiq, k2q2 j, k, k s J

The values of kc, satisfy the conditions

2a_r b_ = _,_

(9)



Basedon theStrohformalism,thematricesA and B defined in eq. (9) satisfy orthogonality

relations. For in-plane deformation, these relations can be expressed by

where

It can be proved that

BrA+ArB =I (10)

nrA-+ ArB- = 0 (11)

2kl-(ql - pd.tl) = i, 2k2(q2 - p21.t2) = 1

B-r B -_ = -2iL -_ , L-' = -Im[AB -_ ] (12)

where L is a real, symmetric, and positive definite matrix which will be used frequently in the
sequel.

Note that the normalization factors cancel each other for the term AB 1 in the second

equation of (12). Therefore there is no need to introduce the normalization factors in computing

L _. From eq. (12)2, it is easy to get

L-I =sll d , L- s(l(be_d2)
(13)

I-t_+112. = a + i b , l,lt_z = c + i d ,

e = ad - bc - Im[/.t_/.z 2(_ + _2 )] (14)

For crack problems, it may be convenient to introduce a complex potential function

(Guo, 1991) such that

• =B(U(z))B"g (15)

where g = Bd, then the displacement expression in eq. (3) and stresses in eq. (4) can be rewritten

in terms of the potential function

u=Re[AB4_] (16)

ai_ = -Re[_.2], 0"/2 : Re[_u_] (17)

The traction vector t at a point on a curve/"with unit outward normal n is given by

(18)l-d_i -] Reld_]
":-ReL-G---sJ''=- L-ds-sJ

where s is an arc length measured along Fas shown in Fig. 1. Thus, without loss of generality,

the traction free boundary conditions on a boundary may be written as

Re[q_] =0 on F (19)

71 Ili



x 2 _ t

x I

Fig. 1 The surface traction t on a curved boundary Fwith a unit outward normal vector n.

The resultant force and moment about the x_ axis due to the surface traction t acting on F

between st and s2 (s2 > st) are

f.%_- t(s) ds = Re[q_(s_ ) - _(s 2)] (20)

-,F(x,,2 -z]l;:
where

If Fencloses a region and there are concentrated forcer and moment M inside the region, then

the equilibrium of the body demands that

- Irt(s)ds = f (22)

- ;r (xlt2 - Xzt_)ds = M (23)

Crack-tip fields

Consider a crack in the anisotropic body. Let a coordinate system be attached to the crack

tip and crack plane lies on the Xl - x3 coordinate plane. The configuration is shown in Fig. 2. The

crack faces are assumed to be traction-free, Note that the crack plane may not coincide with the

symmetry plane of the material.



n

crack

Fig. 2 A cracked body and a contour around a crack

To find the solution for the crack tip field, employing eq. (15) and (16) with

f,, (z,_) = z_ ÷z, we take the solutions u and _ in the form

u= Re[A(z_÷')B4 g]

where the complex variable zc, is defined by

z_, = r(cosO +/.t,, sinO), -_gON_

(24)

(25)

g is a complex constant vector and _5is the complex constant. We seek admissible values of _5

subjected to a restriction in which the strain energy is bounded as r --+ 0, that is

- 1 < Re(S)

To maintain a unique solution for _ in eq. (25), we introduce a branch cut along the

negative x_ axis with a convention, that is

z6+t = F6÷le+_i(6+l)xat 0 = +to

Insertion of eq. (25) into traction-free boundary conditions

Re[_] = 0 at 0 = +:r

(26)

(27)

(28)

(29)

yields

ra-$ ei'_(8+g+2)g + _ = 0

rS-g e-"<_+g+2)g + _ = 0

Subtracting of eq. (27) from eq. (26) leads to

[e i2_5+g÷2)'_- 1]Ig = 0

where I is a 2 × 2 identity matrix. For a nontrivial solution of g, we must have

det[(e i2<a+g+2)_r- 1)I] = l(e - 1)I = 0



or

Re(S)=(n-2)/2, n=1,2,3,... (30)

With eq. (30), from eq. (26) or (27), we have

= --r/2tm('s) cos[27rRe(3)] g (31)

Since _ is a constant, from eq. (31), (30),

Im(8)=0, 3=(n-2)/2 (32)

1 1 3
_-= g, 3 22'2

-g, 3=0,1,2,..

that is, 3 is real, the vector g associated with S is real if 3 = -1/2, ½, 3/2, ...; and g is pure

imaginary if 3 = 0, 1, 2 ..... It is clear from the determinant given in eq. (29) that each of the

eigenvalues 3 is a root of multiplicity two. Since g has two arbitrary components, we have two

independent eigenfunctions associated with the double eigenvalues 3. Therefore the assumed

forms of u and _ given by eq. (24) and (25) are justified; no logarithmic type of solution form
exists.

Superimposing all the solutions with different orders of r, the crack tip field can be

constructed as

a.+l -1

u= £Re[A(z )B g,]
n=l

n=l

(33)

where 3. = (n - 2) / 2. g. is real for n = 1, 3, 5, .--, g. is pure imaginary for n = 2, 4, 6,-.., and g°

are dependent on the geometry of the cracked body, material properties, and loading conditions.

Similarly, there is no need to introduce kc, in calculating ¢Y0and ui from eq. (33).

Performing algebraic calculation and defining g. = [g._, g.2 ]v, the stress and

displacement components can be written as

O'l, ='y__.(3. +l)r a" Re{ 1.=1 /-q /-/,_

_a=Z(3,+l)ra, Re{ 1_=l lat - t-t2

Z (3. + 1)r a" Re I !£Y12
_=l (/-q /-/2

[g., (/.tzg_"-/.t_g_" )+ g.z/./l/.t2 (u292a" -/.z,g_" )]}

--b., (d"-¢")+ ,..¢")]} (34)
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kq2q2 -qlq_ :i)+ g.2Wlqzg2 --/'tzqlql
n=l //I -- ///2

(35)

where q,_ = cos 0 +//,_ sin 0.

For the leading-order term, Sj = -1/2, letting g_ = .qr_/7r k, the singular solution and T-

stress term for the monoclinic solids can be written in the form:

1 (k,o'_')*/_ ,.rm)+T +O(r ''2)
1_" _ _ -- ,_llV ll

(36)

Is;,1

LS,6j

(37)

E(I) t_(l) ,o(l) = eft.t(] )

9__r/..> <,), [s_cosO+s_6sinO ] IcSion:]u =_--_Vczul +kuu. )+Tr +(Or +O(r 3/2)
st2 sin 0

(38)

where o"("_ u (n), ,..., are the n-th order terms of the crack tip field; the subscripts I or H indicates

the distribution associated with mode-I or mode-II, k = [k., k_ ]r ; k/and kH are stress intensity

factors for mode-I and mode-II respectively, co is a constant representing rigid body rotation, and

I//2 //_ )](O"')' = Rel-//1-_-2 _2
L//1 -//2

//t //2 _ '

- L//,-//2 477,

({_"11)H = Re

(0"22)" = Re

1

1/1 -//2

1

//1 _//2

:l !!



_u.).,=Re[l_(_2_-P"Z'l,,u_

For the second-order term, 62 - 0,

=,r[,: osO,s: sinO]s,no ,or'I- in070 (39)

o'I_ ) = T , o22-_2)= o.I_ = 0 (40)

where co represents the rigid body rotation, and

T = -i (g,_.lb + g,_zd), co = -i s_l(g,.id + g22 e) (41)

Clearly the T-stress term is dependent on the material properties in anisotropic solids.

For orthotropic materials where xl and x2 coincide with the material symmetry axes, the T-

terms become

.Dr,_os0] o_r/-_in0/r1 o_)-rU (2) =lr/ , 14-

I s,2 sin 0 J Lcos0j

In isotropic solids, the second-order terms are

u,=_7"rF cos0l+cor[-Sin01o._?_=T for plane stress
="-E-L-v sin0J L cos0 J'

uC2)=T(l+v)r[(1-v)c°sO'+cor[-sinO] cr_'=T for plane strain

E U -vsin0 L cos0 _] '

For the degenerate materials, the crack tip fields are derived in Appendix A.

Auxiliary Fields associated with the Crack Tip Fields

Some auxiliary fields with higher-order singularities are needed in order to determine the

coefficients in the expansion of the crack tip field by the use of conservation laws of elasticity

and Betti's reciprocal theorem. Since the negative integers are also the eigenvalues of the crack

problem which satisfy zero traction on the crack surfaces and satisfy the field governing

equations of the anisotropic solids, the associated eigenfunctions can be conveniently used as

auxiliary (pseduo) fields. Note that each eigenfunction with higher-order singularity has

unbounded energy near the crack tip and thus corresponds to some concentrated source at the tip.

This eigenfunction can be imagined as a self-equilibrated solution to the crack problem under

some specified loads. These auxiliary fields may be obtained by choosing the values of n in eq.

(33) as negative integers, that is,



Re A a,,,_-i B-_

(l)a n/ a,,,+z \ .-.-1.
= D \ Z ] lJ rtm

(42)

o 11

cr_1= -Re[O,.2], G2 = Re[O_,_ ] (43)

A,, =-m/2,m= 1,3,4,..., (44)

h m = [h,, I , h,,,.] r

where h,, are arbitrary constant vectors, h mis real for m = 1, 3, 5, .-.; h,, is pure imaginary for m =

4, 6, 8,-.-, Utilizing eq. (22-23), the auxiliary fields, except m = 4, defined by eq. (42) yield zero

resultant force on any contour Fwhich encloses the crack tip shown in Fig. 2. The corresponding

resultant moment about the x_-axis, produced by the tractions acting on the contour Fis also zero

for the auxiliary fields in eq. (42). The special case of A,. = -2 or m = 4 can be also directly

explained from eq. (23). In this case, the function associated with [0, h4_,]r corresponds to the

particular solution for a crack under a concentrated moment about x3-axis, (-2Jr i h42 ), applied at

the crack tip; the function associated with [hat , 0] T corresponds to the homogeneous solution

which satisfies zero concentrated force and moment at the crack tip.

From eq. (42)-(44), the stress and displacement components of the auxiliary fields are

or(. ) { 122 =(An, "+" 1)rA'° Re • -
121 fl_

o'_ ° =(A + l)r a'' Re(. 1

L12_ 122

__[hml / Atn ).-_- hm 2 (121_ m dt'n )] t
_,g: -g_ .... 12:g,

-- __ _2 _

(45)

__ L02_ 2, _ p,q_,,,.i )+ h.,zW, p2(_2 _ I-t..P,g,.,
u l = 12t 122

g

a __ ra.,+t _ 1U2 Re
[ 12l - 122

h [ An_+l A,,3 +1 _]1

,_, I,q2q2 q,q_,,,+, )+ ' a.+,
-- -- hm2 _-/lq2q2 ' - 122q1_1 J];

(46)

In the following two sections, stress intensity factors, T-stress term, and coefficients of

higher-order terms are determined using the J-integral and the Betti's reciprocal theorem

including the use of above auxiliary fields.

(a) T-stress Term

J-Integral

IO



Z conservationlaws(KnowlesandSternberg,1972)for a planeanisotropicelasticity
problemmaybewritten as

J_ = fc (Wnk -tiui.k)ds= 0, k= 1,2 (47)

for an arbitrary closed contour C that encloses no defects, cracks, or material inhomogeneities. In

the above equations, W is the strain energy density, W = oije 0 /2, where _j and e0 are the stresses

and strains respectively; ti are the traction components defined along the contour, t, = _ n_; nk are

the unit outward vector normal to the contour path. Letting k = 1, the conservation law is reduced

to the Rice' s path-independent J-integral or the rate of energy release rate per unit of crack

extension along the xl - axis, which is given by

J = fr(ffren, /2-tru.,)ds (48)

where Fis an arbitrary path which starts on the straight lower face of the crack, encloses the

crack tip and ends on the upper straight face with the positive direction in a counterclockwise

direction shown in Fig. 2. Here, the crack surfaces are assumed to be traction-free.

Consider a cracked body under the two-dimensional deformation. The components of

stress, strain, and displacement are represented by a_i, e_, and u_, respectively. As r _ 0, the

asymptotic fields including the constant T-stress terms are given before. Now the coefficients of

the T-stress terms and third-order terms are derived using conservation laws.

In general, for the purpose of determining the coefficients g° of the term r 6° (ft, > -1 / 2)

in the actual crack tip stress field, we may employ the J-integral method and follow the following

procedure:

(i) find an auxiliary (pseudo) field that has singularity o'_j - r -8°-1 as r --_ 0. It is convenient to

select auxiliary stress field which gives zero traction on the crack surfaces and contains only

the stress singular term r -6"-1 ;

(ii) superimpose the actual field (the mixed-mode boundary value problem, in general) on the

auxiliary field and represent the J-integral for the superimposed state as

where

Js = J + Ja + JM (49)

J, =Ir[(Cr +Cr_)r(e +e_)n_/2 (t +t")r(u_ +u _- ,, )]ds

J, = Ir[(O'") re ° n,/2-(t°)ru_] ds

and

JM =Js-J-J,

=Iv {[°'re_ +(aa)r 6]n'/2-tru_-(t")ru'l}ds

11



f
tru a (t _ )r= Jr [O'vg_ ni - ,i - u,1]ds

= (_su_4n, - t,u,., - ti ui, 1)ds
F

(50)

where the superscript or subscript "a" denote quantities referred to the auxiliary field; J_ is the J-

integral for the superimposed state; J for the actual state; and Jo for the auxiliary field and JM is

the interaction integral. In the sequel, we assume that the J-integral is path-independent for both

the actual field and the selected auxiliary fields, denoted by J and J,_. Then the integral ,Is for the

superimposed state, thus JM, is also path-independent. If the auxiliary fields given by eq. (42) are

used, it is readily proved that

J. s0, for A =-1/2

J.=0, for A <-1/2; (51)

(iii) evaluate armas F --)0. For simplicity, Fmay be taken as a circle with radius r, as r --) 0, the

only terms in the integrand that contribute to JM are the cross terms between r a"in the actual

stress field and the auxiliary stress term with order r-a°-_ ;

(iv) carry out the routine manipulation, the exact expression for JM can be obtained as

JM = JM (g,) when r --* 0;

(v) evaluate JM for a finite contour F using the computed actual field and the exact auxiliary

solution; and determine the coefficients g,, from the value of JM and the expression of

JM = JM (g,) as r --_ 0.

In extracting the T-stress in eq. (33) org2, we make use of another auxiliary field, that is the

solution to a point forcer (per unit thickness) applied at the crack tip. Under the load, tyi_ _ r-'.

Note that the point forcefmust be resisted by traction t applied to some boundary C in achieving

equilibrium. In the Stroh formalism (Ting, 1996), the real form solutions due to the point-force

application can be written as

2u_=-[l_---LrI+S(O)lh (52)

2_p'_= L(O)h (53)

where h = L-'f, f = [f_, f21 r

S(O) = 2 Re[A(ln(cos0 +/.t sin 0)B r ]

L(O) = - 2 Re[B(ln(cos 0 + # sin O)B r ]

xj - rcosO, x2 - rsinO.

It assumes the values

12
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ln(cos0+p_sin0)=f 0 0=0

L+i_z 0 =+_z

In a cylindrical coordinate system (r, 0, x3), let tr and te be the traction vectors on a

cylindrical surface r = constant and on a radial plane 0 = constant, then

tr =--O.0, to :4) r
r

(54)

(/ t'/

Ct_ =nrt , tyro =mrtr=nrto ' (yo =mrto

where n r = [cosO, sin 0] and m r = [-sin 0, cosO].

It follows from eq. (52) and (53) that

to = (P,r= O, O"o = ff ,o = 0

a T a
¢7_ = -n 0,o / r

or

_ fJ im_[_,l-t2-1)sinO+(u,+lz,_)cosO]cosZO-sinO}0"_= 2lrr { Cjj_2

and

f2

2_r-_Im{ [(/'t_l't2-- 1)c°sO- (/'/_ + ]'/2)sinO]sin2q_g20 + ]'/J]'/2cosO}
(55)

(

u _ fl t '2re s_j In
k

f2 { ,2_z s_l In

For isotropic materials,

q2 In g2 -- ql In gl

Plq21n q2- P2qlln ql

(56)

O'ro = O'g = 0,
1

_ = -_(f_ cos0 + A sin0)
_r

(57)

1

8_G (g + 1)In r
k (_c - 1)0

- (K- - 1)0 ]

(x" + 1) In rJ -

- 2 sin2 0

sin 20
(58)

_'= 3-4v

13



By superimposing the actual field on the auxiliary field, and using the path-independent J-

integral for the monoclinic elastic cracked body, it can be proved that

I

Js -- J+ Tslj fl +o9f2

JM = Ts_, f_ +o9 f2 (59)

Note that because at: _ r -_ , ui.jo_ r-I

t" a )ds 0J, = fr (Wanl - , u,., =

Kfouri (1986) used the method to calculate the T-term for isotropic materials. Wang et al.

(1980) and Wu (1989) applied the J-integral to determine the stress intensity factors for

rectilinear anisotropic solids and general anisotropic materials respectively. In this report, the

method is extended to determine all the coefficients in the crack tip field expansion for

monoclinic materials. From eq. (59), it follows that

Jg y.=0 JM y_=0
T-- and o9-

s,, f, f2

Detailed proof of eq. (59) is given below:

For general anisotropic linear elastic solids, we have the following relations

a a _ Q_ a aa_jei} = cok,e,,ei_ a,i ij and aijg _ = _7ijui4

where cij_,= c_,i_.From eq. (50),

Jg=_r (°'ouT.jn'-t'uT.'-t;u_.')ds=f r (°'i2du;d--'-_-- t_" ui., ) ds (60)

where du{' / ds is the tangential derivative of u;. As r --_ 0, we evaluate armand note that the

only terms that contribute to Jg are the cross terms between T andf After substituting these

fields into the integral and performing the routine algebra, the integral J_ may be evaluated as

Jg = limf (o'_2 du7 "
r-_0 or _ - ti ui,I ) ds

f ._(2) du7 __ (2)= tun ---_iui.l)ds
r ds

=_ f U(2) a
Jr i.l ti ds (61)

f (" (2)'rt" ds=-Jr u't )

=-(ul2))rf t" ds
,1 r

,t f

In the above derivation, eq. (22) has been used. From eq. (33) and (39) via (12)2,

14
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u (2) = -i L -I g2 = 1,I

Insertion eq. (62) into (61) leads to

JM =-igr L-_ f =-i fr L-l g2

and

(62)

(63)

JM = T s_, f, + cof2 (64)

Eq. (63) and (64) can be used to calculate g2 and T. Asfis arbitrary, it is convenient to

choosef to be the following values

[1,0] r-e,, [0,1] r-e 2

respectively. Note that ek has a dimension force/length. Correspondingly, eq. (63) yields two

linear equations and they are, in matrix notation,

]M = -i L'I g=

where

JM [(1) 1(2) IT= [_M ' _M

and r _k) is the value of JM when f= ek. Therefore,_M

g2 = i L ]M (65)

Using eq. (64), The T-stress and co can be obtained as

T=l(1)/s_-M , 0")= 1(2)--M (66)

However, the choice of auxiliary field is not unique. For instance, we may choose the

auxiliary fields as the sum of the field (a',u') for the point forcefand a field (a",u") which is

a known solution for the same cracked body under some loads on the outer boundary, then

0 "a = 0" + 0""

U a = U'+U t'

Superimposing the actual field on the new auxiliary field, we have

J,[o" + a a ] = J[o'] + J_ [o'" ] + Ju[a,a _ ] (67)

From the definition of JM,

JM[a,a _ ] = JM[a,a'+a"] = JM [O',O"] + JM[a, O'"] (68)

JM [a, a"] = J,[a + a"]- J[a] - J[cr"] (69)

In elastic materials, J is equal to the energy release rate G in the absence of body forces and

dislocations and is related to the stress intensity factors (see Appendices B and C) through

15



Therefore, eq. (69) leads to

G = 1 kr L-lk (70)
2

JM [O',O'"] = krL-_k " (71)

where k is the stress intensity factor for the state (or, u), and k" for (or", u").

Using eq. (71) and (64), eq. (68) can be expressed by

JM [O',o'"] = Ts_f, + c.of2 +krL-_k" (72)

Inserting eq. (72) into (67) and utilizing eq. (13) yield

J,[ff + o'"] = J[o'] + J,,[o'"] + TS_l f_ +oof,_

+ s;_ Im[(.u_ + ].12)kakt7 + ].l,].12(kttk'/+ k;_k,)+/.tl/.t2 (_ + ]12)k,k;'] (73)

For isotropic case,

PP b'

J, [O"+ O'" ] = J[o'] + Ja [O'a ] + T s_, f, + co f2 + +2s_, (k, k H + k, k,') (74)

For plane strain under mode-I loading, if f= (f_, 0), then eq. (64) and (74) reduce to the results
P

given by Kfouri (1986) and s,_ = (1 -v2)/E

(b) The third term

The third-term coefficient in the asymptotic solution can be also obtained from the J-

integral method. An auxiliary field with singularity o'_ - O(r -3_2) can be introduced by seIecting

m = 3 in eq. (42). By superimposing the actual field (the mixed mode boundary value problem)

on the auxiliary field, the interaction integral JM may be evaluated as

JM = _3 n'h r L-'g3 (75)
2

Following in a similar manner,

(76)

where .IM [Jt_ ) 1 _z>lr and ,_k_.= , _M , a M is the value of JM when h 3 = e k , (k = 1,2). ek has a dimension

of force/(length) m

In general, superimposing of an auxiliary field with o'_ _ r"" on the actual field and

applying the J-integral to this combined state with derivations proved in Appendix D for n :/: 2,

we can get the interaction integral JM denoted by J.,,., that is

= 1-h r--IJM, -27r6,(_,+ ) ,,L g,, n=1,3,4,5,-.- (77)
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Then

where

L]M.

= _- 2z_-+ 1) '

[ 2z a_ (a_ +1)'

n= 1,3,5,...

n=4,6,8,.--

(78)

Mn -- [I(1) I(2) 1T

lCk)and _M. is the value of J,.,. when

{ e_., n=1,3,5,...h, = iek , n=4,6,8,-..

Here, ek possesses dimension force / (length)1-8.. For the first singular term, introducing stress

intensity factors, k = [k H , k, ] r = _/2 g, for the actual field and k _ = [k_], k_] r = _ 2 h I for

the auxiliary field, JM, and k can be rewritten from eq. (77), (78) as

JM1 =(k_) r L-l k

k = LjMI (79)

where 'IM_ = rim l (2)1r and 1 (_) is the value of JM1 when k"I-_M1 _ _M1 J _M1 = ek •

Betti's Reciprocal Theorem

(a) T-stress Term

For a linear elastic plane problem, Betti's reciprocal theorem can be stated as

Ic(t . u_ - t" . u)ds = O (80)

where C is an any closed contour enclosing a simple connected region in the elastic body; u is the

displacement vector and t the traction on C corresponding to the solution of any particular elastic

boundary value problem for the elastic body; u" and t" are corresponding quantities of the

solution of any other problem for the body. Considering a crack in an anisotropic linear elastic

material, and suppose the crack surfaces are free of tractions for both elastic states. If the closed

contour C encloses the crack tip and extends along the crack surfaces, then it can be shown that

the integral

l = fr(t.u" -t".u)ds (81)

is path independent where Fis an any path which starts from the lower crack face and ends on

the upper. Let (t, u) be an actual state for the crack under consideration, then eq. (81) provides

17



sufficient informationfor determiningtheamplitudefor eachtermin theasymptoticcrack-tip
fields if properauxiliarysolutions(ta, u a) are provided. In this section the Betti's reciprocal work

contour integral is used for computing stress intensity factors, T-stress and other higher-order

coefficients for monoclinic materials. The procedure can be evaluated from the analysis as
follows.

For determining the coefficients g, of the term r e" (S, > -1/2) in the actual crack tip stress

field, an auxiliary (pseudo) field with G_ o, r -a.-2 or u", _ r -6"-1 can be chosen. As r --_ 0, take a

F as a circle around the crack tip and evaluate integral I. When r --, 0, the only product between

g° and the auxiliary terms in the integrand given above can contribute to the integral I. Therefore,

the expression for I = l(g,) can be obtained as r _ 0. The value of ! for a finite contour Fshown

in Fig. 2 is available from the numerical solutions for t and u of the boundary value problems and

the exact auxiliary solution. The g, can be computed from the expression for I = I(g,) and the
value of I.

To determine the T-stress org2 for the crack-tip field from eq. (34), the auxiliary elastic
a --')

field with stress singularity _Yu _ r " as r _ 0 is used and can be obtained from the eq. (42) by

choosing m = 4, that is, in Stroh formalism,

(82)

The moment about x3-axis applied at the crack tip, using eq. (23) and (82), is given by

M = -2/1: i ha,

When Fshrinks to the crack tip, it is clear that only those parts of the integrand in eq. (81) which

behaves like O(1/r) as r --_ 0 can contribute this portion of the integral. Substituting these fields

of the two states into eq. (81), performing the integration for the circle surrounding the crack tip

and evaluating the results in the limit of vanishing radius, the results may be derived, and

I lim[(tu" ta.u)ds -2_ r -_= " -- = h 4 E g2
r-*0 dF

(83)

g2 = t-L- L I" (84)
2re

where T = [I (" , I _2)] and I (k) is the value of/when h 4 = ie_, (k= 1, 2). (Dimension ofek is

force).

From eq. (13), (41), and (84),

1(1) /(2)
,, co=-- (85)

T - 2re s_ 2re

For isotropic materials, the auxiliary displacement vector and stress functions can be modified as

18
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_, = si_O_I1 +cos20 sin20 1 im[h4 ]sin 20 1 - cos 20.]
(86)

rl_ 1 1122c°s30 c°sOor,_"2[ = 2 sin 30 sin 0

rye'2J -sin40

- sin 40

2(cos 20 - 1) sin 20

- 2 sin 30 sin 0

Im[h4] (87)

Eu;l:+E -+l co O+2 i 20 inO-,-
u_J (to- 1)sin0 - cos20 sin0 - (x" + 1) cos0 - 2sin 20 sin 0

(88)

Then the path-independent integral I has the same form as eq. (83). Eqs. (84) and (85) are still
valid.

(b) The Third Term

The coefficients of the third term in the eigenfunction expansion of the stress field can also

be obtained using Betti's theorem. Selecting m = 5 in eq. (42), an auxiliary field with stress

singularity rL_ - r -5/2 desired for this purpose can be obtained. Applying the Betti theorem of

reciprocity to the actual field and the auxiliary field and evaluating the integral I as F _ 0 near

the crack tip, we obtain

I =-31r h-_L-_g3 (89)

Eqs. (89) will be used to calculate gs for mixed-mode problem when the two proper auxiliary

field solutions are provided, g3 can be expressed in the form

g3 = _._1_1 L [ (90)
37r

Applying Betti's reciprocal theorem to the actual fields and auxiliary fields with

o'_ja_ ra,.:, the path independent I denoted by/..,, can be evaluated by

I+ z =-2_ (S, + 1) hi,_ L -_ g, (91)

It follows from eq. (91)

gtl

L/_÷2
n=1,3,5,.--

2zr(3, + 1)'

iLl,+2
n=2,4,6,.-.

2;,r(3, + 1)'

(92)

where

, ITI j = t I_ '> I_ 2'

and lJ k) is the value of/; when
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=f e k, n=1,3,5,--.
h,

ie k, n=2,4,6,-..

Here, ek possesses dimension force x (length) _". The detailed proof is shown in Appendix E.

For the first singular term from eq. (91) and (92), I_ and k can be written as

13 =-re h_L-lgl =-_--_ h_L-Z k (93)

1
k = -_ L r 3 (94)

_27r
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Appendix A

Deformation Field for Degenerate Materials

The solutions for the nongenerate materials can be modified so that they can be applied for

degenerate materials. We write the general solutions for nongenerate materials as

where

u : Re[AB" X(z)g]

= X(z)g

X(z)=B(f(z))B -_

In the limit /11 =/12 = p, it can be proved that the matrix reduces to

where z = x_ + I.t x2;

X(z) = f (z)I + x2f'(z)V

v:[:,:;,]
Hence, for isotropic materials, we can obtain

u : _G Re{[ f(z)E- ix2f'(z)V ]g}

+.2S'(z)v]g
where

1 -t2s_ s_ +S_z
E= , , , . , V=

" - - t2s_s_ sl2 -(sll +sl2) ' 1

For a crack in isotropic materials, choosingf(z) = z a+l and performing routine manipulations, the

e i6"° -- _5,e i['_/2+(_"-_)°]sin g"_

,. ,(_.-_)o JLg,2JJ-o,e sin0

crack tip fields can be represented as

cT_,] [V2ei<_.e-"2> +_5,,e"'.-_)° sinO

o,,/: + l),'_" ReJ/ -_,,e i'8"-''° sinO

0"123 [k ei6"O + _5"e+"2+('s"-l)°] sin 0

[u,] = x-, --r_"+' _Kef/fF(tc+l)e-_t''-"*')'l+2(6.+l)e''"',.., ,.... sin0 (K"- l)e"'"*')' + 2(6 + 1)e ""'''"') sin01Fg., ll(8 )0 it# 6 e)

u: . 4G LL-(_:-I)e +2(S.+l)e sin0 (r+l)e-'r""-'_.")_'-2(,_+1)e'_.,"sinOJkg.:_lj

where _ = 3 - 4v for plane strain; _ = (3 - v) / (1 + v) for plane stress.
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Appendix B

J-integral

The J-integral with a contour F around a crack shown in Fig. 2 can be written as

J = Ir(W n I - t i ui, 1)ds

= llr (ty n dui - t, u,,,)ds

1 r t r=-SSr du- u,)ds

(B1)

Substituting the expressions for't- 2 = _,l, u and t and using the orthogonality relations

BrA+ArB=I, BrA +ArB -=0 (B2)

J can be further expressed by

I ReI_grB-T((S., + 1)(S,, +l)SrZa'+"dz)B-'g. 7 (B3)

1
5,,, = S,_ = -- (B4)

2

It can be readily shown that

Sr z_''+e" dz= = ln(r2 / rx) + i 27r

The term contributing to J is the first term and

J = 1Re{[ln(r:/r_)+i2rglg r B-rB -' g,}
16

By the use of the identity

B-r B -' = -2i 12 t

1 1.71
j=llm{[ln(r21r_)+i2lr]gr L-' g,}=Tg r g,8

eq. (B5) becomes

The above derivation has used the real values ofgi and L q. Since

gl =_f_k

J = Ikr L -l k
2

we have

(B5)

(B6)

(B7)

(B8)

(B9)
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Appendix C

Energy Release Rate G

x2

xl

AY_

/

"C2 (Aa-r,O)

xl
i

Fig. 3 Crack opening displacements for the extended crack and stress distribution

ahead of the crack tip prior to crack extension.

Irwin (1957) realized that if a crack extends by a small amount Aa, the energy absorbed in

the process is equal to the work required to close the crack to its original length. Using a polar

coordinate system with the origin at the extended crack tip, the energy released for a unit area to

extend is written as

G lim 1 [_= o'_2(Aa - r,0) [u_(r, z) - u_ (r,-z)] dr (C 1)
_,,+0 2Aa do

where G is the energy release rate; Aa is the crack extension at the crack tip; cri2 (Aa - r,0) are

the stresses prior to the crack extension; ui (r,___ to) are the displacements due to extension. (C 1)

can be rewritten by

G = _a-+olim2Aal i_, z_r(Aa-r,0)[u(r, rc)-u(r,-tc)]dr
(C2)

By Stroh formulation, the stress vector z2 is written as

*'2(r.0)=_., =Re ZB((a., +l)za")n-'gm
m=1,2,3,...

24

"1 1i



Along the crack plane, 0 = 0,

Za(Aa - r.0) = "_(S., + 1)(Aa - r)e"Re[g.,]
m=1.2,3,-

= _(8 m + 1)(Aa- r)S"g.,
m=1,3,5,...

= _ (j+2)(Aa - -j-l/2r) gzj.l
j=O,l,2,-..

Note that gm is pure imaginary for m = 2, 4, 6, .... For the displacement vector u,

u=Re[ 2A(z_°+_)B -_ gn]
n=1,2,3,...

At the crack flanks, 0 = +zr,

z = rcos(+:rr) = re +-ix, z 6"+1 = r 6"+_e +-i(6"+l)_r

Thus

Au = u( r, rc) - u( r,-rc )

= Re{ _.[A(r"+'e ''6"+°'_ -r'"+'e-'_"+')_)B-'g.]}
n=1,2,3,...

= Re{ _rS"+'Zisin[(8. +l)JrlAB-'g.}
n=1,2,3,---

= 2 _ r _"÷1 (--1) (n-l)/2 Re[U 1 - iSI-2 _]g.
n =1.3.5,...

2 y__: 1x(n-l)/2L -I r 6"+t= _- ) g.

(C3)

(C4)

n=1,3,5,-..

= 2 _F_,(--1)lL-lg2l+lr t+1:2
/=0,1,2,.-.

where the identity - AB -_ = SI2 _ + iI5 _has been used in deriving eq. (C4).

Substituting (C3), (C4) into (C2)

G=liml--_'Z2(J+2)(-1)'g2r÷,L-lg2,+lf_'r'(Aa-r):_A_- - dr (C5)
ao-_o2Aa "7' i r

Introducing a nondimensional variable, x = r / Aa

G= _--,olim--_-iS" S' 2(J +1)(-1)'2Aa"7"7" 2 g2J+'L-' .i÷,+1 1 J_[_-xr g21+l (Aa) f0 xl(1 - x) dx

In the integrand, the linear term of Aa corresponds to the first term orj = l = 0

G = lira 1-_[g_L-lg_Aa_+o(Aa)]

_,_o 2Aa 2 (C6)

=--lkr L -_ k
2
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For the monoclinic solid with plane of symmetry at x3 = 0, L _ under in-plane deformation can be

expressed by

/2_ +/22 = a + ib, /2#12 = c + id

e = ad -bc = Im[/2,/22 (_ l + P2)]

-' s, [_ qF_27G--_ ,,[k2,k,] d eJLk, J

_ 1 s'
--_ ,,[ek_ + 2dk,k z +bk__] (CS)

,{ - _ _ _}
2 s_ Im[/2dz 2 (/2_ +/22)] k_" + 2 Im(/2_/22)k_k 2 + Im(/21 +/22)k

This expression can be reduced to orthotropic solids without cross term of kl and k2 in eq.

(C8). This special case has been formulated from Lekhnitskii formulation and the resuIts are

shown in eq. (26) of ref. (16) by G. C. Sih, P. C. Paris, and G. R. Irwin.
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Appendix D

Determining the Unknown Coefficients in the Crack Field Using the J-integral

The path-independent integral JM from eq. (60) is

du; tTu,,)ds (D1)

Let the actual and auxiliary crack fields

= B l (D2)

dO" = B(fa (z))B-'h (D3)

where

f, (z) = z a"+_, _, = (n - 2) / 2 , n = 1, 2, 3, ....

f" (z) = z _"+l A,, = -m / 2 m = 1, 3, 4, ..-

From the identity

1 1
Re(C) Re(D) = = Re[(C + C ) D] = _- Re[C(D + D)]

Z Z
(D4)

where C and D are complex matrices, we have

a_2 du_/ = du 7 Re[q_g.I ] = d(u a )r Re[O_ ]

= d [Re(AB-_ a ) r ] Re[_ ]

1

= -2 Re[(aB-_dO,, )r (0, + c.c.)]

(D5)

and

dO7
t_Ui, t ds = -Re(--'-_s )ui, , ds

= _ Re(dOa )r Re[AB-'O,]

1
Re[(dO a )r (AB-'O= -- .l + c.c.)]

2

(D6)

where c.c. denotes the complex conjugate of the preceding term, i.e.,

F + c.c.= F + F

Therefore
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=-1 Re[ ._f2 r (hr B-r(df_) ArB{f_'}B-'g" +hrB-r{df_}ArB{-f'} _-'g--"

+ ]
l--

iRe (hrB -r(df )(A rB+B A)(f_)B g_
2 r

+hrB-r(df_)(ArU+ BrX)(f':)U-'g"- )]

Using the orthogonality relations in eq. (10) and (11),

ArB+BrA=I and ArB'+BrA -=0,

A, can be further rewritten as

(D7)

Ju=l-Re[_IrhrB-r(df" }(f.}' B-' g,,
2 L.

(D8)

Defining

I *' a I 6 +A,_R,.. -- rf"(z_)df (z,_)=(a. +I)(A,,,+I) rZ_ dz,,

it is readily shown that

(a) n=m or S. +A., +1=0,

I dz,_ = _S m(S., + 1)[ln(rz / rl ) + i 2,r] ;
Rm. = (S. + 1)(A m+ 1) r z_

(b) n:gm orS. +A., + 1:,: 0,

gmn m

(a. + 1)(2- m)

r/-m

{ [r_,-,.):2 _ q(.-m):2 ] cos(n - m)lr / 2 + i[r, ('-'_):2 + r__"-m):2 ] sin(n - m)a: t 2}

i,e°

(_1): (S. + 1)(2 - m) [r(._.,>: 2 _ r:._.,)/2 ]

-m

Rm" = i(-1): (an + i)(2 - m) [r}n_m)l 2 + rl(._m)/2 ]
_--m

for n-m= 2j

for n-m=2j+l

Using R.. and the identity

B-r B-1 = _2i L-I

denoting J_uas JM.,, h as hm, eq. (D8) becomes
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1JM., = --Re R.,.h
2 L n _1

1 = I R r -1- - Re _. : 2 "'h r "-_i- t) mL g_

=Im[R,.mhmLr -,g.,]+ _Im(R°,.)h_L-'g_ + _Im(Rm.h2L-'g.)
n

n=m+2j,n_m n=m+2j+l

The last two terms of the above equation are zero. Thus the term contributing to the JM,.. is the

term between gm and hm only, and

J M m = Im[ Rmmhmr L-_ g., ]

=hm Lr -1gin Im{-S.,(8., + I)[ln(r 2/q)+i2zr]} , n:/:0

=--2_l_m(am + 1)h,. rL-' gm

or

JM. = -2rc(5.((5. + 1)h rL -' g. (D9)

As hn is arbitrary, we choose

{e_, n = 1,3,5,..-h.= iek, n=4,6,8,.--

Here. ek (k = 1, 2) possesses dimension force / (length) _-_" . Therefore, for a given n, there will be

two different values of JM. denoted by -M.1°)and J_). correspondingly. For the two choices of h..

eq. (D9) leads to

gn

LJM.
n = 1,3,5,.-.

2n'S. (S +1)'

iL_M n (DIO)
n =4,6,8,..-

2rc_. (_. + 1)'

where

I-1 (I) /(2) ]rJMn _ t_ Mn _ _ Mn
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Appendix E

Determining the Unknown Coefficients in the Crack Field Using Betti's Theorem

Following arguments similar to those presented for the JM integral in Appendix D, one can

get the expression for the integral I. The path-independent integral from Betti's theorem is

I = j'r [(u" )rt - (t")r u]ds (El)

Using the complex potential functions, _ and (I)a and identity eq. (D4),

(u") tds = - Re(AB-I_" ) r ] Re[d_]

1
= --Re[(AB-]ddp _ + c.c.)rd_]

2

(E2)

(t" )T U ds = - Re(dO" ) r Re[AB -1_]

I

= -_-Re{[d(_" + c.c.)r]AB-E_}

1
= --- Re{d[(_ a + c.c.)rAB-_dp] _ (_ + c.c.)rAB-]d_}

2

(E3)

[(r2,_r)

fr <' -2 L,.-,o
(t)Tu ds= 1Re{[(_" +c.c.)rAn-'_] -fr(O _ +c.c.)rAB-_dO} (E4)

According to eq. (19), the traction free conditions on the crack faces for the auxiliary field may
be written as

Re[_(z)]=0or_a+c.c.=0 at0=+rc.

Therefore the first term on the right hand side of (B4) vanishes and

fr (t_)T u ds: 1Re[Yr (_" + c.c.) r AB-iddp] (E5)

Substituting (E2) and (E5) into (El) and using the expressions for _ and _ (eq. (D2) and (D3))

yield

I=-2 Re{St (AB-'¢II" + C'c')T d_+ (¢II _ +c.c.)TAB-'d_}

-1Re/ZS h (f ) B(df.)B g.= rB-r , A r -I
2 L.

+ h r B -T (f"}B TA(df. }B-lg. + _r_-r (f.}_rA(df_)B-]g. ]

I=-2 Re Sr hrB-r(f") (ATB+ BrA)(df") B-ig" +

[h-rB--r(/_)(A-rB + BrA)<df,,)B-'g,,]]

3O

_I I i



Using the orthogonality relations, eq. (D7),

where

Defining

_1 Re _., (f )(df.)B g. ]I= 2 [,_ fr hrB-r a -,

-1Re Y_,hrB-r " (z))B-'g.]= 2 [, (frf (z)df,,

fa(z)=z A"+l A,,,=-m/2 m = 1, 3.4, -..

Q.,. =fr.f,_(z_,)df,,(zo,)=(S,, +l)f v a.+a,,,+,-Za aza

it is readily shown that

(a) n=m-2or6_+A.,+2=0

Idz,_
Q.,.m-2 = (6,.-2 + 1) r-_- = (S'_-2 + 1)(lnr2 ! q + i2_:) ;

(b) n_em-2 or _. +A.,+2_0

So+1
Qm_=-2

n-m+2

i.e.

(E6)

[(r_ .... 21/2_ r( .... 2v2 ) cos[(n - m)rc / 2] + i(r(z.... 2_t2+ rl_.... 2)12) sin[(n - m)n: / 2] },

(_l)S+t (_.+1) (r_z._.,+2;Z_rlC._.,+z_lz)
Q.,. = n -(6.m+ 2+1)

2i(_l)J ÷_ (r_("-re+z)/2+ r{.-,.+2)a)
n-m+2 "

for n-m= 2j

for n-m= 2j + l

Using Qm° and expression for L -l, writing I as L, and h as hm, the I -integral from eq. (E6). for a

given Am. becomes

I,. =-lRetY__Q,..hrmB-r B-' g . }
2

= _I Re{_ Q.,. (-2i) hrL -_g. } = -Ira[ E Q.,. h r L -lg.]
2 n n

__ tT L-I=-Im{Q,. .... 2h,. LT-'gin-2} Im E{Qmnnrn gn}_i m ,_..,{Q,.. hrnLr-,gn}
11 Vl

n=,n+2j,n*m-2 m=m+2j÷l

Since the last two terms of the above equation are equal to zero, it can be clearly seen that the

term contributing to the I is the cross terms between gm-2 and hm only.

Thus

Im[ r-, ] r-_I,,, = - Q ..... zh., L gin-2 = -h., L gin-" Im{ (6.,_ 2 + 1)[ln(r 2 / r1) + i2Jr] }

= -2rr(a..2 + 1)h,. rL< gin-2
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or I,+ 2 -2rr(S, + 1 r -_= )h,,.e L g. (E7)

From eq. (E7), following a similar procedure as before, gn can be expressed by

gn _--"

Li.÷2

2_(S. + 1)'

n = 1,3,5,.--

n = 2,4,6,..-

where

in+_ = [/(1) /(2) ]T_ I-*n+2 _ an+2

I (k_ is the value Of/n+, when
.'l+2

=j e k, n=1,3,5,.-.
h,,

ie k, n=2,4,6,--.

Here, ek possesses dimension force x (length) a" .

(E8)
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