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EIGENMODE ANALYSIS OF BOUNDARY CONDITIONS
FOR THE ONE-DIMENSIONAL PRECONDITIONED EULER EQUATIONS

DAVID L. DARMOFAL*

Abstract. An analysis of the effect of local preconditioning on boundary conditions for the subsonic,
one-dimensional Euler equations is presented. Decay rates for the cigenmodes of the initial boundary value
problem are determined for different boundary conditions. Riemann invariant boundary conditions based
on the unpreconditioned Euler equations are shown to be reflective with preconditioning, and, at low Mach
numbers, disturbances do not decay. Other boundary conditions are investigated which arc non-reflective

with preconditioning and numerical results are presented confirming the analysis.
Subject classification. Applied & Numerical Mathematics

Key words. local preconditioning, boundary conditions, Euler equations

1. Introduction. Local preconditioning has been successfully utilized to accelerate the convergence to
a steady-state for Euler and Navier-Stokes simulations[15, 18, 2, 19, 17, 7, 11, 4, 3]. Local preconditioning

is introduced into a time-dependent problem as,
u, + P(u)r(u) =0,

where u is the state vector of length m, r is the residual vector of length m, and P is the m x m pre-
conditioning matrix. Since preconditioning effectively alters the time-dependent properties of the governing
partial differential equation, modifications of the numerical discretization can be required. For example,
upwind methods for inviscid problems must be based on the characteristics of the preconditioned equations
instead of the unpreconditioned equations[18]. Similarly, the behavior of boundary conditions in conjunction
with preconditioning will also be altered. While the effect of preconditioning on boundary conditions is
knownl9, 6, 16}, to date, no quantitative analysis has been performed.

The purpose of this paper is to analyze the cffect of preconditioning on several different boundary condi-
tions commonly used in numerical simulations. Specifically, we consider the one-dimensional, preconditioned
Euler equations linecarized about a steady, uniform, subsonic mean state. The work is an extension of the
analysis of Giles[5] for the one-dimensional, unpreconditioned Euler equations. As discussed by Giles, the
exact eigenmodes and cigenfrequencies for this initial boundary value problem can be analytically deter-
mined. From these, we find the exponential decay rates for perturbations under different sets of boundary

conditions. Finally, we demonstrate the validity of the analysis through numerical results.

2. Analysis. We first present the general analysis of the initial boundary value problem following the

work of Giles[5]. The linear, preconditioned Euler equations are given by,

p g p O p
(2.1) q +Pj o0 ¢q p! q =0,
b/, 0 pc* ¢ P/
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where p, §, p are the perturbation density, velocity, and pressurc, and P, g, € arc the mean density, velocity,
and speed of sound. The speed of sound is related to the pressurc and density through ¢ = vp/p. The
subsonic inflow is located at X = 0 and the outflow is at X = i..

Next, we define the following non-dimensionalizations to siuplify the analysis,

P q P X T
2.2 = -, = -, = —, = -, tEhﬁ
(22) =5 1=z P=ia I L/e
The non-dimensional version of Equation (2.1) is,
(2.3) u; + PAu, =0,
where,
p M 1 0
u= q , A = 0 M 1 ]
0 1 M

and the mean flow Mach number is M = §/é. The boundary conditions for subsonic flow require two inflow

quantities and one outflow quantity to be specified. The inflow boundary conditions can be expressed as,
(2.4) Cinu(0,t) = 0,

where C;,, is a 2 x 3 matrix dependent on the specific choice of indow conditions. Similarly, the single outflow

boundary condition can be expressed as,
(2.5) Couru(l, t) =0,

where C,y; is a 1 x 3 matrix dependent on the specific choice o” outflow conditions.
Equations (2.3), (2.4), and (2.5) represent the initial bouncary value problem which we wish to study.

An cigenmode of the initial boundary value problem is given by
. 3 -
(26) u=e Wt Z airieth/v\(‘
i=1

r; and ); are the right eigenvectors and eigenvalues, respectively, of the matrix PA, i.c.,
(PA - /\,I) r, = 0.

In the following developments, we assume that the eigenvalues hiive been ordered such that the two forward-
moving characteristics arc i = 1,2 (i.e. A;2 > 0) and the backward-moving characteristic is i = 3 (i.c.
Az < 0). The constants o; are the strengths of each eigenmode. Jiven an eigenmode of the initial boundary
value problem as in Equation (2.6), the strength o; can be determ‘ned by multiplying u by the left eigenvector,
l;, where left and right cigenvectors are related by,

(2.7) ( L L 1 )T: ( r oy r3 )_1.

Specifically, since Equation (2.7) implies that 17r; = §;;, we may find,

3
lTll —_ liTe—iwt § ajrjezu:c/z\j — Crieiu(:t/k,'—t).

1

Jj=1



The eigenfrequency w and eigenmode strengths ; are determined by the boundary conditions. For the

inflow boundary, substitution of Equation (2.6) into Equation (2.4) lcads to,

by by b 1
(28) ( 11 12 13 ) ag - 0’

bor b2z bo3
(e %}

where

bir b1z bis
2.9 =Cin .
(29) < bar b2z b3 ) ( o )

As described by Giles[5], a necessary condition for the well-posedness of the initial boundary value problem is

that the incoming characteristics, a1 and az, can be determined as functions of the outgoing characteristic,

b1 bi2
b1 ba

is non-singular. Also, the boundary condition at the inflow will be non-reflecting if the outgoing characteristic

a3. This requires that the 2 x 2 matrix,

does not causc a perturbation in the incoming characteristics. In other words, a necessary condition for non-
reflecting inflow conditions is that by = by = 0.

For the outflow boundary, substitution of Equation (2.6) into Equation (2.5) leads to,

aq
(2.10) ( b3y bza  bas ) az | =0,
a3
where
(2.11) ( bs; bz bas )Zcout( g/ Mg, gilwlMalp,  eilw/A)p, )

In this case, well-posedness of the initial boundary value problem requires that incoming characteristic, as,
can be determined as a function of the outgoing characteristics, a; and ag. Thus, b33 must be non-zcro.
Also, the boundary condition at the outflow will be non-reflecting if b3; = b3y = 0.

The inflow and outflow boundary conditions in Equations (2.8) and (2.10) can be combined as,

(2.12) Bw) | a | =0

Qg

In order for a non-trivial solution of the initial boundary value problem to exist, a non-zero vector, (a1, az, a3)7,

must exist which satisfies Equation (2.12). This is possible for values of w for which,
det B(w) = 0.

Separating the eigenfrequency into its real and imaginary parts, w = w,+1iw;, the amplitude of the eigenmodes
grows as exp{w;t). Thus, in order for the eigenmodes to decay, w; < 0 for all possible values of w.

Finally, we note that the steady-state problem is well-posed if and only if det B(0) is non-zero.[5].



3. Examples. In this analysis, we will consider the one-c¢imensional version of the van Leer-Lee-Roc

preconditioner(18] which is discussed by Lee[8]. For this preconditioncr, the resultant PA matrix is,

M 0 -2M
PA = 0 M 2
0 0 -M

The specific form of P is described in the Appendix. The cigervalues of PA are A23 =M, M, -M, and

the eigenvectors are,

1 0 M LT 1 0 -1
(3.1) (r r i )=[01 1], LT =101 ym
0 0 M 157 0 0 1/M

Some physical interpretation can be given to the preconditioned eigenmodes by considering the strengths

of cach mode in dimensional form, i.c.,

(3.2) L Tux p— &2,
(3.3) L u o § - pg,
(3.4) 137u o p.

The strength of the first eigenmode is proportional to the lilrgearized change in entropy and, under this
preconditioning, is unchanged from the Euler equations without preconditioning. The second eigenmode
is proportional to the lincarized streamwise momentum, p + pig. Finally, the third eigenmode is directly
proportional to the pressure. Thus, with preconditioning, the v pstream-running wave is exactly a pressure
wave. As we will show in Section 3.2, this will have a signif.cant impact on the behavior of boundary

conditions for which a downstream pressure is specified.

3.1. Euler Riemann boundary conditions. We first coasider the use of boundary conditions based
on the Riemann invariants of the Euler equations. Without preconditioning, Giles[5] showed that these
boundary conditions are non-reflecting with w; = —oo. In otlier words, all perturbations arc eliminated
in the finite time required for them to propagatc out of the d)main. Specifically, the Riemann invariant

boundary conditions are,

X0 { P/ =p/p"

_ _ le-'v q"‘
q'+7—f—lc’=q+%c

where the primed quantities are the sum of the mean and pertu bation states, i.e. p’ = p+ p. Linearization

and non-dimensionalization of these boundary conditions gives,

-1 0 1
Cin:( )a
-1 v-1 v

Coutz( 1 v—1 —o )
(From C;, and C,,;, we find the matrix B,

-1 0 0
B=| -1 4o (v~ 1) - 1)
eim/M ('Y _ 1)eiw/M _(,.y _ I)M + 1)e~iw/M



The determinant of B is,
detB = —(y = 1)* |(M — 1)e"/™ 4 (M + 1)e /M,

and the eigenfrequencies which result in a zero determinant are,

wy =7mMn, for integer n,
Ml 1+ M
;=——1o .
YT TS %% T

In contrast to the unpreconditioned Euler equations, the Riemann invariant boundary conditions are reflective
for the preconditioned Euler equations since the value of w; is not —oco. Within a computational simulation,
perhaps the best measurc of the decay rate is actually the decay per time step. Assuming the time step is
given by a CFL condition of the form At = vAx/Apax where v is a constant dependent on the temporal
integration, Az is the cell size, and Apax is the maximum eigenvalue, then wAt & w;/Amax. Since Apax = M
for this preconditioned system,

1 1+ M

wi/)\max = _ilog 1—M

In particular, we note that as M — 0, w;/Anax — 0. Thus, at low Mach numbers, disturbances will not
decay indicating that the use of Ricmann invariant boundary conditions based on the Euler cquations is

likely to impede convergence to a steady state.

3.2. Entropy, stagnation enthalpy at inflow; pressure at outflow. Another common set of
boundary conditions for subsonic, internal flows is the specification of entropy and stagnation enthalpy at

the inflow and pressure at the outflow. Specifically,

U - e
X =0 { 1 2 Zi:r/_pi_zi/fz) 2B X=L p=p
29 Ty =29 Y355

For these boundary conditions, C;,, and C,,; are,

Co. — -1 0 1 |
-1 (v-1M ~

Cout:<0 0 1).

iFrom C;, and C,,;, we find the matrix B,

-1 0 0
B=] -1 (~n—-1)M 0
0 0 Me—w/M

We note that bjz = bz = b3; = bsz = 0 for these boundary conditions. Thus, outgoing waves do not
generate incoming waves at either the inflow or outflow boundaries. At the inflow, specification of the
entropy guarantees that bjo = by3 = 0 since the change in entropy is proportional to the strength of the
first cigenmode as shown in Equation (3.2). Specification of the stagnation cnthalpy is also a non-reflecting
inflow condition since the change in stagnation enthalpy, H, can be written as a linear combination of the

first and second cigenmodes, H o« —1;7u + (y — 1)M1,Tu. Finally, as observed from Equation (3.4), the



pressure change is proportional to the change in the third (upst: cam-running) cigenmode, thus, specification
of the pressure at the outflow is non-reflective.
Since the boundary conditions at inflow and outflow arc iadividually non-reflective, the entire system

will have infinite, perturbation decay rates. Specifically, the de erminant of B is,
det B = —(y — 1)M?%e~ /M

and the eigenfrequencics which result in a zero determinant arc,

wr =21Mn, for inzeger n,
Ww; = —00.
Since w; = —oo, disturbances are eliminated via propagation ‘n finite time. An interesting aspect of this

result is that these boundary conditions are actually reflective for the unpreconditioned Euler equations (sec
Giles[5]).

3.3. Velocity, temperature at inflow; pressure at ouétﬁow. The final set of boundary conditions
we consider is setting velocity and temperature at the inflow and pressure at the outflow. These conditions

are fairly common in low speed viscous flow applications. Spcci;ﬁcally,
/ S ==
X=o P//’I-—if’/P Y=L p=p
g=q
For these boundary conditions, C;, and C,,; are,

- \
Ci. = bo 7 )
0 1 0

Cout = ( 0 0 1 ) .
(From C;, and C,,, we find the matrix B,
-1 0 (v—1)M
B= 0 1 -1
0 0 Me /M
Unlike the boundary conditions in Section 3.2, the specification of velocity and temperature at the inflow is
a reflective condition and create reflections of the outgoing chara teristic wave. This is evident from the non-
zero values of by3 and be3. Specifically, at the inflow, a; = (v — 1)Ma; and a; = a3. However, since by, =
bz2 = 0, the outflow boundary condition does not create any perturbations in the incoming characteristics.
Thus, the reflected waves from the inflow conditions would be emitted at the outfow boundary without

further reflection and all disturbances would be eliminated in fizite time. Specifically, the determinant of B

is,
det B = —Me /M
and the eigenfrequencies which result in a zero determinant are,

wy =27Mn, for intzger n,

Wy = —OK.



While perturbations again have infinite decay rates for these boundary conditions, in practice, the reflec-
tive inflow condition may slow convergence somewhat compared to the non-reflecting boundary conditions
discussed in Section 3.2. This convergence slowdown is observed in the numerical results of the following

section.

4. Numerical Results. To illustratc the effect of different boundary conditions on numerical conver-
gence as well as check the accuracy of the analysis, we simulate the two-dimensional flow in a duct with a
straight upper wall and a bump on the lower wall between 0 < z < 1 described by y = .042 sin®(wz). The
domain is 5 unit lengths long and 2 lengths high. The grid is structured with clustering toward the wall
boundary.

Specifically, we use the algorithm described by Darmofal and Siu[3] which employs the semi-coarsening
technique of Mulder[12, 13] in conjunction with a multi-stage, block Jacobi relaxation(10, 1]. The dis-
cretization is a 2nd order upwind scheme with a Roe approximate Riemann solver[14]. The calculations are
performed on a grid of 32 x 16 cclls. A threc level, V-cycle is utilized with 2 pre and post smooths. All
calculations are initialized to uniform flow.

A form of Turkel’s preconditioner is employed which is smoothly turned off for Mach numbers above 0.5.
While this preconditioner is different than the one-dimensional van Leer-Lee-Roc preconditioner for which
the analysis was performed, we expect the low Mach number behavior of these preconditioners to be similar.
The major differences between the analysis and the numerical results will occur for higher subsonic Mach
numbers where the preconditioning is turned off in the numerical simulations.

We have implemented the boundary conditions described above by constructing a boundary face state
vector and calculating the boundary flux directly from this state vector. For example, for the enthalpy,
entropy, pressure boundary conditions at an inflow, entropy, enthalpy, and the tangential velocity are pre-
scribed from the exterior and the pressure is extrapolated from the interior. At an outflow, we reverse the
procedure and specify pressure from the exterior and extrapolate entropy, enthalpy, and tangential velocity
from the interior. Note, regardless of the specific boundary conditions, we always use the tangential velocity
as the additional variable for the two-dimensional boundary implementation.

The number of cycles required to converge the solution six orders of magnitude from the initial residual
are given in Table 4.1. As can be clearly seen, the results are in good agreement with the analysis at
low Mach numbers. In particular, the Riemann boundary conditions are unstable at low Mach numbers.
The entropy, enthalpy, pressure (HSP) boundary conditions perform best while the velocity, temperature,
pressure boundary (QTP) conditions are about 75% more expensive. This would indicate that the reflective
nature of the inflow for the QTP boundary conditions does indeed slow the convergence.

At the higher Mach numbers (M > 0.2), the Riemann boundary condition cases begin to converge and
the number of cycles decreases with increasing Mach. The QTP boundary conditions require an increasing
number of cycles for increasing Mach number. Also, for the M, = 0.5 test case, the amount of work required
to converge the HSP boundary conditions increased from 8 cycles to 10 cycles. These trends at higher Mach
numbers are expected because the preconditioning which was implemented numerically was automatically
phased out at M = 0.5. Thus, the behavior of the different boundary conditions will be described by the
unpreconditioned Euler equations. In this case, the Riemann boundary conditions are non-reflective while

the other boundary conditions are reflective.

5. Remarks. The present analysis of the preconditioned Euler equations shows the effect of precondi-
tioning on boundary conditions. Boundary conditions based on the Riemann invariants of the Euler equations

are found to be reflective in conjunction with preconditioning. The problem is most detrimental at low Mach



| Mach ” Riemann | HSP ‘ QTP—I

0.001 UNS 8 13
0.01 UNS 8 13
0.1 UNS 8 13
0.2 20 8 14
0.3 14 8 15
04 11 8 18
0.5 9 10 20
TABLE 4.1

Number of cycles required to drop residual siz orders of magnitude for different Mach numbers and boundary conditions.
Riemann: Euler Riemann inveriant boundary conditions from Section 3.1. HSP: enthalpy, entropy, pressure boundary con-

ditions from Section 3.2. QTP: velocity, temperature, pressure boundary conditions from Section 3.3. UNS: algorithm was
unstable and aborted with infinite residual.

numbers where the decay rate of perturbations approaches zero. Boundary conditions which specify entropy
and stagnation enthalpy at an inflow and pressure at an outflow are found to be non-reflective with precon-
ditioning. Numerical results were presented which are in good ?;greement with the analytic predictions.
Finally, an interesting possibility implied by this analysis would be to incorporate boundary condition
considerations into the design of preconditioners. For example, égiven a set of physical boundary conditions

which must be applied for a specific problem, a preconditioner could be designed such that these conditions
are non-reflective.

Appendix. The one-dimensional van Leer-Lee-Roe precon itioner(8] is usually derived using the sym-
metrizing variables which in dimensional form are (§/p¢, §, p — ¢25). Using Equation (2.2), the non-
dimensional symmetrizing variables are,

T
v=(p, q, p_P) ’

and are related to the u = (p, ¢, p)T variables through the trans‘ormation, v = Su, where,

0 0 1

S= 0 1 0

-1 0 1

The preconditioned Euler equations in terms of v are,
ve+ P’UAUVI =0,

where, P, = SPS™1, and,

M 1 0
A,=SAS'=| 1 M o
0 0 M

Finally, the one-dimensional van Leer-Lee-Roe preconditioner is given by,

M? M 0
a7 8

Po=| -5 1+ 0|,
0 0 1



and, for use with the (p, g, p) variables,

1 M M:
&  p%
P=S"'"P,S=|0 1+4 —%& ,
0o M M?
B2 EQ

where 5% =1 - M2

[4]

(5]

(6]
7

8]

M.

D.
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