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Donald L. Chubb

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135

ABSTRACT

A fibrous rare earth selective emitter is approximated as an infinitely long cylinder. The spectral emittance, E_, is
obtained by solving the radiative transfer equations with appropriate boundary conditions and uniform temperature.

For optical depths, K R = _kR, where otk is the extinction coefficient and R is the cylinder radius, greater than I the

spectral emittance is nearly at its maximum value. There is an optimum cylinder radius, Ropt, for maximum emitter

efficiency, qE" Values tor Rop t are strongly dependent on the number of emission bands of the material. The
optimum radius decreases slowly with increasing emitter temperature, while the maximum efficiency and useful

radiated power increase rapidly with increasing temperature.

INTRODUCTION

Fibrous rare earth oxide selective emitters for thermophotovoltaic (TPV) applications have been of research interest

for several years. Nelson (1) began working with fibrous emitters in the 1980's. In addition fibrous emitters are

being developed at Quantum Group (2) and the Auburn Space Power Institute (3). This paper develops the emittance

theory for a fibrous emitter by approximating the emitter as an infinitely long cylinder. Since the fibrous emitters

consist of bundles of I to 10 lam diameter fibers this theory does not include the effects of the reflectance that

cv,:curs when radiation leaves a fiber and enters an adjoining fiber. The whole bundle of fibers is being approximated

as a continuous cylinder. If the fibers are closely packed and the reflectance at the interface between a fiber and the

medium in the voids between fibers is small, then the error resulting from the approximation should be small.

The spectral emittance of the cylinder is obtained by solving the radiative transfer equation with appropriate bound-

ary conditions. Knowing the spectral emittance allows the emitter efficiency to be calculated. As an example,

emitter efficiency is calculated for an erbium-holmium aluminum garnet and thulium aluminum garnet (Tm3AI5OI2)
which are being studied at NASA Lewis.

TEMPERATURE OF EMITI'ING CYLINDER

As pointed out earlier (4), temperature drop across a planar or film type emitter causes a maior reduction in the

spectral emittanee in the emission band of a selective emitter. However, in most cases for a cylindrical emitter there
will be a negligible temperature drop. This can be seen by considering the steady state energy equation for an

infinite cylinder with no internal heat generation and thermal conductivity, ktn, and where we assume the tempera-
ture, T, and radiation flux, Q, depend only on the radial coordinate, r.

E dT ]r kth _ - Q = constant
(I)

In order to aw)id the term in brackets being singular at r = 0 it must vanish for all r. Thus at all r the conduction and
radiation fluxes balance.

dT

kth'-_r =Q
(2)

NASA/TM-- 1998-208656 1



Inotherwords,forallsteadystateconditionsallthethermalenergybeingconductedintothecylinderattheouter
radius,r= R.leavesthecylinderasradiation.

Theradiationflux, Q, will always be less than the blackbody flux O'sbT1,where Osb = 5"67xi012 w/cm2K4 is the
Stcfan Boltzmann constant. Therelore, define the tbllowing dimensionless variables.

__ Q _ T r= -- r --=-- (3)
O'sbT4 Ts R

Where Ts is the temperature at r = R. In this case equation (2) becomes the following.

dT =y_
dr

Where T is the ratio of the radiation flux to the thermal conduction flux.

(4)

_sb T4 _ CsbT_ qR

Y = kt h _s kth

(5)

For the ceramic materials used in most selective emitters, kth > 0.01 w/cmK. Also, tbr TPV applications T s < 2000K.
Therefore, Y < 4.5R(cm). So that if R < 0.1 cm it is a reasonable approximation to neglect the right hand side of

equation (4) and obtain the result T = constant (T = Ts). If Y<< I tor a film or planar emitter then a linear tempera-

ture variation results (4) rather than a uniform temperature. For the cylinder emittance calculation that follows, a
unilorm temperature is assumed.

i+(nl_0 1"

car

js

i+(0

i-f0)

"...,

i+(R)

nf = index of refraction of cytivder

no = index of refraction of surroundings
cos0 ds = dr

FIGURE 1. Schematic of emitting cylinder.
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SPECTRALEMITTANCEOFCYLINDER

Thespectralemittanceisdefinedasfollows.

(6}

Where q_.(R) is the radiation tlux leaving the cylinder at r = R and ebs0_,T s) is the blackbody emissive power where

)_ is wavelength and T s is the cylinder temperature.

2rthc 2

ebs(K' Ts)= rfibs()_' Ts)= )_5[exp(hco/KkTs)- I]
(7)

Appearing in equation (7) is the blackbody intensity ibs(_.,Ts), w/cm 2 nm steradian. Planck's constant, h,

Boltzmann's constant, k, and the vacuum speed of light, c o. The radiation flux, qx(R), is obtained by solving the

radiation transfer equations for the intensities, ix+(R), and ix-(R). Where ix+(R) is the intensity moving in the +R

direction and ix-(R) is the intensity moving in the -R direction as shown in figure I. Assuming the intensities de-

pend only on the radial coordinate leads to transport equations for ix+(R) and ix-(R) identical to the planar case (5").
These equations are written in terms of the optical depth, K, rather than the coordinate, r.

K =o_r (8a)

K R = ot_,R (Sb)

Where ax is the extinction coefficient, assumed independent of r, and is the sum of the absorption coefficient, ax.

and the scattering coefficient o x.

_. = a_. + o)_ (9)

The boundary conditions that must be applied are the following. At r = K = 0. from symmetry conditions.

i_(0)= i_(0) at K =0 (10a)

At r = R or K = KR the intensity moving in the -R direction is equal to the reflected intensity.

i_(KR)=Pfoi_(K R) at K=K R (lOb)

Where 9t_ is the reflectance at the cylinder outer radius, R. At r = R total reflectance occurs for certain angles of

incidence, 0. At an interface between a material with a index of refraction, n i, and a material with index of refrac-

tion, nj, where n i > nj, radiation moving from i into j with angles of incidence 0 > 0M, where 0 M is given by Snell's
Law will be totally reflected. Since nf > no, for the cylinder-air interface we have the following result tor the

reflectance, Pro'

Plo=l for 0>0 M where p.2-cos20M=l-(n--L/2
\nf)

(lla)

For the case where 0 < 0M (la > J.tM) we approximate Pfo by the reflectance tbr normal incidence (6).
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nf-n° 0<0M (P--"_M) (lib)Pfo= +no

Oncetheintensitiesi_(KR,0)andi_.(KR,0)areobtainedtheradiationflux,qx(KR),canbecalculated.

q_(KR)--q_(KR)- qK(KR) (12)

fr /ei (KR.0)cos0sin0d0 !+= 2gI0 i_ (K R, I.t)lJ.dl.t (13)q_(KR) = 2_j0= 0

q_(KR) = -2_f_a0=rt/2i;(KR'0) c°s 0 sin 0d;3 = 2/_j'0 i_. (0, ,)l.tap. (14)

Solution of the radiative transfer equations for qx(KR) is presented in (5) for the film or planar case with a linear

temperature variation through the film and for no scattering (o s = 0 in eq. (9)). Results for the uniform temperature

cylinder can be obtained from these results by setting Cfs = 0 (Pfs = I) and AT = 0 in equations (33) to (36) of
reference (5). When this is done the following result is obtained for the spectral emittance.

4E3'KR'[P'oE3'KR'+" "
uniform temperature and no scattering

(15)

Appcaring in equation (15) is the exponential integral E3(x) defined as follows.

l -zEn(x)= zn-2 exp tz (16)

The reflectance, Pfo, is given by equation (I I b) and _tM is given by equation (1 I a).

As equations (15) and ( I 1 ) indicate, for no scattering the spectral emittance of a uniform temperature cylinder

depends on the optical depth, K R, and indices of refraction, nf and no. For single crystal materials, such as rare earth
doped yttrium aluminum garnet (YAG), scattering should be negligible. However, for polycrystallinc rare earth

oxides such as those being considered in references (I) to (3) scattering, should be significant. In those cases

equation (15) will overestimate the spectral eminancc.

Consider c_. for the two limiting conditions KR = 0 and K R --.4oo. The K R = 0 case corresponds to a wavelength

where the material is transparent. While the K R ----)oo case applies to an emission band of a selective emitter. Since

Es(0) = I/2 and lim E(x) = 0, equation (15) yields the following:
. X----_ oo

c_.=O lbr K R=0 (17)

lim eK = n2( l-ptol
K R-.-_oo

Equation (18) is the usual result tor an opaque body emitting (or absort ing) in vacuum (n o = 1).

(18)
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FIGURE 2. Spectral emittance |or cylinder of radius, R, at a constant temperature, Ts, as

a function of optical depth, K_. = o_,R, where _h is the extinction coefficient and nf is

the cylinder index of retraction and no is the surrounding index of refraction.

In figure 2 the spectral emittance. _;_, using equation (15) is shown as a function of optical depth, K R, lor no = 1 and

nf = 1, 1.5 and 2.0. As figure 2 shows c_. increases rapidly with K R and reaches nearly its limiting value

(eq. (18)) lbr K n = I. Notice also that for small K R as nf increases the spectral emittance rate of increase also

increases. For most of the selective emitter materials, 1.5 < nf < 2.0.
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FIGURE 3. Theoretical spectral emittance of Er0.3 Ho2.7 AI50l 2 cylinder of radius,

R = 0.4 cm, calculated using measured extinction coefficient and index of refraction.
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Oncetheextinctioncoefficient,%.,andindexofrefraction,nf,areknownequation(15)canbeusedtocalculateE_.
Figure3showsthecalculatedspectralemittanceforanerbium-holmiumaluminumgarnetcylinder(R=0.4cm)
with10%erbiumand90%holmium,Er0.3HO2.TAI5OI2.Thissinglecrystalmaterialisbeingconsideredforafilm
typeselectiveemitter(5).Theextinctioncoefficientandindexofrefractionwereobtainedfromreference(5).
Holmiumhasitsmainemissionbandcenteredat2,=2000nmwithsmallerbandscenteredat2,= I100,890and
75(1nm.Erbiumhasitsmainemissionbandcenteredat2,= 1500nmwithsecondarybandscenteredat3,---1000,
800and640nm.All ofthesebandsshowupasregionsoflargeemittanceinfigure3.Intheregion2000<2'
<45(X)nm,Er0.3Ho2+7AI5OI2isnearlytransparent((x_,---+0)andthus%.issmall.Thehighlyoscillatoryresultin
thisregionresultsfromnumericalerrorinotz,(5).Fortheregion2'>2'c=5000nmc_.becomeslargeagain.This
largec_.resultsfromvibrationalmodesofthecrystallatticeandisacharacteristicofmostrareearthselective
emitterntaterials(1). We call the wavelength, 2,c' the long wavelength cutoff.

EMITTER EFFICIENCY

As a measure of the effectiveness of a selective emitter define the emitter efficiency as lollows.

radiated power _ Qb _ j'o2'g q2'(R)d2' _ j't_ g c2'ebs(2'' Ts)d2'
tiE - (19)

ioo Ltotal radiated power QT q2'(R)d2' _2'ebs(2',Ts)d2'

useful

The numerator. Qb" is the power radiated in the wavelength region 0 _<_ < L,. In a TPV system 2'g corresponds to
the bandgap energy. Eg = hco/2'g, of the PV cell. The denominator is the tota_radiated power, QT"
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FIGURE 4. Emitter efficiency, lqE, and useful power, Qb, as .t function of cylinder radius,

R, at emitter temperature, Ts = 1700 K for Er0. 3 Ho2.7 AI5 t ) 12-

Consider how qE will be behave as a function of the cylinder radius, R. As figure 2 shows, c_. increases rapidly with

optical depth, K R = %.R. Therefore, for the emission bands and the lon_: wavelength region (large _. and

2' < 2'g or J_> 2,c) c_. will quickly approach its limiting value as R increa, es from zero. However, for the regions be-

tween the emission bands and the long wavelength cutoff (small _Z. and 2,1< 2' < 2'c) the spectral emittance will in-

crease more slowly to its limiting value as R increases from zero. Thus, the numerator of equation (19), Qb, will

rapidly rise from zero to its limiting value as R increases from zero. At 1he same time, the denominator, Q'r, will
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increasemoreslowlyandwillcontinueincreasingwithRwhilethenumeratorisincreasingatamuchlowerrate.As
aresult,therewillbeanoptimumradius,Ropt,thatwillyieldmaximum1]EMA X. This is illustrated in figure 4 for

Er0.3HO2.TAIsO12 where Xg = 2200 nm (Eg = 0.56eV) was chosen for use in equation (19) and Ts = 1700 K. As can

be seen, tie rises rapidly to 1]EMA X and then decreases slowly tor R > Rop t. Also shown in figure 4 is the useful
power radiated, Qb" As can be seen, Qb rises rapidly and then begins to level off. For T s = 1700K the optimum ra-

dius is Ropt = 0.34 cm. It should be mentioned that for radii of this magnitude the uniform temperature assumption

becomes questionable. In figures 5(a) and (b) Rop t, qE(Ropt) and Qb(Ropt) are shown as functions of T s. Both

rlE(Rop t) and Qb(Ropt) increase significantly with temperature while Rop t decreases only 25 percent in going from
T s = 1200 to 2000K. The large increase in qE results because the maximum value of the blackbody emissive power,

ebs(X,Ts), shifts to shorter wavelengths as T s increases. Therelore, Qb increases faster than QT as T s increases. The

useful power, Qb" increases at least as T4_
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FIGURE 5. Optimum radius, Ropt, maximum efficiency, lflEMa x, and useful power, Qb, at

R = Rop t as functions of emitter temperature, Ts, lot Er0. 3 Ho2. 7 AI 5 O12. (a) Optimum

radius, Ropt. (b) Maximum efficiency and useful power.

NASA/TM-- 1998-208656 7



Nowconsiderthuliumaluminumgarnet,Tm3AI5OI2,asacylindrical,,electiveemitter.Thuliumhasitsmainemis-
sionbandcenteredat_.= 1700nmwithsmallerbandscenteredat_.= 1200,800and700nm.Thuscomparedto
Er0.3HO2.TAI5OI2,whichhas8emissionbandsandthusalargeregionofhighE_.tbr_,<Xg,Tm3AIsO1,hasamuch
smallerhighemittanceregionfor_<_.g.ForTm_AlsOt,._._= 1900n_nwaschosen.JustasforEroaHo,_7AI501._,
thuliumaluminumgarnethaslargeemittancetbr_.>?_---5(_00nm.
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FIGURE 6. Optimum radius, Ropt, maximum efficiency,, _qEMax, and useful power, Qb, at
R = Rop t as functions of emitter temperature, Ts, for "]'m3 AI5 O12. (a) Optimum

radius, Rop t. (b) Maximum efficiency and useful pow,;r.

In figure 6(a) and (b), Ropt, qE(Ropt) and Qb(Ropt) are shown as functio _s ofT s for TmaAlsOv,. These results were

calculated using measured values for _Z, and nf (5). The first thing to notice is that Ropt for Tm-_AIsOl,, is much
smaller than Ropt for Er0.3Ho2.7A15012. This occurs because thulium ahminum garnet has a smaller region of large

emittance than erbium-holmium aluminum-garnet, as mentioned above Therefore, the majority of Qb results from

emission in the main emission band centered at _.= 19(X) nm where _. -- 30 cm -1. Thus when R = 0.3 mm. K r = I
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and e_, will be near its maximum value (fig. 2). As a result, Qb will also be near its maximum and thus tiE will be a

maximum. Therefore, we expect that Rop t will occur near 0.3 mm for thulium aluminium garnet. Figure 6(a)
substantiates this result.

Comparing figures 5(b) and 6(b) we see that the emitter efficiencies are nearly the same for Ero.3Ho2.7AI5OI2 and

Tm3AI5OI2. However, the useful power Qb' is much larger for Ero.3Ho2.7AI5OI2 . This occurs tor two reasons. First

of all, erbium-holmium aluminum garnet has a much larocr region of large emittance for L < _,g than thulium

aluminum garnet. Secondly, _,g = 1900 nm for thulium aluminum garnet whereas Lg = 22(,u0 nm for

erbium-holmium aluminum garnet. Thus more of the spectrum is included in Qb for Er0.3HO2.TAIsOI2.

An important point about selective emitters is brought out by comparing figures 5(b) and 6(b). That is, tiE and useful

power, Qb' do not behave in the same manner. Increasing Qb by adding more emission bands, as in the case of

Er0.3HO2.TA15OI2, does not mean that tie will increase.

CONCLUSION

Most fibrous rare earth selective emitters consist of bundles of I to 10 ktm diameter bundles. In this study that bundle

has been approximated as an infinite cylinder. From the solution to the radiative transfer equations the

spectral emittance of the cylindrical emitter was calculated. Several conclusions can be made about the cylindrical

rare earth selective emitters.

1. For most rare earth selective emitters the temperature is uniform through the cylinder.

2. When the optical depth K R = cx_.R > I the spectral emittance is nearly a maximum.

3. There is an optimum value for the radius, Ro_ t, which yields maximum emitter efficiency.

4. Rop t strongly depends on the emitter material'. For an emitter with only a single strong emission band Rop t is the

order of 0.1 mm, whereas for an emitter with many emission bands Rop t is the order of 1 mm.

5. Rop t decreases slowly with increasing emitter temperature.

6. The maximum efficiency, rlEMA X, and useful power, Qb' increase significantly with temperature.
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