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ABSTRACT

Since the announcement of the discovery of sources of bursts of gamma-ray radiation in

1973, hundreds more reports of such bursts have now been published. Numerous artificial

satelliteshave been equipped with gamma-ray detectors including the very successfulComp-

ton Gamma Ray Observatory BATSE instrument. Unfortunately, we have made no progress

in identifyingthe source(s) of thishigh energy radiation. We suspected that this was a con-

sequence of the method used to definegamma-ray burst source "errorboxes." An alternative

procedure to compute gamma-ray burst source positions,with a purely physical underpin-

ning, was proposed in 1988 by Taft. Since then we have also made significantprogress in

understanding the analytical nature of the triang-ulationproblem and in computing actual

gamma-ray burst positionsand theircorresponding error boxes. For the former, we can now

mathematically illustratethe crucialroleof the area occupied by the detectors,while for the

latter,the Atteia eta/. (1987) catalog has been completely re-reduced. There are very few

discrepancies in locations between our resultsand those of the customary "time difference

of arrival"procedure. Thus, we have numerically demonstrated that the end result,for the

positions,of these two very different-lookingprocedures is the same. Finally,for the first

time, we provide a sample of realistic"errorboxes" whose non-simple shapes vividlyportray

the difficultyof burst source localization.

Subject.Headings: gamma rays: bursts--astrometry
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1. BACKGROUND AND INTRODUCTION

An alternative to the customary "time difference of arrival" method of gamma-ray burst

source location was presented by Taft in 1988. In the new algorithm, for any number of

detectors, all their locations and times of observation are folded into a single, straightforward

computation. Thus, unlike the former method, this technique predicts a unique location for

. the source of the burst independent of the number of different gamma-ray sensors registering

the burst (once there are more than three of them). In contrast, for each pair of detectors,

the standard method only defines a (circular) locus of points on the celestial sphere on which

the burst source location resides. When there are more than three recordings of the same

burst, then the "time difference of arrival" procedure specifies a pair of intersections [as

does the new method in this case which also analytically subsumes it; see Taft (1988a)]. As

more independent detections are added the older technique delineates a finite area on the

celestial sphere via a pair-wise analysis of the location and timing data. With real data--

and with a very d/flicult problem of time registration of bursts observed with devices of

different responsivities and sensitivities, timing errors arising from recording the photons in

discrete temporal bins, differing thresholds before recording is initiated, spacecraft location

and clock errors, and so forth--the geometrically pure problem is degraded into one whose

best possible outcome is that all the intersection points lie near each other. This area has

been used to define an "error-box" in which the burst source is believed to lie (see Fig. 1).

Unfortunately, the position deduced in this fashion will, in general, not. necessarily be

the statistically most likely place for the source of the burst. The hope that the circle drawn

for each pair of detecting sensors is centered in a region of high source location probability

can not be consistently realized in practice; indeed, the circle must lie completely outside

a "one-sigma" error region fairly often. Furthermore, since no detailed computation of a

probabilistically rigorous region surrounding the most probable source location circle has

ever been published or described in the literature, the issue of systematic effects are even

less clear because the underlying probability function may not be well-behaved. One could
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compute the one-sigma regions in an attempt to produce reliable error estimates as, for

instance. Pizzichini (1981) has suggested. However, none have been published heretofore.

Moreover, the amount of computation necessary for the customary method must exceed

that necessary to similarly characterize the results of Taft's (1988a) method by the ratio

of (number of points in a circle):one since this is the ratio of their prediction volumes.

Hence, such a calculation for the time difference of arrival technique would be unwieldy and

extremely expensive in terms of the quantity of numerical work required. Moreover, when

one does make error boxes based on the results of Taft's algorithm, the "error boxes" are

frequently not boxes at all as can be seen in the many figures shown below. A more complete

comparison between the different aspects of the two methods was given in Table 1 of Taft &

Holfeltz (1992a).

The technique developed in Taft (1988a) is easily amenable to numerical simulation.

Extensive Monte Carlo computations of its predictions for the position of gamma-ray bursts

are summarized in Taft & Holfeltz (1992a,b) and Taft, Scott & Holfeltz (1993). Those

calculations explored ranges of numbers of potential spacecraft-carrying burst detectors in

cislunar (2, 3, or 4) and interplanetary (1, 2, 3, or 4) space, and all 4_r steradians of potential

burst source positions. In sum, they conclusively show that this method can routinely achieve

a minute of arc prediction precision and accuracy, for realistic random errors, once there are

two interplanetary spacecraft in the burst detection network. Non-random errors or very

large fortuituous errors represent untried circumstances in simulation. The reason for the

minimum number of detectors constraint is that the area occupied by the sensors is the key

to a well-determined solution. This will be mathematically demonstrated below.

Before briefly reviewing the fundamental ideas behind this method, we address an appar-

ent deficiency of the initial formulation of the problem; namely that it was a monochromatic

construct. As some of the difficulties we face when attempting to delineate the positions of

gamma-ray bursts have to do with the different responsivities and sensitivities of the various

detectors, we can not be certain that recorded photon arrival times from different sensors
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represent the same phenomena, in a temporal sense, within the burst structure. However,

this difficulty is an inherent part of gamma-ray burst observing. In any case this compli-

cation, for one energy band, is not severe for we can always imagine that the quantity T

defined in Eq. (3) below is part of the integrand in an integral over frequency. The other

element of the integrand would be the spectral energy distribution of the source multiplied

by the response function of the detector. Because the latter function is relatively sharply

peaked, the integral approximately reduces to the product of the other two terms, each eval-

uated at the effective wavelength, multiplied by the energy passband width. These factors

are phase independent and only result in an unimportant re-normalization of T. Hence, the

monochromatic formulation for one detector is appropriate.

Unfortunately this generalization can not be easily extended to cover widely separated

wavelength bands both bemuse the above mentioned mathematical approximations rapidly

degrade and, more importantly, without an explicit model for the mechanism of the gamma-

ray burst, one has to make a strong assumption regarding the temporal evolution of the

burst over all observed frequencies. This compounds, when it is not the origin of, the trying

problem with regard to systematic errors in the timing and no merely statistical adjustment

technique is going to overcome it.

Below we more fully explicate the underlying mathematical structure of the technique

(see also Taft, Scott _: Holfeltz 1993). In particular, we have discovered that the general

(i.e., N > 3) co-planar case is exactly solvable. Indeed, it is trivial to do so_analytically--

the equations for the source position vector direction cosines are two linear equations in

two unknowns. Hence, for instance, because the timing errors dominate this problem we

could explicitly compute the error distributions for the source position direction cosines

from those posited for the spacecraft-to-spacecraft timings. Moreover, since the real case

is nearly co-planar, additional, approximate, numerical experiments are now very easy to

perform. Furthermore, as the ideal case is so close to the actual situation, we now have both
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an excellentstartingguess and the key to constructing a robust numerical solution algorithm

for the general situation. This isdiscussed,along with itsone limitation,in §3.1.

In some instances the three dimensionality of the detector configuration isimportant or

the orientationof the burst source wave front vector is nearly co-planar with the constel-

lation of observing spacecraft. When eithersituation occurs an alternativestarting point

isrequired. We have created one and to use it we have to compute our initialguess based

on the restrictionthat the number of sensors is only three (see §3.2). However, for most

gamma-ray bursts recorded by more than three detectors,the redundant satelliteswillbe in

cislunarspace rather than in interplanetary space._As itisthe .aresoccupied by the sensors

which is most important to precisely determining the burst source locationwrather than

their numberwthis is of no real consequence (§2.2). We firstfind the tripletof detectors

which occupy the most area and then compute an estimate for the directionbased on the

timings from these three (which are necessarily co-planar). A straightforward algorithm

based on Heron's formula for the area of a triangle is presented in §2.2. This computation

can be exactly performed following, for instance, Pizzichini (1981).

Finally, using our software an entirely new catalog of burst source locations, for every

gamma-ray burst in the Atteia et al. catalog (1987) for which we have the observational data,

has been re-computed. Moreover, each new source location is described herein by a rehable

error estimate given the apphcability of the spacecraft location errors and the spacecraft-

to-spacecraft timing errors (§4). These include "error boxes" calculated as Pizzichini (1981)

suggested.
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2. THE BASIC CONCEPT

The essentialphysical concept behind our technique was to use the one piece of infor-

mation about the gamma-ray burst that we indisputedly know (Taft 1988b); to wit, that the

phase of the burst (whether planar or spherica/as would be the case for solar bursts) is an

invariant for all detectors. Could the recording devices on the spacecraft of the interplane-

tary burst network measure the phase _bof the burst wave front, then they would all obtain

the same value (absent observational errors of course) namely,

¢ = k-r- wt (1)

where r is the solar system barycentric location of the spacecraft, t is the time of arrival

of the burst at that spacecraft, k is the wave vector of the burst wave front, and w is the

angular frequency of the (assumed monochromatic) burst (= 2_rv where v is the frequency

of the photon; v = c/A where c is the speed of light in vacuo and A is the wavelength of the

burst). Rewriting k as ku, where u is the wave front normal, the pseudo-invariant <I, can be

defined, viz.

cI, = u. r - ct. (2)

Although neither ¢ nor ¢ can be directly measured, they do include all the observational

data at our disposal and the quantity we want to determine; namely u. Taft (1988a) proposed

that, especially in the presence of unknown systematics and the very ditficult time registration

problem we have in gamma-ray burst observing, enforcing the constraint that each sensor's

(albeit unknown and unmeasurable) value of _ be the same would lead to a mathematically

well-posed problem for the computation of u. The method used was to rninimiT.e the quantity

N

T = (1/2) (¢. - (3)

subject to the constraint that u-u = 1. By explicit computation, Taft (1988a) further showed

that the customary time of arrival analysis was contained in this principle as a special case

of minimizing Eq. (3) (i.e., it is represented by the cases of N = 2 and N = 3). Finally, Taft
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also explicitlycomputed the co-planar solution foru when N was equal to 4. We now show

that this resultcan be generalized to any number of co-planar sensors.

2.1. N > 3 and Co-planar

To see how thisresultcan be generalizedto any number of co-planar sensors write u as

u - (a, 8, 7) and use two of the three directioncosines as the independent variables.That

is,substitute for one of the directioncosines,say 7, in terms of the other two, and regard

T as a function of the two (now) independent variables a and 8. In other words, since

cr2 q-8 2 4- 7 2 -- I then

7 = "Y(Cx, 8) = 4-(i -- ¢_2 _ 82)1/2 (4)

SO

where

N N

T(a,8)=(1/2) _ _(_.-_m) 2.
.=i m=l

(s)

= _x + 8u + 7(a, 8)z - ct.

The ambiguity in the square root for gamma in Eq. (4) shows the analytical origins of the

bi-directionality uncertainty associated with the case of co-planar detectors.

Now let the plane z = 0 be the plane of the echptic. If the detectors are in this plane,

then a11 the gamma-dependent terms disappear in Eq. (5) because they were all multiplied

by the z coordinate of one of the detectors and these have been all hypothesized to be equal

to zero. In other words, the problem of finding the minimum value for T isreduced to the

system of equations VuTlz=0 = 0, or

N N

0T/0=I==o= _ _ (_. - ¢.,)I==o(=- - =,_) = 0,
.=Im=l

N N

0T/08lz_-0 = _ _ (_, - _,_)I==0(Y- - Y,-) = 0,
n=im=l

with _ now reduced to _Iz=0 = c_z + 8!; - ct. But these are just two linear, inhomogeneous

equations in the two unknowns alpha and beta. Hence, the solution istrivialto obtain (all

sums go from I to N),
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I
,_=D -1

with the determinant of the system D given by

E X.mY._ E Y,_mr,_m

D=I E x...Y..,EX"2"E x..,Y... ]E Y.2., . (6b)

We have represented the spacecraft-to-spacecraft relative location vector as Rnm = rn - rrn

and the spacecraft-to-spacecraft burst arrival relative time, in linear measure, as rnm =

c(t.-

2,.2. An Area/Interpretation for D

The areal distribution of the sensors plays a crucial role in the solvability of the problem

(i.e., D must not vanish else the system of equations would be linearly dependent) and in

the stability of the solution (e.g., IDI should be of non-negligible norm so that D -t is well-

defined). Although numerically clear from our application of Cramer's rule, we shall also

illustrate this--in a geometrically transparent fashion--immediately below.

First consider the case of N = 3 necessarily co-planar detectors. Using the determinant

form for the area of a triangle with vertices at (zl, Yl), (z2, Y2), and (x 3, Y3), viz.

Ixl Yl I
area=A=(1/2) x2 Y2 1 , (7)

x3 Y3 i

one can show, by some straightforward algebra, that D in Eq. (6b) is exactly equal to 48A 2.

Thus, we have an explicit proof that, when N is equal to 3, our geometrical intuition is a

good guide; the larger the area of the triangle occupied by the three spacecraft the larger

the value of the determinant of the system which led to Eqs. (6a) and, therefore, the more

stable its numerical solution. Clearly this reasoning also holds for the case of only 2 sensors

in that the vanishing of D implies that the source can not be localized. Indeed, as mentioned
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in §1, it was known from other considerations that when N was 2 only a small circle on the

sky could be delineated as the originof the burst.

Ifwe try to generalizethisresultbeyond N = 3, for instance when N = 4 by exploiting

the fact that the area of any quadrilateralisthe sum of the areas of the two triangleswhich

comprise it,then we willfail.One can explicitlyshow that when N is4, D isno longer equal

to any quadratic function of the area of the spacecraft quadrilateral.Nonetheless, there isan

interpretationof D in the general (i.e.,N > 3) co-planar case which alsosimply reflectson

olirabilityto solve forthe burst wave front direction,the numerical stabilityof the solution,

and the distributionof the detectors.

To see thismeaning forD, imagine that instead of dealing with D in the eclipticcoordi-

nate system as above, while remaining in the plane of the eclipticwe firstrotate to principal

axis coordinates (say u and v) of the spacecraft configuration [i.e.,we find the coordinate

system which willmake the moment of inertiatensor of the system diagonal (assuming equal

masses for the spacecraft)].In thiscoordinate system the off-diagonaldements of D willbe

zero (by construction) and IDI itselfwillbe explicitlyreduced to the product of its eigen-

values. Moreover, in the principalaxiscoordinate system the eigenvaluesof thismatrix are

the variances of the rectangularcoordinates u and v (forthe mean values of u and v can be

first made to vanish via an in-plane translation). Thus, ID[ 2 2= au_ v will be large and the

solution for the unit normal to the burst wave front well-determined and numerically stable,

precisely when the distribution of the spacecraft is such to maximize their "spread." So_ no

matter how large N is, a nearly collinear constellation of spacecraft (i.e., one principal axis

variance _u or av nearly equal to zero) would not be able to produce a good estimate for

the position of a gamma-ray burst.

12.3. Analytical Error Estimates

To see that the error distributions for a and/_ are simple to compute from those of v,

and thence the timings {tn}, re-examine Eqs. (6). Tan and the times of observation only
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appear in the numerator of the expressions for a and f_ and therein they do so linearly. Thus,

with the assumption of any reproductive error distribution for the timing errors, those of

the independent direction cosines alpha and beta are immediately obtainable. Whether or

not such simplistic assumptions are justifiable is a separate question. The linearity of the

functional relationship among ,_, _, and r assures us that more generally the distribution of

the Tam follows from that of tn and tm via a convolution.
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3. AN ALGORITHM FOR THE NON-CO-PLANAR CASE

3. I. Use of the General Co-planar Solution

Assume that our coordinate system is the solar system, barycentric, rectangular ecliptic

one. Also relax the assumption that the N spacecraft are co-planar. Then the complete

partial derivatives of T with respect to a and E are given by

N N

aT�a,, = _ _ (¢. - ¢,,,)[=,,- =,,,- (_,/-r)(_ - _)] = o,
• n=lm=l (8)

N N

aT/aE= _ _ (¢,, - _,,,)[y,,- yr,,- (El'r)(=,,- z,,,)l= 0.
n=l m=l

Most of the Iz, l, n = 1, 2, 3,..., N will be small compared to i A.U. because of the nearness

of the spacecraft to the plane of the ecliptic. Therefore, the multipliers of the explicit alpha

and beta terms will usually be numerically small. Thus, we can envision the following

successive substitution iteration procedure. First assume that the detectors are in the plane

of the ecliptic. Solve for the direction cosines of u using Eqs. (6a) and (6b). Next compute

the value of gamma from Eq. (4). There will be two values, owing to the two branches of

the square root in Eq. (4). Call them 7±. Pick one sign, say the minus sign for now. Then

re-compute the value_ for (what we will now refer to as) __ and E-. Perform this calculation

utilizing the full derivatives of T, but by regarding the linear z dependent terms in Eqs. (8)

as fixed. That is, re-write Eqs. (8) as

N N N N -

E _ (_',,- ¢,,,)(=,,- =,,,)= (_/7) _ _ (¢,, - ¢,,,)(z,, =,,,),
n=l m----1 n=l ra=l

N N N N

_ (_,,,- ¢,.,,)(y,,- _,,,)= (El-r) _ _ (_',,- _,,,)(_,,- z,,,),

(9)

n----1 m=l n=l m----1

with a and E on the right hand side known quantities, their values given by the last stage

in the iteration process. The next step in the iteration procedure is to re-define 7- from

Eq. (4) with the negative sign, solve the inhomogeneous linear system given in Eqs. (9) anew

for the values of a_ and E-, and so on until convergence is achieved. The last phase of the
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computation is to initiallychoose the other sign for gamma and repeat the entire iterative

solution process just described allover again. T_ - T(a_, _3_) and 7"+ - T(a÷, fl÷) can

be evaluated from Eq. (5).The one which isthe smaller, when N isgreater than 3, tellsus

which choice of sign for the square root was correct.

At one stage in our work we had mistakenly thought that using the amplitude of T

might also work for the case of only 3 sensors. This is wrong; in fact,we have been able

to analyticallydemonstrate that the value of T is exactly zero at itsminimum when N is

equal to 3. Numerically of course, the electronic digitalcomputer finds some very small

value and the logicwe implemented to choose the smallest between T± does so but without

any mathematical or physical content. When N exceeds 3 the magnitude of T does

information though a constellationof nearly collinearspacecraft or a group of nearly co-

planar spacecraft also lying in the plane containing the directionof the burst can lead to

uncertainty (see the figuresbelow).

The source of the last remark liesin the structure of Eqs. (9);one instance wherein

this procedure might not be numerically stable is when the norm of V is very small. In

thisinstance the restof the quantitieson the right hand sides in Eq. (9) willbe multiplied

by a relativelylarge value potentiallyinducing eithera runaway (ifothefirstvalues are not

especiallyaccurate) or an oscillationbetween two fixedpoints. We have observed both types

of behavior in our numerical experiments with the latteroccurring much more frequently

than the former. Of course ifIv[issmall then the burst wave front unit normal nearly lies

in the plane of the sensors,hence one's inabilityto preciselydetermine the (small) out-of-

plane component. In these instances there isanother alternativestartingvalue which we can

pursue.
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3.2. Use of the N = 3 Solution

First let us recount the analytical solution to the three-dimensional, N = 3 problem

published by Pizzichini (1981) as re-formulated in Taft (1988a):

u = AR21 + BR31 + CR31xR21 ,

where A, B, and C are given by

(10a)

and

AIR31 ×R2112 = rzlR]I - faiR.31" R21,

BIR31xR2112 = ralR]l - _1R31 • R21,

C21R31xR2112 = 1 - A2R21 - B2R21 - 2ABR31. R21. (10d)

Note that the uncertainty in the sign of 7 in Eq. (4) has been replaced, in this form of the

solution, by the uncertainty in the sign of C. Finally, this is equivalent to the solution given

in Eqs. (6) after a rotation from the north pole of the ecliptic to the direction of the z axis

of the original coordinate system.

To see how we can use this representation of u as a starting guess for the general problem,

we use Heron's formula for the area of a triangle, viz.

area= [s(s - - b)(s - c)]1/2,

where the semi-perimeter s is given by (a + b + c)/2 in terms of the lengths of the sides of

the triangle a, b, and c. Since we have rectangular coordinate system coordinates for the

locations of the detectors, we may compute the lengths of the sides from the Pythagorean

theorem. Determining the maximum area subset from N > 3 spacecraft is now simply an

enumeration problem. (As there is an analog of Heron's theorem for quadrilaterals, one might

conjecture that expanding this to polygons of more sides would be beneficial. Unfortunately,

four points need not be co-planar so that finding the first value for u would be as difficult

as finding the ultimate value for u.)
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The alternative procedure to follow for N > 3 sensors is simple: (1) Find the maximum

area triplet of the N spacecraft carrying the gamma-ray detectors. (2) Use the A, B, C

formulation for u given in Eqs. (10) to find a first approximation to the direction to the

source. Since C is uncertain as to sign, this provides two possible bearings. (3) Set up the

general (i.e., N > 3) phase discrepancy minimization problem which is a pair of non-linear

equations in the two unknowns _ and 8, namely EeLs. (8). (4) Solve this set using as a

starting value the solution in step #2. Repeat for the other sign of C and choose the one

which minimizes T. The result is the value of u we seek.
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4. THE RE-REDUCTION OF THE ATTEIA ET AL. CATALOG

We have upgraded our Monte Carlo software to work on the real data behind the Atteia

et al. (1987) catalog kindly supplied to us by K. Hurley. In general, as predicted in Taft

(1988a), we obtain the same results for N = 3 although there are some minor discrepancies.

The same statement is also true for N > 3. Our new results are in Tables 1 and 2 along with

the original Attela at al. (1987) answers. Table 1 includes those bursts for which we were

supplied 3 observations; Table 2 is for those for which we have more than 3 observations.

Assuming normal distributions of both spacecraft and timing errors, based on the information

in the files supplied to us, the "error boxes" for these cases are in Figs. 2-46.

The error boxes shown in the figures were computed as follows: We followed Pizzichini's

(1981) suggestion that the timing and the spacecraft errors are normally distributed about

zero means. (No referee would allow anything else.) From the data files generously furnished

by K. Hurley, we had relative timing and coordinate errors. When the error information was

incomplete, we took the ma_mum relative timing error for all other pairs of detectors.

These values were used as standard deviations about the mean in a conventional, electronic

digital computer, normally distributed random number generator. One million samples were

obtained for every scatter diagram we plot and the gamma-ray burst position deduced by

the methods discussed above. The figures were then constructed.

Two different types of phenomena are clear in the figures; the anticipated, localized

box-like structure and non-box-like structure. The former tend to validate the simplistic

assumptions heretofore asserted. However, even in some N > 4 cases, there are two boxes

illustrating the two-fold uncertainty in the 3' or C square root discussed above. At first we

thought that one box might originate from taking one sign for the square root and the other

box from the other sign but this is not the case. Solutions from both signs appear in both

boxes. There is a marked preference, typically 80%/20%, for only one box and the preferred

one is that which the software chose to be the solution to the overall problem. The existence,

in the Monte Carlo simulations only, of a continued ambiguity for the place of origin of the
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gamma-ray bursts apparently depends on some subtle numerical bifurcation to which the

placement problem issensitive.

The non-box-like structure is sometimes just an elongated box [see Fig. 3] but more

frequently very different,topologically,from anything we could reasonably describe as a

"box." This was predicted as a consequence of the role of the systematic errors. Even

though we have only used the normal distributionto generate the Monte Carlo samples, the

systematic errorsare already embedded in the measurements. For instance, the long and

narrow boxes aligned along one equatorialcoordinate axis explain the largestdiscrepancies

between our resultsand the Atteia et al.positions. In these instances the error is almost

allin one of the equatorial coordinatesand the customary time differenceof arrivalmethod

has landed in a slightlydifferentpositionalong what is essentiallya narrow arc. The more

interestingshapes combined with the projection effectsagain point to further subtletiesin

the gamma-ray astrometry problem.
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6. SUMMARY

As the Burst And TranSiEnt instrument on the Compton Gamma Ray Observatory

satellite has clearly shown us, gamma-ray bursts are daily events and they are isotropically

distributed on the celestial sphere. This means that they are either very close to us or very far

away from us. Simplicity, and some energy arguments, compel us to come to the conclusion

that these are not solar neighborhood events. Hence, even if the gamma-ray emitting objects

are quite faint, at all wavelengths, in their quiescent state, the fact that no gamma-ray burst

source has been positively identified may not mean that we have been looking in the wrong

places (e.g., witness the optical discovery of the Ceminga x-ray source). We believe that

in this and our previous papers we have shown that we know how to compute where the

optimum places are and how to attach realistic errors to these positions.
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Table 1. Our Gamma-Ray Burster coordinates versus Atteia et al. 1987 results.

Three Detectors

Our Our Alternate Atteia eta/. Atteia et aL Alternate

Burst ID RA DEC RA DEC RA DEC ILk DEC

B780914 97.51 54.99 94.35 -8.31 97.5 55.

B780918 250.79 40.57 183.51 -75.51 241. 40.5

B781006.B 2.09 13.42 11.27 -7.62 2.1 13.4

B781012.A 159.53 18.86 152.47 1.19 160. 19. 270.

B781019 177.89 -15.51 190.06 12.05 177.9 -15.5 238.

B781023 207.07 6.62 194.26 -24.14 211. 4.

B781025 120.39 -22.95 151.01 57.82 42. -15.5

B781026 261.14 3.48 256.28 -49.60 261. 3.5

B781102.A 232.33 -9.31 227.23 -27.37 232. -9. 183.

B781217 236.38 10.93 217.71 -46.60 236. 11. 210.

B790101 183.54 15.45 170.93 - 13.04 183. 15.

B790105 209.11 -24.83 217.49 -2.03 209. -25 226.

B790107 271.38 -23.87 271.37 -23.01 271. -24.

B790116 158.04 -12.96 174.61 24.80 158. -13.

B790119 251.56 -22.35 251.56 -22.38 250. -21.

B790208 138.89 -58.70 224.92 56.44 324.5 39.5

B790211 133.82 -7.92 150.51 38.02 142.7 7.4

B790213 310.08 10.20 328.70 -42.13 310.1 10.2

B790305.A 42.18 -22.16 12.29 45.38 34.8 -5.2 12.3

B790327.B 198.00 -59.54 236.78 28.34 208. -35.5 236.8

.

45.4

28.3
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Table 1. Continued.

Three Detectors

Our Our Alternate Atteia et aL Atteia et aL Alternate

Burst ID RA DEC IRA DEC RA DEC RA DEC

B790412.B 92.64 -11.59

B790504 347.80 31.90

B790514 37.65 60.75

.B790622.B 325.63 -37.49

B790929 93.49 23.40

B791014 94.83 -37.00

B791018 220.33 -31.99

B791031.A 254.89 -82.32

B791105 243.21 38.99

B791111 215.80 -36.20

B791215 51.49 51.50

B791220.A 74.63 -60.92 292.08

B791222.A 6.99 10.18 12.18

B800103.A 29.83 -34.44 349.50

B800105 15.44 2.95

B800116 187.25 16.73

B800213 104.54 -15.35

94.94 58.40 93.2 -5.2

17.60 -29.48 347.8 31.9

65.29 -22.23 37.7 60.7

311.11 5.10 325.6 -41.4

93.49 23.42 87.5 30.

122.76 82.87 96.3 -34.6

229.68 -2.22 220.34 -31.99

267.54 35.67 254.9 -82.3

182.43 -69.48 251.2 24.3

229.03 3.38 213.9 -33.7

66.80 -10.32 51.5 51.5

69.95 74.61 -60.91

-1.91 7.0 10.15

43.31 29.82 -34.43

12.83 9.14 13.1 7.6

172.35 - 16.56 180. 0.5

118.56 59.59 104.5 -15.3

230.05 -3.23

229.04 3.4

299.22 66.63

16.5 -7.9

349.53 34.37
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Table 2. Our Gamma-Ray Burster coordinates versus Atteia et al. 1987 results.

Four or More Detectors

Our Atteia et al.

Burst ID RA DEC KA DEC

B780921 132.70 34.55 132.6 34.4

B781115.A 210.37 52.13 210.8 52.2

B781121.A 255.64 0.86 255.8 0.6

B790402.B 122.61 -50.39 122.6 -50.4

B 790419 334.68 - 41.97 334.7 - 42.0

B790731 101.64 26.66 101.3 22.5

B791 i01 292.36 41.01 294.6 38.1

B791115 211.64 23.82 211. 24.3
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FIGURE LEGENDS

Figure i. General intersectionarea for L'timedifferenceof arrival"gamma-ray burst source

location determination. Note that the error bands need not be symmetrically placed

relativeto the circularlocus nor include the most probable circle.

Figure 2. Distribution on 1,000,000 samples in a Monte Carlo simulation for the position

of gamma ray burst B780914. In this case there are two areas of intense distribution,

associated with the higherprobabilityregions derivingfrom the two square root branches,

a filledin pair ofarcsjoining them (at thishigh levelof simulation the appearance isone

of continuity),and what we believeto be an portion of an arc orthogonal to the curve

joining the two highest probabilitypoints.Only by pushing the Monte Carlo process to

the extreme, and sampling improbable error values,can the fullstructure be revealed.

Figure 3. The B780918 burst location region. While it looks like there ought to be a

symmetrically placed other half as in the previous figure,there is not. We have no

analyticalexplanation,as yet,for featuressuch as thisor the ones in the previous figure.

They willturn out to be fairlycommon.

Figure 4. The 1,000,000 Monte Carlo simulation pattern for the B780921 burst. In this

case we have something approaching an error L'box,"essentiallya long arc whose width

derives from the uncertainty in the error estimate. Note that the burst siteitselfisnot

weU-localized.

Figure 5a. The B781006.B burst locus. The darkened points in the m/dale are printer

malfunctions.

Figure 5b. An expansion of one of the regions in the previous figureshowing that the box is

reallyan extended rectangle.
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Figure 6. One of our favorites, the B781012.A figure. The regions of maximum probability

are clearly visible because of the higher density of points as is the orthogonal axis set

crossing through these zones. This is another feature which will turn out to be common

but only visible if the full range of possible errors is explored. The thin arcs in between

the regions of highest probability are similar to those seen in Fig. 2.

Figure 7a. The more usual two elongated box structure one expects to originate from the

two branches of the square root; this time for a million sample distribution for B781019.

Figure To. An expanded view of the more southerly high likelihood region.

Figure 8. A unique picture, that for B781023. It shows two symmetric well-defined regions

of a high probabilitymalbeit not well-localized--with the orthogonally symmetrical arc

clearly visible.

Figure 9. The B781025 burst scatter diagram which is very similar to that of B780918 in

Fig. 3.

Figure 10. The B781026 plot showing two distinctly separate regions and the same type of

localized perpendicular structure first seen in Fig. 6.

Figure 11. An example showing both the localized normal features through the regions of

maximum probability and the arc or_hogonal to the curve joining the two regions of most

likely location. The relative thinness of the localized perpendicular feature in this case

is unexplained. This is for the B781102.A burst.

Figure 12a. The 1,000,000 scatter diagram for the B781115.A gamma-ray barst.

Figure 12b. An expanded version of the more northerly high probability locality in the

previous diagram. The parallel horizontal structure is real and not an artifact of the

plotting package or hardware. It will occur in later pictures too. An unlikely interpretation

is that it reflects the periodic aspects of the random number generator.

Figure 13. A second lined structure graph, this time for the B781121.A burst.
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Figure 14. The B781217 plot similar to that in Fig. 2. The difference in apparent ellipticity

is a consequence of the difference in inclination of the orbital plane of the three detectors

to that of the celestial equator.

Figure 15. The B790101 diagram showing poorly localized positions on long arcs of high

probability.

Figure 16. A by now familiar picture for the B790105 burst. The use of a rectangular

projection of the celestial sphere makes the claim that the thin arc is perpendicular

to the curve joining the two regions of highest probability clearer in this case.

Figure 17. Another one-sided burst, this is for B790107.

Figure 18. A more complex version of the scatter diagram first seen in Fig. 6. Once again, the

projection effects of the plane of the three detectors with respect to the celestial equator

makes the image more difficult to interpret. This is for B790116 gamma-ray burst.

Figure 19. A remarkable picture, that for B790119.

Figure 20. Another extreme diagram, again because of projection effects, for the B790208

burst. The two regions of high probability are clearly visible as is the essentially

continuous connection between them (because of the extensive sampling). In addition,

the non-locai orthogonai arc segments are visible too.

Figure 21. The B790211 burst scatter diagram. The non-local normal arc is dearly visible.

We believe tha_ the tight loops represent one facet of the simulation and that the wider,

fuzzy regions are the orthogonal facet more clearly seen in previous figures.

Figure 22. The B790213 figure, showing all the features we believe to be present in the

previous diagram, but more clearly because of the different circumstances of projection.

Figure 23. The locus of possible points for the BTg0305.A burst. Once again we see the two

high likelihood expanses, the local orthogonal fuzzy areas, the connecting bands, and

the displaced perpendicular strip. The points near 60 deg declination and 360 deg (i.e.,

24 hours) right ascension represent wrap-around in this rectangular projection of the

celestial sphere.
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Figure 24. The B790327.B pattern similar to ones we have seen before.

Figure 25. Another familiar illustration, this time for the B790402.B gamma-ray burst.

Figure 26. The weU-separated, but not well-localized, high probability areas for the B790412.B

burst. The crossing structure shows the local perpendicular structure seen in high

perspective.

Figure 27. The two square root branch structure for the B790419 burst.

Figure 28a. Extreme separation in the case of the B790504 burst.

Figure 28b. An expanded view of the more southerly locus of preferred locations showing a

well-localized burst and something we could honestly term an error "box."

Figure 29. The locus of high probability points for the B790514 burst.

Figure 30. The pattern for the B790622.B burst.

Figure 31. Another example of the parallel line structure, in this case to the declination axis,

for the B790731 burst.

Figure 32. A replication of Fig. 2, in essence, for the B790929 burst.

Figure 33. The B791014 scatter diagram of high probability points.

Figure 34. The B791018 well-separated and well-localized burst location possibilities from

the two branches of the square root.

Figure 35. Another burst with the localized orthogonal crossing pattern; this time for

B791031.A.

Figure 36a. The B791101 burst source locus with wrap-around at the vernal-equinox for the

more southerly possibility.

Figure 36b. An expanded view of the northerly locus in the previous plot showing a real

error box.

Figure 37. The B791105 plot which shows no small scale structure because of the large scale

of the diagram.

Figure 38. The B791111 burst locus.
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Figure 39. The scatter diagram for the B791115 gamma-ray burst. Once again the hint of

the joining bridge is visible but projection effects have masked the locally orthogonal

region (if it is present).

Figure 40. The B791215 burst source position locus.

Figure 41. The weU-separated and well-localized pair of high probability areas for the

B791220.A burst.

Figure 42. Another clear view of the two higher probability regions, their locally orthogonal
B

counterparts of markedly different width (though projection effects are important in this

plot), and the separate perpendicular arc (B791222.A).

Figure 43. The B800103.A burst locus.

Figure 44. A nice representation of the filling in effect between the two high probability

regions and the separated orthogonal arc. For the B800105 burst.

Figure 45. Essentially the same plot as the previous one but with a less clear separation. We

do not know if this is real or a relic of the relative projections involved. For the B800116

gamma-ray burst.

Figure 46. The B800213 burst locus pattern.
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