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RAYLEIGH-B]_NARD SIMULATION USING GAS-KINETIC BGK SCHEME IN THE

INCOMPRESSIBLE LIMIT *

KUN XU t AND SHIU-HONG LUIt

Abstract. In this paper, a gas-kinetic BGK modcI is constructed for the Raylcigh-BSnard thermal

convection in the incompressible flow limit, where the flow field and temperature field are described by two

coupled BGK models. Since the collision times and pseudo-temperature in the corresponding BGK models

can be different, the Prandtl number can be changed to any value instead of a fixed Pr = 1 in the originM

BGK model. The 2D Rayleigh-B_nard thermal convection is studied and numcrical results arc compared

with theoretical ones as well as other simulation results.

Key words, thermal instability, incompressible flow, gas-kinetic scheme

Subject classification. Applied Numerical Mathematics

1. Introduction. The use of a code for compressible flow to study incompressible fluid has attracted

much attention in the past years. Since compressibility is proportional to the Mach number squared, 5p/p

M 2, it is negligible once the Mach number is lower than 0.15. In many numerical test cases, such as the cavity

flow, the results from comprcssiblc codes are almost identical to the results from incompressible codes[3, 9, 13].

It is also realized that using a compressible code for incomprcssiblc simulations have advantages. For example,

a Poisson solver is avoided and parallelization of the code can bc easily implemented.

If thermal effects arc involved in the incompressible flow, a simple adaptation of a compressible code

here bears potential danger. The reason is that the density varies with the temperature; this variation

cannot in general bc neglected, and therefore, even at small velocities, the density of a non-uniformly heated

fluid cannot be supposed constant. For example, across the thermal boundary layer, the pressure is almost

constant. If the temperature changes substantially, say by 10%, in the layer, then the energy equation will

cause a 10% density change duc to the ideal equation of state p = pRT. In reality, the density change

is minimal with any reasonable temperature variation in the liquid. So, the compressibility effect is more

severe in the thermal problem than that for the pure Mach compression problem where 5p/p _ M 2. It

is certainly true that wc can use other equations of state to describe a slightly compressible liquid. Scc

[10] and references therein. There, the ability to recover the correct thermal effects is still questionable.

In most current literature about the application of compressible codes to incompressible flows, thermal

compressibility seems to be ignored.

In order to reduce the compressibility in the compressible code for the thermal problem, we have to,

in some ways, decouple the mass and momentum from the energy equation. In this paper, two pseudo-

temperatures arc used to model the Raylcigh-BSnard thermal convection problem in the incompressible
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limit. In the current model, the velocity field and temperature field are described by two BGK models with

different collision times. As a consequence, the Prandtl number can bc changed to any value by modifying

the collision times.

2. Gas-Kinetic BGK Models for Rayleigh Bdnard Thermal Convection. In this section, we arc

going to construct BGK models to study the following incompressible Navier-Stokes equations with thermal

effect,

{ @+V.(pC)=0,

Ot

(2.1) _-t + U- VU = _vp -4-uV2U - G,
P

0(pT) + V-(pTU) = V. (kVT),
Ot

where p is the density which is a constant in the incompressible limit, U the velocity, p the pressure, k the

coefficient of thermal conductivity, and T the temperature. Note that pT is the thermal energy. For the

Rayleigh-Bdnard convection in a two-dimensional box, the Boussinesq approximation gives

pG = p_3Go(T - Tin)f/,

where Go is the gravitational constant, Tm the average value of the top and bottom temperatures, _ the unit

vector in the vertical direction, and 13 the coefficient of volume expansion. For authoritative treatments of

this problem, see, for example, [2] and [6].

In order to the recover the above equations, gas-kinetic models can bc constructed in the following forms,

(2.2) Of feq _ f
O--t-+ u. Vf = -- +F,T_,

(2.3) Oh h eq - h
O--t+ u. Vh = --, Tc

where u = (u, v) is the x and y components of the particle velocity. Eq.(2.2) is used to recover the mass

and momentum equations, and also the velocity flow field. Eq. (2.3) is for the thermal energy evolution. The

equilibrium states feq and h eq have the following forms

feq = p( _)e- A1 ((u-V)_),
7r

heq = pT(A2)e-X2((u-U) 2)
7r

where A1 and A2 can bc expressed as

l 1

A1 = 2R--_1 and A2- 2RT2'

with the two pseudo-temperatures T1 and T2. Here T is the real temperature to bc simulated. Note that

T1 and T2 arc both constants in the current model, and the value of either T1 or A1 determines the artificial

sound speed of the flow field. In the above BGK models, the compressibility is determined from Eq.(2.2)

with the equation of state p = pRT1, which is totally dccoupled from the real temperature T. The external

forcing term F in Eq.(2.2) can bc approximated as [7],

F = 2AG- (u- U)ff q,



from which the buoyancy force can bc recovered.

In the course of particle collisions, the compatibility condition is satisfied in the BGK models,

and

dudv = 0,

with the viscosity cocfficicnt

and the heat conduction coefficient

u = _-_pRT1

k = vcpRT2.

steps

(3.1)

Different from the original BGK model[i], hcrc both coefficients arc dccouplcd from the fluid temperature

T. As a result, the Prandtl number Pr bccomes

b' TuT1
Pr= - = ----

k TcT2'

which can bc changed to any valuc by choosing different v,, re, T1, or T2.

3. Numerical Scheme for the BGK Models. For a finite volume scheme, wc need to evaluate the

numerical fluxes across a cell interface, and the flux function depends on the gas distribution function. In

this section, the BGK scheme to solve Eq.(2.2) and (2.3) for fluxes will be presented.

Firstly, for Eq.(2.2) wc arc going to use the opcrator splitting method to solve the equation into two

and

ft + uf_ + vA, -
feq _ f

(3.2) f_ = F.

For Eq.(3.1), in thc smooth incompressible limit, the general solution of f in the above equation at the ccll

interface Xi+l/2,j and time t can be simplified as[15],

(3.3) f(xi+l/2,j,Yi+l/2,j,t,u,v) = 1 it__ feq(xl ' y,, t r, u, v)e -(t-t ')/_dt
]

ru J_ cc

where x' = xi+l/2d - u(t - g) and y' = Y_+I/2j - v(t - g) is the trajectory of a particle motion. Generally,

the equilibrium state feq around the center of the cell interface (xi+w2,j = xo, Yi+I/2j = Yo), and the initial

time step (t = 0) can be approximated as

(3.4) lea(z, y, t, u, v) = (1 + (x - xo)a + (y - yo)b + tA) go,

By using Chapman-Enskog expansion, Eq.(2.1) can bc recovered exactly in the incompressiblc limit,

f (h eq -- h)dudv = O.



wherego is the local Maxwcllian located at the center of a cell intcrf.acc,

(3.5) go = po (_) e -_l[(_-u°)2+(v-v°)_].

Note again A1 is a constant. The dependcnce of a, b, A in Eq.(3.4) on the particle velocities can be obtained

from the Taylor expansion of a Maxwellian and have thc forms

a = al + a2u + a3v

= "Po{kGQPOx + 2)kl U° _x0U _x _x
+ 2)hVo ) - 2),1Uo u - 2A1Vo OV

O--_v,

b = bl +b2u + bay

_---( Lop "[-2)_lUo_ '_2)_iVo_)-2)_iUoTu-2)_iVo_yV,"Po Oy

A = A1 + A2u + A3v

+
where all parameters (Op/Ox, OU/Ox, OV/Ox) and (Op/Oy, OU/Oy, OV/Oy) at t = 0 can be obtained from

the initial rcconstructions of thc macroscopic variables Op/Ox, Op/Oy, O(pU)/Ox .... For example, a 2nd-order

interpolation gives

1
PO = _(Pi,j + Pi+l,j)

Uo = 2_o((PU)i,j + (pU)i+l,j)

1

go = _po((pV),,j + (pv),+I,A

n_ 1
Z-Y-r = (Pi+l,j -- Pi,j)
Ox Ax

Op _ l (1 1 )Oy 2Ay _(pi+l,j+l + Pi,j+l) -- _(pi+lj-1 + Pi,j-i)

where Ax, Ay are the cell sizcs in the x and y directions.

After substituting Eq.(3.4) into Eq.(3.3), the final gas distribution function at a cell interface is

(3.6) f(xo, Yo, t, u, v) = g0(1 - T_(ua + vb) + (t - T_)A).

The only unknown in the above equation is A, which depends on Op/Ot, OU/Ot and OV/Ot. Since

feq(xo, Yo, t, u, v) = go(1 + At),



together with the compatibility condition

f (feq _ f) dudv = O,

along time t and at x = Xi+l/2,j, A can bc uniquely determined from

f go (ua + vb + A) dudv = O,

which gives

1 [a(pu)| 1 f
-- ot = (ua + vb)go dudv

=- al < u 2 > +a2 < u a > +a3 < u2v > +bl < VU > +b2 < uv 2>+b3 <uv 2> ,

al < uv > +a2 < u2v > +aa < uv 2 > +bl <v 2>+b2<uv 2 > +ba < v a >

where the detail formulation of < u'_v TM > can be found in the Appendix. Therefore, the above equation

uniquely determines Op/Ot, OU/Ot and OV/Ot, so A is obtained.

After determining f in Eq.(3.6), the time-dependent numerical fluxes in the x-direction across the ceil

internee can be computed as

(3.7) _-ov = u go(1 + v_(au + by) + (t - T,)A)dudv.

\_-pv / _+1/2,j

Once again, the moments of u and v can be easily obtained from the recursive relation shown in the Appendix.

By integrating the above equation for a time step At, we get the total mass, momentum transport. Similarly,

_,j+1/2, the fluxes in the y direction can be obtained by repeating the above process in the y direction. With

both fluxes in the x and y directions, we can update the flow variables inside each cell (i,j) by

P P fat 1 1

pU = pU +Jo (_(.Ti U2,j-2Fi+l/2,j)+-_y (_i,j-1/2-_i,j+l/2))dt- At,
pV pV pn/3ao(T n - T,_)

where the effect from Eq.(3.2) has been accounted for in the above equation.

Once Eq.(2.2) is solved, the scheme for Eq.(2.3) can bc constructed similarly. For example, we can

expand h eq as

heq(x, y, t, u, v) = h0(1 ÷ (x - xo)ah ÷ (y -- yo)bh + tAh),

where

ho = (poTo) (_) e -_((u-U°)2+(v-v°)_)

at a cell interface, and

ah = ahl ÷ ah2U ÷ ah3V

10(pT)÷ 2A2U0_._xU ÷ 2&2V0_-_-) 2_2U0_xUu 2_ OV- (poTo Ox - - 2V°-_zv'



bh = bhl 4- bh2u 4- bh3v

10(pT)+2A2coy UO-_ycoU _y 7 _Y- -(poTo + 2_2Vo ) - 2_2U0 u - 2_2V0 v,

Ah = Ahl + Ah2u + Ah3v

- (poTo Ot

which are closely related to the coefficients of a, b and A. In other words, the evolution of h is not totally

independent of the evolution f, and OU/Ox, OV/Ox, ... in the above equations are the same as the corre-

sponding terms in the equations defining a, b, A earlier. Hence, the only unknowns are To, OT/Ox, OT/Oy

and OT/COt. In order to determine all unknowns, at t = 0, the following interpolations can be used to get

poTo and O(pT)/Ox, O(pT)/Oy. The linear reconstruction of thermal energy pT is necessary with

poTo = 0.5( (pT)_,j + (pT)i+l,j),

and

a(pT) 1
Ox = _--_x((pT)i+lJ - (pT)_,j),

O(pT) 1
cOy 2Ay

( (poTo )i+ l /2,j+ l - (poTo )i+ ll2,j-1).

The final solution of h at the center of the cell interface is

(3.8) h(xo, Y0, t, u, v) = h0(1 - Tc(uah + vbh) + (t -- rc)Ah),

and the 0T/COt term in Ah is determined by applying the compatibility condition

(h eq -- h)dudv = 0,

along (x0, y0, t), which similarly gives

/ Ahhodudv=--/(ahu+bhv)hodudv.

Once h is determined in Eq.(3.8), the numerical flux for the thermal energy is

:£pT = / uhdudv,

and the thermal energy inside each cell can be subsequently updated.

4. Results. The Rayleigh-B6nard problem offers a first approach to a complicated convective flow. In

this case, with the gravitational force in thc vertical direction a horizontal layer of viscous fluid is heated from

thc bottom while the top boundary is maintained at a lower temperature. Whcn the temperature difference

between the top and bottom boundaries is increased above a certain threshold, the static conduction state

becomes unstable to any small disturbance and the system becomc convective.

In our calculations, the horizontal and vertical length scales are L --- 2.0 and H = 1.0, respectively. The

temperatures at the bottom and top are Tbottom = 1.0, Ttop = 0.0, with thc difference AT ----1.0. Non-slip

boundary conditions are implemented at the bottom and top boundaries by reversing the flow velocities in



the 'ghost'cellnextto thesimulationdomain.Periodicboundaryconditionsareusedforthetemperature
alongthesidesof thebox.In ourcurrentstudy,wefix Go = 1.0 and _ = 0.1.

The Raylcigh number is defincd as

flATGoH _
R--

vk

From thc above relation and Pr = v/k, the viscosity coefficient can be determined:

v= _flAT_ H3Pr.

Consequcntly, thc collision time T_ in Eq.(2.2) is fixed with

and Tc in Eq.(2.3) is

r_ = 2Alv,

_2

rc = Tv )u Pr"

Since in the simulations, the CFL time step At is almost a constant, in order to keep the collision time r_ to

be around 10-1At, we have to choose A1 properly. In most calculations, At is on the order of 10 -1. Although

the numerical scheme is general for any Pr, we used Pr = 1, ),1 = ),2 and rv --- re.

As a first test, wc tried to get the critical Raylcigh number for the onset of thermal convection. With a

80 x 40 mesh, we have simulated this problcm with two supcrcritical Rayleigh numbers R = 1720 and R =

1735 separately. In each case, wc calculate the maximum y-component velocity in the whole computational

domain at each time step. The time-dependent amplitude of the y-velocity on a 80 x 40 mesh is shown in

Figure 5.1, from which we can estimate the critical Rayleigh number by fitting the curve to V ,,_ cxp(a(R -

Rc)t), where Rc is the critical Rayleigh number. From the exponential growth rates, we found that the

critical Raylcigh number in our calculations is Rc = 1711.17, which is 0.22% away from the theorctical value

1707.76 (which is actually for a box of width 2.0158). For other meshes, the calculated critical Raylcigh

numbers are listed in Table 1.

Table 1. Critical Rayleigh numbcrs calculated on different meshes. The error is calculated relative to the

thcorctical value.

Grid Size Rac

20 x 10 1756.22

40 x 20 1729.43

80 x 40 1711.45

theory 1707.76

Error

2.84%

1.27%

0.22%

Once the Rayleigh-B6nard convection is stabilized, the heat transfer between the top and bottom is

greatly enhanced. The enhancement of the heat transfer can be described by the Nussclt number,

<VT>
N_=I+

kAT/H'

where V is the vertical velocity, AT is the temperature difference between the bottom and top walls, H

is the height of the box, and < ... > represents the average over the whole flow domain. Figure 5.2 is the

calculated relationship between the Nusselt number and the Rayleigh number. The simulation results by



CleverandBussc[4]isalsoincluded.Asshownin thefigurc,ourresultsarcverycloseto thoseby Clevcr
andBusse.But, at higherRayleighnumbers,ourvaluesof theNusscltnumberis a little bit smallerthan
thatin [4],andthusunderestimatingtheamountofheattransfer.Similarresultsarcobtainedusinglattice
Boltzmannmethods[12,8].

TypicaltemperatureandstreamfunctioncontoursareshowninFigures3- 8with Ra = 5,000, 10,000

and 50, 000. As the Rayleigh number increases, two trends were obscrvcd for the temperature distribution:

enhanced mixing of the hot and cold fluids and an increase in the temperature gradients near the bottom

and top boundaries. Both trends enhance the heat transfer in thc box.

As another benchmark problem, we have tried one case in [5]. This problem is that of thc two-dimensional

Boussinesq flow in a square with H -- L --- 1.0 and Prandtl number Pr -= 0.71, which is done by setting

A1 = A2 and Tc = "r,/Pr in our code. Both velocity components arc zero on thc boundaries. The horizontal

walls are insulated, and the vertical sides are at temperatures Tl_f_ = 1.0 and Trlght ----- 0.0. In this case, thc

Nussclt number is defined as

<UT>
N_=-I+

kAT/L "

The rcsults for thc streamline and temperature contours at R = 105 are shown in Figurc 5.9 and 5.10.

With R = 105, the average Nussclt number in the whole domain is listed in Table 2 for different mesh

sizcs. Contrary to the last test case, our result overestimates the heat transfer. A larger Nussclt number is

obtained.

Table 2. Nusselt numbers calculated on different meshes. The error is calculated relative to the numerical

result in [5].

Crid Size Nussclt Number Error

20 x 20

40 x 40

80 × 80

reference [5]

4.590 1.77%

4.563 1.17%

4.540 0.66%

4.510

5. Conclusion. In this paper, a two-temperature gas-kinetic BGK modcl for convective thermal flow

is constructed. A numerical scheme has subsequently been developed. As an application, the 2D Rayleigh-

B6nard case is studicd. The simulation results are very closc to those obtained by other methods. To study

the incompressible flow phenomena using thc compressible model is an attractive research area. In order to

simulate thermal effects in an incompressible fluid, the decoupling of the energy equation from the mass and

momentum equations seems necessary, because the relation between temperature and volume changes are

different for incompressible and compressible fluids. Compared with the lattice BGK mcthods, thc current

approach with continuous particle velocity has advantages in terms of stability and efficiency. The time step

used in the current mcthod is the CFL time step which is about one order of magnitude larger than the

particle collision time which is usually used in the lattice BGK method[11].

In this paper, thc tcmpcraturc evolution equation only includes advcction and diffusion terms. The

viscous heating tcrm in the Navier-Stokes energy equation is ignored duc to the simplicity of the model.

The construction of a two-temperature BGK model with the viscous heating term in the thermal energy

evolution equation is an intcrcsting and important problem. The research in this direction will help us to

find an cfficicnt kinetic scheme to simulate incompressible flow, and pave thc way to simulate a flow mixing

compressible gas and incompressible liquid.

_] :|
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Appendix: Momentsof the MaxwellianDistribution Function. In thegas-kineticscheme,wc
needto cvaluatemomentsoftheMaxwelliandistributionfunctionwithunboundedintegrationlimits.Herc,
wclist somegeneralformulas.

Firstly,weassumethattheMaxwclliandistributionfor atwo-dimensionalflowis

g = p(_)e-_(("-u)2+(v-V)2).

Then, by introducing the following notation for the moments of g,

p < ... >=/(...)gdudv,

the general moment formula becomcs

< unv TM _=,_ U n >< V rn _,

where n, m are integers. When the integration limits are from -oc to +co, we have

<U 0 >=]

<u>=U

Similarly,

n+ 1 un
<u "+2>=U<u n+l > +--_ < >.

< v ° >= 1

<v>=V

,o

m+ 1 vrn
<v m+2 >=V<v rn+1 >+--_ < >.
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FIG. 5.9. Stream function contours at R = 100000
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