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A GAS-KINETIC SCHEME FOR REACTIVE FLOWS *

YONGSHENG LIAN t AND KUN XU

Abstract. In this paper, the gas-kinetic BGK scheme for thc compressible flow equations is extended to

chemical reactive flow. The mass fraction of the unburnt gas is implemented into the gas kinetic equation

by assigning a new internal dcgrcc of freedom to the particle distribution function. The new variable can bc

also used to describe fluid trajectory for the nonreactive flows. Duc to the kinetic governing equation, the

current scheme basically solves the Navicr-Stokcs chemical reactive flow equations. Numerical tests validate

the accuracy and robustness of the current kinetic method.

Key words. Boltzmann equation, kinetic scheme, reactive flow

Subject classification. Applied Numcrical Mcthods

1. Introduction. There are mainly two numerical approaches to thc solution of thc comprcssiblc Euler

equations, namely, the Godunov and the Boltzmann schemes. Broadly speaking, the Godunov scheme is

based on the Riemann solution and characteristics play an important role in the description of the gas

evolution. However, the Boltzmann scheme uses the microscopic particle distribution function as the basis

in the construction of the flux function and the Euler solution is considered as a limiting case when the

particle collision time goes to zero. The Godunov and the Boltzmann schemes are based on two different

physical interpretations of flow motion. Duc to the possible implementation of nonequilibrium gas property

in the kinetic scheme, both the robustness and accuracy of the scheme can be maintained [10].

In this paper, wc cxtend the gas-kinetic BGK scheme for the nonreactive compressible Euler equations

to the reactive flows. In order to implement the mass fraction into the kinetic formulation, one new internal

degree of freedom z is implemented in the gas distribution function. For nonreactive flows, this function can

be also used for the tracking of fluid trajectory. In the reactive flow calculations, wc arc only accounting for

two species, which are the unburnt and burnt gases. The unburnt gas is converted to burnt gas via a simple

irreversible reaction process. As a special application, the new scheme is used in the study of detonation

waves in both 1-D and 2-D cases.

The inviscid reacting compressible Euler equations in 1-D case arc

{ p_+ (pU)x = o,

(1.1) (pU)_ + (pU 2 +p)x = 0,
(pZ)_ + (pZU)z = -pK(T)Z,

(pe)t + (peV + pU)_ = qopK(T)Z,

where p is the density, U the velocity, p the pressure, Z the mass fraction of unburnt gas, and q0 is the

amount of heat released per unit mass by reaction. The total energy density is pc = 1-pV2 + pe, where pe is2

the internal energy. We assume that both unburnt and burnt gases have the same _. The equation of state
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can be expressed as p = pTR/m, where R is the gas constant and m is thc molecular mass. K(T) is thc

chemical reactive rate, which is a function of tempcraturc. The specific form of K(T) will bc given in the

numerical section.

Many rcsearchcrs havc been working on the numerical solution of equations (1.1). A partial list of

rcfcrences includes Colella ct.al. [2], Lindstrom [6], Engquist and Sjogreen [3], and Jeltsch and Klingcnstein

[4]. Mostly, a splitting scheme is used to solve the above equations and the flow variablcs inside cach ccll arc

updated through

dWj
_x (Fj_l/2(t) - Fj+l/2(t)) _- S(Wj),dt

where Wj = (p, pU, pZ, pc) T is the cell-averaged conservative variables, S = (0, 0,-pK(T)Z, qopK(T)Z) T is

the source term, and the flux function Fj+I/2 is obtained by solving Eq.(1.1) without considering the sourcc

term. In this paper, a gas-kinctic model and the corresponding kinetic scheme for the evaluation of the flux

function Fj+I/2 of the homogeneous Euler equations will be presented, and the source term S(Wj) in the

above equation is treated implicitly for the update of flow variablcs Wj inside each cell.

2. A Gas-Kinetic Model. A gas-kinctic BGK model for Eq.(1.1) without the source terms can be

constructed as the following equation,

(2.1) ft + ufx -- g -- f,
T

where f is the gas-distribution function, u the particle velocity, and Q(f, f) = (g - f)/7 the particle collision

term [1]. The equilibrium state g has the form,

g = p (_)"_-_ e-;_((,_-u)_+(z z)_+,_),

where K is the number of dimensions of the internal variable _ and is related to %

g = (3 - "y)/('y - 1),

and _2 = _2 + _2 +... + _. The term )_ is a function of the gas temperature T with the relation A = m/2KT

and k is the Boltzmann constant.

Thc connection bctween the distribution function f and the macroscopic flow variablcs is

(p, pU, pZ, pc) T = / ¢_fdudzd_,

where d_ = d_l d_2...d_/< and

_/2c_ = (1, _t, Z, 1(U2 _- _2))T

arc the moments for density p, momentum pU, mass fraction pZ, and total energy pc. The fluxes for the

corresponding macroscopic variables are

(F,, Fpu, Fpz, F_) _ = j u¢,_f dudzd_.

For the homogeneous flow equations (1.1) without the source terms, the compatibility condition of the

collision tcrm in the Boltzmann equation is

(2.2) / Q(f, f)_,,_dudzd_ = .
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Fortheequilibriumflowwith f = g, the homogeneous Eulcr equations with the inclusion of mass fraction

can be recovered by taking the moments of tb_ to Eq.(2.1),

f + : o,
1 (U 2 Jr- _2_

and the resulting equations become

pU pU 2 + 22X

pZ + pZU | = O.

I 2 g+l) 1_,T3_ (K+3_V_!

So, the corresponding pressure is p = p/2A and the internal energy density pe goes to

(K + 1)p
pe -- 4A

To the first order of 7, the Chapman-Enskog expansion gives

f = g - r(g, + Ugx),

and the BGK model automatically reduces to the Navier-Stokcs equations,

(2.3) pU pu +
oz + 0vz | = T '

a 2 K_+A_ _._rr3+ _+LE_+____I _(_)_+ K+a2_ __p(U Jr- 2A ] t _r._ -- 2x ! ! x -_ "P- 1 2K P T]'Tr

where the dynamic viscous coefficient is 7] = Tp. In the 2-D eases, similar viscous governing equations can be

derived from the BGK model [10]. As a result, for the chemical reactive flows, the real governing equations

solved by the kinetic BGK scheme arc the reactive Navier-Stokes equations instead of inviscid equations

(1.1). This is basically one of the direct reason for the robustness of kinetic BGK scheme.

Remark: in the above equations, the function Z has no dynamical effect on the gas evolution, it only provides

additional information about the flow property, which can be the mass fraction for the reactive flow, level

set function for the interface tracking, color function for the fluid trajectory capturing, and the pollution

concentration for certain gas species.

3. (gas-Kinetic Flow Solver . In order to evaluate the numerical fluxes across a cell interface Xj+l/2,

wc need to get the gas distribution function there. The general solution of f at the cell interface xj+l/2 and

time t is

1 it , ,,(3.1) f(xj+l/2,t,u,z,() = -_ 9(x',t',u,z,()e -(t-_ )/'dt + e-t/'fo(xj+l/2 - ut),
JU

where x _ = xj+l/2 - u(t - t _) is the trajectory of the particle motion and f0 is the initial gas distribution

function f at the beginning of each time step (t = 0). Two unknowns, g and f0 in Eq.(3.1), have to be

addressed in the above equation in order to obtain the explicit form of f.

Generally, the distributions of f0 and 9 around the cell interface xj+l/2 and time t = 0 are obtained

using the Taylor expansion of the Maxwellian distribution function, for example

{ 9' (l + at(x - xj+t/2)) , x < xj+u2(3.2) f0 = g_ (1 + a_(x - Xj+l/2)), x ___ Xj+l/2



and

(3.3) g = go (1 + (1 - nix - xj+l/2])_t(x - Xj+l/2) + H[x - xj+l/2]_r(x - Xj+I/2) -_- At),

where gtgr and go arc local Maxwellians located at the left, right and middle of a ceil intcrfacc. The

parameters a l, a _, a l, _ have thc following form

a = al + a2u + a3z + a4(u 2 + _2),

and all parameters (al, a2, a3, a4) can be found from the slopes of the corresponding macroscopic variables.

H[x] is the Heaviside function defined as

H[x] = { 0, x<:01, x_>0

The rcason and detailed formulation in the dctcrmination of f0 is prescnted in [12, 10]. The only diffcrcnce

here is that we need to use the macroscopic distribution pZ in the determination of the a3z term.

After f0 is obtained, the equilibrium state go at a cell interface

go =P0(-_) _ e -_°((_-v°)2+(z-z°)_+_2),

is determined as follows. Taking the limit of t -* 0 in Eq.(3.1) and substituting its solution into Eq.(2.2),

the compatibility constraint at (x = xj+w2, t = 0) gives

Similarly the corresponding slopes of g in Eq.(3.3) can be obtained from the macroscopic slopes between the

cell averaged flow quantities l_ and I_+1 and the above value W0 at the cell interface [12].

After substituting Eq. (3.2) and Eq. (3.3) into Eq.(3.1), the final gas distribution function at a celt interface

is

f(xj+:/2, t, u,z,:) = (1 - e-t/_)go + (v(-1 + e -t/r) + te -t/r) (dill[u] + _r¢l - H[u]))ugo

(3.4) +T(tlT -- 1 + e-tlr)fiigo

+e -t/r ((1 - utal)H[u]g l + (1 - utah)(1 - H[u])g_).

The only unknown in the above equation is __ term, which is determined by implementing the compatibility

condition over the whole time step At at the location Xj+l/2,

fo - =o.

There is no iteration involved in the determination of A from the abovc equation [12]. After f is obtained,

the time-dependent numerical fluxes in the x-direction across the cell intcrfacc can be computed as

f(x3+_/2, t, u, z,
(3.5) /_;Z U :S'tt l{lt2-[-_ 2)

_)dudzd_.

By integrating the abovc equation over the wholc time step At, wc get the total IV = (p, pU, pZ, p_) transport.
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4. Numerical Examples. In the numerical examples reported in this section, the van Lccr limitcr is

used for the reconstruction of conscrvativc variables W at the bcginning of cach time step. Unless specifically

stated, the gas constant ? is equal to 1.4. The first three test cases are about the nonrcactivc flow and the

mass fraction is used as an interface tracer for the fluid cvolution; the following two test cases are about 1-D

and 2-D detonation wave calculations.

Case(l): Diffusion of mass fraction function

As analyzed in section 2, the real governing equation obtained from the kinetic BGK modcl for thc

function pZ is the advection diffusion equation,

(pZ), + (pUZ)_ = _'(_ Zx)_.

In ordcr to test the above governing equation, we set two uniform initial flow conditions with

(4.1) (p= l,p= l,U=O), and (p= l,p= l,U =0.5).

The computational domain consists of 200 grid points with cell size Ax = 1.0. Thc function Z is initially

assigned with the value

Z= _-1' x< 100,
t 1. x _ 100.

Two fixed collision times r = 0.03 and r = 0.015 are used in the computations, which correspond to

viscosity coefficients v = 0.03 and v = 0.015 respectively. At the output time t = 100, the numerical and

exact solutions for both cases are shown in Fig.(5.1). The results confirm that the BGK scheme does solve

the advection diffusion equation for the mass fraction function Z.

Case(2) Fluid trajectory in the shock tube case [9]

The forward-facing case is carried out on a uniform mesh of 120 x 40 cells and Ax = Ay = 1/40. Wc

choose the color function Z at the inlet x = 0 with the following boundary conditions

1.0 for0_<y<4_ ,

21

Z= -1.0 for __<y< _,
21 < < 331.0 for _ _ y _,

-1.0 for 33 <__y<l.

The computed density and pressure distributions are presented in Fig. (5.2). In the same figure, the contours

of function Z are added, from which the interfaces betwecn different "colored" fluid and the fluid trajectories

can be clearly observed. For example, the fluid particles change direction after passing through the oblique

shock.

Case(3) Rayleigh-Taylor instability [7, 5]

This computation is performed on a rectangular domain of x E [0, 1] and y E [0, 2] with reflecting

boundary conditions on the lower and upper sides of the domain and periodic ones in the horizontal direction.

The gravity is directed downward with dimensionless gravitational constant G = 0.5.

The densities next to the initial fluid interface at y = 1 are pl = 0.5 and P2 = 1.0 with the ratio

p2/pl = 2 : 1, and the functions Z arc 1.0 below thc interface and -1.0 abovc that. The value of the pressure

at the fluid interface (y = 1) is 1/1.4, and isothermal conditions are used to dctermine flow distributions in

both the upper and lower parts. The initial density perturbation at the interface is added with the form

_p = 0.05(1 - cos(27rx)). Since thc heavy fluid is located on top of the light fluid, it stays in an unstable



situationwhenthesystemis subjcctcdto gravity.Thc computedcontoursof functionZ with the values

Z = [-0.5, 0.0, 0.5] at output time t = 10.0 on three different mesh sizes (Ax = Ay = 1/64, 1/128, 1/192) arc

shown in Fig.(5.3). Since the collision time v = 4 x 10 -4 is fixed in all these threc cascs, the physical viscosity

coefficient Tp/p keeps the same value. Therefore, cvcn with the mesh rcfinement the simulation results are

basically identical. If the Ricmann solution of the inviscid Euler equations is used in the flux cvaluation

Fj+I/2, the numcrical results usually do not convcrgc with the mesh-refinement [7]. The nonconvcrgence

of the numerical results is more serious for the detonativc reactive flows using the exact Godunov method

[8, 6].

Case(4) 1-D denotation wave

In this case, we are going to study the formation of thc ZND wavc for thc following reaction kinetics,

Ko, T>_To,(4.2) K(T) = O, T < To,

where To is thc ignition tempcraturc and K0 the reaction rate. This specific casc is takcn from [4]. The

initial data are piecc-wise constant, which defincs the Chapman-Jougct detonation wave:

(Pt = 1.9690 x 10 -3 g-_---, U_ = 4.8057 x 10 acre gcm 3 sec' Pz = 7.9434 x 106 cmsec2, Z = 0),

(p_ -- 1.2010 x 10-3cm-_3, Ut = 0.0, p_ = 0.8321 x 106_, Z -- 1.0).

In the calculation, the gas constant R is equal to 8.3143 x 107cm2g/sec2Kmol, the molecular weight m =

36g/mol, the ignition temperature To = 500°K, the reaction rate K0 -- 0.582458 × 101°/s, and the heat

release q0 = 6.9283 x 109cm2/sec 2. The spatial step size Ax used in each case is varied according to

Ax = aR0, where R0 = 5.347 × lO-%m and the parameter a takes thc values 0.01, 0.1, 1 in the three cases.

The results at subsequent times with diffcrent (_ arc shown in Fig.(5.4)-(5.6). From these figures, wc find

that a detonation wave is a strong shock wave propagating into a reactant, followed by a thin zone of reaction

which supports the shock.

Case(5) 2-D denotation wave [6]

As illustrated in [6], with the mesh refinement the reactive Eulcr solvers can generate unphysical solutions

in the complicated oscillating detonation wavcs. The spurious solution appears even using the cxact Godunov

method [8].

The initial condition for the 2D denotation simulation is an exact traveling solution of thc ZND wave.

The reaction rate K(T) has the following Arrhenius formulation,

(4.3) K(T) = KoT_e -E/T.

The parameters used are q0 = 50, E-- 50,_/ = 1.2 and a = 0. The reaction rate K0 is sct to be 104 .

The initial data is a one-dimensional ZND profile in the x-direction. The ZND wave connects the left state

pl = 1.731379, Ut = 3.015113 Vl = 0, plcz = 130.4736, Z_ --- 0 by a Chapman-Jouget dctonation with thc

right state Pr ---- 1, U_ = 0, VR -- 0, pre_ -- 15, Zr = 1. The computational domain is 0.6 x 1.0, and the ccll

size used is Ax = Ay = 1/400. A periodic perturbation is imposed in the y-direction of the initial ZND

profile, where the initial data W(x, y, 0) is sct to WZND (X + AxNINT(_Scos(4_ry))), whcrc NINT(z) is the

ncarest integer close to z. The simulation results around the ZND wave front for the subsequent times from

5/64, 6/64, ..., 16/65 arc shown in the Fig.(5.7). From this figure, we can clcarly see the oscillating profile of

the ZND wave front and the "explosion within explosion " phenomena due to the collision of triple points.

For the Godunov schcmc, duc to the inadequate dissipation in the gas evolution stagc, the shock insta-

bility and carbuncle phenomena are intrinsically rooted [11], and the robustness of the Godunov scheme can

] I



hardly bc achieved for the complicated flow system in the high resolution calculations, such as the chemical

reactive and MHD equations. A detail analysis of the dissipative mechanism in the Godunov method is

presented in [11]. However, for the gas-kinetic BGK scheme, we are basically solving the viscous governing

equations even for the inviscid target equations. So, the robustness is well maintained. This kind of approach

is physically founded, because wc are obtaining the numerical solutions on the discretized space and time,

where the spatial and temporal resolution is limited by the ccll size and time step. The subcell smearing is

cquivalent to the intrinsic dissipation. In order to remove the unphysical solutions in Riemann solver based

methods, the reactive Navier-Stokes equations arc solved directly in [6]. However, the evaluation of the vis-

cous terms requires substantial computation resources. In this aspect, the gas-kinetic scheme of thc current

paper is efficient since the viscous and heat conduction terms have bccn included in the gas distribution

function (3.5) already.

5. Conclusion. In this paper, we have extended the BGK scheme to the chemical reactive flow with

the inclusion of one more internal degree of freedom in the gas distribution function to account for the mass

fraction. This mass function can be also used to track the fluid interfaces for the nonreactive flows. Thc

numerical results confirm the robustness, accuracy and efficiency of the BGK method.
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FIG. 5.1. Propagation of/unction Z with velocity U = 0 (top) and U = 0.5 (bottom). The collision times used are 7- = 0.03

(left) and r = 0.015 (right) respectively. The solid lines are exact solutions and the circles are numerical solutions.
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FIc. 5.2. Density and pressure contours .for the step case. The contours o/function Z with Z = [-1/32, 0, 1/32] are added
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FIG. 5.7. Density distribution of the propagating detonation front at time t = 5/64, 6/64, ..., 16/64 (from left ---* right, top

--_ bottom). The phenomena of "explosion within explosion" can be clearly observed at the leading shock front.
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