
NASA/CR- 1998-208953

ICASE Interim Report No. 33

The Tera Multithreaded Architecture and

Unstructured Meshes

Shahid H. Bokhari

University of Engineering and Technology, Lahore, Pakistan

Dimitri J. Mavriplis

ICASE, Hampton, Virginia

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA

Operated by Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-2199

Prepared for Langley Research Center
under Contract NAS 1-97046

December 1998

https://ntrs.nasa.gov/search.jsp?R=19990019381 2020-06-15T22:33:57+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42768794?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Available from the following:

NASA Center for AeroSpace Information (CASI)
7121 Standard Drive

Hanover, MD 21076-1320

(301) 621-0390

National Technical Information Service (NTIS)

5285 Port Royal Road

Springfield, VA 22161-2171

(703) 487-4650

THE TERA MULTITHREADED ARCHITECTURE AND UNSTRUCTURED MESHES*

SHAHID H. BOKHARI t AND DIMITRI J. MAVRIPLIS t

Abstract. The Tera Multithrcadcd Architecture (MTA) is a new parallel supcrcomputer currently being

installed at San Diego Supercomputing Center (SDSC). This machine has an architecture quite different from

contemporary parallel machines. The computational processor is a custom design and the machine uses

hardware to support very fine grained multithreading. The main memory is shared, hardware randomized

and flat. These features make the machine highly suited to the execution of unstructured mesh problems,

which arc difficult to parallclizc on other architectures.

Wc report the results of a study carried out during July-August 1998 to evaluate the execution of EUL3D,

a code that solves the Euler equations on an unstructured mesh, on the 2 processor Tera MTA at SDSC.

Our investigation shows that parallelization of an unstructured code is extremely easy on the Tcra. We

were able to get an existing parallel code (designed for a shared memory machine), running on the Tera

by changing only the compiler directives. Fhrthermore, a serial version of this code was compiled to run

in parallel on the Tera by judicious use of directives to invoke the "full/empty" tag bits of the machine to

obtain synchronization. This vcrsion achieves 212 and 406 Mflop/s on one and two processors respectively,

and requires no attention to partitioning or placement of data issues that would be of paramount importance

in other parallel architectures.

Key words, parallel computing, multiprocessors, supcrcomputing, multithreaded architectures, Tcra

computer, unstructured meshcs

Subject classification. Computer Science

1. Introduction. The Tera Multithrcaded Architecture (MTA) is a new parallel supercomputcr cur-

rcntly being installed at San Diego Supcrcomputing Center (SDSC). This machine has an architecture quite

different from those of other contemporary parallel machines. It has a flat, shared memory without locality

and has hardware support for very fine grained multithreading. The machinc and its associated parallelizing

compiler promise grcat case in scalable parallel computing.

We report the results of a study carried out during July-August 1998 in which we evaluated the porting

of an unstructured mesh code to the Tera. Algorithms based on unstructured meshes arc ordinarily very

difficult to parallelize efficiently on conventional parallel machines. Our results show that code can be ported

with great ease to the Tera and that the performance achieved is very promising.

We first discuss, in Section 2, how the Tcra architecture attcmpts to compensate for the limitations of

conventional parallel machines. Wc describe the architecture of the machine in some detail in Section 3. In

Section 4 we describe our unstructured mesh solvcr and how it was ported to the Tera. Two variants of the

code were ported: the measured performance of these codes is presented in Sections 4 and 5 respectively. In

Section 7, wc conclude with a discussion of the problems we encountered and our plans for future research.

*This research was supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-

97046 while the authors were in residence at the Institute for Computer Applications in Science and Engineering (ICASE),

NASA Langley Research Center, Hampton, VA 23681-2199. This research was made possible by access to the Tera MTA at

the San Diego Supercomputcr Centcr_ which reccives major support from the National Science Foundation.

CDcpartmcnt of Electrical Engineering, University of Engineering and Technology, Lahore, Pakistan (shahid©icase. edu).

$Institute for Computer Applications in Science and Enginccring (ICASE), NASA Langley Research Center, Hampton, VA

23681-2199 (dimitri©icase. edu).

2. The State of Parallel Computing. Despite nearly half a century of research and development,

truly general purpose parallel computing remains an elusive goal. Very carcful programming and a good

knowledge of the target computer's architecture arc requircd to achicve evcn modest performance. At the

same time, the wide diversity in available parallel architectures means that a program successfully ported

to one machine may require considerable reworking to run on another. This discourages practitioners from

exploiting parallel.computing and confines the field to experts, academicians and researchers. Finally an

inordinate effort is required to successfully parallelize an algorithm and even then the achieved performance

is poor compared with the theoretical peak.

There arc a number of reasons for the above mentioned state of affairs. Firstly, with currently available

distributed memory machines, parallel computing involves a never-ending battle to match computation to

architecture. Parallel machines necessarily involve large numbers of intcrconnected processors. The utiliza-

tion of these processors is inevitably linked to how well the structure of the computation matches (or can be

transformed to match) the structure of the machine. The process of transformation may involvc partition-

ing, mapping and reordering of data, as well as reformulation of thc computation. Thcse transformational

requirements lead to major combinatorial problems that are often more difficult than the actual problem

being solved. The programmer is required to have extensive knowledge of the interconnect network, cache

hierarchy, arithmetic unit etc.

Figure 2.1 sketches how the quest for utilization has evolved over time on uniproccssors. The checkered

rectangles in this figure represent the hardware-time products for the indicated architectures the higher the

utilization, the larger the fraction of grey blocks in this rectangle. A simple, primitive processor's hardware

could be utilized only to a limited extent. Among the first developments in computer architecture was the

evolution of pipelined processors that could deliver higher utilization for certain types of operations. This

higher utilization required additional investments in 'performance enhancing' hardware, that is hardware

that did not contribute to actual computation but was required to improve the utilization of the 'productive'

hardware. A modern pipelined processor improves utilization by considerable investment in such performance

enhancing hardwarc as well as in sophisticated compilers. At the same time, the programmer may have to

make some investment in transforming his program, or even the underlying algorithm, to better utilize the

specific hardware. Figure 2.1 also shows that, in a contemporary pipelined machine, some of the work done

by the hardware may be wasted becausc of speculativc cxccution.

A modern parallel processor requires relatively larger hardware and software investments to obtain

adequate utilization. Figure 2.2 illustrates how the productive hardware (that carries out the actual com-

putations for our program) has to be augmented with additional hardware and software. A contemporary

high-performance parallel machine requires performance enhancing hardware in the form of caching units,

high speed interconnect, synchronization mechanism, etc. Furthermore, considerable investment may need

to be made in compilers, in an operating system, and for analysis tools. Parallel programming platforms

such as PVM [5, 6], MPI [7], PARTI [1], and PETSc [4] constitute part of the software overhead. Finally the

programmer needs to invest considerable effort in developing his program, rethinking his algorithm and, of

course, in the difficult issues of partitioning, mapping, scheduling, etc. Despite these overheads, the utiliza-

tion achieved by such processors is low; indeed, there are largc classes of problcms for which thesc machines

are considered unsuitable.

One approach to improving utilization is to invest in additional hardware and software to support paral-

lelism, possibly at the cxpense of additional compiler ovcrhcad. Figure 2.3 illustrates how specially dcsigned

hardware can bc used to offload the burden placed on the programmer and on parallelism support softwarc.

Simple processor:

time

Pipelined processor:

performance enhancing h/w
(e.g. reservation table)

I¢-

time

Modern pipelined processor:

r-

E

>
¢-

o

t-

programmer effort,
algorithmic investment

compiler
performance enhancing h/w
(e.g. instruction reordering

buffer, cache, etc.)

time

m

(D

II

D

II

D

FiG. 2.1. The Quest for Utilization. As uniprocessors have evolved over time, the investment in non-productive 'perfor-

mance enhancing' hardware has increased. A modern machine also requires considerable investment in compiler development.

This proposal rules out the possibility of using commodity microprocessors for parallel processing and re-

quires a protracted cycle of development and production. However the potential benefits are very attractivc.

Thc Tera Multithrcaded architecture (MTA) uses this path, as described in Figure 2.4. By invcsting heavily

in performance enhancing hardware, the Tera is able to eliminate the issues of parallelism support and data

partitioning, etc. Higher investment in hardware reduces the effort required by the programmer and also

increases the utilization of the productive hardware.

Modern parallel processor:

J_

>
0

•--
:i:ii!ii:!

¢-
(D

E

>
e-

°_

I

0

programmer effort,

algorithmic investment
partitioning,

mapping, scheduling
reordering

parallelism support:
PVM, MPI

PARTI
PETSc

compiler
operating system

analysis tools
performance enhancing h/w

cache coherence
interconnect

synchronization

_Li!!i

ii_ii'_i_iiiiiiii

i,liil,i_i,i,_i,I

time

FIG. 2.2. Parallel Computing: Investment and Return. A modern parallel processor achieves low utilization despite

considerable investment in hardware and so, ware.

3. Key Features of the Tera Architecture. Detailed information on the Tcra architecture may be

found in [2, 3] and at the Tera web site 1. We present a brief overview.

3.1. Zero overhead thread switching. The Tera has special purpose hardware (streams) that can

hold the state of up to 128 threads (per processor). On each clock cycle, each processor switches to a different

resident thrcad and issues one instruction from that thread. A blocked thread (for example, one waiting for

word from memory or for a synchronization event) causes no overhead, the processor executes the instruction

1 _. tera. tom

e-

E
00
{D

t-o_

O

{D
c-

O

c_

c_

F

0

programmer effort,

algorithmic investment
partitioning

mapping, scheduling
reordering

parallelism support:
PVM, MPI

PARTI
PETSCI

compiler
operating system

analysis tools
performance enhancing h/w

custom processor,
interconnect

synchronization
[

i i,iiiiiii!_i

time

\

I

FIG. 2.3. Additional investment in hardware reduces software overhead (functions migrate into hardware).

of somc other ready thrcad.

3.2. Pipelined Processors. Each processor in the Tcra system has 21 stages. As each processor

accepts an instruction from a different stream at each clock tick, at least 21 ready threads are required to

keep it fully utilized. Since the state of up to 128 streams is kept in hardware, this target of 21 ready threads

is easy to achieve.

t--

E

{D

t'--
.m

m

t_

O

tO
{D

°

{D
t_

2:}

¢.-

CD
>

°m

O
i_

programmer effort,
algorithmic investment

compiler
operating system

analysis tools
performance enhancing h/w

custom processor,
interconnect,

multithreading,
full/empty bits ...

:: :: _ _ ;, ,, ,,,,,

' r : i ::? _

: 1 :::7

? ? :
riir

......... i J
: :: rd::::: : 7: : ::

: ::: ::

time

Low
effort

Higher
investment

High
utilization

FIc. 2.4. The Tera Idea: Higher investment in hardware yields improved utilization and also reduces software overhead.

3.3. Flat Shared Memory. All memory locations on the Tera are 64 bit words. Addresses are hashed

by hardware to randomly scatter them across memory banks. The cycle time per memory bank is 35 clock

ticks. The access time varies from 150 200 clock ticks, depending upon the size of the system. The 21 stage

processor pipeline is dwarfed by the ,_ 150 cycles of latency to memory. This mismatch is overcome by

having more than 21 threads, each with lookahead or performing non-memory operations. A processor will

typically have hundreds of memory references outstanding. As a result of these features, the memory has no

locality and there are no issues of partitioning or mapping on the machine.

i

!
i

threads

(corresponding to one or

more parallel programs +

OS functions)

,/©

©

C_C_

128 streams

(hardware for holding

states of threads)

pipeline

(21- stage)

FIG. 3.1. The Tera Architecture (1 processor)

3.4. Extremely fine-grained synchronization. Each 64 bit word of memory has an associated

full/empty bit. A memory location can bc written into or read out of using ordinary loads and stores, as in

conventional machines. W'c can also do load and stores under the control of the full/empty bit. For example,

a "read-full set-empty" instruction will read data from a location only if that location's full/empty bit is set.

It will set the full/empty bit to empty after succcssfully executing the rcad. If the full/empty bit is not set,

the thread executing the read will bc suspended (by hardware) and will resumc only when the bit is set full

by some other thread. This feature allows extremely fine-grained synchronization and is detailed in Section

5.1.

3.5. Tera Performance Characteristics. The Tcra is designed to operate on a 300 MHz Clock. At

the present time the clock is running at 255 MHz. There are three units in each processor, all of which may

be active during a single cycle:

unit Operation flop

M (Memory) 0

A (Arithmetic) fused multiply-add 2

C (Control) add 1

Total 3

Shared

Memory

""i1Im

mm

__ []

__ m

128 virtual processors

128 virtual processors

128 virtual processors

FIG. 3.2. A View of the Tera Multiprocessor. Each stream may be thought of as a virtual processor. Some streams may
be needed to execute OS functions a user may not be able to use all 128 streams per processor.

Thus "peak" performance is 3 x 300 = 900 MFlop/s. We have measured 210 MFlop/s on actual code at

255 MHz, this extrapolates to 274 MFlop/s at 300 MHz.

4. The Numerical Solver. The code that we chose to implement on the Tera is a representative kernel

from EUL3D, a 3D unstructured grid Euler solver. This code uses vertex based variables and an edge-based

loop for residual construction. The kernel reproduces edge based flux loops and vertex based updates.

Unstructured mesh problems have traditionally been difficult to parallelize because of their need for

partitioning, mapping and load balancing. Furthermore, because of the indirect access to the grid data, such

problems are hard to compile.

On the Tera these become non-issues because

1. Partitioning and mapping are not needed because of the flat shared memory which has no locality,

and

2. Load balancing is not needed because of very fine grained multithreading: loops can be dynamically

scheduled across processors with very little overhead.

The specific problem we experimented with has 53961 nodes and 353476 edges. This is considered to

be a medium-sized problem in the aerodynamics community a large problem would have 0.3 million nodes

FIG. 4.1. Unstructured meshes are undely used in aerodynamic and structural analysis codes. Because of the enormous,

irregular variations in density, algorithms based on such meshes are diJ_eult to parallelize on conventional multiproeessors.

and 3 million edges.

At each node of our mesh we store density, momcntum (x, y, z components), energy, pressure, plus some

scratch space. This results in approximately 10 variables per node.

For each cdgc wc nccd to store the idcntity of the 2 nodes at its end points plus a vector describing the

orientation of the edge. We thus have _ 5 variables per edge.

The movement of data in the edge based loop is described in Figure 4.2. Pseudocodc corresponding to

this loop is given below.

do i=l, totalNodes

initialize variables

enddo

do cycle=l, totalCycles

do i=l, totalNodes

clear residuals

enddo

do i=1, totalEdges

compute residuals

enddo

.........- ./ _[..":-,= n2
It

/

Variables at each node:

density,

momentum (x,y,z),

energy,
pressure

Variables at edge::

identity of nodes,

orientation(x,y,z)

read variables ..___
,#,

n]

n2

compute:

(= 125 floating pt)_

nl

update variables

// //

n]

n2

n2

Fxc. 4.2. Computation in the Edge Based Loop

do i=l, totalNodes

update variables

enddo

enddo

4.1. Parallel Implementation. When executing the edge based loop in parallel, it is important to

ensure that two threads do not attempt to update the same node at the same time. A simple way of ensuring

10

thisis to colortheedgesof thegraphsothat noedgesincidentonsamenodehavcthesamccolor.Once
thishasbeendone,all edgeswith thesamecolorcanbeprocessedin parallel.

Althoughtheproblemof findingtheminimumcoloredgecoloringofagraphis intractable,ourprimary
objectiveis to obtaina coloringwitha reasonablenumberof colors.A simplegreedyalgorithmis fastand
effectiveforourpurposes.Onoursampleproblem,whichhasaveragedegree14,ouralgorithmyields24
colors.

In thepseudocodcfortheedgecoloredalgorithm,givenbelow,thecompilerhasto betoldto parallclizc
theedgeloop.Thisisbecauseit hasnowayof knowingaboutthecoloring,andcannotestablishthat it is
safeto parallclizethe loopjustby lookingat thecode.TheC$TERAASSERTPARALLELcompilerdirectiveis
usedfor thispurpose.
do i=l, totalNodes

initialize variables

enddo

do cycle=l, totalCycles

do i=l, totalNodes

clear residuals

enddo

do i=I, totalColors

C$TERA ASSERT PARALLEL

do (for each edge of color i)

compute residuals

enddo

enddo

do i=l, totalNodes

update variables

enddo

enddo

4.2. Performance of Colored Algorithm. The performance of the colored algorithm was measured

by

• Varying number of streams (1 to 100)

• Varying number of processors (1 to 2)

The Tera compiler normally selects the number of streams for each parallel loop, based on estimated grain

size and expected number of iterations. It is difficult to vary streams under programmer control, but can

be done. The procedure is to insert the compiler directive CSTERA USE n STREAMS, before every loop in the

program, and then recompile. This is a tedious and time consuming procedure, and we hope that Tera will

provide a more convenient alternative in the near future.

It is possible to select any subset of processors to run on, using a bit vector supplied on the command

line. Thus, on a four processor system -p 0011 would use the 3rd and 4th processors only. This is a run

time option: no recompilation is required.

11

o_
v

(D
E

.m

10

8

6
5
4

3

2

1
0.80

0.50
0.40

0.30
0.25

0.20

0.15

0.10

EUL3D, nodes=53961, edges=353476, Edge Coloring
! I I I I I I I I I

compiler
selet:ted
streams

I i

1 10 20 30 50 70 100
streams per processor

2 Proc

FIG. 4.3. Per]ormance of colored algorithm

The plot in Figure 4.3 shows the performance of the colored algorithm as the number of streams is

varied. The plot labeled 1 Proc shows the performance of the algorithm on one processor. The timc per

cycle drops vcry smoothly from 1 to 30 streams and flattens out at 60 streams. The speedup is about 40.

The straight line next to this curve shows ideal speedup.

If we had not controlled the number of streams ourselves but had let the compiler do so, it would have

selected 60 streams, a good choice in this case.

The plot labeled 2 Proc shows the performance of this algorithm on two processors. The straight line

next to this plot is ideal speedup, based on thc one processor-one stream time (the highest data point on the

y-axis.) Time per cycle drops smoothly as before but there is a significant difference between the observed

and ideal speedups. This is conjectured to be the result of network congestion, in part because the network

at SDSC is missing 'wraparound' links.

In the 2 processor case the speedup continues up to 80 streams, showing that it is sometimes useful to

override the compiler selected number of streams. Wc obtain nearly 5_ improvement by doing so.

5. The Update Algorithm. Thc coloring algorithm presented above has two overheads:

1. the time required to actually color the edges and reorganize data (this is a one time cost, assuming

the mesh is static), and

12

2. theoverheadof executingthecolorloop(thisincludessynchronizationoverheadat thebottomof

the loop).

Thc full/empty bits of the Tcra permit very fine grained synchronization and thus let us eliminate these

overheads. The serial algorithm can be run in parallel on the Tcra, provided the compiler is warned about

the sections of codes where it should ensure atomic updates. In this case the preprocessing step of coloring

and reorganizing data is not required and the overhead of the color loop and its associated synchronization

costs arc avoided.

5.1. Using the Full/Empty bits. The behavior of the Tera's full/empty bits may be summarized as

follows

A synchronized write into a variable succeeds only if it is empty, when the write completes, the

location is set full.

• A thread attempting a synchronized write into a full location will bc suspended (by hardware) and

will resume only when that location becomes empty.

• A synchronized read from a variable succeeds only if it is full, when the read completes, the location

is set empty.

• A thread attempting a synchronized read from an empty location will be suspended (by hardware)

and will resume only when that location becomes full.

There are several ways of using the full/empty bits, as detailed below.

5.1.1. Synchronized Variables. A variable can be declared synchronized thus:

sync real dw(100)

In this case, writes and reads to/from dw() will follow the full/empty rules given above. This approach

requires careful thought and is not recommended for porting existing codes. However it may result in

concisc and elegant code when a program is written from the ground up with synchronized variables in

mind.

5.1.2. Machine generics. Machine language instructions such as WRITEEF() ("wait until a variable

is empty, then write a value into it, and set the full/empty bit to full") can be invoked from within Fortran

or C. Thus, to ensure that the Fortran update

dw(i) = dw(i) - xincr

is handled properly when several threads are using the same value of i, we could use

call WRITEEF(dw(i), READFE(dw(i)) - xincr)

WRITEEF, READFE, ... are not compiled into function or subroutine calls they become individual Tera

machine instructions.

This technique is the most flexibleand gives fullcontrol to the programmer, who has the option of using

regular load/stores as well as full/empty bit controlled load/stores on a variable as and where he desires.

The disadvantage in this case is that code starts looking messy.

5.1.3. Compiler directives. Compiler directives can bc used to make the compiler use full/empty

bits to ensure correct updating. For example, in the following code fragment,

C$TERA UPDATE

dw(i) = dw(i) - xincr

the directive instructs the compiler to insert appropriate machine instructions.

This is the cleanest solution as it requires no change to serial code and does not obfuscatc the program

text. This is tile solution we have uscd. However this approach may not work in all situations.

13

{D

v

{.}
{D

E

10
8

6
5
4

3

2

1
0.80

0.50

0.40

0.30
0.25

0.20

0.15

EUL3D, nodes=53961, edges=353476, Update vs. Color
1 I I I I I I I I !

COpeDile(se et:ted
streams

1 Proc

1 10 20 30

streams per processor

2 Proc
[I I I 1 I I

50 70 100

FIG. 5.1. Update code vs. coloring: Absolute improvement.

5.1.4. Compiler detection. It is also possible for the compiler to detect program statements where

use of full/empty bits would be required and insert the required machine instructions. This is the least

intrusive solution but, as in the update approach described above, may not work in all cases. We did not

have time to experiment with this approach.

5.2. Performance of the Update Code. The improvement obtained by moving from the traditional

edge coloring code to the update code is shown in Figures 5.1 & 5.2. Recall that the update code is just

the serial code with the addition of a few compiler directives. These directives cause the Tera to use its

full/empty bits to ensure correct updating. This eliminates the overhead of the edge color loop and its

associated synchronization. Figure 5.1 shows that there is a consistent improvement for both one and two

processors. The ratio of the run times for the two programs is shown in Figure 5.2, for both one and two

processors. We can see a consistent 4 to 6 % improvement for 2 processors, over the range of 1 60 streams.

5.3. Stream Efficiency. A stream is a piece of hardware. It is interesting to explore how the stream

efficiency varies as more and more streams are dedicated to our problem. Figure 5.3 shows our results.

In this figure, the plot labeled "1 Proc" shows

(time for 1 processor, 1 stream)/s

time for 1 Processor, s streams

14

EUL3D, nodes=53961, edges=353476, Improvement: Update vs. Colorinc
1.2 , , , , ,

C
(D
E
(D
>
p

E

1.15

1.1

1.05

0.95

0.9

0.85

0.8 I

2O

__._..___. . 2 Proc

_1 Proc

I I I I

40 60 80 1O0
streams per processor

FIG. 5.2. Update code vs. coloring: Relative improvement.

The plot labeled "2 Proc" shows

(time for 1 processor, 1 stream)/2s

time for 2 Processors, s streams per proc

We can see that stream efficiency is quite good on one processor. It is well above 90% for 1 30 streams

and nearly 75% for 60 streams (the compiler selected number of streams for our code).

The gap between the 1 and 2 processor curves is significant and is presumably caused by the limitations

of the current network.

6. Experiments with Grain Size. The "edge-based" loop in EUL3D is used in numerous other

unstructured mesh problems. Other problems might have grain sizes very different from EULaD. To get an

idea of how performance would vary as the grain size changed, we artificially modified the EULaD solver 2.

The original solver has 12 variables per node. We modified these to 6 and 22. We also modified the

computations in the edge loop to roughly halve or double them.

The results of these experiments are summarized in Figure 6.1 and Table 6.1. The plots show that the

speedup curves follow generally the same pattern. The small code, performance saturates somewhat earlier

aThe experiments in this Section were suggested by David Keyes.

15

0.8

o
_" 0.6

o_

ro
._

U::
LU

E

¢_ 0.4
I,,,-

0.2

0

EUL3D, nodes=53961, edges=353476, Update: Stream Efficiency
I I I I I I I

2 Proc_,,__

: i
: i

: !

I

2O

I I I l I I I

10 30 40 50 60 70 80 90
streams per processor

1O0

FIG. 5.3. Stream E_iciency

TABLE 6.1

Summary of Grain Size Experiments

Code Vars/

Version node

Large 22

Original 12

Small 6

MFlop/

cycle

74.9

48.7

29.5

MFlop/s

(1 Proc)

187

212

211

MFlop/s

(2 Proc)

325

406

393

These measurements are at 255MHz.

than the original code, presumably because there is less work per iteration. The large code's performance

is more smooth and, for two processors, the speedup continues to 100 streams. However when looking at

the delivered Megaflops per second, we see some dramatic decreases for the large code. These decreases arc

conjectured to bc the result of network congestion or perhaps register overflow and deserve further study

once a larger machine becomes available.

7. Conclusions. Our experience with the Tcra has generally been positive. Wc were able to port an

existing edge colored parallel code (previously run on the SPP-2000) by changing only the parallclization

16

O
O
{D

v

O

o
>,

E
.m

10
8

6
5
4

3

2

1
0.80

0.50
0.40

0.30
0.25
0.20

0.15

0.10

EUL3D, nodes=53961, edges=353476, Update: Varying Grain Size
I I ! I I I I I l I

\

\
\

\

\

\
\

\
_rig

,smal
\

, ,
10 20 30 50 70 100

streams per processor

FIe. 6.1. E_ect of Varying Grain

directives.

We also parallelized an existing serial code (previously run on workstations) on the Tcra with the addition

of a few compiler directives. In this case we invoked the full/empty mechanism of the machine and thus

climinated the overhead of the edge colored loop.

Both versions of our code were run on 1 and 2 processors. No changes will be required to run on any

additional number of proccssors.

7.1. Problems Encountered. Two main problems were encountered during the course of this research

on the Tera. Firstly, since the Tera stores everything in 64 bit words, there was a compatibility problem

with the 32 bit integers used in our binary grid file. The obvious solution is to tell thc compiler to use 32

bit integers throughout, but this creates a further problem because 32 bit loop indices confuse the compiler.

A better solution is to rewrite the binary file so that all variables arc 64 bits.

A second, and more aggravating, problem is that there is no way to control the number of streams at

run time. For the researcher, such a facility would permit an evaluation of how performance varies with the

number of streams. For the practitioner it may often be useful for squeezing out maximum performance

for a single, important standalonc application by allocating thc maximum number of strcams to it. At the

present time experiments of thc typc detailed in this report require a recompilation for cvcry change in the

17

numberof streams.Thisisa tediousandannoyingprocess.

7.2. Fhture Work. Wehavedemonstratedtheparallelizationandperformanceof ourcodeon the
existing2 processorTcraMTAat SDSC.Ourprimaryaimfor thefutureis to runon4, 8or 16processor
systems,astheybecomeavailable,soasto provideaconvincingdemonstrationofsustainedMegaflop/s.To
providea moredetailedevaluation,wealsoplanto runlargerandsmallermeshes.

Theedgebasedloopusedin EUL3Disat theheartof manyotherunstructuredmeshalgorithms.It
will thereforebeof interestto portotherunstructuredmeshproblemsto theTera.

Cell based (as opposed to edge based) loops should be similarly easy to parallelize and need to be

investigated.

Finally, we plan to port other non-uniform problems, such as multiblock. The Tcra's insensitivity to

memory access patterns will be a major asset for such problems.

8. Acknowledgments. Wc arc grateful to Manuel Salas, Director ICASE, for his encouragement of this

research and to Wayne Pfciffer for arranging access to the Tera MTA at San Diego Supercomputing Center.

John van Rosendalc, David Keyes, Piyush Mehrotra and Tom Crockett provided valuable assistance. Allan

Snavely, John Feo and Bracy Elton generously shared their knowledge of the MTA with us and lightened

our burden considerably.

This research would not have been possible without the hospitality of David Chestnut, Oktay Baysal

and Richard Barnwell at the Virginia Consortium of Science _z Engineering Universities (VCES).

9. Web Sites of Interest.

www. tera. com

www. sdsc. edu

www. lease, edu

REFERENCES

[1] D.J. MAVRIPLIS, R. DAS, J. SALTZ AND R.E. VERMELAND, Implementation of a parallel unstructured

Euler solver on shared and distributed memory machines, The Journal of Supercomputing 8, No. 4

(1995), pp. 329-344.

[2] R. ALVERSON, D. CALLAHAN, D. CUMMINGS, B. KOBLENZ, A. PORTERFIELD AND B. SMITH, The

Tera Computer System, Supercomputing (1990), pp. 1-6.

[3] G. ALVERSON, R. ALVERSON, D. CALLAHAN, B. KOBLENZ, A. PORTERFIELD, AND B. SMITH,

Exploiting heterogeneous parallelism on a multithreaded multiprocessor, Supercomputing (1992),

pp. 188.

[4] S. BALAY, W.D. GROPP, L.C. MCINNES AND B.F. SMITH, PETSc home page,

www. mcs. anl. govlpetsc, 1998.

[5] A. GEIST, A. BEGUELIN, J. DONGARRA, W. JIANG, R. MANCHEK AND V. SUNDERAM, PVM: Parallel

Virtual Machine, A User's Guide and Tutorial for Networked Parallel Computing, MIT Press, 1994.

[6] PVM home page, www. epm. ornl. gov/pvm/pvm_home, html

[7] W T. GROPP, E. LUSK AND A. SKJELLUM, Using MPI, MIT Press, 1994.

[8] A. SNAVELY, L. CARTER, J. BOISSEAU, A. MAJUMDAR, K.S. GATLIN, N. MITCHELL, J. FEO

AND B. KOBLENZ, Multi-processor Performance on the Tera MTA, to be presented at SC98,

www. sdsc. edu/-allans/SC98-MTA/abstract, html

18

FormApproved
REPORT DOCUMENTATION PAGE OMB No. 0704o0188

Publicreportingburdenforthiscollectionof informationisestimatedtoaverage1 hourperresponse,includingthe timeforreviewinginstructions,searchingexistingdatasources,
gatheringandmaintainingthedataneeded,andcompletingandreviewingthecoitectlonofimCormation,Sendcommentsregardingthisburdenestimateoranyotheraspectofthis
collectionof information,includingsuggestionsfor reducingthis burden,toWashingtonHeadquartersServices,Directoratefor InformationOperationsandReports,1215Jefferson
DavisHighway,Suite1204,Arlington,VA22202-4302,andto theOfficeof ManagementandBudget,PaperworkReductionProject(0704-0188),Washington,DC20503.

1. AGENCY USE ONLY(Leaveblank) 2. REPORT DATE I 3. REPORT TYPE AND DATES COVERED

December 1998 I Contractor Report
4. TITLE AND SUBTITLE

The Tera Multithreaded Architecture and Unstructured Meshes

6. AUTHOR(S)
Shahid H. Bokhari

Dimitri J. Mavriplis

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science and Engineering

Mail Stop 403_ NASA Langley Research Center

Hampton, VA 23681-2199

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-2199

5. FUNDING NUMBERS

C NAS1-97046

WU 505-90-52-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Interim Report No. 33

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA/CR-1998-208953

ICASE Interim Report No. 33

l]. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell
Final Report

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified Unlimited

Subject Category 60, 61
Distribution: Nonstandard

Availability: NASA-CASI (301)621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
The Tera Multithreaded Architecture (MTA) is a new parallel supercomputer currently being installed at San

Diego Supercomputing Center (SDSC). This machine has an architecture quite different from contemporary parallel
machines. The computational processor is a custom design and the machine uses hardware to support very fine

grained multithreading. The main memory is shared, hardware randomized and flat. These features make the

machine highly suited to the execution of unstructured mesh problems, which are difficult to parallelizc on other
architectures.

We report the results of a study carried out during July-August 1998 to evaluate the execution of EUL3D, a code

that solves the Euler equations on an unstructured mesh, on the 2 processor Tcra MTA at SDSC.

Our investigation shows that parallelization of an unstructured code is extremely easy on the Tera. We were able

to get an existing parallel code (designed for a shared memory machine), running on the Tera by changing only

the compiler directives. Furthermore, a serial version of this code was compiled to run in parallel on the Tera by
judicious use of directives to invoke the "full/empty" tag bits of the machine to obtain synchronization. This version

achieves 212 and 406 Mflop/s on one and two processors respectively, and requires no attention to partitioning or
placement of data issues that would bc of paramount importance in other parallel architectures.

14. SUBJECT TERMS
parallel computing; multiprocessors; supercomputing; multithreaded architectures;

Tera computer; unstructured meshes

17. SECURITY CLASSIFICATION
OF REPORT
Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATIOI_
OF THIS PAGE OF ABSTRACT
Unclassified

15. NUMBER OF PAGES
23

16. PRICE CODE
A03

20. LIMITATION
OF ABSTRACT

Standard Form 298(Rev. 2-8g)
PrescribedbyANSIStd Z39-18
298-102

