

Construction of Three Dimensional Solutions for the Maxwell Equations

A. Yefet
New Jersey Institute of Technology, Newark, New Jersey
E. Turkel
Tel Aviv University, Tel Aviv, Israel

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, VA

Operated by Universities Space Research Association

National Aeronautics and
Space Administration
Langley Research Center
Hampton, Virginia 23681-2199
Prepared for Langley Research Center under Contract NAS 1-97046

Available from the following:

NASA Center for AeroSpace Information (CASI) 7121 Standard Drive Hanover, MD 21076-1320
(301) 621-0390

National Technical Information Service (NTIS)
5285 Port Royal Road
Springfield, VA 22161-2171
(703) 487-4650

CONSTRUCTION OF THREE DIMENSIONAL SOLUTIONS FOR THE MAXWELL EQUATIONS*

A. YEFET ${ }^{\dagger}$ AND E. TURKEL ${ }^{\ddagger}$

Abstract

We consider numerical solutions for the three dimensional time dependent Maxwell equations. We construct a fourth order accurate compact implicit scheme and compare it to the Yee scheme for free space in a box.

Subject classification. Applied and Numerical Mathematics
Key words. Maxwell equations, the Yee scheme, the Ty $(2,4)$ scheme

1. Maxwell Equations in a Box. Let $\tau=c t=t / \sqrt{\mu \epsilon}$ and $Z=\sqrt{\frac{\mu}{\epsilon}}$. For the rest of this paper we replace τ by t. The three dimensional time dependent Maxwell equations then are:

$$
\begin{align*}
\frac{\partial E_{x}}{\partial t} & =Z\left(\frac{\partial H_{z}}{\partial y}-\frac{\partial H_{y}}{\partial z}\right) \\
\frac{\partial E_{y}}{\partial t} & =Z\left(\frac{\partial H_{x}}{\partial z}-\frac{\partial H_{z}}{\partial x}\right) \\
\frac{\partial E_{z}}{\partial t} & =Z\left(\frac{\partial H_{y}}{\partial x}-\frac{\partial H_{x}}{\partial y}\right) \\
\frac{\partial H_{x}}{\partial t} & =\frac{1}{Z}\left(\frac{\partial E_{y}}{\partial z}-\frac{\partial E_{z}}{\partial y}\right) \\
\frac{\partial H_{y}}{\partial t} & =\frac{1}{Z}\left(\frac{\partial E_{z}}{\partial x}-\frac{\partial E_{x}}{\partial z}\right) \\
\frac{\partial H_{z}}{\partial t} & =\frac{1}{Z}\left(\frac{\partial E_{x}}{\partial y}-\frac{\partial E_{y}}{\partial x}\right) \tag{1.1}
\end{align*}
$$

We set $Z=1$ in this paper.
A plane wave solution is given by

$$
\begin{aligned}
& H_{x}=H_{x}^{0} \sin (\omega t) \sin (A x+B y+C z) \\
& H_{y}=H_{y}^{0} \sin (\omega t) \sin (A x+B y+C z) \\
& H_{z}=H_{z}^{0} \sin (\omega t) \sin (A x+B y+C z) \\
& E_{x}=E_{x}^{0} \cos (\omega t) \cos (A x+B y+C z) \\
& E_{y}=E_{y}^{0} \cos (\omega t) \cos (A x+B y+C z) \\
& E_{z}=E_{z}^{0} \cos (\omega t) \cos (A x+B y+C z)
\end{aligned}
$$

Substituting into the Maxwell equations this is a solution if

$$
\begin{align*}
\omega^{2} & =A^{2}+B^{2}+C^{2} \tag{1.2}\\
0 & =A H_{x}^{0}+B H_{y}^{0}+C H_{z}^{0} \tag{1.3}
\end{align*}
$$

[^0]We also demand that

$$
\begin{aligned}
\omega E_{x}^{0} & =H_{y}^{0} C-H_{z}^{0} B \\
\omega E_{y}^{0} & =H_{z}^{0} A-H_{x}^{0} C \\
\omega E_{z}^{0} & =H_{x}^{0} B-H_{y}^{0} A
\end{aligned}
$$

2. Numerical Tests. We consider a case where $H_{x}^{0}=H_{y}^{0}=H_{z}^{0}=1$ and

$$
\begin{aligned}
& A=\pi \\
& B=-2 \pi \\
& C=\pi \\
& \omega=\sqrt{6} \pi
\end{aligned}
$$

We use this exact solution as a basis for comparison in the box $[0,1 / 2] \times[0,1 / 4] \times[0,1 / 2]$. We shall compare two numerical methods: the Yec scheme [1] which is second order accurate in space and time and the $\mathrm{Ty}(2,4)$ scheme $[2,3]$ which is second order accurate in time but fourth order accurate in space. In order for the total error to be fourth order we must choose the time step small enough so that the temporal error does not swamp the spatial crror. This requires $\Delta t \sim(\Delta x)^{2}$. If the error requirements are too severe then this is inefficient and the leapfrog in time should be replaced by a fourth order Runge-Kutta method. However, for the experiments in this paper we shall use the same leapfrog method for both schemes. Hence, both the Yee scheme and the $\mathrm{Ty}(2,4)$ have the electric and magnetic variables at the same staggered locations both in space and in time. The Yee scheme approximates the derivatives via the following approximation.

$$
\frac{\partial}{\partial y}\left[\begin{array}{c}
U^{1 / 2} \\
U^{3 / 2} \\
\cdot \\
\cdot \\
U^{(2 p-1) / 2}
\end{array}\right]=\frac{1}{\Delta y}\left(\left[\begin{array}{c}
U^{1} \\
U^{2} \\
\cdot \\
U^{p-1} \\
U^{p}
\end{array}\right]-\left[\begin{array}{c}
U^{0} \\
U^{1} \\
\cdot \\
U^{p-2} \\
U^{p-1}
\end{array}\right]\right)
$$

A similar formula holds for the other variables shifted to other locations in each direction. The $\mathrm{Ty}(2,4)$ scheme is an implicit compact scheme given by

$$
\frac{\partial}{\partial y}\left[\begin{array}{c}
U^{1 / 2} \\
U^{3 / 2} \\
\cdot \\
\cdot \\
U^{(2 p-1) / 2}
\end{array}\right]=\mathbf{A}^{-1} \frac{\mathbf{1}}{\Delta \mathbf{y}}\left(\left[\begin{array}{c}
U^{1} \\
U^{2} \\
\cdot \\
U^{p-1} \\
U^{p}
\end{array}\right]-\left[\begin{array}{c}
U^{0} \\
U^{1} \\
\cdot \\
U^{p-2} \\
U^{p-1}
\end{array}\right]\right)
$$

where A is defined the following way:

$$
\mathbf{A}=\frac{\mathbf{1}}{\mathbf{2 4}}\left(\begin{array}{ccccccc}
26 & -5 & 4 & -1 & . & . & 0 \\
1 & 22 & 1 & 0 & . & . & 0 \\
0 & 1 & 22 & 1 & 0 & . & 0 \\
. & . & . & . & & & \\
0 & . & . & 0 & 1 & 22 & 1 \\
0 & . & . & -1 & 4 & -5 & 26
\end{array}\right)
$$

For the Yee scheme we choose $\Delta t=\frac{4 h}{7}$ while for the $\mathrm{Ty}(2,4)$ scheme we choose $\Delta t \sim h^{2}$ where $h=$ $\Delta x=\Delta y$.

We measure the error in the L_{2} norm between the approximate and exact electric field in the \hat{z}-direction. The Ty(2,4) behaves better than expected and gives almost fifth order accuracy. The Yee scheme gives a second order accuracy as expected.

REFERENCES

[1] K.S. Yee, Numerical Solution of Initial Boundary Value Problems Involving Maxwell's Equation in Isotropic Media, IEEE Transactions on Antennas and Propagation AP-14 (May 1996), pp. 302307.
[2] E. Turkel and A. Yefet, Fourth Order Accurate Compact Implicit Method for the Maxwell Equations, submitted to IEEE Transactions on Antennas and Propagation.
[3] A. Yefet and E. Turkel, Fourth Order Compact Implicit Method for the Maxwell Equations with Discontinuous Coefficients, submitted to Applied Numerical Mathematics.

scheme	h	Δt	$\mathrm{t}=10$	reduction	rate
$T y(2,4)$	$\frac{1}{20}$	$\frac{1}{400}$	3.62×10^{-4}		
$T y(2,4)$	$\frac{1}{40}$	$\frac{1}{1600}$	1.1443×10^{-5}	31.6423	4.98
$T y(2,4)$	$\frac{1}{80}$	$\frac{1}{6400}$	3.5621×10^{-7}	32.1255	5.0056
$Y e e$	$\frac{1}{20}$	$\frac{1}{35}$	0.027		
$Y e e$	$\frac{1}{40}$	$\frac{1}{70}$	7.3×10^{-4}	3.694	1.9028
$Y e e$	$\frac{1}{80}$	$\frac{1}{140}$	1.82×10^{-4}	4.0042	2.0015

Table 2.1
Comparison of the maximum errors in L_{2} norm

Fig. 2.1. $\log _{10}$ (error) For the Yee scheme.

Fig. 2.2. $\log _{10}($ errors $)$ For the $T y(2,4)$ scheme.

Fig. 2.3. $\log _{10}($ error $)$ as a function of $\log _{10}(h)$ For the Yee and the Ty(2,4) schemes.

REPORT DOCUMENTATION PAGE			Form Approved OMB No. 0704-0188
1. AGENCY USE ONLY(Leave blank)	2. REPORT DATE December 1998	3. REPORT TYPE AND DATES Contractor Report	COVERED
4. TITLE AND SUBTITLE Construction of Threc Dimensional Solutions for the Maxwell Equations			5. FUNDING NUMBERS C NAS1-97046 WU 505-90-52-01
6. AUTHOR(S) A. Yefet E. Turkel			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Institute for Computer Applications in Science and Engineering Mail Stop 403, NASA Langley Rescarch Center Hampton, VA 23681-2199			8. PERFORMING ORGANIZATION REPORT NUMBER ICASE Interim Report No. 34
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) National Aeronautics and Space Administration Langley Research Center Hampton, VA 23681-2199			10. SPONSORING/MONITORING AGENCY REPORT NUMBER NASA/CR-1998-208954 ICASE Interim Report No. 34
11. SUPPLEMENTARY NOTES Langley Technical Monitor: Dennis M. Bushnell Final Report To be submitted to IEEE Transactions on Antennas and Propagation and Applied Numerical Mathematics			
12a. DISTRIBUTION/AVAILABILITY STATEMENT Unclassified Unlimited Subject Category 64 Distribution: Nonstandard Availability: NASA-CASI (301)621-0390			12b. DISTRIBUTION CODE
13. ABSTRACT (Maximum 200 words) We consider numerical solutions for the three dimensional time dependent Maxwell equations. We construct a fourth order accurate compact implicit scheme and compare it to the Yee scheme for free space in a box.			
14. SUBJECT TERMS Maxwell equations; the Yee scheme; the $\operatorname{Ty}(2,4)$ scheme			15. NUMBER OF PAGES 10
			16. PRICE CODE A03
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
NSN 7540-01-280-5500			$\begin{aligned} & \text { Standard Form 298(Rev. 2-89) } \\ & \text { Prescribed by ANSI Std. Z39-18 } \\ & \text { 298-102 } \end{aligned}$

[^0]: *This rescarch was supported by the National Acronautics and Space Administration under NASA Contract No. NAS197046 while the authors were in residence at the Institute for Computer Applications for Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-2199.
 ${ }^{\dagger}$ Department of Mathematical Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ 07102-1982.
 \ddagger School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel.

