
COLLECTED SOFTWARE
ENGINEERING PAPERS:

VOLUME XV

OCTOBER 1997

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

https://ntrs.nasa.gov/search.jsp?R=19990025393 2020-06-15T22:26:11+00:00Z

SOFTWARE ENGINEERING LABORATORY SERIES

COLLECTED SOFTWARE
ENGINEERING PAPERS:

VOLUME XV

OCTOBER 1997

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

FOREWORD

The Software Engineering Laboratory (SEL) is an organization sponsored by the National
Aeronautics and Space AdministratiodGoddard Space Flight Center (NASNGSFC) and created
to investigate the effectiveness of software engineering technologies when applied to the
development of application software. The SEL was created in 1976 and has three primary
organizational members:

NASNGSFC, Systems Integration and Engineering Branch

University of Maryland, Department of Computer Science

Computer Sciences Corporation, Development and Systems Engineering organization

The goals of the SEL are (1) to understand the software development process in the GSFC
environment; (2) to measure the effect of various methodologies, tools, and models on this
process; and (3) to identify and then to apply successful development practices. The activities,
findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory
Series, a continuing series of reports that includes this document.

Documents from the Software Engineering Laboratory Series can be obtained via the SEL
homepage at:

or by writing to:

Systems Integration and Engineering Branch
Code 58 1
Goddard Space Flight Center
Greenbelt, Maryland, U.S.A. 20771

TABLE OF CONTENTS

@-Section 2-Software Measurement .. 3 -6

P- "Property-Based Software Engineering Measurement, IEEE Transactions on Software Engineering,"
L. C. Briand, S. Morasca and V. R. Basili 5- /.
"A Validation of Object-Oriented Design Metric~ as Quality Indicators, IEEE Transactions on
Software Engineering," V. R. Basili, L. C. Briand and W. L. Melo 23 &L ..
Comments on "Towards a Framework for Software Measurement Validation," L. C. Briand,

-0
E. J. Weyuker and M. V. Zelkowitz ... 35

Response to: Comments on "Property-Based Software Engineering Measurement: Refining the -8
Additivity Properties", L. C. Briand, S. Morasca and V. R. Basili .. 3 7

"Analytical and Empirical Evaluation of Software Reuse Metrics," P. Devanbu, S. Karstu, 3 9 - 3
W. L. Melo and W. Thomas .. 3 7

"Why Software Reliability Predictions Fail," F. Lanubile ... 5 1 " Y
"Defining Factors, Goals and Criteria for Reusable Component Evaluation," J. Kontio,

G. Caldiera and V. R. Basili ... 55 -c
Section 3-Software Models ... 67 -iY

"Characterizing and Modeling the Cost of Rework in a Library of Reusable Software Components,"
V. R. Basili, S. E. Condon, K. El Emam, R. B. Hendrick and W. L. Melo .. 69 --&
Section &Technology Evaluations ... 7 9

"A Knowledge-Based Approach to the Analysis of Loops," S. K. Abd-El-Hafiz and
V. R. Basili ... 8 1 - 7

"Experiences from an Exploratory Case Study with a Software Risk Management Method," 2-0
J. Kontio, H. Englund and V. R. Basili .. 103 O

......... "An Empirical Study of Communication in Code Inspection," C. B. Seaman and V. R. Basili 145 -0/
"How Reuse Influences Productivity in Object-Oriented Systems, Communications of the ACM,"

V. R. Basili, L. C. Briand and W. L. Melo ... 157 " /

Section %ADA Technology ... 17 1 - 0
"Using Applet Magic (tm) to Implement an Orbit Propagator: New Life for Ada Objects," - .. M. Stark 173 //
"The Generalized Support Software (GSS) Domain Enginering Process: An Object-Oriented
Implementation and Reuse Success at Goddard Space Flight Center," S. Condon, R. Hendrick, M.
Stark, W. Steger.. ... 189 "42
Standard Bibliography of SEL Literature ... 197

SECTION 1-ENTRODUCTION

This document is a collection of selected technical papers produced by participants in the
Software Engineering Laboratory (SEL) from September 1996 through September 1997. The
purpose of the document is to make available, in one reference, some results of SEL research that
originally appeared in a number of different forums. This is the 15th such volume of technical
papers produced by the SEL. Although these papers cover several topics related to software
engineering, they do not encompass the entire scope of SEL activities and interests. Additional
information about the SEL and its research efforts may be obtained from the sources listed in the
bibliography at the end of this document, or via the SEL Home Page on the World Wide Web at
http://fddgsfc. nasa.gov/seltext. html.

For the convenience of this presentation, the fourteen papers contained here are grouped into
four major sections:

Software Measurement (Section 2)

Software Models (Section 3)

Technology Evaluations (Section 4)

Ada Technology (Section 5)

Section 2 includes several papers that describe software system measurement, measurement
scales, software properties and reliability studies. It also outlines an approach for defining
evaluation criteria for reusable software components. The paper in Section 3, indicates a study
where the researchers characterize and model the cost of rework in a Component Factor
organization. Section 4 includes papers that discuss a knowledge-based analysis approach that
generates fir order predicate logic annotations of loops, outlines the Riskit method in a case
study, provides a description of an empirical study which addresses the issue of communication
among members of a software development organization, and how reuse may influence
productivity in object-oriented systems. Lastly, papers in Section 5 discuss the use of the
Intermetrics AppletMagic tool to build an applet to display a satellite ground track on a world
map, and describes the Generalized Support Software (GSS) architecture and process research
results in the Flight Dynamics Division (FDD) of NASA's Goddard Space Flight Center.

The SEL is actively working to understand and improve the software development process at the
Goddard Space Flight Center (GSFC). Future efforts will be documented in additional volumes
of the Collected SoJiware Engineering Papers and other SEL publications.

SECTION 2--SOFTWARE MEASUREMENT

The technical papers included in this section were originally prepared as indicated below.

"Property-Based Software Engineering Measurement," L. C. Briand, S. Morasca and
V. R Basili, IEEE Transactions on SofhYare Engineering, vol. 22, no. 1, January
1996, pp. 68-85

* "A Validation of Object-Oriented Design Metrics as Quality Indicators," V. R Basili,
L. C. Briand and W. L. Melo, IEEE Transactions on SoJiware Engineering, vol. 22,
no. 10, October 1996, pp. 75 1-761

Comments on "Towards a Framework for Software Measurement Validation," S.
Morasca, L. C. Briand, E. J. Weyuker and M. V. Zelkowitz, IEEE Transactions on
Sofiare Engineering, vol. 23, no. 3, March 1997, pp. 187-1 88

Response to: Comments on "Property-Based Software Engineering Measurement:
Refining the Additivity Properties", L. C. Briand, S. Morasca and V. R Basili, IEEE
Transactions on SofhYare Engineering, vol. 23, no. 3, March 1997, pp. 196-1 97

"Analytical and Empirical Evaluation of Software Reuse Metrics," P. Devanbu, S.
Karstu, W. L. Melo and W. Thomas, Proceedings of the 18th International
Conference on SoJiware Engineering (ICSE- 18), Berlin, Germany, March 1996, pp.
189- 199

"Why Software Reliability Predictions Fail," F. Lanubile, IEEE SoJiivare, pp. 131-132
and 137, July 1996

* "Defining Factors, Goals and Criteria for Reusable Component Evaluation," J.
Kontio, G. Caldiera and V. R Basili, CASCON '96 Conference, Toronto, Canada,
November 1996

Property-Based Software 1: ,t2N :,

Engineering Measurement
Lionel C. Briand, Sandro Morasca, Member, IEEE Computer Society, and Victor R. Basili, Fellow, lEEE

Abstract--Little theory exists in the field of software system measurement. Concepts such as complexity, coupling, cohesion or
even size are very often subject to interpretation and appear to have inconsistent definitions in the literature. As a consequence,
there is l i e guidance provided to the analyst attempting to define proper measures for specilic problems. Many controversies in the
literature are simply misunderstandings and stem from the fact that some people talk about different measurement concepts under
the same label (complexity is the most common case).

There is a need to define unambiguously the most important measurement concepts used in the measurement of software
products. One way of doing so is to deiine precisely what mathematical properties chamcterize these concepts, regardless of the
specific software artifacts to which these concepts are applied. Such a mathematical framework could generate a consensus in the
software engineering community and provide a means for better communication among researchers, better guidelines for analysts,
and better evaluation methods for commercial static analyzers for practitioners.

In this paper, we propose a mathematical framework which is generic, because it is not specific to any particular software
artifact, and rigorous, because it is based on precise mathematical concepts. We use this framework to propose definitions of
several important measurement concepts (size, length, complexity, cohesion, coupling). It does not intend to be complete or fully
objective; other frameworks could have been proposed and different choices could have been made. However, we believe that the
formalisms and properties we introduce are convenient and intuitive.This framework contributes constructively to a firmer
theoretical ground of software measurement.

IndsxTermS--software measurement, measure properties, measurement theory, size, complexity, cohesion, coupling.

M ANY concepts have been introduced through the
years to define the internal attributes [I] of the arti-

facts produced during the software process. For instance,
one speaks of size and complexity of a software specifica-
tion, design, and code, or cohesion and coupling of a soft-
ware design or code. Several techniques have been intro-
duced, with the goal of producing software which is better
with respect to these concepts. As an example, Parnas' [2]
design principles attempt to deaease coupling between
modules. and increase cohesion within modules. These
concepts are used as a guide to choose among alternative
techniques or artifacts. For instance, a technique may be
preferxed over another because it yields artifacts that are
jess complex; an artifact may be p&emd over another be-
cause it is less complex. In turn, lower complexity is be-
lieved to provide advantages such as lower maintenance
time and cost. In general, it is commonly believed that there
is a relationship between internal attributes (e.g., size,
complexity cohesion) and external attributes (e.g., main-

* L C . B r k m d i s r c r i t h ~ d e ~ I ~ d e ~ (~ ,
1801 McGill College Am., hbtrhd, Quik, H3A 2N4, Cnnaaia.
E-mail: IioneI.briand~.cu.

tainability, understandability). This shows the importance
of a clear and unambiguous understanding of what these
concepts actually mean, to make choices on more objective
bases. The definition of relevant concepts (i.e., classes of
software characterization measures) is the first step towards
quantitative assessment of software artifacts and tech-
niques, which is needed to assess risk and find optimal
trade-offs among software quality, schedule, and cost of
development.

To capture these concepts in a quantitative fashion,
hundreds of software measures have been defined in the
literature. However, the vast majority of these measures
did not survive the proposal phase, and did not manage
to get accepted in the academic or industrial worlds. One
reason for this is the fact that they have not been built by
using a clearly defined process for defining software
measures. As we propose in 131, such a process should be
driven by clearly identified measurement goals and
knowledge of the software process. One of its crucial ac-
tivities is the precise definition of relevant concepts, nec-
essary to lay down a rigorous framework for software
ehgineering measures and to define meaningful and well-
founded software measures. The theoretical soundness of

S. Monrsca is with Dip. diElettronica e ljbnnadae, Pditearico diMi- a measure, i.e., the fact that it really measures the software
lano, Piazzn Leonmdo dn Kw' 32,I-20133 Milmro, Italy.
E-mail: ~ ~ . p o I i m i i t .

characteristic it is supposed to measure, is an obvious pre-
VR Basiii is with the Computer Science Depurbnent, University of requisite for its acceptability and use. The exploratory
Mmykmd, College Park, MD 20742. E-nmil: Mi@cs.umd.edu. process of looking for correlations is not an acceptable

Mmncsaipt recemed November 1994; reoised September 1995. scientific validation process in itself if it is not accompa-
Fa -tion on oMnining reprints ofthis send e,,,,,l to: nied by a solid theory to support it [4]. Unfortunately new
-.q, rmd reference EEECS Log Number S95066. software measures are very often defined to capture elu-

1996 IEEE. Reprinted, with permission, from IEEE Transactions on
Software Engineering, vol. 22, no. 1, pp. 68-85; January 1996

sive concepts such as complexity, cohesion, coupling, con-
nectivity, etc. (Only size can be thought to be reasonably
well understood.) Thus, it is impossible to assess the theo-
retical soundness of newly proposed measures, and the
acceptance of a new measure is mostly a matter
of belief.

To this end, several proposals have appeared in the litera-
ture 151, [6], [rl in recent years to provide desirable properties
for software measures. These works (especially [a) have been
used to "validate" existing and newly proposed software
measm. Surprisingly whenever a new measure which was
proposed as a software complexity measure did not satisfy
the set of properties against which it was checked, several
authors failed to conclude that their measure was not a soft-
ware complexity measure, e.g., 181, 191. Instead, they con-
cluded that their measure was a complexity measure that
does not satisfy that set of properties for complexity meas-
ures. What they actually did was provide an absolute defini-
tion of a software complexity measure and check whether the
properties were consistent with respect to the measure, i.e.,
check the properties against their own measure.
This situation would be unacceptable in other engineer-

ing or mathematical fields. For instance, suppose that one
defines a new measure, claiming it is a distance measure.
Suppose also that that measure fails to satisfy the triangle
inequality, which is the characterizing property of distance
measures. The natural conclusion would be to realize that
that is not a distance measure, rather than to say that it is a
distance measure that does not satisfy the conditions for a
distance measure. However, it is true that none of the sets
of properties proposed so far has reached so wide an accep-
tance to be considered "the" right set of necessary proper-
ties for complexity. It is our position that this odd situation
is due to the fact that there are several different concepts
which are still covered by the same word. complexity.

Within the set of commonly mentioned software charac-
teristics, size and complexity are the ones that have re-
ceived the widest attention. However, several authors have
been inclined to believe that a measure captures either size
or complexity, as if, besides size, all other concepts related
to software characteristics could be grouped under the
unique name of complexity %metimes, even size has been
considered as a particular kind of complexity measure.

Actually these concepts capture different software char-
acteristics, and, until they are clearly separated and their
similarities and differences clearly studied, it will be im-
possible to reach any kind of consensus on the properties
that characterize each concept relevant to the definition of
software measures. The goal of this paper is to lay down the
basis for a discussion on this subject, by providing proper-
ties for a-p-t of measurement concepts that ar$
relevant for the definition of measures of internal software
attributes. Many of the measure properties proposed in the
literature are generic in the sense that they do not character-
ize specific measurement concepts but are relevant to all
syntactically-based measures (see [lo], 161, m). In this pa-
per, we want to focus on properties that differentiate meas-
urement concepts such as size, complexity, cohesion and
coupling which are the ones that are most commonly
found in the scientific literature. Thus, we want to identify

and clarify the essential properties behind these concepts
that are commonplace in software engineering and form
important classes of measures. Thus, researchers will be
able to validate their new measures by checking properties
specifically relevant to the class (or concept) they belong to
(e.g., size should be additive). By no means should these prop-
erties be regarded as the unique set of properties that can be pos-
sibly d@nedfm a given concept. Rather, we want to provide a
theoretically sound and convenient solution for differentiat-
ing a set of well known concepts and check their analogies
and conflicts. In other words, we attempt to define these
concepts through different sets of unambiguous and intui-
tive properties. Possible applications of such a framework
are to guide researchers in their search for new measures
and help practitioners evaluate the adequacy of measures
provided by commercial tools.
All of the previously mentioned measurement concepts

are related to internal software attributes. In particular, we
will focus on one of the "flavors" of complexity that has
been used in the literature-related to the structure of a
software system. Our definition of complexity does not en-
compasses external attributes, i.e., we do not provide prop-
erties for understandability, etc. Therefore, the part of our
work related to complexity is in the same line of thought as
[7]. Weyuker [q, one of the earliest works on the subject
and bffar the most referenced set of properties, has b&n
criticized by several authors as being inconsistent 1111 and
incomplete [12] and is still intensively discussed. Other
definitions, corresponding to different "flavors" of complex-
ity, have been provided in the literature, e.g., [13].

We also believe that the investigation of measures should
also address artifacts produced in the software process
other than code. It is commonly believed that the early
software process phases are the most important ones, since
the rest of the development depends on the artifacts they
produce. Oftentimes, the concepts (e.g., size, complexi$
cohesion, coupling) which are believed relevant with re-
spect to code are also relevant for other artifacts. To this
end, the properties we propose will be general enough to be
applicable to a wide set of artifacts.

The paper is organized as follows. In Section 2, we in-
troduce the basic definitions of our framework. Section 3
provides a set of properties that characterize and formal-
ize intuitively relevant measurement concepts: size,
length, complexity, cohesion, coupling. We also discuss
the relationships and differences between the different
concepts and how they relate to the measurement theory
framework 1141. Some of the best-known measures are
used as examples to illustrate our points. Section 4 con-
tains comparisons and discussions regarding the set of
properties for complexity measures defined in the paper
and in the literature. The conclusions and directions for
future work come in Section 5.

Before introducing the necessary properties for the set of
concepts we intend to study we provide basic definitions
related to the objects of study (to which these concepts can
be applied), e.g., size and complexity of what?

2.1 Systems and Modules
Two of the concepts we will investigate, namely size
(Section 3.1) and complexity (Section 3.3) are related to sys-
tems in general, i.e., one can speak about the size of a sys-
tem and the complexity of a system. We also introduce a
new concept, length (Section 3.2), which is related to sys-
tems. In our general framework-recall that we want these
properties to be as independent as possible of any product
abstraction-a system is characterized by its elements and
the relationships between them. Thus, we do not reduce the
number of possible system representations, as elements and
relationships can be defined according to needs.

DEFINITION 1: Representation of Systems and Modules. A
system S will be represented as a pair <E, R>, where E
represents the set of elements of S, and R is a binary reh-
tion on E (R E E x E) representing the relationships be-
tween S s elements.

Given a system S = 4, R>, a system m = <E, F+ is a
module of S if and only if Em E E, R,,, r Em x Ed and
R,,, R As an example, E can be d@ned as the set of code
statements and R as the set of control flowsfrom one statement
to another. A module m may be a code segment or a subpmgam.
The elements ofa module are connected to the elements of the
rest of the system by incoming and outgoing relationships.
The set InputR(m) of relationships from elements outside
module m = <Em, R,,,> to those of module m is defined as

InputR(m) = {<el, e p E R I e, E Em and el E E - Em)

The set OutputR(m) of relationships from the elements of a
module m = <Em, R,> to those of the rest of the system is
defined as

OutputR(m) = {<el, e,> E R I e, E Em and e, E E - Em)
cl

We now introduce inclusion, union, intersection operations
for modules and the definitions of empty and disjoint
modules, which will be used often in the remainder of the
paper. For notational convenience, they will be denoted by
extending the usual set-theoretic notation. We will illustrate
these operations by means of the system S = &, R> repre-
sentedinFig.l,whereE=(a,b,c,d,e,f,g,h,i,j,k,l,m]
and R = {<b, a>, <b, f>, <c, b>, <c, d>, <c, g>, <d, f>, <e, 9,
4, i>, 4, k>, <g, m>, ch, a>, 41, i>, u, j>, ck, j>, ck,l>]. We
will consider the following modules

m, = a, R,,,,> = <{a, b, f, i, j, k), {<b, a>, <b, f>, 4, b,
4, k>, 4, j>, ck, j>] (area filled with m)
m, = 4 , &> = <{f, j, k), {4, k>, ck, j>) (area filled

with
q = cEfl Q> = <{c, d, e, f, g, j, k, m), {<c, d>, <c, g>,
<d, f>, <e, g>, cf, b, <g, m>, <k, j>)> (area filled with -,
m, = <EM &> = <Id, e, g], {<e, g>)> (area filled with

)

Inclusion. Module mi = 4, K > is said to be included in
module mi = <Ew R*> (notation- mi E mi) if Ed E E, and
%:k R,,,,. In Fig. 1, m4 E q.

Fig. 1. Operations on modules.

union. The union of modules q = <E, &> and q =
<E, R,9 (notation mi u mJ is the module 4~ u E,, R, u
R,>. In Fig. 1, the union of modules m, and q is module m, =
<{a, b, c, d, e, f, n i, i, k, m), 1 4 , a>, 4, fa <c, b>, <c, d>, <c, n>,
<d, f>, <e, 9, 2, b, 4, b, <g, rn>, 4, j>, <k, j>) (area Ked
with or or liz@%@R).
Intersection. The intersection of modules mi = <Ed, K >
and mi = <Ed %> (notation: mi n q) is the module <Ed n
E,R,,,,nR*>.InFig.l,m,=m,nq.

Empty module. Module <0, 0 > (denoted by 0) is the
empty module.

Disjoint modules. Modules mi and m, are said to be disjoint
ifm,nmi=O.InFig. 1 ,m,nm4=0.

Since in this framework modules are just subsystems, all
systems can theoretically be decomposed into modules. The
definition of a module for a particular measure in a specific
context is just a mat€er of convenience and programming
environment (e.g., language) constraints.

2.2 Modular Systems
The other two concepts we will investigate, cohesion
(Section 3.4) and coupling (Section 35), are meaningful only
with reference to systems that an? provided with a modular
decomposition, i.e., one can speak about cohesion and
coupling of a whole system only if it is structured into
modules. One can also speak about cohesion and coupling
of a single module within a whole system.

DEFIN~~ON 2: Representation of Modular Systems. The
3-tuple MS = &, R, M> represents a modular system ifS =
4, R> is a system according to Definition 1, and M is a col-
lection o f modules of S such that

Vm,mi' M(mi=<E,Rd>andmi=4,,R,>and
EdnEd=O)

i.e, the set of elements E o f MS is partitioned into the sets of
elements of the modules.

We denote the union o f all the Rms as IR. It is the set o f in-
tramodule relationships. Since the modules are disjoint, the
union o f all OutputR(m)s is equal to the union o f all
InputR(m)s, which is equal to R-IR It is the set o f inter-
module relationships. a

As an example, E can be the set of all declarations of a
given set of Ada modules, R the set of dependencies be-
tween them, and M the set of Ada modules.

Fig. 2 shows a modular system MS = cE, R, m, ob-
tained by partitioning the set of elements of the system in
Fig. 1 in a different way In this modular system, E and R
an? the same as in system S in Fig. 1, and M = (m,, m,, m,].
Besides, IR = {eb, a>, cc, d>, cc, g>, ee, g>, <f, i>, 6, k>,
cg, m>, ch, a>, ti, j>, ek, j>, ck, b).

Fig. 2. A modular system.

ous manner. However, intuitive justifications are provided
to support the properties.

3.1 Size
3.1.1 Motivation
Intuitively size is recognized as being an important meas-
urement concept. According to our framework, size m o t
be negative (property Size-1), and we expect it to be null
when a system does not contain any elements (property
Size.2). When modules do not have elements in common,
we expect size to be additive (property Size.3).

DEFINITION 3: Size. The size of a system S is a function Sie(S)
that is charactet5z.d by the f o l h i n g properties Size.1-Size.3.

CI

PROPERTY SIZELl: No~egativity The size of a system
S = cE, R> is nonnegative

Sue(S) 1 0 (Sie.1) CI
PROPERTY S1ZE.2: Null Value. The size of a system

S = cE, R> is null if E is empty

E.= 0 + Size(S) = 0 (Size.II) •
PROPERTY SIZE.^: Module Additivity. The s&e of a system

It should be noted that some measurement concepts do
not take into account the modular strudme of a system. As
already mentioned, our concepts of size and complexity
(defined in Sections 3.1 and 3.3) are such examples.

We have defined concept properties using a graph-
theoretic approach to allow us to be general and precise. It
is general because our properties are defined so that no re-
striction applies to the definition of vertices and arcs. Many
well known product abstractions fit this framework, e.g.,
data dependency graphs, definition-use graphs, control
flow graphs, USES graphs, Is-C~mponent~of graphs. It is
predse because, based on a well defined formalism, all the
concepts used can be mathematically defined, e.g., system,
module, modular system, and so can the properties pre-
sented in the next section.

3 MEASUREMENT CONCEPTS ANDTHEIR PROPERTIES

It should be noted that the concepts defined below are to
some extent subjective. However, we wish to assign them
unambiguous, intuitive, and convenient properties. We
consider these properties necessary but not sufficient be-
cause they do not guarantee that the measures for which
they hold are useful or even make sense. On the other hand,
these properties will constrain the search for measures and
therefore make the measure definition process more rigor-
ous and less exploratory 131. Several relevant concepts are
studied: size, length, complexity, cohesion, and coupling.
They do not represent an exhaustive list but a starting point
for discussion that should eventually lead to a standard
definition set in the software engineering community.

In what follows, we do not provide any informal defini-
tion for the concepts introduced (e-g., complexity) because
we consider that the properties themselves uniquely char-
acterize and therefore define the concepts in an unambigu-

S = cE, R> is equal to the sum of the sizes of two-of its
modules m, = <Em,, R,,> and q = <E& R,> such that
any element of S is an element of either m, or m,

For instance, the size of the system in Fig. 2 is the sum of
the sizes of its three modules m,, q, m,.
The following three unnumbered properties follow from the
above properties Size.1-Size.3.

Property Sie.3 provides the means to compute the size of a
system S = cE, R> from the knowledge of the size of
its-disjoint-modules me = ~{e) , Re> whose set of elements
is composed of a &fferent element e of E.'

Size(S) = Sie(me) (Size.IV)
eeE

Therefore, adding elements to a system cannot decrease its
size (size monofonicify property)

(S' = cE', R'> and S" = cE", R"> and E' c E")

Size(S') S Size(Stl) (Size.V)
From the above properties, Size.1-Size.3, it follows that the
size of a system S = eE, R> is not greater than the sum of
the sizes of any pair of its modules m, = <Em, R,,,,> and
q = C E , R,,,p-, such that any element of S is an element of
m,, or m,, or both, i.e.,

The size of a system built by merging such modules cannot
be greater than the sum of the sizes of the modules, due to
the presence of common elements (e.g., lines of code, opera-
tors, class methods).

1. For each m, it is either R, = 0 or R, = ice, -1.

Properties Size.1-Sie.3 hold when ayplying the ad-
missible transformation of the ratio scale (i.e., f(x) = a x)
1141. Therefore, there is no contradiction between our con-
cept of size and the definition of size measures on a ratio
scale. In other words, the properties do not block the way
to the ratio scale. Further discussions on measurement
theory and its relationship to our framework will be pro-
vided in Section 3.6.

3.1.2 Examples and Counterexamples of Size Measures
Several measures introduced in the literature can be classi-
fied as size measures, according to our properties Size.1-
S i .3 . With reference to code measures, we have: LOC,
#Statements, #Modules, #Procedures, Halstead's Length
1151, #Occurrences of Operators, #Occurrences of ~~eran 'hs ,
#Unique Operators, #Unique Operands. In each of the
above cases, the representation of a program as a system is
quite straightforward. Each counted entity is an element,
and the relationship between elements is just the sequential
relationship.

Some other measures that have been introduced as size
measures do not satisfy the above properties. Instances are
the Estimator of length and Volume 1151, which are not ad-
ditive when software modules are disjoint (property Size.3).
Indeed, for both measures, the value obtained when two
disjoint software modules are concatenated may be less
than the sum of the values obtained for each module, since
they may contain common operators or operands. Note
that, in this context, the graph is just the sequence of oper-
and and operator occurrences. Disjoint code segments are
disjoint subgraphs.

On the other hand, other measures, that are meant to
capture other concepts, are indeed size measures. For
instance, in the object-oriented suite of measures defined
in [S], Weighted Methods per Class (WMC) is defined as
the sum of the complexities of methods in a class. First,
it is straightforward to show that properties Size.1 and
Size.2 are true for WMC. In addition, when two classes
without methods in common are merged, the resulting
class's WMC is equal to the sum of the two WMCs of the
original classes (property Size.3 is satisfied). As a conse-
quence, when two classes with methods in common are
merged, then the WMC of the resulting class may be
lower than the sum of the WMCs of the two original
classes (formula Size.VI, which can be deduced from
properties Size.1-3). Therefore, since all size properties
hold, this is a class size measure. However, WMC does
not satisfy our properties for complexity measures (see
Section 3.3). Likewise, NOC (Number Of Children of a
class) ,and Response For a Class (RFC) [8] are other size
measures, according to our properties.

3.2 Length
3.2.1 Motivation
Prowrties Size.1-Size.3 characterize the concent of size as is
co&nonly intended in software engineering: Actually, the
concept of size may have different interpretations in every-

2. In-other words, these properties hold when Size(m,) is substituted
with a Size(m,), whem a is an arbitrary coefficient.

day life, depending on the measurement goal. For instance,
suppose we want to park a car in a parallel parking space.
Then, the "size" we are interested in is the maximum dis-
tance between two points of the car linked by a segment
parallel to the car's motion direction. The above properties
Size.1-Size.3 do not aim at defining such a measure of size.
With respect to physical objects, volume and weight satisfy
the above properties. In the particular case that the objects
are unidimensional (or that we are interested in carrying
out measurements with respect to only one dimension),
then these concepts coincide.

In order to differentiate this measurement concept from
size, we call it length. Length is nonnegative (property
Length.l), and equal to 0 when there are no elements in the
system (property Length.2). In extreme situations where
systems are composed of unrelated elements this property
allows length to be nonnull. If a new relationship is intro-
duced between two elements belonging to the same con-
nected componen? of the graph representing a system, the
length of the new system is not greater than the length of
the original system (property Length.3). The idea is that, in
this case, a new relationship may make the elements it con-
nects "closer" than they were. This new relationship may
reduce the greatest distance between elements in the con-
nected component of the graph, but it may never increase
it. On the other hand, if a new relationship is introduced
between two elements belonging to two different connected
components, the length of the new system is not smaller
than the length of the original system. This stems from the
fact that the new relationship creates a new connected
component, where the maximum distance between two
elements cannot be less than the maximum distance be-
tween any two elements of either original connected com-
ponent (property Length.4). Length is not additive for dis-
joint modules. The length of a system containing several
disjoint modules is the maximum length among them
(property Length.5).

DEFINITION 4: Length. The length of a system S is a function
Length(S) characterized by the folloun'ng properties Length.1-
Length.5.

PROPERTY LENGTH. 1: Nonnegativity. The length of a system
S = <E, R> is nonnegative

PROPERTY LENGTH.^: Null Value. The length of a system
S = <E, R> is null if E is empty

PROPERTY LENGTH.3: Nonincreasing Monotonicity for
Connected Components. Let S be a system and m be a
module of S such that m is represented by a connected
component of the graph representing S. Adding rela-
tionships between elements of m does not increase the
length of S.

3. Here, two elements of a system S are said to belong to the same
~ 0 ~ e C t e d component if there is a path from one to the other in the
nondireaed graph obtained from the graph representing S by remov-
ing d i i o n s in the arcs.

(S= <E,R>andm= <E,Rm> a n d m ~ S
and m "is a connected component of S" and

S = <E, R'> and R' = R u (<el, el>) and <el, e,> .E R

and e, E Em, and el E Em,)

~j Length(S) 2 Length(S') (L.ength.III)

PROPERTY LWGTH.4: Nondecreasing Monotonicity for Non-
connected Components. Let S be a system and m, and n,
be two modules of S such that m, and m, are represented
by two separate connected components of the graph rep-
resenting S. Adding relationships from elements of m, to
elements of m, does not decrease the length of S

(S=&,R>andm,=&,,Rm,>andm,=<E,&>
and m, E S and n, E S "are separate connected compo-
nents of S" and

S = <E, R'> and R' = R ir (<el, +>] and ce,, e,> E R

and el E Em, and e, E E,)
~j Length(S') 2 Length(S) (Length.IV)

PROPERTY LENGTHS: Disjoint Modules. The length of a sys-
tem S = <E, R> made of two disjoint modules m,, m, is
equal to the maximum of the lengths of m, and m,

Let us illustrate the last three properties with systems

S, S', S", represented in Fig. 3. The length of system S, com-
posed of the three connected components 9, nq, and m, is
the maximum value among the lengths of m,, m,, and m,
(property Length.V). System S differs from system S only
because of the added relationship <c, m> (presented by
the thick dashed arrow), which connects two elements al-
ready belonging to a connected compondt of S, ng. The

length of system S' is not greater than the length of S
(property Length.III). System S" differs from system S only
because of the added relationship cb, k (represented by the
thick solid arrow), which connects two elements belonging
to two different connected components of S, m, and m,.
The length of system S" is not less than the length of S
(p r o m Length-IV).

Properties Length.1-Length.5 hold when applying the
admissible transformation of the ratio scale. Therefore,
there is no contradiction between our concept of length and
the definition of length measures on a ratio scale.

3.2.2 Examples of Length Measures

Several measures can be defined at the system or module
level based on the length concept. A typical example is the
depth of a hierarchy or latiice/network. Therefore, the
nesting depth in a program 1141 and DlT (Depth of Inheri-
tance Tree-which is actually a hierarchy. in the general
case) defined in [8] are length measures.

Fig. 3. Proper&ies of length.

3.3 Complexity
3.3.1 Motivation

Complexity is a measurement concept that is considered
extremely relevant to system properties. It has been studied
by several researchers (see Section 4 for a comparison be-
tween our framework and the literature). It is important to
note that the notion of complexity we are going to define
through a set of specific properties is intentionally more
restrictive than that of many researchers 1161. This will al-
low us to provide a precise definition of artifact complexity
through a well defined set of properties. Complexity is de-
fined as an intrisic attribute of an object and not its per-
ceived psychological complexity as perceived by an exter-
nal observer. Our intention is clearly diffemt from the one
of Curtis et al. 1161 who were referring to complexity when
studying the impact of software on other systems, e.g.,
people. This issue is further discussed below. In our frame-
work, we expect complexity to be nonnegative (property
Complexity.1) and to be null (property Complexity.2) when
there are no relationships between the elements of a system.
However, it could be argued that the complexity of a sys-
tem whose elements are not connected to each other does
not need to be necessarily null, because each element of E
may have some complexity of its own. In our view, com-
plexity is a system property that depends on the relation-
ships between elements, and is not an isolated element's -

property. The complexity that an element taken in isolation
may-intuitively-bring can only originate from the rela-
tionships between its "subelements." For instance, in a
modular system, each module can be viewed as a "high-
level element" encapsulating "subelements." However, if
we want to consider the system as composed of such "high-
level elements" (E), we should not "unpack" them, but only
consider them and their relationships, without considering
their "subelements" (E'). Otherwise, if we want to consider
the contribution of the relationships between "sub-
elements" (R'), we actually have to represent the system as
S = <E', R u R'>.

Complexity should not be sensitive to representation
conventions with respect to the direction of arcs represent-
ing system relationships (property Complexity.3). A rela-
tion can be represented in either an "active" (R) or
"passive" (R-') form. The system and the relationships
between its elements are not affected by these two
equivalent representation conventions, so a complexity
measure should be insensitive to this.

Also, the complexity of a system S should be at least as
much as the sum of the complexities of any collection of its
modules, such that no two modules share relationships, but
may only share elements (property Complexity.4). -we be-
lieve that this property is the one that most strongly dz%fmtiates
complexity from the other system concepts. Intuitively, this
property may be explained by two phenomena. First, the
transitive closure of R is a graph not smaller than the graph
obtained as the union of the transitive closures of R' and R"
(where R' and R" are contained in R). As a consequence, if
any kind of indirect (i.e., transitive) relationships between
elements is considered in the computation of complexity,
then the complexity of S may be larger than the sum of its
modules' complexities, when the modules do not share any
relationship. otherwise, they are equal. Second, merging
modules may implicitly generate relationships between the
elements of each mod&. (e.g., definition-& relationships
may be created when blocks are merged into a common
system). As a consequence of the above properties, system
complexity should not decrease when the set of system re-
lationships is increased (property Complexity4).

However, it has been argued that it is not always the
case that the more relationships between the elements of a
system, the more complex the system. For instance, it has
been argued that adding a relationship between two ele-
ments may make the understanding of the system easier,
since it clarifies the relationship between the two. This is
certainly true, but we want to point out that this assertion is
related to understandability (i-e., ease of understanding in
terms of effort needed which is an external attribute), rather
than complexity which is seen in this paper as an internal
attribute [I]. Complexity is only one of the factors that con-
tribute to understandability and may help predict it. There
are other factors that have a strong influence on under-
standability, such as the amount of available context infor-
mation and knowledge about a system. In the literature
1171, it has been argued that the inner loop of the Shellsort
algorithm, taken in isolation, is less understandable than
the whole algorithm, since the role of the inner loop in the
algorithm cannot be fully understood without the rest of

the algorithm. This shows that understandability improves
because a larger amount of context information is available,
rather than because the complexity of the Shellsort algo-
rithm is less than that of its inner loop. As another example,
a relationship between two elements of a system may be
added to explicitly state a relationship between them that
was implicit or uncertain. This adds to our knowledge of
the sysiem, while, at the same time, increases complexity
(according to our properties). In some cases (see above ex-
amples), the gain in context information/knowledge may
overcome the increase in complexity and, as a result, may
improve understandability. This stems from the fact that
several phenomena con&rrently affect understandability
and does not mean in any way that an increase in complex-
ity increases understandability.

Last, the complexity of a system made of disjoint mod-
ules is the sum of the complexities of the single modules
(property Complexity.5). consistent with Com-
plexity.4, this property is intuitively justified by the fact that
the transitive closure of a graph composed of several dis-
joint subgraphs is equal to the union of the transitive clo-
sures of each subgraph taken in isolation. Furthermore, if
two modules are put together in the same system, but they
are not merged, i.e., they are still two disjoint module in
this system, then no additional relationships are generated
from the elements of one to the elements ofthe o&r.

The properties we define for complexity are, to a limited
extent, a generalization of the several authors
have already provided in the literature (see 151, [6], [7j) for
software code complexity, usually for control flow graphs.
We generalize them because we may want to use them on
artifacts other than software code and on abstractions other
than control flow graphs.

D E F W ~ ~ N 5: Complexity. The complexity of a system S is a
function Complexity(S) that is characterized by thefDIlowing
properties Complexity.1-Complexity.5. 0

PROPERTY COMPLEXITY. 1: Nomegativity. The complexity of
a system S = <E, R> is nonnegative

PROPERTY COMPLEXITY.2: Null Value. The complexity of a
system S = <E, R> is null if R is empty

PROPERTY COMPLEXITY.3: Symmetry. The complexity of a
system S = <E, R> does not depend on the convention
chosen to represent the relationships between its
elements

(S = <E, R> and S-' = <E, R-'>)

* Complexity(S) = comPlexity(~')
(Comp1exity.m)

PROPERTY COMPLEXITY.4: Module Monotonicity. The com-
plexity of a system S = <E, R> is no less than the sum of
the complexities of any two of its modules with no rela-
tionships in common

(S = 4, R> and m, = <Em,,
and m, = <Ed, Q >

andm1um,~SandR, , , , nQ=0)

Complexity(S) 2 Complexity(nq) + Complexity(mJ
(Comp1exity.W)

For instance, the complexity of the system shown in Fig. 4 is
not smaller than the sum of the complexities of m, and m,.

Fig. 4. Module monotonicity of complexity.

PROPERTY COMPLEX~TY.S: Disjoint Module Additivity. The
complexity of a system S = cE, R, composed of two dis-
joint modules m,, m, is equal to the sum of the complexi-
ties of the two modules

As a consequence of the above properties Complex-
ity.1-Complexity.5, it can be shown that adding relation-
ships between elements of a system does not decrease its
complexity

(St = cE, R'> and St'= 4, R"> and R' G R")

3 Complexity(S1) I Complexity(S")
(Comp1exity.W)

Properties Complexity.1-Complexity5 hold when applying
the admissible transformation of the ratio scale. Therefore,
there is no contradiction between our concept of complexity
and the definition of complexity measures on a ratio scale.

Comprehensive comparisons and discussions of previ-
ous work in the area of complexity properties are provided
in Section 4.

3.3.2 Examples and Counterexamples of Complex@
Measures

In 1181, Oviedo proposed a data flow complexity measure
(DF). In this case, systems are programs, modules are pro-
gram blocks, elements are variable definitions or uses, and
relationships are defined between the definition of a given
variable and its uses. The measure in [18] is simply defined
as the number of definition-use pairs in a block or a pro-
gr-, Property Complexity.4 holds. Given two modules
(i.e., program blocks) which may only have common ele-

ments (i.e., no definition-use relationship is contained in
both), the whole system (i.e., program) has a number of
relationships (i.e., definition-use relationships) which is at
least equal to the sum of the numbers of definition-use re-
lationships of each module. Property Complexity5 holds as
well. The number of definition-use relationships of a system
composed of two disjoint modules fi.e., blocks between
which no definition-use relationship exists), is equal to the
sum of the numbers of definition-use relationships of each
module. As a conclusion, DF is a complexity measure ac-
cording to our definition.

In 1191, McCabe proposed a control flow complexity
measure. Given a control flow graph G = <E, (which
corresponds-unchanged* a system for our framework),
Cyclomatic Complexity is defined as

v(G)= IRI - IEI +2p

where p is the number of connected components of G. Let
us now check whether v(G) is a complexity measure accord-
ing to our definition. It is straightforward to show that, ex-
cept Complexity& the other properties hold. In order to
check property Complexity.4, let G = cE, R, be a control
flow graph and GI = <E,, R,> and G2 = <&, q > two nondis-
joint control flow subgraphs of G such that they have nodes
in common but no relationships. We have to require that GI
and G2 be control flow subgraphs, because cyclomatic
complexity is defined only for control flow graphs, i.e.,
graphs composed of connected components, each of which
has a start node-a node with no incoming arcs-and an
end node-a node with no outgoing arcs. Property Com-
plexity.4 requires that the following inequality be true for
all such GI and G,

IRI - IEI + 2 p 2 IR,I - IE,I +2p,+ IqI - IE,I +2p2

i.e.,2@,+p2-p)SIE,I + IE,I - IEI,wherep,andp,are
the number of connected components in GI and G,, re-
spectively. This is not always true. For instance, consider
Fig. 5. G has three elements and one connected compo-
nent; GI and G2 have two nodes and one connected com-
ponent apiece. Therefore, the above inequality is not true
in this case, and the cyclomatic number is not a complex-
ity measure according to our definition. However, it can
be shown that v(G)-p satisfies all the above complexity
properties. From a practical perspective, especially in
large systems, this correction does not have a significant
impact on the value of the measure.

Fig. 5. Control flow graph.

Henry and Kafura [20] proposed an information flow
complexity measure. In this context, elements are subpro-
gram variables or parameters, modules are subprograms,
relationships are either fan-ins or fan-outs. For a subpro-
gram SP, the complexity is expressed as length x @n-in x
fan-out)', where fan-in and fan-out are, respectively the lo-
cal (as defined in [20]) information flows from other sub-
programs to SP, and from SP to other subprograms. Such
local information flows can be represented as relationships
between parameters/variables of SP and parameters/
variables of the other subprograms. Subprograms' parame-
ters/variables are the system elements and the subpro-
grams' fan-in and fan-out links are the relationships. Any
size measure can be used for length (in 1201 LOC was used).
The justification for multiplying length and Van-in x fan-out)'
was that "The complexity of a procedure depends on two
factors: The complexity of the procedure code and the
complexity of the procedure's connections to its environ-
ment." The complexity of the procedure code is taken into
account by length; the complexity of the subprogram's con-
nections to its environment is taken into account by
Van-in x fan-out)'. The complexity of a system is defined as
the sum of the complexities of the individual subprograms.
For the measure defined above, properties Complexity.1-
Complexity4 hold. However, property Complexity5 does
not hold since, given two disjoint modules S, and S, with a
measured information flow of, respectively, length, x
(fan-in, x fan-out,)' and length, x Van-in, x fan-out,S, the fol-
lowing statement is true:

length x (fan-in x fan-out)= > length, x (fan-in, x fan-out,S
+ length, x (fan-in, x fan-out$

where length = length, + length,, fan-in = fan-in, + fan-4,
and fan-out = fan-out, + fan-outz.

However, equality does not hold because of the expo-
nent 2, which is not fully justified, and multiplication of
fan-in and fan-out. Therefore, Henry and Kafura [20] in-
formation flow measure is not a complexity measure ac-
cording to our definition. However, fan-in and fan-out
taken as separate measures, without exponent 2, are com-
plexity measures according to our definition since all the
required properties hold.

S i l a r measures have been used in 121) and referred to
as structural complexity (SC) and defined as:

Once again, property Complexity5 does not hold because
fan-out is squared in the formula.

A metric suite for object-oriented design is proposed in
[8]. A system is an object oriented design, modules are
classes, elements are either methods or instance variables
(depending on the measure considered) and relationships
are calls to methods or uses of instance variables by other
methods. An attempt was made to validate these measures
against Weyuker's properties for complexity measures,
thereby implicitely implying that they were complexity
measures. However, none of the measures defined by [8] is
a complexity measure according to our properties:

0 Weighted Methods per Class (WMC) and Number Of
Children of a class (NOC) are size measures (see Sec-
tion 3.1);

* Depth of Inheritance Tree @IT) is a length measure
(see Section 3.2);

* Coupling Between Object classes (CBO) is a coupling
measure (see Section 3.4);
Response For a Class (RFC) is a size and coupling
measure (see Sections 3.1 and 3.5);

* Lack of Cohesion in Methods (LCOM) cannot be
classified in our framework. This is consistent with
what was said in the introduction: Our framework
does not cover all possible measurement concepts.

This is not surprising. In 181, it is shown that all of the above
measures do not satisfy Weyuker's property 9, which is a
weaker form of property Complexity4 (see Section 4).

3.4 Cohesion
3.4.1 Motivation
The concept of cohesion has been used with reference to
modules or modular systems. It assesses the tightness with
which "related" program features are "grouped together"
in systems or modules. It is assumed that the better the
programmer is able to encapsulate related program features
together, the more reliible and maintainable the system
1141. This assumption seems to be supported by experimen-
tal results 1221. Intuitively, we expect cohesion to be nonne-
gative and, more importantly, to be normalized (property
Cohesion.1) so that the measure is independent of the size
of the modular system or module. Moreover, if there are no
internal relationships in a module or in all the modules in a
system, we expect cohesion to be null (property Cohesion.2)
for that module or for the system, since, as far as we know,
there is no relationship between the elements and there is
no evidence they should be encapsulated together. Addi-
tional internal relationships in modules cannot decrease
cohesion since they are supposed to be additional evidence
to encapsulate system elements together (property
Cohesion.3). When two (or more) modules showing no re-
lationships between them are merged, cohesion cannot in-
crease because seemingly unrelated elements are encapsu-
lated together (property Cohesion.4).

Since the cohesion (and, as we will see in Section 3.5, the
coupling) of modules and entire modular systems have
similar sets of properties, both will be described at the same
time by using brackets and the alternation symbol ' I ' For
instance, the notation [A 181, where A and B are phrases,
will denote the fact that phrase A applies to module cohe-
sion, and phrase B applies to entire system cohesion.

DEFINITION 6: Cohesion of a [Module I Modular System].
The cohesion of a [module m = <Ed Rm> of a modular sys-
tem MS I modular system MS] is a finction
[Cohesion(m) l Cohesion(MS)] characterized by the follow
ing properties Coheswn.1-Coheswn.4.

PROPERTY COHESION. I : Nonnegativity and Normalization.
The cohesion of a [module m = <Em, R,,,> of a modular
system MS = <E, R, M> I modular system MS =
<E, R, M>] belongs to a specified interval

[Cohesion(m) E [0, Max] I Cohesion(MS) E [0, Max]]
(C0hesion.I)

Normalization allows meaningful comparisons between the
cohesions of different [modules l modular systems], since
they all belong to the same interval.

PROPERTY COHESION.2: Null Value. The cohesion of a
[module m = <Em, R,> of a modular system MS =
<E, R, M> I modular system MS = <E, R, M>] is null if
[Rm I IR] is empty

(Recall that IR is the set of intramodule relationships, de-
fined in Definition 2.)

If there is no intramodule relationship among the ele-
ments of a (all) module(s), then the module (system) cohe-
sion is null.

PROPERTY COHESION.3: Monotonicity Let MS' =

cE, R', M'> and MS" = <E, R", M"> be two modular sys-
tems (with the same set of elements E) such that there

exist two modules m' = <Ed R,,,> and m" = <Ed R,,,>
(with the same set of elements Em) belonging to M' and

M", respectively, such that R' - R,,,, = R" - R,, and

R, E R,,," (which implies IR' IR"). Then,

Adding intramodule relationships does not decrease
[module I modular system] cohesion. For instance, suppose

that systems S, S', and S" in Fig. 3 are viewed as modular

systems MS = <E, R, M>, MS' = <E', R', M'>, and MS" =

-&", R", MI'> (with M = {m,, q, ng)' M' = {mi, mi, mi,),

and M={mGm;',mi'J). We have [Cohesion(mj) 2

PROPERTY COHESION.4: Cohesive Modules. Let MS' =
cE, R, M'> and MS" = -&, R, M"> be two modular sys-
tems (with the same underlying system CE, R>) such that
M" = MI- {mi, mi} u {m") , with mi E M', mi E M',

and mi are replaced by the module m', union of m; and
mi.) If no relationships exist between the elements be-
longing to m; and mi, i.e., InputR(mi) n OutputR(mi) =
= 0 and InputR(m;) n OutputR(m;) = 0, then ,

[max{Cohesion(m;), Cohesion(m;)) 2 Cohesion(m") I

Cohesion(MS') 2 Cohesion(MS8')] (C0hesion.W) C]

The cohesion of a [module l modular system] obtained by
putting together two unrelated modules is not greater than
the [maximum cohesion of the two original modules l the
cohesion of the original modular system].

. -

Properties Cohesion.1-Cohesion.4 hold when applying
the admissible transformation of the ratio scale. Therefore,
there is no contradiction between our concept of cohesion
and the definition of cohesion measures on a ratio scale.

3.4.2 Examples of Cohesion Measures
In 1221, cohesion measures for high-level design are defined
and validated, at both the abstract data type (module) and
system (program) levels. For brevity's sake, the term soft-
ware part here denotes either a module or a program A
high-level design is seen as a collection of modules, each of
wkch exports &d imports constants, types, variables, and
procedures/functions. A widely accepted software engi-
neering principle prescribes that each module be highly
cohesive, i.e., its elements be tightly related to each other.
(221 focuses on investigating whether high cohesion values
are related to lower error-proneness, due to the fact that the
changes required by a change in a module are confined in a
well-encapsulated part of the overall program. To this end,
the exported feature A is said to interact with feature B if
the change of one of A's definitions or uses may require a
change one of B's definitions or uses.

In the approach of the present paper, each feature ex-
ported by a module is an element of the system, and the
interactions between them are the relationships between
elements. A module according to [22] is represented by a
module according to the definition of the present paper. At
high-level design time, not all interactions between the fea-
tures of a module are known, since the features may inter-
act in the body of a module, and not in its visible part.
Given a software part sp, three cohesion measures
NRCI(sp), PRCI(sp), and ORCI(sp) (respectively, Neutral,
Pessimistic, and Optimistic Ratio of Cohesive Interactions)
are defined for software as follows

where
M(sp) is the set of all possible intramodule interac-
tions between the features exported by each module
of the software part sp (itermodule interactions are
not considered cohesive; they may contribute to
coupling, instead).
K(sp) is the set of k m inter- at high-level de-
sign time between the features exported by each
module of the software part sp.

a U(sp) is the set of unknown i n t e r a c h at high-level
design time between the features exported by each
module of the software part sp.
SDDCsp) will denote the set of modules of sp that only
contain a single data declaration and no subroutines
(even though their sets of potential interactions are
empty, these modules are highly cohesive, as far as
our notion of cohesion-lated to abstract data
typesis concerned).

-

* SSR(sp) will denote the set of subroutines belonging
to modules that only contain subroutines (the&
modules are not cohesive, as far as our notion of co-
hesion is concerned).

Measures NRCI, PRCI, and ORCI satisfy the above proper-
ties Cohesion.l-Cohesion.4.

Other examples of cohesion measures can be found in
[23], where new functional cohesion measures are intro-
duced. Given a procedure, function, or main program, only
data tokens (i-e., the occurrence of a definition or use of a
variable or a constant) are taken into account. The data sIice
for a data token is the sequence of all those data tokens in
the program that can influence the statement in which the
data token appears, or can be influenced by that statement.
Being a sequence, a data slice is ordered: It lists its data to-
kens in order of appearance in the procedure, function or
main program. If more than one data slice exists, some data
tokens may belong to more than one data slice: these are
called glue fokens. A subset of the glue tokens may belong to
all data slices: These are called super-glue tokens. Functional
cohesion measures are defined based on data tokens, glue
tokens, and super-glue tokens. This approach can be rep*
sented in our framework as follows. A data token is an ele-
ment of the system, and a data slice is represented as a se-
quence of nodes and arcs. The resulting graph is a Directed
Acyclic Graph, which represents a module. ([23] introduces
functional cohesion measures for single procedures, func-
tions, or main programs.) Given a procedure, function, or
main program p, the following measures SFC@) (Strong
Functional Cohesion), WE%@) (Weak Functional Cohesion),
and A@) (adhesiveness) are introduced

-
WGlueTokms

AllTokens. # Dataslices
It can be shown that these measures satisfy the above prop-
erties Cohesion.1-Cohesion.4.

3.5 Coupling
3.5.1 Motivation
The concept of coupling has been used with reference to
modules or modular systems. Intuitively it captures the
amount of relationship between the elements belonging to
different modules of a system. Given a module m, two
kinds of coupling can be defined: inbound coupling and
outbound coupling. The former captures the amount of
relationships from elements outside m to elements inside
m; the latter the amount of wlationships from elements in-
side m to elements outside m.

We expect coupling to be nonnegative (property Cou-
pling.l), and null when there are no relationships among
modules (property Coupling.2). When additional relation-
ships are created across modules, we expect coupling not to
decrease since these modules become more interdependent

(property Coupling.3). Merging modules can only decrease
coupling since there may exist relationships among them
and therefore, intermodnle relationships may have disap-
peared (property Coupling.& property Coupling.5).

In what follows, when referring to module coupling, we
will use the word coupling to denote either inbound or
outbound coupling, &d OuterR(m) to denote either
InputR(m) or OutputR(m).

D E ~ ~ O N 7: Coupling of a [Module I Modular Sys-
tem]. The coupling of a [module m = <Em, R,> of a
modular system MS l modular system MS] is a function
[Coupling(m) 1 Coupling(MS)] characterized by the follow-
ing properties Coupling.1-Coupling.5. CI

PROPERTY COUPLING.^: Nonnegativity. The coupling of a
[module m = <Ed R,,,> of a modular system l modular
system MS] is nonnegative

PROPERTY COUPLING.^: Null Value. The coupling of a
[module m = <Em, R,> of a modular sys-
tern1 modular system MS = <E, R, M>] is null if
[OuterR(m) I R - IR] is empty

PROPERTY COUPLING.3: Monotonicity Let MS' =
cE, R', M'> and MS" = <E, R", M"> be two modular sys-
tems (with the same set of elements E) such that there
exist two modules m' E M', m" G M" such that
R' - OuterR(m') = R" - OuterR(mm), and 0uterR(mt)
OuterR(m"). Then,

Adding intermodule relationships does not decrease cou-
pling. For instance, if systems S, and S" in Fig. 3 are viewed
as modular systems (see Section 3.4), we have
[Coupling(m;') 2 Coupling(m,) I Cohesion(MS'2 1
Cohesion(MS)].

PROPERTY COUPLING.^ Merging of Modules. Let MS' =
<E: R: M 5 and MS" = <E8; R", M'5 be two modular
systems such that E' = E': R' = R'; and M" = M' -
(m',, m;] u (m'3, where m', = <E ,.,, R,,,>, m; =

R,,,,,>, and m" = <Em., Rm.>, with m', E M; m; E

M: m"e M; and Em. = Em., u Em., and &- = R,., u &.,.
m e two modules m', and m: are replaced by the
module m", whose elements and relationships are the
union of those of m', and m:.) Then

The coupling of a [module l modular system] obtained by
merging two modules is not greater than the [sum of the

couplings of the two original modules lcoupling of the
original modular system], since the two modules may have
common intermodule relationships. For instance, suppose
that the modular system MS,, in Fig. 6 is obtained from the
modular system MS in Fig. 2 by merging modules m,
and m, into module q5. Then, we have [Coupling(m,)

+ Coupling(m,) 2 Coupling(q,) I Coupling(MS) 2
Coupling(MS,,)I.

Fig. 6. The effect of merging modules on coupling.

PROPERTY COUPLING.5: Disjoint Module Additivity. Let MS'

= <E, R, M'> and MS" = <E, R, M"> be two modular sys-
tems (with the same underlying system <E, R>) such that
h4" = M'- {mi, mi) u {m") , with mi E M', m; E M',

m" M', and m" = m; u m;. (The two modules mi

and mi are replaced by the module m", union of mi and
mi) If no relationships exist between the elements be-

longing to mi and mi, i.e., InputR(mi) n OutputR(m;)

= 0 and InputR(m;) n OutputR(m;) = 0, then

The coupling of a [module l modular system] obtained by
merging two unrelated modules is equal to the [sum of the
couplings of the two original modules l coupling of the
original modular system].

Properties Coupling.1-Coupling.5 hold when applying
the admissible transformations of the ratio scale. Therefore,
there is no contradiction between our concept of coupling
and the definition of coupling measures on a ratio scale.

3.5.2 Examples and Counterexamples of Coupling
Measures

Fenton has defined an ordinal coupling measure betwe&
pairs of subroutines [14] as follows:

where i is the number corresponding to the worst coupling
type (according to Myers' ordinal scale 1141) and n the
number of interco~ections between S and S', i.e., global
variables and formal parameters. In this case, systems are

programs, modules are subroutines, elements are formal
parameters and global variables. If coupling for the whole
system is defined as the sum of coupling values between all
subroutine pairs, properties ~ o u ~ l i n ~ . l ~ ~ o u ~ l i n ~ . 5 hold for
this measures, and we label it as a coupling measure. How-
ever, Fenton proposes to calculate the median of all the pair
values as a system coupling measure. In this case, property
Coupling.3 does not hold since the median may decrease
when intermodule relationships are added. Similarly for
Coupling.4, when subroutines are merged and intermodule
relationships are lost, the median may increase. Therefore,
the system coupling measure by Fenton is not a
coupling measure according to our definitions.

In 1221, coupling measures for high-level design are
defined and validated, at both the module (abstract data
type) and system (program) levels. They are based on the
notion of interaction introduced in the examples of
Section 3.4. Import Coupling of a module m is defined as
the extent to which m depends on imported extemal data
declarations. Similarly, export coupling of m is defined as
the extent to which m's data declarations affect the other
data declarations in the system. At the system level,
coupling is the extent to which the modules are related to
each other. Given a module m, Import Coupling of m
(denoted by IC(m)) is the number of interactions between
data declarations extemal to m and the data declarations
within m. Given a module m, Export Coupling of m
(denoted by EC(m)) is the number of interactions between
the data declarations within m and the data declarations
external to m. As shown in [22], our coupling properties
hold for these measures.

Coupling Between Object classes (CBO) of a class is de-
fined in 181 as the number of other classes to which it is
coupled. It is a coupling measure. Properties Coupling.1
and Coupling.2 are obviously satisfied. Property Cou-
pling.3 is satisfied, since CBO cannot decrease by adding
one more relationship between features belonging to differ-
ent classes (i.e., one class uses one more method or instance
variable belonging to another class). Property Coupling.4 is - .

satisfied: CBO-c& only remain constant or decrease when
two classes are grouped into one. Property Coupling.5 is
also satisfied.

Response For a Class (RFC) [8] is a size and a coupling
measure at the same time (see Section 3.1). Methods are
elements, calls are relationships, classes are modules.
Coupling3 holds, since adding outside method calls to a
class can only increase RFC and Coupling.4 holds because
merging classes does not change RFCs value since RFC
does not distinguish between inside and outside method
calls. Similarly. when there are no calls between the classes'
methods, Coupling.5 holds. This result is to be expected
since RFC is the result of the addition of two terms: the
number of methods in the class, a size measure, and the
number of methods called, a coupling measure.

3.6 Concept Properties within the Context of Meas-
urement Theory

The properties we defined in the previous subsections must
be discussed in the context of measurement theory. For the
reader's convenience, we now report (in italic) the basic -

definitions and notation of measurement theory, as defined
in [11, pp. 40-511, based on [24].

A relational system A [24] is an ordered tuple (A, RI, ..-, Rn,
01, a-, om) where A is a nonempfy set ofobjects, the Ri, i = I, . . -,
n are ki-ary relations on A and the oj, j = 1, ---, m are closed bi-
n a y operations. For measurement we consider two relational
systems: the emplemplrical and formal relational systems.

Empirical Relational System:

A =(A,RI,-.-,Rn,ol,-.-om).
A is a nonempfy set of empirical objects that are to be

measured (in our case p g r a m texts,flougraphs, etc.).
Ri are k i -ay empirical relafions on A with i = I, - -a , n.

For example, the empirical relation "equal or more
complex."

oj are binay operations on the empirical objects A that are
to be measured (for example a concatenation o f control
jlowgraphs) mwith j = I , -. -, m.

The empirical relational system describes the part of reality
on which measurement is carried out (via the set of objects
A) and our empirical knowledge on the objects' attributes
we want to measure (via the collection of empirical rela-
tions Ri's). Depending on the attributes we want to meas-
ure, different relations are used. For instance, if we are in-
terested in program length, we may want to use the relation
"longer than" (e.g., "program PI is longer than pmgram
P2"); if we are interested in program complexity, we may
want to use the relation "more complex than" (e.g.,
"program P3 is more complex than program P4"). Binary
operations may be seen as a special case of ternary relation
between objects. For instance, suppose that 01 is the con-
catenation operation between two programs. We may see it
as a relation Concat(Program1, Program2, Program3),
where Program3 is obtained as the concatenation of Pro-
gram1 and Program2, i.e., Program3 = Program1 01 Pro-
g rad . It is important to notice that an empirical relational
system does not contain any reference to measures or num-
bers. Only "qualitative" statements are asserted, based on
our understanding of the attribute. These statements are
then translated into relations that belong to a formal rela-
tional system, as explained below.

Formal Relational System:
B =(B,SI , - - - ,Sn ,*I , - - ; .m) .
B is a nonempiy set o f formal objects, for example num-

bers or vectors.
Si are ki-ay reltztions on B such as "greater than" or

"equal or greater. "
j are closed binmy operations B such as the addition or

multiplication.

The formal relational system describes (via the set B) the
domains of the measures for the studied objects' attributes.
For instance, these may be integer numbers, real numbers,
vectors of integer, and/or real numbers, etc. A formal rela-
tional system also describes (via the collection of relations
Sis) the relations of interest between the measures. The link
between the empirical relational system and the formal re-
lational system is provided by measures, as follows.

DEFINITION 4.1: Measure y. A measure p is a mapping p : A +
B which @Ids for every empirical object a E A a formal object
(measurement value) p(a) E B.

Every object a of A is mapped into a value of B, i.e., it is
measured according to measure p(a). Every empirical rela-
tion Ri is mapped into a formal relation Si. For instance, the
relation "more complex than" between two programs is
mapped into the relation ">" between the complexity
measures of two programs. The formal relations must pre-
serve the meaning of the empirical statements. For instance,
suppose that R1 is the empirical relation "more complex
than," S1 is the formal relation 5," and p is a complexity
measure. Then, we must have that program PI E more
complex than program P2 if and only if p(P1) > p(P2).

mthin the context defined above, concept properties
may be seen as properties characterizing, for each meas-
umnent concept (i.e., family of measures), formal relational
systems. Th& properties-are preserved from the corre-
sponding empirical relational systems when formal rela-
tional systems are derived. However, our set of properties
for a concept does not fully characterize a formal relational
system since, for a particular measurement application,
many properties will be specific to the working environ-
ment and experience of the modeler (captured in the em-
pirical relational system).

For example, if we take Property Sie.3 (Module ad-
ditivity),

we can see that this property is expressed in terms of a
measure Size and arithmetic operators such as "+". Clearly,
our properties are formal relational system properties.
However, these properties are derived from a correspond-
ing empirical relational system. For instance, the above
property can be derived from the following pmperty of the
empirical relational system

where "CB" could be a concatenation operation between two
modules and 'I=*' an equivalence relation (i.e., "same size
as") between two objects of the empirical relational system.
In this context, any valid formal relational system is sup-
posed to preserve properties such as the one above.

The concept properties defined above may be seen as
properties to consider (i.e., consciously accept or reject) and
therefore as guidelines when building empirical and formal
relational systems and deriving measures of product inter-
nal. attributes. The properties above were defined for the
formal relational systems for two reasons:

We characterize families of measures (i-e.,
"measurement concepts") and therefore we want
those properties to be expressed in terms of those
measures.
Defining both the empirical.and formal relational sys-
tems' properties would be redundant for the purpose
of this paper.

To conclude and as discussed above, these properties are
intuitive and convenient and provide a self-consistent for-
mal framework to build measurement models.

3.7 Comparison of Concept Properties
We want to summarize the important differences and simi-
larities between the system concepts introduced in this pa-
per. Table 1 uses only criteria that can be compared across
the concepts of size, length, complexity, cohesion, and
coupling. First, it is important to recall that coupling and
cohesion are only defined in the context of modular sys-
tems, whereas size, length and complexity are defined for
all systems.

Second, the concepts appear to have the null value
(second column) and monotonicity (third column) prop-
erties based on different sets. The behavior of a measure
with respect to variations in such sets characterizes the
nature of the measure itself, i.e., the concept(s) it captures.
As RFC, defined in [8], shows (see Sections 3.1 and 3.5),
the same measure may satisfy the sets of properties asso-
ciated with different concepts. As a matter of fact, similar
sets of properties associated with different concepts are
not conkadictory.

Third, when systems are made of disjoint modules,
size, complexity and coupling are additive (properties
Size.3, Complexity.5, and Coupling.5). Cohesion and
length are not additive.

TABLE 1
COMPARISON OF CONCEPT PROPERTIES

This summary shows that these comep& are really dif-
ferent with respect to basic properties. Therefore, it appears
that desirable properties are likely to vary from one meas-
urement concept to another.

We mainly compare our approach with the other a p
proaches for defining sets of properties for software com-
plexity measures, because they have been studied more
extensively and thoroughly than other kinds of measures.
In addition, we compare our approach with the axioms in-
troduced by Fenton and Melton [25] for software coupling
measures. As already mentioned, our approach generalizes
previous work on properties for defining complexity meas-
ures. Unlike previous approaches, it is not constrained to
deal with software code only, but, because of its generality,
can be applied to other artifacts produced during the soft-
ware lifecycle, namely, software specifications and designs.
Moreover, it is not defined based on some control flow o p
erations, like sequencing or nesting, but on a general "pre-
sentation, i-e., a graph.

-.

Weyuker's work [q is one of the first attempts to formalize
the fuzzy concept of program complexity. This work has
been discussed by many authors [8], [14], [5], [6], [Ill and is
still a point of reference and comparison for anyone investi-
gating the topic of software complexity.

To make Weyuker's properties comparable with ours, we
will assume that a program according to Weyuker is a sys-
tem according to our definition; a program body is a mod-
ule of a system. A whole program is built by combining
program bodies, by means of sequential, conditional, and
iterative constructs (plus the program and output state-
ments, which can be seen as "special" program bodies),
and, correspondingly, a system can be built from its con-
stituent modules. Since some of Weyuker's properties are
based on the sequencing between pairs of program bodies P
and Q, we provide more details about the representation of
sequencing in our framework. .Sequencing of program
bodies P and Q is obtained via the composition operation
(P; Q). Correspondingly, if S, = <E, and SQ = <E, %>
are the modules representing the two program bodies
P and Q ~ , then, we will denote the representation of
P; Q as Spa = <E, R,>. In what follows, we will assume

that Epa = E, u EQ and R, E R, u & i.e., the representa-
tion of the composition of two program bodies contains
the elements of the representation of each program body,
and at least contains-all the relationships belonging to
each of the representations of program bodies. In other
words, S, and SQ are modules of s,.
W1: A complexity measure must not be "too coarse" (I) .

W2: A complexity measure must not be "too coarse" (2). Given
the nonnegative number c, there are only finitely many sys-
tems of complexity c.

W3: A complexity measure must not be "too fine." There are
distinct systems S, and SQ such that Complexity(S,) =
Complexity(S,).

W& Fum%m&y. T h a is no one-to-one correspondence be-

tween functionality and complexity 3 !?$, S, P, and Q func-
tionally equivalent and Complexity(S,) # Complexity(S0).

W5: Monotonicity with respect to composition.

b' S 9 Q
Complexity(S,) S Complexity(S,,) and Complexity(SQ) I
Complexity(S&

W6: The contribution of a module in terms of the overall system
complexity may @end on the rest ofthe system.

(a) 3 Sp, S, S, Complexity(Sp) = Complexity(SQ) and
C~mplexity(S~;~) f; Complexity(S,,)

@) 3 S,, S, S, Complexity(S,) = Complexity(SQ) and
C~mplexity(&~) # Complexity(!&)

4. We will list properties/axioms by the initial of the proponents. So,
Weyuker's properties will be referred to as W1, W2, ..., W9, Tm and
Zelkowitz's as TZl to TZ5, and Lakslunanian et al.'s as Ll to L9.

5. In what follows, we will use the notation S, = <E, % to denote
the qnxntation of program body P.

W7: A complexity measure is semifive to the permutafion of tical interest (see 1121). At any rate, this is not a sensible rea-
stafements. son to reject a set of properties associated with a concept.

3 Sp, S, Q is formed by permuting the order of statements of
P and Complexity(Sp) # Complexity(SQ)

WS: Renaming. If P is a renaming of Q, then Complexity(Sp)
= Complexity(SQ).

W9: Module monotonicify. 3 S,, SQ Complexity(Sp) + Com-

plexity(SJ S Cornplexity(S,,)

4.4.1 Analysis of Weyuker's properties

W1, W2, W3, W4, W8: These are not implied by our prop
erties, but they do not contradict any of them, so they can
be added to our set, if desired. However, we think that
these properties are general to all syntactically-based prod-
uct measures and do not appear useful in our framework to
differentiate concepts.

W5: This is implied by our properties, as shown by inequal-
ity (Complexity-VI), since S, and SQ are modules of S,,.

W6, W7: These properties are not implied by the above
properties Complexity.1-Complexity.5. However, they show
a very important and delicate point in the context of com-
plexity measure definition.

By assuming properties W6(a) and W6@) to be false, one
forces all complexity measures to be strongly related to con-
trol flow, since this would exclude that the composition of
two program bodies may yield additional relationships be-
tween elements (e.g., data declarations) of the two program
bodies. If properties W6(a) and W6@) are assumed true,
one forces all complexity measures to be sensitive to at least
one other kind of additional relationship.

Similarlp W7 states that the order of the statements,
and therefore the control flow, should have an impact on
all complexity measures. By assuming property W7 to be
false, one forces all complexity measures to be insensitive
to the ordering of statements: If property W7 is assumed
true, one forces all complexity measures to be somehow
sensitive to the ordering of statements, which may not
always be useful.

WS: We analyze this property again, to better explain the
relationship between complexity and understandability.
According to this properiy, renaming does not affect com-
plexity. However, it is a fact that renaming program vari-
ables by absurd or misleading names greatly impairs un-
derstandability. This shows that other factors, besides
complexity, affect understandability and the other external
qualities of software that are affected by complexity.

As for properties W1-W8, our approach is somewhat
more liberal than Weyuker's. For instance, the constant null
function is an acceptable complexity measure according to
our properties, while it is not acceptable according to
Weyuker's properties. It is evident that the usefulness of
such a complexity measure is questionable. We think that
properties should be used to check whether a measure ac-
tually addresses a given concept (e.g., complexity). How-
ever, given any set of properties, it is almost always possi-
ble to build a measure that satisfies them, but is of no prac-

Rather, measures that satisfy a set of properties must be
later assessed with regard to their usefulness.

W9: This is probably the most controversial property. The
above properties Complexity.1-Complexity.5 imply it. Ac-
tually, our properties imply the stronger form of W9, the
unnumbered property following W9 in Weyuker's paper [7]
(see akm 1261)

V Sp, SQ Complexity(Sp) + Complexity(SQ) I Complexity(Sp,)

Weyuker rejects it on the basis that it might lead to con-
tradictions: she argues that the effort needed to imple-
ment or understand the composition of a program body P
with itself, is probably not twice as much as the effort
needed for P alone. Our point is that complexity is not the
only factor to be taken into account when evaluating the
effort needed to implement or understand a program, nor
is it proven that this effort is in any way "proportional" to
product complexity.

4.2 Fenton
In addition to Weyuker's work, Fenton [I] shows that,
based on measurement-theoretic mathematical grounds,
there is no chance that a general measure for software
complexity will ever be found, nor even for control flow
complexity, i.e., a more specific kind of complexity. We to-
tally agree with that. By no means do we aim at defining a
single complexity measure, which captures all kinds of
complexity in a software artifact. Instead, our set of proper-
ties define constraints for any specific complexity measure,
whatever facet of complexity it addresses.

Fenton and Melton [25] introduced two axioms that they
believe should hold for coupling measures. Both axioms
assume that coupling is a measure of connectivity of a sys-
tem represented by its module design chart (or structure
chart). The first axiom is similar to our monotonicity prop
erty (Coupling.3). It states that if the only difference be-
tween two module design charts D and D' is an extra inter-
connection in D,' then the coupling of D' is higher than the
coupling of D. The second axiom basically states that sys-
tem coupling should be independent from the number of
modules in the system. If a module is added and shows the
same level of painvise coupling as the already existing
modules, then the coupling of the system remains constant.
According to our properties, coupling is seen as a measure
which is to a certain extent dependent on the number of
modules in the system and we therefore do not have any
equivalent axiom. This shows that the sets of properties that
can be defined above are, to some extent, subjective.

4.3 Zuse
In his article in the Encyclopaedia of Software Engi-ng
[27, pp. 131-1651, Zuse applies a measurement-theoretic
approach to complexity measures. The focus is on the con-
ditions that should be satisfied by empirical relational sys-
tems in order to provide them with additive ratio scale
measures. This class of measures is a subset of ratio scale
measures, characterized by the additivity property

(Theorems 2 and 3 of 127'1). Given the set P of flowgraphs
and a binary operation * between flowgraphs (e.g., con-
catenation), additive ratio scale complexity measures are
such that, for each pair of flowgraphs PI, P2,

This property shows that a different concept of complexity
is defined by Zuse, with respect to that defined by
Weyuker's (W9) and our properties (Complexity.4). It is
our belief that, by requiring that complexity measures be
additive, important aspects of complexity may not be
fully captured, and complexity measures actually become
quite similar to size measures. Considering complexity as
additive means that, when two modules are put together
to form a new system, no additional dependencies be-
tween the elements of the modules should be taken into
account in the computation of the system complexity. We
believe this is a very questionable assumption for product
complexity [28].

4.4 Tian and Zelkowitz
lian and Zelkowitz 161 have provided axioms (necessary
properties) for comple&y measures and a classificatiin
scheme based on additional program characteristics that
identify important measure categories. In the approach,
programs are represented by means of their abstract syntax
trees (e.g., parse trees). To translate this representation into
our framework, we will assume that the whole program,
represented by the entire tree, is a system, and that any part
of a program represented by a subtree is a module.

TZ1: Systems with identical functionality are comparable,
i.e., there is an order relation between them with respect to
complexity.

TZ2: A system is comparable with its module(s).

TZ3: Given a system S, and any module Sp whose root, in
the abstract tree representation, is "far enough" from the
root of S, then Sp is not more complex than S,. In other
words, "small" modules of a system are no more complex
than the system.

TZ4: If an intuitive complexity order relation exists between
two systems, it must be preserved by the complexity meas-
ure (it is a weakened form of the representation condition of
Measurement Theory [14]).

TZ5: Measures must not be too coarse and must show suf-
fiaent variability.

TZ1, TZ2, TZ5 do not differentiate software characteristics
(concepts) and can be used for all syntactic product meas-
ures. TZ3 can be derived from our set of properties. TZ4
captures the basic purpose behind the definition of all
measures: preserving an intuitive order on a set of software
artifacts 117.

The additional set of properties which is presented in
[6] is used to define a measure classification system. It
determines whether or not a measure is based exclusively
on the abstract syntax tree of the program, whether it is
sensitive to renaming, whether it is sensitive to the con-
text of definition or use of the measured program,
whether it is determined entirely by the performed pro-

gram operations regardless of their order and organiza-
tion, and whether concatenation of programs always con-
tribute positively toward the composite program com-
plexity (i.e., system monotonicity).

Some of these properties are related to the properties
defined in this paper and we believe they are characteris-
tic properties if distinct system c~nce-~ts (e-g., system
monotoniaty). Others do not differentiate the various
concepts associated with syntactically-based measures
(e.g., renaming).

4.5 Lakshmanian et al.
Lakshmanian et al. [5] have attempted to define necessary
properties for software complexity measures based on
control flow graphs. In order to make these properties
comparable to ours, we will use a notation similar to the
one -used to introduce Weyuker's properties. A program
accordiig to Lakshmanian et al. (represented by a control
flow graph) is a system according to our definition, and a
program segment is a module. In addition to sequencing,
these properties use the nesting program construct de-
noted as 6. "A program segment Z is said to be obtained
by nesting [program segment] Y at the control location i in
[program segment] X (denoted by Y@Xi) if the program
segment X has at least one conditional branch, and if Y is
embedded at location i in X in such a way that there exists
at least one control flow path in the combined code Z that
completely skips Y." "The notation Y@X refers to any
nesting of Y in X if the specific location in X at which Y is
embedded is immaterial."

In what follows, X, Y, Z will denote programs or pro-
gram segments; % !&, Sz will denote the corresponding sy*
tems or modules accordiig to our definition. Lakshmanian
et al. [5] introduce nine properties. However, only five out
of them can be considered basic, since the remaining four
can be derived from them. Therefore, below we will only
discuss the compatibility of the basic properties with re-
spect to our

L1: Nonnegativity.

Ll(a): Null value.
If the program only contains sequential code (referred to as
a basic block B) then

Ll(b): Positivity.
If the program X is not a basic block, then

Property L1 does not contradict any of our properties (in
particular, Complexity 1 and Complexity 2).

W: Additivity under sequencing.

Complexity($&y) = Complexity(SY) + Complexity(SJ

This property does not contradict properties Complexity.4
and Complexity.5, where the equality sign is allowed. By
requiring that complexity be additive under sequencing
Lakshmanian et al. take a viewpoint which is very similar
to that of Zuse.

L6: Functional independence under nesting.
Adding a basic block B to a system X through nesting does
not increase its complexity

L7: Monotonicity under nesting.

Cornplexity(S,,.) c Complexity(S, 1
if ~om~lexity(s,) < ~orn~ lex i ty (g U

These properties are compatible with our properties.

L9: Sensitivity to nesting.

This property does not contradict our properties.
In conclusion, none of the above properties contra-

dicts our properties. However, the scope of these prop-
erties is limited to the sequencing and nesting of control
flow graphs, and therefore to the study of control flow
complexity.

As for the other properties, we now show how they can
be derived from L1, L5, L6, L7, and L9.

LZ: Functional independence under sequencing.

Complexity(S,,) = Complexity(S,)

This property follows from W (first equality below) and L1
(second equality below):

W: Symmetry under sequencing.

Complexity(S,;,) = Complexity(S,J

This property follows from L5 moth equalities)

L4: Monotonicity under sequencing.

Complexity(S,,) < Complexity(S,)
if Complexity(S,) < Complexity(SZ)

This property follows from L5:
if Complexity(S,) < Complexity(S&, then
Cornplexity(S,,) = Complexity(SJ + Complexity(S,)

< Complexity(S,) + Complexity(S& = Complexity(S&

if Complexity(S,) = Complexity(SJ, then
Complexity(S,,) = Complexity(S,) + Complexity(S,)

= Complexity(S,) + Complexity(Sz) = Complexity(S.J

LS: Monotonicity under nesting.

Complexity(SJ < Complexity(&)

This property follows from L1 (first inequality below, since
Complexity(SJ > 0-X cannot be a basic block), L5 (equality
below) and L9 (second inequality below)

Complexity(S,) < Complexity(S,) + Complexity(S,)
= Complexity(S,,) < Complexity(SYOX)

In conclusion, certain properties covered by some of the

works mentioned above (Weyuker, and Xan and Zelkow-
itz) are general and characterize all syntactically based
measures. As such, they are not covered by our frame-
work. On the other hand, Lakshmanian et al. provide a
more specialized framework focusing on control flow
complexity and some of their properties are not covered,
because specific of their context of study, in our frame-
work. Other properties are weaker (e.g., W9) than some of
the properties we propose and this will ultimately be a
matter of choice and a consensus in the software engineer-
ing community will have to be reached.

5 CONCLUSION AND DIRECTIONS FOR FUTURE WORK

In order to provide some guidelines for the analyst in
charge of defining product measures, we propose a frame-
work for software measurement where various software
measurement concepts are distinguished and their sp~i f ic
properties defined in a generic manner. Such a framework
is, by its very nature, somewhat subjective and there are
possible alternatives to it. However, it is a practical frame-
work since the properties we capture are, we believe, inter-
esting and all the concepts can be distinguished by different
sets of properties.

For example, these properties can be used to guide the
search for new product measures as shown in [3]. Moreover,
we hope this framework will help avoid future confusion,
often encountered in the literature, about what properties
product measures should or should not have. Studying
measure properties is important in order to provide disci-
pline and rigor to the search for new product measures.
However, the relevancy of a property to a given measure
must be assessed in the context of a well defined measure-
ment concept, e.g., one should not attempt to venfy if a
length measure is additive.
This framework does not prevent useless measures from

being defined. The usefuln& of a measure can only be as-
sessed in a given context (i.e., with respect to a given ex-
perimental goal and environment) and after a thorough
experimental validation [3]. This framework is not a global
answer to the problems of software engineering measure-
ment; it is just one of the necessary components of a meas-
ure definition process as presented in [3].

Future research will include the definition of more spe-
cific measurement frameworks for particular product ab-
stractions, e.g., control flow graphs, data dependency
graphs. Also, new concepts could be defined, such as in-
formation content (in the information theory sense).

We would like to thank. Khaled El Emam, Wolfgang
Heuser, Yong-Mi Kim, Bryan Hsueh, Oliver Laitenberger,
Carolyn Seaman, and Marvin Zelkowih for reviewing the
drafts of this paper. We would also like to thank the
anonymous referees and Ross Jeffery for their thorough
review of the paper.

This work was supported in part by NASA grant NSG-
5123, LJMIACS, NSF grant 01-5-24845, NSERC Canada,
MURST, and CNR.

N. Fenton, "Software measurement: A necessary saentific basis,"
IEEE Trrms. Software Eng., vol. 20, no. 3, pp. 199-206, Mar. 1994.
D.L. Pamas, "On the criteria to be used in decomposing systems
into modules," Comm. ACM, vol. 15, pp. 1,053-1,058, May 1972.
L. Briand, S. Morasca, and V.R. Basili, "A goaldriven definition
process for product metrics based on properties," Univ. of Mary-
land, Dept. of Computer Science, Tech. Report CSTR-3346,
UMIACSTR-94106,1994. Submitted for publication.
R Courtney and D. Gustafson, "Shotgun correlations in software
measures," Sofhvme Eng. I., vol. 8, no. 1, pp. 5-13, Jan. 1993.
K.B. Lakshmanian, S. Jayaprakash, and P.K. S i a , "Properties of
control-flow complexity measures," IEEE Tmns. Sofhunre Eng.,
vol. 17, no. 12, pp. 1,289-1,295, Dec. 1991.
J. T i n and M.V. Zelkowitz, "A formal program complexity model
and its application," J. Systems S o m e , vol. 17, pp. 253-266,1992.
E.J. Weyuker, "Evaluating software complexity measures," IEEE
Trans. Software Eng., vol. 14, no. 9, pp. 1,357-1365, Sept. 1988.
S.R. Chidamber and C. Kemerer, "A metrics suite for object ori-
ented design," IEEE Trans. Soplmre Eng., vol. 20, no. 6,
pp. 476-493, June 1994.
W. Harrison, "An entropy-based measure of software complex-
ity," lEEE Trans. Softwnre Eng., vol. 18, no. 11, pp. 1,025-1,029,
NOV. 1992.

[lo] M. Shepperd, "Algebraic models and metric validation," F o r m 1
Aspects of Measurement, T. Denvir, R. Herman, and R.W. Whitty,
eds., pp. 157-173, Lecture Notes in Computer Science, Springer-
Verlagi992.

I111 H. Zuse, Softwnre Complen'fy: Mensures nnd Methods. Amsterdam: . . . -
de ~m~ter,-1991.

[I21 1.C. Cherniavskv and C.H. Smith, "On Wevuker's axioms for . * .

software compl&ty measures," IEEE Tmns. S~plmre Eng., vol. 17,
no. 6, pp. 636638, June 1991.

[13] B. Henderson-Sellers and J. Edwards, Book Two of the 00
Knowledge: The Working Object. Prentice Hall Obiect-Oriented - ,
Series, 1%4.

[14] N. Fenton, Software Mehics, A Rigorous Approach. Chapman and
Hall, 1991.

[15] M.H. Halstead, Elements of S o j h m Science. Ekevier North-
Holland, 1977.

[16] B. Curtis, S. Sheppard, F! Milliman, M. Borst, and T. Love,
"Measuring the psychological complexity of software mainte-
nance task with the Halstead and McCabe mehics," IEEE T r m .
Sofhwe Eng., vol. 5, no. 2, pp. 96-104, M ~ L 1979.

[17] k c . Melton, D.A. Gustafson, J.M. Bieman, and A.A. Baker,
"Mathematical perspective of software measures research," IEE
Softwnre Eng. I., vol. 5, no. 5, pp. 246-254,1990.

[IS] E.I. Oviedo, "Contrd flow, data flow and program complexity,"
Proc. IEEE COMPSAC, pp. 146-152, Nov. 1980.

[I91 T.J. McCabe, "A complexity measure," IEEE Trans. Soplmre Eng.,
vol. 2, no. 5, pp. 308320, Apr. 1976.

(201 S. Henry and D. Kafura, "Software structure metrics based on
information flow," IEEE Tins. Sofhome Eng., vol. 7, no. 5,
pp. 510-518, Sept. 1981.

[21] D. Card and R. Glass, "Measuring m j h m design quality.'' Engle
wood Cliffs, N.J.: Prentice Hall, 1990.

[22] L. Briand, S. Morasca, and V. Basili, "Defining and validating
high-lwel design metrics," CSTR 3301, Univ. of Maryland, Col-
lege Park, Md. Submitted for publication.

[23] J. Bieman and L.M. Ott, "Measuring functional cohesion," IEEE
Tnans. S o j h m Eng., vol. 20, no. 8, pp. 6446!57, Aug. 1994.

[24] E Rolmts, Mensurement Theory zuith Applications to Decisiomnaking,
Utility, rmd the Social Sciences. Addison-Wesley, 1979.

[25] N. Fenton and A. Melton, "Deriving structurally based software
m e a m , " J. Systems Softrunre, vol. 12, pp. 177-187,1990.

[26] RE. Prather, "An axiomatic theory of software complexity meas-
ure," The Computer J., vo127, no. 4, pp. 340446,1984.

[27] Encydopnedin of Soplmre Eng. John Wdey & Sons, 1994.
[28] L. Briand, K. El Emam, and S. Morasca, "On the application of

measurement theory in software engineering" to appear in
Empirical Soplmre Engineering, An Int'l J.

Lionel C. Briand received the BS degree in
geophysics, with honors, and the MS degree in
computer science from the University of Paris VI,
France, in 1985 and 1987, respectively. He
received the PhD degree, with high honors, in
computer science from the University of Paris XI,
France, in April 1994.

From 1989 to 1994, Dr. Btiand served as a
research scientist at the NASA Software
Engineering Lab-, a aearch cmsortium
formed by the NASA Gcddard Space Flight Center,
the University of v, and the Computer

Science Corpation. Since 1994, he has been the lead researcher of the
software engineering group at the Computer Research Institute of Montreal
(Centre de Recherche 1-ue de Mont&i). lib cument research
interests include measurement and modeling of sofhwe development
products and pmesses, soflywe. quafii y, domain spedfic
a r c h i i , reuse, and reergneering. Dr. Bnand IS currwltly invdved in
several measurement qualily assutance: pocess improvement
progmms in industrial and govwnment

Sandro Morasca received his Dr. Eng. degree
(Italian Laurea) cum laude in 1985 and his PhD
in computer science 1991, both from the
Poliiecnico di Miiano. He is cunently an assistant
professor of computer science at the Wiecnico
di Milano. Fmm 1991 to 1993, Dr. Morasca was a
faculty research associate at the University of
Maryland Institute for Advanced Computer
Studies (UMIACS). His research interests
include the specification and verification of
concurrent and real-time systems, formal
methods, and empirical studies in software

engineering. Dr. Momsca is a member of the IEEE Computer Society.

, - -

A Validation of Object-Oriented Design 3-gc.t?t4+
.* +.a

Metrics as Quality Indicators
Victor R. Basili, Fellow, IEEE, Lionel C. Briand,

and Waicelio L. Meio, Member, IEEE Computer Society

Abstract-This paper presents the results of a study in which we empirically investigated the suite of object-oriented (00) design
metrics introduced in [13]. More specifically, our goal is to assess these metrics as predictors of fault-crone classes and, therefore.
determine whether they can be used as early quki indicators. This study is complementary to the work described in [30] where the
same suite of metrics had been used to assess frequencies of maintenance changes to classes. To perform our validation
accurately, we collected data on the development of eight medium-sized information management systems based on identical
requirements. All eight projects were developed using a sequential life cycle model, a well-known 00 analysisldesign method and
the GI+ programming language. Based on empirical and quantitative analysis, the advantages and drawbacks of these 00 metriff
are discussed. Several of Chidamber and Kemerefs 00 metrics appear to be useful to predict dass fault-proneness during the
earty phases of the lie-cycle. Also, on our data set, they are better predictors than 'traditional" code metrics, which can only be
collected at a later phase of the software development processes.

Index Tems-Object-oriented design metrics, error prediction model, object-oriented software development. C t c programming
language.

1 INTRODUCTION
1.1 Motivation

T HE development of a large software system is a time- Many product metrics have been proposed [16], [26],
and resource-consuming activity. Even with the in- used, and, sometimes, empirically validated [3l, [4], [19],

masing automation of software development activities, [30], e.g, number of lines of code, McCabe complexity met-
resources are still scarce. Therefore, we need to be able to ric, etc. In fact, many companies have built their own cost,
provide accurate information and guidelines to managers quality, and resource prediction models based on product
to help them make decisions, plan and schedule activities, metrics. TRW [q, the Software Engineering Laboratory
and allocate resources for the different software activities (SEL) [31], and Hewlett Packard [20] are examples of soft-
that take place during software development. Software ware organizations that have been using product metrics to
metrics are, thus, necessary to identify where the resources build their cost, resource, defect, and productivity models.
are needed; they are a crucial source of information for de-
cision-making [22]. 1.2 Issues

Testing of large systems is an example of a resource- and In the last decade, many companies have started to in-
time-consuming activity. Applying equal testing and verifi- duce object-oriented (00) technology into their software
cation effort to all parts of a software system has become development envkonments. 00 analysisidesign methodst
cost-prohibitive. Therefore, one needs to be able to identify 00 languages, and 00 development e~*m~ents are
fault-prone modules so that testing/verification effort can -ntly popular workhide in both small and large soft-
be concentrated on these modules [21]. The availability of ware organizations. The insertion of 00 kchnology in the
adequate product design metrics for characterizing error- software industry, however, has created new men^ for
prone modules is, thus, vital. companies which use product metrics as a tool for moni-

toring, controlling, and improving the way they develop
and maintain software. Therefore, metrics which reflect the

V.R. Bffiili is with the Uniumity of Maryland, lnstitutefm Advanced specificities of the 00 paradigm must be defined and vali-
Computer Studies and Computer Science Dept., A.V. Williams Bldg., dated in order to be used in industry. Some studies have
College Park, MD 20742. E-ma& basili@cs.umd.edu. concluded that "traditional" product metrics are not 6-
LC. Bhnd is un'd Fraunhofi-Institutef01 &enmental Sofrcome Engi- cient for charadeking, assessing, and predicting the qua&
-g, Tedtnologiepmk 11, Sauerwiam 6, D-67661, Kaisershutem, ity Of 00 systems. F~~ in [121 it was re- Comnny. E-mail: blid@iese.prg.de.
W.L Melo is w t h the Centre de Recherche Infirmabque de Montrhl, 1801 ~ * e d that McCabe c~clomatic complexity to be
McGill College Ave., Montrehl, Qdec, H3A 2N4, Canada. an inadequate metric for use in software development
E-ma2 wmel&crim.cn. based on 00 technology.

Mrmusmpt recemed Sept. 7,1995; nccepted Aug. 30,1996.
Remmmmdedfm acceptance by H. Mulb .

To address this issue, 00 metrics have recently been
For infirmation on obtaining reprints ofthis arhcle, pleffie send e-mail to: propoSed in the literature i6]r [13]' with a few
hrmsse@computtrrorg, and rrferenu IEEECS Log Number 595819. exceptions [lo], [30], most of them have not undergone an

1996 IEEE. Reprinted, with permission, from IEEE Transactions on
Software Engineering, vol. 22, no. 10, pp. 751-761; October 1996

empirical validation (see [9] and [35] for further discussion
of the empirical validation of measures). Empirical valida-
tion aims at demonstrating the usefulness of a measure in
practice and is, therefore, a crucial activity to establish the
overall validity of a measure. A measure may be correct
from a measurement theory perspective (i.e., be consistent
with the agreed upon empirical relational system) but be of
no practical relevance to the problem at hand. On the other
hand, a measure may not be entirely satisfactory from a
theoretical perspective but can be a good enough approxi-
mation and work fine in practice.

In this paper, we present the results of a study in which
we performed an empirical validation of the 00 metric
suite defined in [13] with regard to their ability to identify
fault-prone classes. However, the theoretical validation of
these metrics is not addressed here and, as a complement to
this paper, the reader may refer to a discussion about the
mathematical properties of Chidamber and Kemerer's met-
r i c ~ in [Ill, [24].

Data were collected during the development of eight
medium-sized information management systems based on
identical requirements. All eight projects were developed
using a sequential life cycle model, a well-known object-
Oriented analysis/design method [33], and the C++ pro-
gramming language [36]. Despite the fact that these projects
were run in a university setting, we set up a framework that
was representative of currently used technology in indus-
trial settings.

1.3 Outline
This paper is organized as follows. Section 2 presents the
suite of 00 metrics proposed by Chidamber and Kemerer
[131, offers the experimental hypotheses to be tested, and
then shows a case study from which process and product
data were collected allowing a quantitative validation of
this suite of metrics. Section 3 presents the actual data col-
lected together with the statistical analysis of the data. Sec-
tion 4 compares our study with other works on the subject.
Section 5 concludes the paper by presenting lessons learned
and future work.

2 DESIGN OF THE EMPIRICAL STUDY
2.1 Dependent and Independent Variables
The goal of this study was to analyze empirically the 00
design metrics proposed in 1131 for the purpose of evaluat-
ing whether or not these metrics are useful for predicting
the probability of detecting faulty classes. Assuming testing
was performed properly and thoroughly, the probability of
fault detection in a class during acceptance testing should
be a good indicator of its probability of containing a fa$t
and, therefore, a relevant measure of fault-proneness. The
construct validity' of our dependent variable can, thus, be
demonstrated.

Other measures such as class fault density could have
been used. However, the variability in terms of number of

1. Construct validity is d i i further in 127. It is defined as the extent
to which the theoretical construct of interest (e.g., our dependent variable:
fault-proneness) is measured successfully, i.e., do we really me- what
we purport to measure?

faults in our data set is small: Faults were detected only in
36 percent of the classes and 84 percent of the classes con-
tain less than three faults. Therefore, using a dependent
variable with low variability would have affected our abil-
ity to idenbfy sipficant relationships between 00 design
metrics and this dependent variable.

In addition, it was difficult to decide what was the best
way to measure the size of classes given the large number
of alternatives (e.g., LOC, SLOC, number of methods, num-
ber of attributes, etc). The probability of fault detection
was, therefore, the most straightforward and practical
measure of fault-proneness and, therefore, a suitable de-
pendent variable for our study. Based on [13], 1141, and
[15], it is clear that the definitions of these metrics are not
language independent. As a consequence, we had to
slightly adjust some of Chidamber and Kemereis metrics
in order to reflect the specihaties of C*. These metrics are
as follows:

Weighted Methods per Class (WMC). WMC measures
the complexity of an individual class. Based on [13], if
we consider all methods of a class to be equally com-
plex, then WMC is simply the number of methods de-
fined in each class. In this study, we adopted this ap-
proach for the sake of simplicity and because the
choice of a complexity metric would be somewhat ar-
bitrary since it is not fully specified in the metric suite.
Thus, WMC is defined as being the number of all
member functions and operators defined in each
class. However, "friend" operators (C* specific con-
struct) are not counted. Member functions and op-
erators inherited from the ancestors of a class are also
not counted. This definition is identical to the one de-
scribed in [14].

In [15], Churcher and Shepperd have argued that
WMC can be measured in different ways depending
on how member functions and operations defined in
a Ctl- class are counted. We believe that the different
counting rules proposed in [I51 correspond to differ-
ent metrics, similar to the WMC metric, and which
must be empirically validated as well. A validation of
Churcher and Shepperd's WMC-like metrics is, how-
ever, beyond the scope of this paper.
Depth df 1nheritanL Tree of a&s @l'T)-DIT is de-
fined as the maximum depth of the inheritance graph
of each class. CU allows multiple inheritance and,
therefore, classes can be organized into a directed
acyclic graph instead of trees. DIT, in our case, meas-
ures the number of ancestors of a class.
Number Of Children of a Class (N0C)-This is the
number of direct descendants for each class.
Coupling Between Object classes (CB0)-A class is
coupled to another one if it uses its member functions
and/or instance variables. CBO provides the number
of classes to which a given class is coupled.
Response For a Class (RFQ-This is the number of
methods that can potentidy be executed in response to
a message received by an object of that class. In our
study, RFC is the number of Ctl- functions directly in-
voked by member functions or operators of a C* class.

Lack of Cohesion on Methods (LCOMbThis is the
number of pairs of member functions without shared
instance variables, minus the number of pairs of
member functions with shared instance variables.
However, the metric is set to zero whenever the above
subtraction is negative.

Readers acquainted with CU can see that some par-
ticularities of C++ are not taken into account by Chidamber
and Kemerer's metrics, e.g., C++ templates, friend classes,
etc. In fact, additional work is necessary in order to extend
the proposed 00 metric set with metrics specifically tai-
lored to CU.

2.2 Hypotheses
In order to validate the above metrics as quality indicators,
their expected relationship with fault-proneness (or rather
the measure we selected for this attribute: probability of fault
detection) must be validated. The experjm&tal hyp&eses to
be statistically tested are, for each metric, as follows:

H-WMC: A class with sigdcantly more member
functions than its peers is more complex and, by con-
sequence, tends to be more fault-prone.
H-Dm Well-designed 00 systems are those struc-
tured as forests of classes, rather than as one very
large inheritance lattice. In other words, a class lo-
cated deeper in a dass inheritance lattice is supposed
to be more fault-prone because the class inherits a
large number of definitions from its ancestors. In ad-
dition, deep hierarchies often imply problems of con-
ceptual integrity, i.e., it becomes unclear which dass
to specialize from in order to include a subclass in the
inheritance hierarchy [lq.
H-NOC Classes with large number of children
(i.e., subclasses) are difficult to modify and usually
require more testing because the class potentially af-
fects all of its children. Furthermore, a class with nu-
merous children may have to provide services in a
larger number of contexts and must be more flexible.
We expect this to introduce more complexity into the
class design and, therefore, we expect classes with
large number of children to be more fault-prone.
H-CBO: Highly coupled classes are more fault-prone
than weakly coupled classes because they depend
more heavily on methods and objects defined in other
classes.
H-RFC: Classes with larger response sets implement
more complex functionalities and are, therefore, more
fault-prone.
H-LCOM: Classes with low cohesion among its meth-
ods suggests an inappropriate design (i.e, the encap-
sulation of unrelated program objects and member
functions that should not be together) which is likely
to be more fault-prone.

2.3 Study Participants
In order to validate the hypotheses stated in the previous
section, we ran an empirical study over four months (from
September to December 1994). The study participants were
the students of an upper division undergraduate1 graduate

level course offered by the Department of Computer Sci-
ence at the University of Maryland. The objective of this
dass was to teach 00 software analysis and design. The
students were not required to have previous experience or
training in the application domain or 00 methods. All stu-
dents had some experience with C or C++ programming
and relational databases and, therefore, had the basic skills
necessary for such a study.

In order to control for d&rences in skills and experience
among students, the students were randomly grouped into
eight teams of three students. Furthermore, in order to ensure
the groups were comparable with respect to the ability of
their members, the following procedure (i.e., known as
"blocking" [27) was used to assign students to groups:

First, the level of experience of each student was
characterized at the beginning of the study. We used
questionnaires and performed interviews. We asked
the students information regarding their previous
working experience, their student status (part-time,
full-time student), their computer science degree (BS,
MSc, PhD), their previous experiences with analy-
sisldesign methods, and their skill regarding various
programming languages.
Second, each of the eight most experienced students
was randomly assigned to a &rent group
(i.e, team). Students considered most experienced
were computer science PhD candidates who had al-
ready implemented large (2 10 thousands source lines
of code, KSLOC) C or CU programs and those with
industrial experience greater than two years in C pro-
gramming. None of the students had sigxuficant expe-
rience in Object-Oriented software analysis and de-
sign methods. Similarly, each of the eight next most
experienced students were randomly assigned to dif-
ferent groups and this was repeated for the remaining
eight students.

2.4 The Development Process
Each team was asked to develop a medium-sized manage-
ment information system that supports the rental/retum
process of a hypothetical video rental business, and main-
tains customer 'and video databases. Such an application
domain had the advantage of being easily comprehensible
and, therefore, we could make sure that system require-
ments could be easily interpreted by students regardl&s of
their educational background.

The development process was performed according to a
sequential so&are -engineering life- j c le model derived
from the Waterfall model. This model includes the follow-
ing phases: analysis, design, implementation, testing, and
repair. At the end of each phase, a document was delivered:
Analysis document, design document, code, error report,
and finally, modified code, respectively. Requirement
speafications and design documents were checked to verify
that they matched the system requirements. Errors found in
these first two phases were reported to the students. This
maximized the chances that the implementation began with
a correct 00 analysis / design. Acceptance testing was per-
formed by an independent group (see Section 25). During

the repair phase, the students were asked to correct their
system based on the errors found by the independent test
group.

OMT, an 00 AnalysisIDesign method, was used during
the analysis and design phases [33]. The C u programming
language, the GNU software development environment,
and OSFIMOTIF were used during the implementation.
Sparc Sun stations were used as the implementation plat-
fonn. Therefore, the development environment and tech-
nology we used are representative of what is currently used
in inbustry and academia. Our results are, thus, more likely
to be generalizable to other development environments
(external validity).

The following libraries were provided to the students:

1) MotifApp. This public domain library provides a set of
C++ classes on top of OSFIMOTIF for manipulation
of windows, dialogues, menus, etc. 1371. The
MotifApp library provides a way to use the
OSF/Motif widgets in an 00 programming/design
style.

2) GNU libray. This public domain library is provided
in the GNU C++ programming environment. It
contains functions for manipulation of string, files,
lists, etc.

3) CH- ifatabase libmy. This library provides a CU im-
plementation of multi-indexed B-Trees.

We also provided a s p d c domain application liirary
in order to make our study more representative of indus-
trial conditions. This library implemented the graphical
user interface for insertion/&moval of c~storner~and was
implemented in such a way that the main resources of the
OSFIMotif widgets and MotifApp library were used.
Therefore, this library contained a small part of the im-
plementation required for the development of the rental
system.

No special training was provided for the students to
teach them how to use these libraries. However, a tutorial
describing how to implement OSF/Motif applications was
given to the students. In addition, a C++ programmer, fa-
miliar with OSFJMotif applications, was available to an-
swer questions about the use of OSFIMotif widgets and the
libraries. A hundred small programs exemplifying how to
use OSFIMotif widgets were also provided. In addition,
the source code and the complete documentation of the
libraries were made available. Finally, it is important to
note the students were not requwd to use the libraries and,
depending on the particular design they adopted, different
reuse choices were expected.

2.5 Testing
The testing phase was accomplished by an independkt
group composed of experienced software professionals.
This group tested al l systems according to similar test plans
and using functional testing techniques, spending eight
hours testing each system.

2.6 Nature of the Study
Our empirical study is not what could be called formally a
controlled experiment since the independent variables
(i.e., 00 design metrics) are not controlled for and not as-

signed randomly to classes. Such a design would not be
implementable. Rather, our study is more observational in
nature. However, it is important to note that we have tried
to make the results of our study as generalizable as possible
(i.e, mrurimizing external validity) by a careful selection of
the study participants, the study material, and the devel-
opment process. Neve&e1ess, there is a greater danger that
the study be exposed to confounding variables and all sig-
nificant relationships should be carefully interpreted.

2.7 Data Collection Procedures and Measurement
Instruments

We collected:

1) the source code of the CU programs delivered at the
end of the implementation phase,

2) data about these programs,
3) data about errors found during the testing phase and

fixes during the repair phase, and
4) the repaired source code of the CU programs deliv-

ered at the end of the life cycle.

GENu [18] was used to extract Chidamber and Kemerer's
00 design metrics directly from the source code of the pro-
grams delivered at the end of the implementation phase. To
collect items 2) and 3), we used the following forms, which
have been tailored from those used by the Software Engi-
neering Laboratory [23]:

Fault Report Fonn.
Component Origination Form.

In the following sections, we comment on the purpose of
the Component Origination and Fault Report forms used in
our study and the data they helped collect.

2.7.1 Data Collection Forms
A fault report form was used to gather data about

1) the faults found during the testing phase,
2) classes changed to correct such faults, and
3) the effort in correcting them.

The latter was not used in this study. Further details can be
found in 151.

A component origination form was used to recoid in-
formation that characterizes each class under development
in the project at the time it goes into configuration man-
agement. First, this form was used to capture whether the
class has been developed from scratch or has been devel-
oped from a reused class. In the latter case, we collected the
amount of modification needed to meet the system re-
quirements and design: none, slight (less than 25 percent of
code changed), or extensive (more than 25 percent of code
change) as well as the name of the reused class. Qasses
reused without modification were labeled: verbatim reused.

In addition, the name of the sub-system to which the
class belonged was also collected. In our study, we had two
types of sub-systems: user interface (UI) and database pro-
cessing (DB).

2.7.2 Data Collected
Chidamber and Kemerer's 00 design metrics were col-
lected for each of the 180 classes across the eight systems
under study. In addition, al l faults detected dduring testing

0 10 20 30 40 50 60 70 80 90 100 0 1 2 3 4 5 6 7 8 9

W M C DFF

--
50

40

30

20

10

0
0 11 22 33 44 55 66 Ti 88 99 110

RFC

140

120
100

80
60
40

20
0

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3

NOC

0 45 90 135 180 225 no 315 360 405 450 0 3 6 9 12 15 18 21 24 27 3l

LCOM CBO

Fig. 1. Distribution of the analyzed 00 metrics. The X axes represents the values of the metric. The Y axes represents the number of dass.

activities were located in the systems and, therefore, associ- cohesion (LCOM) near zero. This latter metric does not
ated with one or several of their classes. seem to differentiate classes well and this may stem hom its

definition which prevents any negative measure. This issue

3 DATA ANALYSIS will be discussed further in Section 3.2.

In this section, we will assess empirically whether the 00
design metrics defined in [13] are useful predictors of
fault-prone classes. This will help us assess these metrics
as quality indicators and how they compare to common
code metrics. We intend to provide the type of empirical
validation that we think is necessary before any attempt
to use such metrics as objective and early indicators of
quality is made (91. Section 3.1 shows the descriptive distri-
butions of the 00 metrics in the studied sample whereas
Section 3.2 provides the results of univariate and multivari-
ate analyses of the relationships between 00 metrics and
fault-proneness.

3.1 Distribution and Correlation Analyses
Fig. 1 shows the distributions of the analyzed 00 metrics
based on 180 dasses present in the studied systems. Table 1
provides common descriptive statistics of the metric distri-
butions. These results indicate that inheritance hierarchies
are somewhat flat @IT) and that dasses have, in general,
few children (NOC) (this result is similar to what was
feund in [13]). In addition, most classes show a lack of

TABLE 1
DESCRIPTIVE STATISTICS OF THE 180 %UDlED c++ C + S E S

WMC DIT RFC NOC LCOM CBO
Maximum 99.00 9.00 105.00 13.00 426.00 30.00
Minimum 1-00 0.00 0.00 0.00 0.00 0.00
Median 9.50 0.00 19.50 0.00 0.00 5.00
Mean 13.40 1.32 33.91 0.23 9.70 6.80
Std Dev 14.90 1.99 33.37 1.54 63.Z 756

Descriptive statistics will be useful to kelp us interpret the mults ofthe
analysis in the remainder ofthis section. In addition, they roiIl@iIitate mm-
parisom ofresultsfromfuture similar studies.

TABLE 2
CORRELATION ANALYSIS

WMC
DIT
RFC
NOC
LCOM

R' Values
WMC DIT RFC NOC LCOM CBO
1 0.02 0.24 0 0.38 0.13

I o o 0.01 0

1 0 0.09 0.31

1 0 0

I 0.01

Table 2 shows very clearly that linear Pearson's correla-
tions (R': Coefficient of determination) between the studied
00 metrics are, in general, very weak. Three coefficients of
determination appear somewhat more si@icarit (bold co-
efficients in Table 2). However, when looking at the scat-
terplots, only the relationship between CBO and RFC seems
not to be due to outliers. We conclude that these metrics are
mostly statistically independent and, therefore, do not
capture a great deal of redundant information.

3.2 The Relationships Between Fault Probability and
00 Metrics

3.2.1 Analysis Methodology
The response variable we w to validate the 00 design
metrics is binary, i.e., was a fault detected in a class during
testing phases? We used logistic regression, a standard
technique based on maximum likelihood estimation, to
analyze the relationships between metrics and the fault-
proneness of classes. Currently, logistic regression is a
standard classification technique [25] used in experimental
sciences. It has already been used in software engineering
to predict error-prone components [8], [29], [32].

Other classification techniques such as classification
trees [34], Optimized Set Reduction [8], or neural networks
[28] could have been used. However, our goal here is not to
compare multivariate analysis techniques (see [8] for a
comparison study) but, based on a suitable and standard
technique, to validate empirically a set of metrics.

We first used univariate logistic regression, to evaluate
the relationship of each of the metrics in isolation and fault-
proneness. Then, we performed multivariate logistic re-
gression, to evaluate the predictive capability of those
metrics that had been assessed sufficiently significant in
the univariate analysis. This modeling process is further
described in [25].

A multivariate logistic regression model is based on the
following relationship equation (the univariate logistic re-
gression model is a special case of this, where only one
variable appears):

where A is the probability that a fault was found in a class
during the validation phase, and the Xis are the design met-
r i c~ included as explanatory variables in the model (called
cuvariates of the logistic regression equation). The curve
between x and any single Xi-i.e., assuming that all other
Xjs are constant-takes a flexible S shape which ranges
between two extreme cases:

1) when a variable is not significant, then the curve ap-
proximates a horizontal line, i.e., x does not depen&
on X, and

2) when a variable entirely differentiates error-prone
software parts, then the curve approximates a step
function.

Such a S shape is perfectly suitable as long as the dationship
between X,s and x is monotonic, an assumption consistent with
the empirical hypotheses to be hted in this study. Otherwise,
higher degree terms have to be introduced in equation (*).

The coefficients Cis will be estimated through the maxi-
mization of a likelihood f.mction, built in the usual fashion,
i.e., as the product of the probabilities of the single obser-
vations, which are functions of the covariates (whose values
are known in the observations) and the coefficients (which
are the unknowns). For mathematical convenience,
I = In[L], the logIikelihood, is usually the function to be
maximized. This procedure assumes that all observations
are statistically independent. In our context, an observation
is the (non)detection of a fault in a C++ class. Each (non)
detection of a fault is assumed to be an event independent
from other fault (non)detections. Each data vector in the
data set describes an observation and has the following
components: An event category (fault, no fault) and a set of
00 design metrics (described in Section 2.1) characterizing
either the class where the fault was detected or a class
where no fault was detected.

The global measure of goodness of fit we will use for
such a model is assessed via no not to be confused with
the least-square regression the^ are built upon very
different formulae, even though they both range between
zero and one and are similar from an intuitive perspective.
The higher R2, the higher the effect of the model's explana-
tory variables, the more accurate the model. However, as
opposed to the R' of least-square regression, high R'S are
rare for logistic regression. For this reason, the reader
should not interpret logistic regression 5's using the usual
heuristics for least-square regression R s. (The interested
reader may refer to [21] for a detailed discussion of this
issue.). Logistic regression R' is defined by the following
ratio:

where

+ LL is the loglikelihood obtained by Maximum Likeli-
hood Estimation of the model described in formula (*)

+ LL, is the loglikelihood obtained by Maximum Likeli-
hood Estimation of a model without any variables,
i.e, with only C,,. By carrying out all the calculations,
it can be shown that LLs is given by

where m, (resp., ml) represents the number of observations
for which there are no faults (resp., there is a fault). Looking
at the above formula, Lb/(m, + m,) may be interpreted as
the uncertainty associated with the distribution of the de-
pendent variable Y, according to Information Theory con-
cepts. It is the uncertainty left when the variable-less model
is used. Likewise, LL/(* + m,) may be interpreted as the
uncertainty left when the model with the covariates is used.
As a consequence, (Lb - LL)/(m,-, + ml) may be interpreted
as the part of uncertainty that is explained by the model.
Therefore, the ratio (LLs - LL)/Lb may be interpreted as
the proportion of uncertainty explained by the model.

Tables 3 and 4 contain the results we obtained through,
respectively, univariate and multivariate logistic regression
on all of the 180 classes. We report those related to the met-
rics that turned out to be the most significant across all

eight development projects. For each metric, we provide the
following statistics:

CoefFn'ent (appearing in Tables 3 and 4), the estimated
regression coefficient. The larger the coefficient in absolute
value, the stronger the impact (positive or negative, ac-
cording to the sign of the coefficient) of the explanatory
variable on the probability p of a fault to be detected in a
class.

TABLE 3
UNIVARIATE ANALYSIS-SUMMARY OF RESULTS

Metrics Coefficient AW p-value Fi2 Classes
WMC (1) 0.022 2% 0.0607 0.007 A U
WMC (2) 0.086 9% 0.0003 0.024 New-Ext

WMC i4j 0.094 100/0 0.0019 0.047 UI
DIT (1) 0.485 6270 0.0000 0.065 ALL
Dm (2) 0.868 138% 0.0000 0.131 New-Ext
DIT (31 0.475 60% 0.043 0.019 DB
DF (4j 0.29 34% 0.024 0.017 UI

0.065
0.087

9 ' 0 0 . m 0.065 A U
8% 0.0000 0.248 New-Ext

RFC i3i 0.077 8% 0.0000 0.188 DB
RFC (4) 0.108 11% 0.ooo0 0.362 UI
NOC (1) -3.3848 -96% 0.0000 0.143 ALL
NOC (2) -3.62 -97% 0.0011 0.362 New-Ext
NOC i3j -2.05 -77% o.oooo 0.083 DB
CBO (1) 0.142 15% 0.0000 0.068 ALL
cBo (2) 0.079 8% 0.017 0.020 New-Ext
CBO (3) 0.086 9% 0.006 0.034 DB

W means all the clnsses. N a ~ E x t standsfor classes which have been cre-
ated* scratch or extensiaely modtpd. DB labels classes implementing
&fabase manipulations. UI labels classes i m p h t i n g user interfnce
functions.

TABLE 4
MULT~VAR~AE ANALYSIS WITH 00 DESIGN METRICS

Coefficient p-value
Intercept 3.13 0.0000 m 0.0004
RFC 0.1 1 0.0000
NOC -2.01 0.0178
CBO 0.13 0.0072
Class Origin 1.84 0.0000

A y (appearing in Table 3 only), which is based on the
notion of odd ratio [25], and provides an evaluation of
the impact of the metric on the response variable.
More specifically, the odds ratio y(X) represents the
ratio between the probability of having a fault and the
probability of not having a fault when the value of the
metric is X. As an example, if, for a given value X,
y(X) is two, then it is twice as likely that the class does
contain a fault than that it does not contain a fault.
The value of A y is computed by means of the follow-
ing formula:

The statistical sigruhcance (p-value, appearing in
Tables 3 and 4) provides an insight into the accuracy
of the coeffiaent estimates. It tells the reader about
the probability of the coefficient being different from
zero by chance. Historically, a significance threshold
of a = 0.05 (i.e., 5 percent probability) has often been
used to determine whether an explanatory variable
was a significant predictor. However, the choice of a
particular level of significance is ultimately a subjec-
tive decision and other levels such as a = 0.01 or 0.1
are common. Also, the larger the level of significance,
the larger the standard deviation of the estimated co-
efficients, and the less believable the calculated im-
pact of the explanatory variables. The si&cance test
is based on a likelihood ratio test [25] commonly used
in the framework of logistic regression.

3.2.2 Univariate Analysis
In this section, we analyze the relationships between six 00
metrics introduced in [13] (though slightly adapted to our
context) and the probability of fault detection in a class
during test phases. Thus, we intend to test the hypotheses
stated in Section 2.2.

Weighted Methods per Class (WMC) was shown to be
somewhat significant (p-value = 0.06) overall. For
new and extensively modified classes and for UI
(Graphical and Textual User Interface) classes, the re-
sults are more significant: p-value = 0.0003 and
pvalue = 0.001, respectively. Therefore, the H-WMC
hypothesis is supported by these results: The larger
the WMC, the larger the probability of fault detection.
These results can be explained by the fact that the in-
ternal complexity does not have a strong impact if the
class is reused verbatim or with very slight modifica-
tions. In that case, the class interface properties will
have the most sigruficant impact.
Depth of Inheritance Tree of a class (DIT) was shown
to be very significant (p-value = 0.0000) overall. The
H-DIT hypothesis is supported by the results: The
larger the DIT, the larger the probability of fault de-
tection. A~ain, the strength of the relationship in-
creases (R goes from 0.06 to 0.13) when only new and
extensively modified classes are considered.
Response For a Class (RFC) was shown to be very
s i e c a n t overall (p-value = 0.0000). The H-RFC hy-
pothesis is supported by the results: The larger the
RFC, % larger the probability of fault detection.
Again, R improved significantly for new and exten-
sively modified classes and UI classes (from 0.06 to
0.24 and 0.36, respectively). Reasons are believed to be
the same as for WMC for extensivelv modified

Y (X + 1) AW=- (2) classes. In addition, UI classes show a histribution
w (X) which is significantly different from that of DB . . ,

Therefore, Ayr represents the reduction/increase in the classes: The- mean &d median are significantly

odds ratio (expressed as a percentage in Table 3) when higher. This, as a result, may strengthen the impact of

the value X increases by one unit. This is designed to RFC when performing the analysis.
provide an intuitive h i g h t into the impact of ex- Number Of Chiidren of a Class (NOC) appeared to be
planatory variables. very significant (except in the case of UI classes) but

the obsemed trend is contrary to what was stated by

the H-NOC hypothesis: The larger the NOC, the
lower the probability of fault detection. This surpris-
ing trend can be explained by the combined facts that
most classes do nothave more than one child and that
verbatim reused classes are somewhat associated with
a large NOC. Since we have observed that reuse was a
significant negative factor on fault density 151, this
explains why large NOC classes are less fault-prone.
Moreover, there is some instability across class sub-
sets with respect to the impact of NOC on the prob-
ability of detecting a fault in a class (see Ays in Table
3). This may be explained in part by the lack of vari-
ability on the NOC measurement scale (see descriptive
analysis in Table 1 and distribution in Fig. 1).
Lack of Cohesion on Methods (LCOM) was shown to
be insignificant in all cases (this is why the results are
not shown in Table 3) and this should be expected
since the distribution of LCOM shows a lack of vari-
ability and a few very large outliers. This stems in
part from the definition of LCOM where the metric is
set to zero when the number of class pairs sharing
variable instances is larger than that of the ones not
sharing any instances. This definition is definitely not
appropriate in our case since it sets cohesion to zero
for classes with very different cohesions and keeps us
from analyzing the actual impact of cohesion based
on our data sample.
Coupling Between Object classes (CBO) is significant
and more par$cularly so for UI classes (p-value =
0.0000 and R = 0.17). No satisfactory explanation
could be found for differences in pattern between UI
and DB classes.

It is important to remember, when looking at the results
in Table 3, that the various metrics have different units.
Some of these units represent "big steps" on each respective
measurement scale while others represent "smaller steps."
As a consequence, some coefficients show a very small im-
pact (i.e., Avs) when compared to others. This, however, is
not a valid criterion to evaluate the predictive usefulness of
such metrics.

Most importantly, aside from NOC, all metrics appear to
have a very stable impact across various categories of
classes (i.e., DB, UI, New-Ext, etc.). This is somewhat en-
couraging since it tells us that, in that respect, the various
types of components are comparable. If we were consider-
ing different types of faults separately, the results might be
different. Such a refinement is, however, part of our future
research plans.

3.2.3 Multivariate Analysis
The 00 design metrics presented in the previous section
can be used early in the life cycle (high- or low-level design)
to build a predictive model of fault-prone classes. In order
to obtain an optimal model, we included these metrics into
a multivariate logistic regression model. However, only the
metrics that significantly improve the predictive power of
the multivariate model were included through a stepwise
selection process. Another significant predictor of fault-
proneness is the level of reuse of the class (called "Class
origin" in Table 4). This information is available at the end
of the design phase when reuse candidates have been iden-

- -
tified in available libraries and the amount of change re-
quired can be estimated. Table 4 describes the computed
multivariate model. Using such a model for classification,
the results shown in Table 5 are obtained by using a das-
sification threshold of ~(Fauit detection) = 0.5, i.e., when
R > 0.5, the class is classified as faulty and, otherwise, as
nonfaulty. As expected, classes predicted as faulty contain a
large number of faults (250 faults on 48 classes) because
those classes tend to show a better classification accuracy.

TABLE 5
CLASSI'FICATION RESULTS wrrn 00 DESIGN M ~ I C S

Predicted
Actual No Fault Fault

Thefigures before parentheses in the right column are the number ofclnsses
classified asfaulty. Thefigures within the parentheses are the faults wntained

We now assess the impact of using such a prediction
model by assuming, in order to simplify computations, that
inspections of classes are 100 percent effective in finding
faults. In that case, 80 classes (predicted as faulty) out of 180
would be inspected and 48 faulty classes out of 58 would be
identified before testing. If we now take into account indi-
vidual faults, 250 faults out of 258 would be detected during
inspection. As mentioned above, such a good result stems
from the fact that the prediction model is more accurate for
multiple-faults classes. To summarize, results show that the
studied 00 metrics are useful predictors of fault-proneness.

In order to evaluate the predictive accuracy of these 00
design metrics, it would be interesting to compare their
predictive capability and that of usual code metrics even
though they can only be obtained later in the development
life cycle. 9 code metrics, from the set provided by the
Amadeus tool [2], were selected through a stepwise logis-
tic regression procedure. Table 6 shows the resulting pa-
rameter estimations of the multivariate logistic regression
model where: MaxStatNext is the maximum level of state-
ment nesting in a class, FuncfDef is the number of function
declarations, and FunctCall is the number of function calls.
It should be noted that other multivariate models can be
generated using different metrics provided by Amadeus
and yield results of similar accuracy. The model in Table 6
happens to be, however, the one resulting from the use of a
standard, stepwise logistic regression analysis procedure.

TABLE 6
MULTIVARIATE ANALYSIS WITH CODE METRICS

Coefficient p-value
Intercept 0.39 0.0384
MaxStatNest -0.286 0.0252
FunctDef 0.166 0.0010
FunctCall -0.0277 0.0000

In addition to being collectable only later in the process,
code metrics appear to be somewhat poorer as predictors of
class fault-proneness (see Table 7). In this case, 112 classes

2. The Amadeus tool provides 35 code metria, e.g., lines of code with
and without blank, executable statements, declaration statements, function
declaration, function definitions, function calls, cyclomatic complexity, Imp
statements, maximum class depth and width in a file, number of method
declarations, definitions, and average number of methods.

(predicted as faulty) out of 180 would be inspected and 51
faulty classes out of 58 would be detected. If we now take
into account individual faults, 231 faults out of 268 would
be detected during inspection. Three more faulty classes
would be corrected (51 versus 48) but 32 more classes
would have to be inspected (112 versus 80) resulting in a
significant extra effort. Moreover, the 00 design metrics
are better predictors of classes containing large numbers of
faults since 19 more faults (250 versus 231) would be de-
tected in that case. Therefore, predictions based on code
metrics appear to be poorer.

TABLE 7
CLASSIFICATION RESULTS BASED ON CODE METRICS

SHOWN IN TABLE 6

Table 8 confirms that result by showing the values of
correctness (percentage of classes correctly predicted as

Actual
No Fault
Fault

faulty) and c~mplete<ess (percentage of faulty classes de-
tected). Values between parentheses present predictions'

Predicted
No fault Fault

61 61
7 (37) 51 (231)

correctness and completeness values when classes are
weighted according to the number of faults they contain
(classes with no fault are weighted one).

TABLE 8
CLASSIFICATION ACCURACIES BASED ON 00 AND CODE

MEFRlCS SHOWN IN TABLE 3 AND TABLE 6
Model Accuracy 00 metrics Code metrics
Completeness 88% (93%) 83% (86%)
Correctness 60% (92%) 45.5% (86%)

3.2.4 Threats to Validity
Several threats to the extemal validity of our study may
limit the generalizability of our results:

The programs developed lie between five KSLOC and
14 KSLOC. Those programs are small as compared to
large industry systems. The relationships between the
studied 00 design metrics and the fault introduction
probability are the results of a complex psychological
phenomenon and they may look very different in
larger programs.
The conceptual complexity of these systems was
rather limited. Again, many different problems may
arise in more complex systems.
It is likely that the study partidpants were not as well
trained and as experienced as average professional
programmers. However, this was partially addressed
as discussed in Section 2.4.

4 RELATED WORK
In [lo], metrics for measuring abstract data type (ADT) co-
hesion and coupling are proposed and are validated as
predictors of faulty ADTs. The main differences and simi-
larities between the work here and [lo] are as follows (see
Table 9). They did not empirically validate their metrics on
QQ programs in a context of inheritance but they used a
similar validation approach. In both cases, statistical model

were built to predict component (i.e, ADTs and classes,
respectively) fault-proneness (i.e., probability of fault de-
tection) by using multiple logistic regression.

In [30], a validation of Chidamber and Kemerer's 00
metrics studying the number of changes performed in two
comrneraal systems implemented with an 00 dialect of Ada
was conducted. They show that Chidamber and Kemerer's
00 metrics appeared to be adequate in predicting the fre-
quency of changes across classes during the maintenance
phase. They provided a model to predict the number of
~~~~~~~~~~~~in a class, which they &e is proportional to 
change effort and is representative of class maintainability. 

The work described in 1301 is comparable to our w&k in 
the following ways (see Table 9). Li and Henry [30] used 
the same suite of 00 metrics we used. Thev also used data 
from products implemented in an 00 language which pro- 
vides multiple inheritance, overload in^ and polyrnor- 
phism. On the other hand, we used the probability of fault 
detection as the dependent variable of our statistical model. 
Thus, our goal was to assess whether Chidamber and Ke- 
merer's 00 metrics were useful predictors of fault-prone 
classes. In addition, in [30] (multivariate) least-square linear 
regression was used to build a predictive model whereas 
we used logistic regression (i.e., a classification technique 
for binary dependent variables). The nature of our depend- 
ent variable (i.e., (non)occ~v~ence of fault detection) has led 
us to use logistic regression 1251. 

TABLE 9 
SOME DIFFERENCES AND SIMILARITIES BETWEEN 

[lo], [30], AND OUR WORK 

Type of Ada I 00 dialect of Ada C++ 
products 

CRmRlA 
Suite of 
Metrics 

VALIDATION WORK 
Briand et al. [l O] U and Henry [SO] Our work 

ADT Cohesion CK rnetrics CK metrics 
and C~upling 

Dependent 
variable 

5 CONCLUSIONS AND FURTHER WORK 

fault occurrence number of fault occurrence in 
in Ada packages changes in corn- C2-t classes 

ponenfs 

Statistical 
technique 

In this study, we collected data about faults found in object- 
oriented classes. Based on these data, we verified how 
much fault-proneness is influenced by internal (e.g., size, 
cohesion) and external (e.g., coupling) design characteris- 
tics of 00 classes. From the results presented above, five 
out of the six Chidamber and Kemerer's 00 metrics appear 
to be useful to predict class fault-proneness during the 
high- and low-level design phases of the life-cycle. In addi- 
tion, Chidamber and Kemerer's 00 metrics show to be 
better predictors than the best set of "traditional" code met- 
ria, which can only be collected during later phases of the 
software development processes. 

This empirical validation provides the practitioner with 
some empirical evidence demonstrating that most of Chi- 
damber and Kemerer's 00 metrics can be useful quality 

logistic least-square logistic regression 
regression regression 



indicators. Furthermore, most of these metrics appear to be 
complementary indicators which are relatively independent 
from each other. The results we obtained provide motiva- 
tion for further investigation and refinement of Chidamber 
and Kemerer's 00 metrics. 

Finally, results seem to show that one would likely be able 
to make inspetions of design or code artifacts more efficient 
if they were driven by models such as the one we built in 
Section 3.2.3, based on Chidamber and Kemerer's 00 met- 
ric~. However, how to help focus inspections on error-prone 
parts in large programs is still an important issue to be fur- 
ther investigated. Our results should be interpreted as maxi- 
mum possible gains and not as expected gains. 

Our future work includes: 

Replicating this study in an industrial setting: A sam- 
ple of large-scale projects developed in CU and 
Ada95 in the framework of the NASA Goddard Flight 
Dynamics Division (Software Engineering Labora- 
tory). This work should help us better understand the 
prediction capabilities of the suite of 00 metrics de- 
scribed in this paper. Replication should help us 
achieve the following objectives: 

Build models and provide guidance to improve 
the allocation of resources with respect to test 
and verification efforts. 
Gain a better understandiig of the impact of 
00 design strategies (e.g, single versus multi- 
ple inheritance) on different types of defects and 
rework. In this study, because the data collec- 
tion process was not fully adequate, we were 
unable to analyze the relationships of 00 de- 
sign metrics with rework and different defect 
categories. With regard to rework, we believe 
that this drawback could be overcome by refin- 
ing our data collection process to capture the 
amount of effort spent debugging each class in- 
dividually. With regard to defect categories, we 
would need to collect additional information 
about defect origin (e.g., specification, design, 
implementation, previous change), defect type 
(e.g., omission/commission), defect class (e.g, 
external interface, internal interface, etc.), etc. 
Investigating the prediction usefulness of Chi- 
damber and Kemerer's 00 design metrics with 
regard to different types of faults, e.g, fault se- 
verity. The fault-proneness prediction capabili- 
ties of any suite of 00 may be different de- 
pending on the type of fault used. 

Studying the variations, in terms of metric definitions 
and experimental results, between different 00 pro- 
gramming languages. The fault-proneness prediction 
capabilities of the suite of 00 metrics discussed in 
this paper can be different depending on the pro- 
gramming language used. Work must be undertaken 
to validate this suite of 00 design metrics across dif- 
ferent 00 languages, e.g., Ada95, Smalltalk, C u ,  etc. 
Extending the empirical investigation to other 00 
metrics proposed in the literature and develop 
improved metrics, e.g., more language specific, based 
on more sophisticated hypotheses. 

We want to thank (1) Dr. Gianluigi Caldiera for helping US 
teach the 0h4T method; (2) A. BelkheIladi K. El Emam, C. 
Kemerer, j. Kontio, C. Seaman, F. Shull, and R. Tesoriero for 
their suggestions that helped improve both the content and 
the form of this paper; and (3) the students of University of 
Maryland for their participation on this study. This work 
will not be possible without the help of Prem Devanbu 
(AT&T Labs). F i d y ,  we wish to thank the anonymous 
reviewers and Hausi Muller, the editor of this paper, for 
their valuable comments. This work was supported, in part, 
by the National Aeronautics and Space Administration un- 
der Grant No. NSG-5123, the National Science Foundation 
under Grant No. 01-5-24845, Fraunhofer Geekchaft, 
UMIACS, and Westinghouse Corporation. 

F.B. Abreu and R Carapup, "Candidate Mehics for Object- 
Oriented Software within a Taxonomy Framework," ]. System and 
Software, vol. 26, no. 1, pp. 87-96, Jan 1994. 
Amadeus Software Research, Getting Started With Amadeus, 
Amadeus Measurement System, 1994. 
V. Basili and D. Hutchens, "Analyzing a Syntactic Family of 
Complexity Metrics," IEEE Trans. Software Eng., vol. 9, no. 6, 
pp. 664-673, June 1982 
V. Basili, R. Selby, and T.-Y. Philips, "Metric Analysis and Data 
Validation Aaoss Fortran Projects," IEEE Trans. Soprome Eng., 
vol. 9, no. 6, pp. 652-663, June 1983. 
V. Bas& L. Briand, and W. Melo, "Measuring the Impact of Reuse 
on Software Quality and Productivity," Comm. ACM, vol. 39, no. 
10, pp. 104-116, Oct. 1996. 
J.M. Bieman and B.-K. Kang, "Cohesion and Reuse in an Object- 
Oriented System," Proc. ACM SIGSOFT Symp. S o m e  M i I i t y ,  
Seattle, Wash., pp. 259462,1995. 
B. Bwhm Software Eng. Economics, Prentice-Hall, 1981. 
L. Briand, V. Basili, and C. Hetmanski, "Developing Interpretable 
Models with Optimized Set Reduction for Iden-g High Risk 
Software Components," IEEE Trans. S o m e  Eng., VO~.  19, no. 11, 
pp. 1,02&1,044, Nov. 1993. 
L. Briand, K. El Emam, and S. Morasca, Theoreticnl and Empiricnl 
Validation of Software Product Measures, ISERN Technical Report 
9543,1995.- 

[lo] L. Briand, S. Morasca, and V. Basili, Dejning and Validating High- 
Level Design Metrics, Technical Report CS-TR-3301, Univ. of 
Maryland, Dept. of Computer Science, College Park, Md., 1994. 

[Ill L. Briand, S. Morasca, and V. Basili, "Property Based Software 
Ennineerim Measurement," IEEE Trans. Software Eng., vol. 22 
n03, pp. &, Jan. 1996. 

1121 I. Brooks, "Object-Oriented Metrics Collection and Evaluation 
with a Software Process," Proc. OOPSLA '93 WorkShOP Pr0cesses 
and Metrics for Object-Oriented Software DmeIopment, W&@% . . 
D.C, 1993. 

(131 S.R. Chidamber and C.F. Kemerer, "A Metria Suite for Object- 
Oriented Des ia"  IEEE Trans. Softutare En%, vol. 20, no. 6, 
pp. 476-493, ~&e- 1994. 

- 
1141 S.R Chidamber and C.F. Kemmr, "Authos Reply," IEEE Trans. 

Software Eng., vol. 21, no. 3, p. 265, Mar. 1995. 
I151 N.I. Churcher and M.J. Shepwrd, "Comments on 'A Metria Suite - - 

for Object-Oriented DesigR;" IEEE Trans. Software Eng., voL 21. 
no. 3, pp. 263-265, Mar. 1995. 

[16] S.D. Conte, H.E. Dunsmore, and V.Y. Shen, Software Eng. Metria 
and Models, BenjaminlCummings, 1989. 

[I71 J. Daly, A: Brooks, J. Miller, M. Roper, and M. W* "The.- 
of Inheritance Depth on the Maintainability of Ob~ect-Onented 
Software," Empiricnl Sofhome Eng.: An Int'l I., vol. 1, no. 2 
Feb. 1996. 

[I81 P. Devanbu, "GENOA/GENII-A Customizable Language and 
Front-End Independent Code Analyzer," Proc. 14th Int? Con5 
Software Eng., Melbourne, Austaiia, 1992 



P. Devanbu, S. Karstu, W. Melo, and W. Thomas, "Analytical and 
Empirical Evaluation of Software Reuse Metrics," Proc. 18th Int'l 
Con$ Software Eng., pp. 189-199, Berlin, Germany, 1996. 
R.B. Grady, Practical Sojhure M& fir Project Management and 
Process Improvement, Prentice Hall, 1992. 
W. Harrison, "Using Software Metrics to Allocate Testing Re- 
sources," 1. Management Infinnation Systems, vol. 4, no. 4, 
pp. 93-105, Apr. 1988. 
W. Harrison, "Software Measurement: A Decision-Process A p  
proach," Advances in Computers, vol. 39, pp. 51-105,1994. 
G. Heller, J. Valett, and M. Wild, Data Collection Procedurefor Soft- 
ware Eng. Laboratory (SEL) Database, SEL Series, SEL-92-002,1992. 
F.4. Hitz and B. Montazeri, "Chidamber and Kemerex's Metrics 
Suite: A Measurement Theory Perspective," IEEE Trans. Software 
Eng., vol. 22, no. 4, pp. 267-271, Apr. 1996. 
D. Hosmer and S. Lemeshow, Applied Logistic Regression, Wiley- 
Intersdence, 1989. 
N.E. Fenton, Software Metrics: A Rigcrous Approach, Chapman & 
Hall, 1991. 
C.M. Judd, E.R Smith, and L.H. Kidder, Research Methods in Social 
Relations, Harcourt Brace Jovanovich College Publishers, 1991. 
T.M. Khohgoftaar, A.S. Panday, and H.B. More, "A Neural Net- 
work Approach for Predicting Software Development Faults," 
Proc. Third Int? IEEE Symp. Softwme Reliability Eng., North Caro- 
lina, 1992. 
F. Lanubile and G. Visaggio, "Evaluating Predictive Quality 
Models Derived from Software Measures: Lessons Learned," to 
appear in the 1. Software and Systems; also available as Technical 
Report CSTR-3606, Univ. of Maryland, Computer Science Dept., 
College Park, Md., 1996. 
W. L i  and S. Henry, "Object-Oriented Metrics that Predict Main- 
tainabiity," 1. Systems and Software, vol. 23, no. 2, pp. 111-122, 
Feb. 1993. 
F. McGarry, R Pajersk, G. Page, S. Waligora, V. Basili, and M. 
Zelkowitz, Software Process Improrwmenf in the NASA S4ftware Eng. 
Laboratory. Camegie Mellon Univ., Software Eng. Inst., Technical 
Report CMUiSEI-95-TR-22, Dec. 1994. 
J. Munson and T. Khoshgoftaar, "The Detection of Fault-Prone 
Pmgrams," IEEE Trans. S o m e  Eng., vol. 18, no. 5, May 1992. 
J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. 
Lorensen, Object-Oriented Modeling and Design, Prentice Hall, 1991. 
R Selby and A. Porter, "Learning from Examples: Generation and 
Evaluation of Decision Trees for Software Resource Analysis," 
IEEE Trans. Softutare Eng., vol. 14, no. 2, pp. 1,743-1,747, Feb. 1988. 
N. Schneidewind, "Methodology for Validating Software Met- 
rics," lEEE Trans. Software Eng., vol. 18, no. 5, pp. 410-422, May 
1992 -- 
B. Stroustrup, The C++ Programming Language, Addison-Wesley 
Series in Computer Saence, second edition, 1991. 

1 D.A. Young, Object-Oriented Programming with CU and OSFIMO- 
TIF, Prentice Hall, 1992 

Victor R. Basili is a professor in the Institute for 
Advanced Computer Studies and the Computer 

:, Sdence Department at the University of Mary- 
.- land. College Park. Maryland, where he has 
'. sewed as chairman for six years. 

He is one of the founders and principals in the 
Software Engineering Laboratory, a joint venture 
between NASA Goddard Space Flight Center, 
the University of Maryland, and Computer Sci- ' 

ences Corporation, established in 1976. He is a 
recipient of the first Process Improvement 

Achievement Award by the IEEE and the SEI, and the NASA Group 
Achievement Award. 

He has sewed as editor-inchief for the IEEE Transactions on Soff- 
ware Engineerin9; general chair of the 15th International Conference 
on Software Engineering in 1993, in Baltimore. Maryland; program 
chair for the Sixth International Conference on Software Engineering in 
1982, in Japan; and generavprograrn chair for several other confer- 
ences. He is an IEEE fellow and member of the IEEE Computer Soci- 
ety and Golden Core. 

Lionel C. Briand received the BS degree in 
geophysics and the MS degree in computer 
science from the University of Paris VI, France, 
in 1985 and 1987, respectively. He received the 
PhD degree, with high honors, in computer sci- 
ence from the University of Paris XI, France, in 
1994. Dr. Briand started his career as a software 
engineer at CIS1 Inghierie, France. Between 
1989 and 1994, he was a research scientist at 
the NASA Software Engineering Laboratory, a 
research consortium: NASA Goddard Space 

Flight Center, University of Maryland, and Computer Science Corpora- 
tion. He then held the position of lead researcher of the software engi- 
neering group at CRIM, the Computer Research Institute of Montreal, 
Canada. He is currently the head of the Quality and Process Engi- 
neering Department at the Fraunhofer Institute for Experimental Soft- 
ware Engineering, an industry-oriented research center located in 
Rheinland-Pfalz, Germany. His current research interests and indus- 
trial activities include measurement and modeling of software devel- 
opment products and processes, software qualii assurance, domain- 
specific architectures, reuse, and reengineering. 

Wal&lio L Melo received the following degrees 
in computer science: BSc in 1983 from the Uni- 
versity of Brasilia, Brazil; MSc in 1988 from the 
Federal University of Rio Grande do Sul, Brazil; 
and a PhD in 1993 from Joseph Fourier Univer- 
sity, Grenoble, France. He is now the lead re 
searcher in software engineering at the Centre 
de Recherche lnformatique de Montreal (CRIM), 
Canada. At CRIM, he develops research and 
technology transfer projects related to software 
measurement, software reuse, objectoriented 

technology, software archiiecture, and software process modeling. He 
is also an adjunct professor at the McGill University School of Com- 
puter Science and a former member of the NASA Software Engineer- 
ing Laboratory. From 1983 to 1989, he worked as a system analyst for 
the Brazilian Federal Bureau of Data Processing, where he developed 
several business-oriented software applications. From 1989 to 1993, 
he developed research related to software process programming lan- 
guages at the Software Engineering Laboratory of Grenoble, France. 
From 1994 to 1996, he worked as a research associate at the Univer- 
sity of Maryland Institute for Advanced Computer Studies, where he 
developed research projects related to software maintenance. software 
metrics, and object-oriented technology. He is a member of the IEEE 
Computer Society. 





Comments on "Towards a 
Software Measurement 

Framework for 
Validation" 

Sandro Morasca, Member, IEEE Computer Society, 
Lionel C. Briand, Victor R. Basili, Fellow, IEEE, 

Elaine J. Weyuker, Member, IEEE Computer Society, 
and Marvin V. Zelkowitz, Senior Member, IEEE 

Abstract-A view of software measurement that disagrees with the 
model presented in a recent paper by Kitchenham. Pfleeger, and 
Fenton, is given. Whereas Kitchenham, Pfleeger, and Fenton argue 
that properties used to define measures should not constrain the scale 
type of measures, we contend that that is an inappropriate restriction. 
In addition, a misinterpretation of Weyuker's properties is noted. 

Index Terms--Software measurement. measurement theory, 
measurement scales. axiomatic approaches. software complexity 
properties. 

KITCHENHAM, PFLEEGER, AND FENTON [3] questioned the way 
properties have been used in the literature to assess software 
measures. We have two main comments on their criticisms. 

2 A ~ I B U T E  PROPERTIES AND MEASUREMENT 
SCALES 

First, the authors propose that properties that imply or exclude 
any particular measurement scale in the definition of a measure 
cannot be used. This is stated clearly in the following paragraph 
([31 p. 932, last paragraph): 

"2) Since an attribute may be measured in many different ways, 
attributes are independent of the unit used to measure them. 
Thus, any definition of an attribute that implies a particular 
measurement scale is invalid. Furthermore, any property of an 
attribute that is asserted to be a ge~reral property but implies a 
spectfic measurement scale must also be invalid." 

Adherence to this model will seriously impede the appropriate 
definition of attributes, particularly when there is a well under- 
stood intuition. There is no problem defining properties that at 
least permit ordering over the set of entities. Without such prop- 
erties, we end up abstracting away all relevant structure from our 
model, limiting our ability to say anything of interest. It is true that 
such properties would only be relevant for measures of the attrib- 
ute that are defined on an ordinal scale or higher. Nevertheless, 
this does not make such properties invalid, as stated in [31. Ex- 
perimental physics has successfully relied on attributes such as 
temperature that imply measurement scales in the definition of 
their properties. Other examples will help clarify our point. 

S. Morasca is with the Dipartimento di Elettmnica e Infomione ,  Politemico 
di Milano, Piazza Leonardo da Vinci 32.1-20133 Milano. ltaly. 
E-mail: moras&let.polimi.it. 
L.C. Briand is with the Fraunhofer Instf ute for Experimental Software Engi- 
neering (FhG IESE), Sauemiem 6.0-676761. Knismlautem. Gennany. 
E-mail: briand@iese.@g.de. 
V.R. Basiii and M.V. Zelkowik are with the Computer Science Department, 
University of Maryland. College Park, MD 20742. 
E-mail: lbasili, mvzl8cs.umd.edu. 
E 1. Weyuker is with AT&T Research-Labs. Room 2A-429,600-700 Mountain 
Ave.. P.O. Box 636, Mirrray Hill, N\ 07974. E-mail: weyuker@researchmtt.com. 

Manuscript recei&d Any. 12,1996. 
Recommended for acceptance by D.R. l e f f e ~ .  
For information on obtaining reprints o f  this article, please send e-mail to: 
transse@comptlter.org. and reference IEEECS Log Number 596132. 

Consider the notion of the size of an object. Our intuitive un- 
derstanding about the concept of size is that when one "put5 to- 
gether" two objects 0, and O2 to obtain a third object 0, then the 
size of 0, is not smaller than the size of 0, or 0,. (Although the 
operation of "putting togethef' may be formally defined, for 
brevity's sake, we do not provide such a definition here.) S i  this 
simple property is not appropriate for nominal scale size meas- 
ures, it would be considered invalid for any size attribute, ac- 
cording to [3]. However, the usual understanding of the attribute 
size can be formalized through properties of size measures re- 
quiring at least the possibility of comparing objects' sizes. Our 
understanding of the attribute size may go even further. In fact, in 
121, we propose simple and widely-acceptable properties that im- 
ply the ratio scale. 

As a second example, consider the notion of distance between 
two elements of a set S. According to the standard definition, dis- 
tance is defined as a function: 

d: S x S - t R ,  

(R, is the set of nonnegative real numbers) that satisfies the fol- 
lowing three axioms: 
Axiom 1. Vx, y a S (d(x, y) 5 0 and (d(x, y) = 0 o x = y)) 
Axiom Z Vx, y e S (d(x, y) = d(y, x)) 
Axiom 3. V x, y, z a S (d(x, y) 5 d(x, z) + d(z, y)) 

These axioms exclude 
nominal scales, since they contain the "S" operator; 
ordinal scales, since they contain the "+" operator; 
interval scales, since Axiom 3's truth value is not invariant 
under the admissible hansformation for interval scales, i.e., 
Axiom 3 does not imply the following formula (R is the set 
of real numbers): 

Vx,y ,z~  S,Va>O,Vba R(a.d(x,y)+b 
<a.d(x,z)+b+a.d(z,y)+b) 

Axiom 3's truth value is invariant under the admissible trans- 
formation for the ratio scale, i.e., Axiom 3 implies the following 
formula 

Vx,y,za S,Va>O(a.d(x,y)la.d(x,z)+a.d(z,y)). 

Therefore, Axiom 3 implies the ratio scale, and hence, according to 
[31 the three axioms usually provided for distance are invalid. This 
view of meaurement is so narrow and restrictive that it limits our 
abiity to define properties that adequately characterize attributes, 
even for very well-understood attributes. 

We therifore conclude that acceptance of the perspective pro- 
posed in [3] has important consequences, including: 

1) If we d i d  some properties, we may be d i i d i n g  a good 
deal of relevant information about the attribute. Therefore, 
our modeling of the attribute will not be as accurate as it 
could be. 

2) If we discard some properties, we will have a less powerful 
mechanism for checking whether a function that is pro- 
posed as a measure for an attribute actually is a measure for 
that attribute. 

. It is certainly not true that all attributes can be appropriately 
defined by properties that imply the ratio, interval, or even o d d  
scale (e.g., the color of a physical object). However, as argued 
above, this does not imply that we should forbid any attributes 
from being defined by properties that do imply a particular meas- 
urement scale or prevent some measurement scales. 

Although some attributes used in software engineering (e.g., 
complexity, cohesion, coupling) are not as well-understood as 
distance or size, it does not follow that we should prohibit the use 
of properties that constrain the scale type of a measure. Indeed, an 

1997 IEEE. Reprinted, with permission, from IEEE Transactions on 
Software Engineering, vol. 23, no. 3, pp. 187-188; March 1997 



important purpose of using properties as a means of defining 
meamres is to help codify intuition and make underlying as- 
sumptions explicit. In fact that is exactly why Euclid introduced 
the axiomatic method for geometry more than 2,000 years ago. 

Another point of this paper involves criticisms of the properties 
Weyuker proposed in [41. First, the authors repeat Zuse's state- 
ment [5] that Weyuker's axioms are inconsistent from a Measure- 
ment Theory point of view ([31 p. 932, last paragraph): 

'Thus, while Zuse criticises Weyuker's complexity measure 
propexties as contradictory because one (property 5) implies a 
ratio scaie and another (property 6 )  explicitly excludes a ratio 
scale ..." 
They describe Weyukefs properties as "disputed" and 

"caution researchers to avoid justifying measures on the basis of 
either disputed properties or ..." As argued in [I], a careful read- 
ing of Zuse's book demonstrates that Zuse's a-itidsms are un- 
founded. Concisely, in [I] we show that Zuse's criticisms only 
prove that Weyuker's properties are not compatible with the fact 
that the underlying empirical system of a measure assumes an 
extensive structure. However, the fact that the underlying empiri- 
cal system of a measure assumes an extensive structure is a suffi- 
cient condition to obtain a ratio scale measure, but is by no means 
a necessary one. Although Zuse refers to Weyukefs properties as 
contradictory, they are not contradicto~y in the usual mathemati- 
cal sense of being incapable of being satisfied at the same time. 
Some of the properties do require the ratio scale, but there is 
nothing inappropriate about this. 

In addition to Zuse's criticism, another erroneous criticism is 
introduced in 131, p. 939. 

"3) Each unit of an attribute contributing to a valid measure is 
equiuuient. This seems to be standard measurement practice. 
Weyukeis property 7 relates to this issue. She, in fact, asserts 
the converse of this assumption by claiming that program com- 
plexity should be responsive to the order of statements in a p re  
gram. It seems here that Weyuker is confusiig the attributes 
program correctness and/or psychological complexity with 
structural complexity. It is unlikely that a random reordering of 
program will be correct or understandable, but a re-ordering 
would not necessarily be more structurally complex." 

Weyuker's property 7 asserts that there exist two programs P 
and Q, where Q is a re-ordering of P, such that the complexity of P 
is different from the complexity of Q [41. This property does not 
assert that, by re-ordering a program, one obtains a new program 
which would necessarily be more or less structurally complex than 
the original one. ~eyuicer's property 7 states that com- 
plexity may be responsive to the order of statements. It does not 
contradict the statement made by Kitchenham, Pfleeger, and Fen- 
ton: 

"a reordering would not necessarily be more structurally 
complex!' 

REFERENCES 
[I1 LC. Briand, K. El Emam, and S. Morasca, "On the Application of 

Measurement Theory in Software Engineering," Empirical Software 
Eng.: An Int'l I., vol. 1,  no. 1, pp. 61-88,1996. 

[21 L.C. Briand, S. Morasca, and V.R. Basili, "Property Based Soft- 
ware Engineering Measurement," IEEE Trans. Software Eng., vol. 
22, no. 1, pp. 6886, Jan. 1996. 

[31 B. Kitchenham, S.L. Pfleeger, and N. Fenton, 'Towards a Frame- 
work for Software Validation Measures," IEEE Trans. Software 
Eng., vol. 21, no. 12, pp. 929-944, Dec. 1995. 

[41 E.J. Weyuker "Evaluating Software Complexity Measures," IEEE 
Trans. on Software Eng., vol. 14, no. 9, pp. 1,3574365, Sept. 1988. 

[51 H. Zuse, Software Complexify: Measures and Methods. De Gruyter, 
1991. 

Just as Zuse's criticism in [51 with respect to Axioms 6,7, and 9 was 
caused by a misinterpretation or misrepresentation, Kitchenham, 
Pfleeger, and Fenton have misinterpreted Weyuker's axiom 7. ' 



Response to: 
Comments on "Property-Based Software 
Engineering Measurement: Refining the 

Additivity Properties" 
Lionel C. Briand, Sandro Morasca, Member, IEEE Computer 

Society, and Victor R. Basili, Fellow, IEEE 

POELS AND DEDENE have c o r r d y  identified a few inconsistenaes 
related to the use of the union operator for modules of a modular 
system we defined in [I]. We gratefully acknowledge their com- 
ments, which show the increasing in-t in the laying of theoreti- 
cal bases for Software Engherhg measurement. 

We first show how the inconsistenaes identified can be easily 
fixed without any conceptual change or addition to the axiomatic 
measurement framework proposed in [I]. Then, we discuss the 
more complex alternative proposed by Pwls and Dedene. 

The problems in [I1 are listed below. Points 2 and 4 are actual 
inconsistenaes, while points 3 and 5 are just redundanaes. In 
what follows, we first report the original text of Ill; then we show 
how it should be corrected. 

Original Text 

Union. The union of modules mi = &,,> and r q  = CE,,,~ L i >  
(notation: mi u mi) is the module eE, u &,,, R, u R+. In Fig. 1, 

the union of modules ml and m3 is module m13 = cia, b, c, d, e, f, g, 
i, j, k ml, (eb, iu. eb, f>, ec, d>, cc, g>, ed, B, ce, 9, cf, v, <f, b, 
cg, m>, <it j>, <k, p ]  (area filled with or or 
fgggm$. 

Modifications 
Relationship cc, b> does not belong to the set of relationships of 
module mIy the union of modules m, and m, 

-* - 
exist between the elements belonging to mi and mi, ie., 

InputR(m;) n OutputR(m;) = 0 and InputR(m;) n Out- 

putR(m;) = 0, then 

Modifications 
The additional condition "If no relationships exist between the ele- 
ments belonging to m; and mi, ie, InputR(m;) n OutputR(m; ) = 
0 and InputR(m;) A OutputR(m;) = 0" is redundant It is akeady 

implied by the fact that m" = m; u mi. 

Original Text 

PROPERTY ~OUPUNG.~:  Merging of Modules. Let MS' = <F, R', 
M'> and MS" = cE", R", M"> be two modular systems such 
that E' = E", R' = R", and M = M' - (m;, mi 1 u [m"], 

where m; = <Em,,, R,,,.,>, mi = k l > ,  and m" = <Em-, 

La, with mi E M', m; E M', m" e M', and = Fm.1 u 
and R,,," = u &,2. (The two modules m; and mi 

are replaced by the module m", whose elements and rela- 
tionships are the union of those of m; and mi  .) Then 

[Coupiing(rn;) + Coupling(m; 2 Coupling(m") I 

Coupling(MS') 2 CouplingbB")1 (Coupling-M 0 

Modifications 
The condition must be modified as follows. 

Let MY = cF, FC, M'> and h4S" = <E", R", M"> be two modular 
systems such that E = E", R' = R", and M" = M' - {m;, mi)  U {m"), 

where m; = Gel>, mi = c&, Q2>, and m" = el&, &->, 
with m; E M', mi E M', m" P M', and Q,, = u and %. = 

It,,,,,, u %,2 u {<e,, e2> E R I (el E Em, and ez E Em2) or (el E 

e2 E Em,)\. m e  two modules m; and m; m replaced by the mod- 
ule m", whose elements and relationships are the union of those of 

Original Text m; and m; .) 

If m" = m; u mi, then there would be no relationships in m" 
PROPERTY COHESION.4: Cohesive Modules. Let MS' = cE, R M'> conn&g elements that originally were in m; and m; . 

and h4V = <E, R, M"> be two modular systems (with the 
same underlying system eE. b) such that M" = M' - 
lm;, mil U (m"1, with mi E M', mi E M', m" e? M', and 

m" = m; U mi. (The two modules mi and mi are replaced 
by the module m", union of mi and m; .) If no relationships 

LC. Briand is with the Fraunhofer Institute for ~ m m t n l  Software Engi- 
neering (IESE), SnvrrmicMt 6, D-67661 Kniurslrrutan, h n y .  
E-mall: b r h m d ~ . p l g d e .  
S. Momca is mith the Politecnico di  MI^. Sede di Como, Piaanle Gerbetto 6,  
1-2.2100 6mo, Italy. E-maik m o e t . p o l i m i . i t .  
V.R. Bnn'Ii is with the Instifutefor Adwnuzf Computer Studies, Department of 
Computer Science, UnmnSily OfMnryhnd, College Park, MD 20742. 
E-mail: basili@cs.umdpdu. 

Original Text ..- 

PROPERTY COUPLING.5. Disjoint Module Additivity. Let MS' = 
<E, R, M'> and MS" = <E, R, M"> be two modular systems 
(with the same underlying system cE, R>) such that M" = 
M' - lm;, m; I U (m"], with mi E M', mi E M', m" Pr M', 

and m" = m; U mi. (The two modules mi and mi are re- 
placed by the module m", union of mi and mi .) If no rela- 
tionships exist between the elements belonging to m; and 

mi, ie., InputR(m;) n OutputR(m;) = 0 and InputR(m;) 

n OutputR(m:) = 0, then 
Manuscript mvmcd Feb 10,1997; reoisai f ir .  18,1997. 
R~~~nzmmdalfor acceptance by sH. i!&. [Coupling(m;) + Coupiing(m;) = Coupling(ml') I 
For information on obtaining reprints of this article, please send e-mail to: Coupling(MS') = Coupling(Ms") 1 (C0upling.v) 
transse8computer.org. nnd reference IEEECS Log Number 596154. 

1997 IEEE. Reprinted, with permission, from IEEE Transactions on 
Software Engineering, vol. 23, no. 3, pp. 196-197; March 1997 



Modifications 
The additional condition "If no relationships exist between the ele- 
ments belonging to m; and mi, i.e., InputR(m;) n OutputR(m; ) = 

0 and InputR(m; ) n OutputR(m;) = 0" is redundant. It is already 

implied by the fact that m" = m; u m;. 

As Poels and Dedene point out, it is important that inconsistenaes 
be identified and removed. This will allow for a better under- 
standing and refinement of the axiomatic framework proposed in 
[I]. In turn, it will lead to a more rigorous definition of software 
attributes and better measurement. 

In their comments, Poels and Dedene have explored additivity, 
one of the most important and studied property in measurement. 
They propose the introduction of a new union operator for mod- 
ules. They substantiate their idea by the fact that it is important to 
discriminate between modules that are disjoint and modules that, 
in addition to being dispi t ,  are not connected. 

However, it is our position that we need to keep the set of o p  
erators as small as possible, since this will make it easier for re- 
searchers and practitioners to understand and discuss the proper- 
ties proposed in [I] for different software attributes. That is why 
we introduced only a few operators (union, intersection, empty 
module, etc.) for modules, whose syntax and semantics were in- 
tentionally kept dose to the syntax and semantics for sets, for 
which these operators are usually applied. One more union o p  
erator would be redundant, i.e., it would not add much expres- 
siveness to the module "algebra" defined in [I]. If needed, the new 
union operator proposed by Poels and Dedene can be defined 
based on the other module operators and set operators. 

[I1 L.C. Briand, S. Morasca, and V.R. Basili, "Property-Bad Software 
. . Engineaing Measurement," IEEE Trans. S o w e  Eng., vol. 22, no. 

1, pp. 68-86, Jan 1996. 



y6,5 1 7-3 * *-? 
J 

3 ~ ~ 0 7  / k i  
Analytical and Empirical Evaluation of Software Reuse Metrics* 

f & 
Prem Devanbu, Sakke Karstu, WdcBlio Melo and W~lliam Thomas 

Abst rac t  
How much can be saved by using existing software 

components when developing new software systems? 
With the increasing adoption of reuse methods and 
technologies, this question becomes critical. However, 
directly tracking the actual cost savings due to reuse is 
difficult. A worthy goal would be to develop a method 
of measuring the savings indirectly by analyzing the 
code for reuse of components. The focus of this paper 
is to evaluate how well several published software reuse 
metrics measure the "time, money and quality" bene- 
fits of software reuse. We conduct this evaluati~n both 
analytically and empirically. On the analytic front, we 
introduce some properties that should arguably hold 
of any measure of "time, money and quality" benefit 
due to reuse. We ansess several existing software reuse 
metrics using these properties. Empin'cally, we con- 
structed a toolset (using GEN++) to gather data on 
all published reuse metries from Cf + code; then, using 
some productivity and quality data from "nearly repli- 
cated" student projects at the University of Maryland, 
we evaluate the relationship between the known met- 
r i a  and the process data. Our empirical study sheds 
some light on the applicability of our different analytic 
properties, and has raised some practical issues to be 
addressed as we undertake broader study of reuse met- 
rics in industrial projects. 

1 Introduction 
Software reuse is considered to be one of the most 

promising approaches for increasing productivity. By 
re-using existing software, in addition not having to 
re-implement it, one can avoid downstream costs of 
maintaining additional code, and (if the re-used arti- 
fact has been thoroughly tested) increase the overall 
quality of the software product. Several industrial and 
governmental initiatives are underway to increase the 
reuse of software, involving both adjustments to pro- 
cess, and the adoption of new technologies. As these 
efforts mature, it is very important to demonstrate to 
management and funding agencies that reuse makes 
good business sense; to this end, it is necessary to have 
methods to gather and furnish clear financial evidence 
of the benefits of reuse in real projects. Thus, we need 
to define good metrics that capture these benefits, and 
develop tools and processes to allow the effective use 
of these metrics. 

'Dwsnbu is with the Software k Systmu, Resesrch Labma- 
tory, AT&T Bell Laboratories, 600 Mountain Av., Murray Hill 
NJ 07974, USA. Karstu is with Michigan Technological Univer- 
sity, Houghton, MI. Melo and Thomas are with the Univdty  of 
Mzwyland, Inatitate for Advanced Computer Studies and Corn- 
puta Science Dept., W e g e  Park, MD 20742 USA. 

1996 IEEE. Reprinted, with permis 
International Conference on Software Engin 

We can think of nuse benejit of a project or system, 
as being the normalized (percentage) financial gain due 
to reuse. This is an example of an eztenzol process 
attribute (see [8]), concerned with an external in ut 
(money) into the software development process. u&r- 
tunately, the direct measurement of the actual finan- 
cial impact of reuse in a system can be difficult. The 
project as a whole may not have the maeh'mery in place 
to gather financial data. There are also other dif'Ecul- 
ties associated with measuring the financial impact of 
reuse. There are different types of r e w r e u s e  of spec- 
ifications, of design, and code. Specification and design 
processes often have informal products (sueh as natural 
language documents) which can be quite incommensu- 
rate. Even in reuse of code, there are different modw 
operandi, from the primitive "cut, edit, and paste", to 
the formal, controlled language based approaches pro- 
vided in languages such as C++ and ML. In any case, 
to determine cost savings, one may have to ask indi- 
vidual developers to estimate the financial benefit of 
the code that they reused. This information may be 
unreliable and inconsistent. 

Fortunately, one of the key approaches to reuse is 
the use of features such as functions and modules in 
modem programming languages. In this context, one 
can find evidence of (some kinds of) reuse directly in 
the code; thus, it may be possible to find an indimd 
measure of the benefits of software code) reuse di- 
rectly in the code. Measures derivab I e directly from 
the code are internal measures. Several such m m  
sures of software reuse have been proposed in the liter- 
ature [2,4,9, 11,141. This paper is concerned with the 
evaluation of how well various indirect, internal mea- 
sures of software reuse actually measure the relevant 
ezternal process attribute: reuse benefit. 

The rest of the paper is organized as follows. First, 
following the lead of Weyuker [16] in the field of com- 
plexity measures, we develop some general prvperfiesor 
axioms that (we argue should apply to any measure of 
reuse benefit. Althoug b (for reasons discussed above) it 
is difficult to develop a direct, external measure of reuse 
benefit, these sxio11~ give us a yardstick to evaluate 
candidate internal measures. We then look at the in- 
ternal measures of reuse reported in the literature and 
analytically examine their relationship to these prop 
erties. Finally, we describe an empirical evaluation of 
these metrics. We have constructed tools to gather the 
internal metrics, and methods to gather correspond- 
ing process data. We use statistical methods to assess 
the relationship of the various internal metrics with 
the corresponding process data. The results suggest 
some possible improvements to the published internal 
measures of software reuse. This paper is aimed at es- 
tablishing a broad framework to assist in the study of 

ision, from Proceedings of the 18th 
.eering (ICSE-18); March 1996; pp. 189-199 



reuse metrics, covering: a) the formulation of analytic 
properties, b) analytic evaluation of published metrics, 
c) construction of metrics gatherin tools, and d) em- 
pirical evaluation which in turn she& some light on the 
analytic properties. 

2 Indirect Measurement of Reuse Ben- 
efit 

Fenton [8] categorizes software measures along two 
orthogonal axes. The first is the process/product axis: 
a metric may measure an attribute of software product, 
(e.g., quality of code), or an attribute of software pro- 
cess (e.g., cost of design review meetings). Another, 
orthogonal axis is the internal/external axls. A metric 
may measure an internal attribute (e.g., the number 
of loops in a module), or an external attribute (e.g., 
maintainability of a module). Our goal is to develop 
a reasonabie way of measuring the actual financial im- 
pact of reusing software. By Fenton's categorization, 
this is an external process attribute. We would like 
to measure reuse benefit as a normalized measure of 
the degree of cost savings achieved by adopting soft- 
ware reuse. Thus, we define Rb, the reuse benefit of a 
system S,  in terms of development cost (C) as follows: 

C(S without reuse) - C( S with reuse) 
Ra(S) = 

C(S without reuse) 
(1) 

It is important to note here that we are really con- 
cerned with the cost of development, which is quite 
different from the incremental benefit to revenue from 
the product. It may be possible that by doing reuse, 
we bring out the product to market earlier, and with 
greater functionality. This may well increase revenue. 
Our model ignores this: Ra is solely concerned with the 
effect on coding costs. 

For reasons given in the introduction, it can be dif- 
ficult to get a reasonable direct measure of Rb. When 
direct measurement is difficult, indirect measures have 
been used. For example, the external process attribute 
of maintainability is often measured indirectly by inter- 
nal product measures of complezity such as cyclomatic 
complexity. Likewise, the internal product measure of 
software size (in units of NCSL is considered to be a 
reasonable indirect measure of t  h e external process at- 
tribute of development cost. Following this approach, 
we are concerned with the development of an indirect 
internal measurement of Rb, the reuse benefit of a sys- 
tem S, from the product, by searching the source code 
of S for instances of language-based reuse such as sub- 
routine calls. 

With such an indirect measure, there is a risk that 
we are not really measuring what we seek to measure; 
we would therefore like to validate our indirect mea- 
sure in some way. One approach to validating indirect 
measures is to perform empirical studies, whereby one 
gathers statistical data about both the indirect and di- 
rect measures of the attribute in question, and tries 
to show that there are some correlations between the 
diiect and indirect measures, and perhaps construct a 
regression model. A parallel (or perhaps preceding) ap- 
proach, proposed by Weyuker [16] and others is to enu- 
merate some formal properties that should hold of any 

measure (direct or indirect) of the attribute in ques- 
tion. Then, given a candidate measure, one can eval- 
uate whether these properties apply to it. Weyuker 
used this approach to evaluate several internal mea- 
sures of complexity. Of course, we are using this ap- 
proach differently than Weyuker: she "axiomatizedP" 
properties of a complexity internal measure, and evalu- 
ated several internal complexity measures against these 
properties. We are seeking to "axiomatize" an exter- 
nal measure-reuse benefit-and use these "axioms" 
to evaluate and develop indirect internal measures of 
reuse benefit. In addition, measuring reuse benefit is 
quite different from measuring complexity; thus many 
of her axioms aren't relevant in our context. However, 
her Property 4 (implementation dependence) is crit- 
ically important in measuring reuse, and in fact, we 
reformulate and strengthen Property 4 in several ways 
applicable particularly to measures of reuse benefit. 

We begin with some notation, and present some 
ioms" , moving from the simple to the more complex. 

2.1 Notation 
Some definitions of the terminology that will be used 

in this paper: 

Si = A software system or a subsystem whichever is 
appropriate, subscript i is to distinguish the sys- 
tems from one another. 

C j  = A software component (module, class, function, 
subsystem). With a superscript e (e.g.,) "c? 
refers to an external component, which existed 
independently of the system in which it is being 
used. 

= The number of times component cl is 

Cost(X) = The cost of developing system or compo- 
nent X. it may often be hard to determine the 
actual cost; we use size as an indirect measure of 
cost. 

Function(S) = The "meaning" of the system S, &om 
the customer's point of view. Two systems SP 
and S 2  are equivalent for a customer if 

We also use (2) to denote equivalence of compo- 
nents. 

Before we present our "axi~ms'~ of reuse benefit, it 
is important to emphasize that our goal here is pre- 
cisely not to claim that our properties are the final 
and complete word on reuse benefit measures; we mm- 
ply offer them as a candidate set for further addi- 
tions/modifications. 

-- - 

We use the quotation w k s  hen because thw arc not nec- 
essarily axioms in the formal mathepu~tid sense, but rather a 
list of properties that would appear to most people to hold of 
the measurea in question. 



2.2 Minimal and Maximal Rb 
To begin with, we'd like to postulate what the max- 

imum and minimum possible values of reuse benefit 
are. First, consider the system which uses no external 
components, and uses each internal component at most 
once. Such a system does not derive any cost savings 
from reuse, and should have a reuse benefit of zero. It 
is certainly possible (if silly) to construct such a sys 
tem 3 which gives us the minimal possible value of Rb, 
when: 

for all internal components ck and all external com- 
ponents cje. In this case, 

This is a little optimistic: it is also possible that 
there is actually a negative Rb. We might have a case 
where component provides only a very trivial function- 
ality, and/or is very difficult to locate and understand, 
and/or involves a great deal of set-up or "glue" code 
to use. For the purposes of this paper, we assume that 
we only have "rational" reuse, and that there is actu- 
ally a net positive benefit to every re-used component, 
perhaps after some number of reuses. 

Now, for the maximal value (or upper bound) we 
consider a system that is built in its entirety by reusing 
external components. Such a system would still need 
some "glue" to tie all the external components b 
gether; writin the "glue" would involve some (possibly 
very small) $ ditional cost. So the maximal value of 
reuse benefit would be strictly less than one2. Thus, 
we have, for any system S: 

Property 1 VS, 0 5 Ra(S) < 1 

2.3 Implementation Dependence 
Weyuker's Property 4 [16] asserts that there are sys- 

tems with the same function, but different complexity 
measures (based on the implementation style). Thii 
implementation dependence is a crucial aspect that we 
demand of any good measure of reuse benefit. Clearly, 
it is possible to produce the same functionality with 
and without reuse. Our measure must be able to dim 
tinguish between one that enjoys a great deal benefit of 
from reuse and one that doesn't. Thus, we insist that: 

Property 2 
3 S1, S2 such that Function(Sl) = Function(S2) 
but Rs(S1) # Rb(S2) 

Property 2 simply states that Rb's may be different for 
diierent implementations; we need to make a stronger 
requirement for a reuse benefit measure. We want to 
be able to compare different implementations, and see 
which one is better or worse with res~ect to reuse. For 
example, given a system S with a nonzero reuse benefit, 
we should be able to find a way to syntactically perturb 
S, eliminate some reuse, and create a system that is 
functionally identical, but has less reuse. 

*If it were one, that would mean that we are simply using an 
entire exbting system. 

Property 3 V S such that Rb(S) > 0, 
3 such that Fundion(S) = ~undion(3)  
and Rb(S) > ~ b ( $  

Property (3) is fundamentally important. It says 
that by changing the implementation, you can increase 
(or reduce) reuse while maintaining functionality. Us- 
ing this property, we can successively consider differ- 
ent implementation techniques that increase reuse in a 
system, and demand that each of these show a corre- 
sponding increase in any good measure of reuse ben- 
efit. However, in the ensuing discussion, we always 
perturb an existing system by eliminating some reuse, 
while leaving the functionality untouched. We then 
demand that this perturbation reduce the Rb. This 
approach simplifies the analysis of the desired impact 
on the reuse benefit. The rest of this section consid- 
ers different kinds of reuse implementation techniques 
in turn and develops a specialization of (3) for each 
technique. 

First, we can expect that a reuse benefit measure 
will be sensitive to the number of times a component 
is reused. Thus, suppose we have a system S where a 
component c is reused n times (for n 2 2, in case it is 
an internal component: it must be used at least twice 
to be considered reused). We denote this system by 
q. Now suppose we create a mutation of this system, 
with functionality identical to it: %'I, by eliminating 
one reuse of the component c, and re-implementing the 
functionality by "open-coding" c; we also assume that 
the usage of the other components is unaffected. We 
can now demand the following axiom of a candidate & 
measure3 

Property 4 VS, c Rb(q)  > &(qml)  

Reuse benefit measures should also be sensitive to 
the cost of the component being reused. Reusing 
a more expensive component is more beneficial than 
reusing a cheaper component. Consider a system S, 
which reuses two components C and c each at least 
once; also assume that Cost(C) > Cost(c). Now con- 
sider two perturbations of S, Sz and S;. Sz (respec- 
tively, SF) is created from S by eliminating one reuse 
of C (respectively, c) and re-implementing its function- 
ality. Now we can say: 

Property 5 If Cost(C) > Cost(c) then 
Ra(S;) > Ra(%) 
It should also be the case that reusing external com- 

ponents is in general better than reusing internal wm- 
ponents. Thus consider a system which uses an ex- 
ternal (preexisting) com onent ce for a certain func- 
tionality (irrespective of tow often it is reused). We 
denote this by See. Now consider a perturbation of S, 
which replaces c by a custom-implemented, (for this 
system) equivalent component c. Call this new system 
Se, which we will assume has the same functionality. 
In this case, we demand that: 

3Thk axiom doesn't account for initial difficulties (during the 
first several reuses) involved in learning about an external corn- 
ponmt (or implementing it in a re-usable fashion, if it is an 
i n t d  component). 



Consider another system S, ..%, where the external 
component ce is used r, times. Now we eliminate the 
nth reuse of an external component ce, and replace it 
with a ase of a different, identicd external component 
ie, thereby yielding system S,..--I,~. This often hap- 
pens in large systems: a careless developer, unaware 
of a previously incorporated external component that 
performs a certain function, incorporates a distinct, 
but functionally identical one again from an external 
repository or library. The incorporation of this new 
code involves needless additional work to identify, pro- 
cure, and validate the component; therefore, the added 
extra component should not increase the benefit from 
reuse: 

Property 7 Rb(S,e+) >_ Rb(S,=.=-l , t e )  

Finally, we have an axiom that relates to "cut & 
paste" reuse. For this, consider a system S with three 
variants that are functionally identical: S+ S,- and 
S,.. S+ is implemented by simply adding custom- 
crafted code to S. Sen. is implemented by obtaining a 
component cm from somewhere (internal or external) 
modifying it "slightly" (see below) and linking it into 
S. Sew is created in a similar manner to Sen, except 
that an additional verbatim use cV has been included to 
implement it. In this case, we should expect that ver- 
batim reuse is better than "cut & pasten reuse which 
is better than no reuse at all: 

Since the term "slightly modified* is hard to define, 
Property 8 can be particularly difficult to measure in a 
repeatable way; perhaps for this reason, most published 
measures ignore this property, with the exception of 
[2]. However, as discussed below, our empirical study 
suggests that this is an important property. 

Most existing measures of reuse benefit turn out to 
be not strictly consistent with one or more of the prop- 
erties listed above; in fact, as we shall see below, there 
are some inherent difficulties in any approach to mea- 
suring reuse. 

3 Analytic Evaluation of Reuse Metrics 
There are many models and metrics [3, 4, 5, 10, 

11, 141 in the literature that try to evaluate the degree 
of reuse in a software system. Most of these measures 
are concerned with estimating the actual financial ben- 
efits due to reuse. Bieman [3] suggests a range of mea- 
sures of various reuse occurrences in object-oriented 
software. Our theoretical framework, as well as the 
empirical study, is concerned more with measures that 
yield a single number that could potentially estimate . 
the savings due to reuse. In this section we will com- 
pare some of these models to our proposed set of prop 
erties of reuse benefit measures. 
3.1 Producer/Consumer Models 

Several researchers [5, 11, 10, 4, 141 seek to evalu- 
ate the benefits of reuse in a corporation. They use 
different models, but essentially, they all comprise a 

producer-consuner framework. Reusable artifacts are 
created by the producer (e.g., a domain engineering 
group which produces reusable software) and re-used 
by several consumers. The producer groups have to 
undertake extra cost burdens to create high-quality 
reusable assets. Consumers benefit by avoiding r e  
implementation costs. The return on the asset pro- 
ducer's investment is proportional to use by consumers. 
Businesscase oriented models of reuse metries seek to 
measure the overall benefit to the corporation of r e  
use practices: thus they include measurements of code 
size, relative cost of producing re-usable software, num- 
ber of reuses etc, into a unified model that can com- 
bine all these numbers into a figure for overall cost 
benefit of reuse. Gatbey et al have investigated dif- 
ferent models for computing the financial benefits of 
reuse [ll ,  101. Poulin et a1 [14] have developed and 
institutionalized a comprehensive reuse program that 
incorporates a producer/consumer financial model of 
reuse benefits. Bolliger and Pfleeger [4] propose finan- 
cial and accounting practices to motivate multi-project 
reuse, based on the producer/consumer model. 

A key component of all these efforts is a model for 
the amount of savings during the coding phase, directly 
attributable to reuse. However, the methods used for 
computing coding-phase savings in [4, 14, 11, 101 do 
not necessarily conform to the properties presented in 
f 2.3. For example Poulin [14] gives reuse benefit credit 
only for external components, and for each reused wm- 
ponent just once, regardless of the number of times it 
is called. Hi argument is that the cost of implement- 
ing the component is saved only once; after that each 
additional use should not get additional credit. Pro- 
grammers should be expected to use components that 
are in the system as a matter of course, and should not 
get credit for that. Since larger components are given 
more credit, their treatment of ezternal component is 
consistent with the Property 5. However, the "redit 
for one use onlyn assumption is not consistent wlth our 
Property (4). For his computation of the cost saving 
due to re-use, he uses a product reuse level number, 
which is a normalized ratio of the number of lines of 
reused source instructions (RSI) to the total number of 
lines. To estimate the actual cost savings (Reuse Cost 
Avoidance, or RCA) he multiplies the RSI number by 
a per-line cost savings. Chen et a1 [5] use a very sim- 
ilar computation, but have constructed a repeatable, 
tool-based measurement apparatus. 

Given a project where all the pro ammers can al- 
ways be expected to be aware of anflikely to use all 
the reusable components, Pouli's argument for giv- 
ing credit only once, to just the linecount of the exter- 
nal components, seems applicable. But in many large, 
long-lived software systems, with frequent personnel 
turnover, programmers may be unaware of reusable 
components, whether internal or external. Conversa- 
tions with developers have revealed cases where the 
same function had been re-implemented dozens of 
times in a very large project. Such practices complicate 
the calculation of the reuse benefit. As a specific ex- 
ample, consider a 1,000,000 line system S with 400,000 
lines of RSI (including a 2000-line component cl) Now, 
assume that subsequently, a programmer (unaware of 
the existence of cl) creates Sr , with some new function- 



ality, by retrieving and using a component cz (with 
functionality identical to cl, but implemented differ- 
ently) of the same length (2000 l ies)  from an external 
repository. Now suppose a more careful programmer, 
creates Sz from Sl, by adding another reuse of the com- 
ponent cl. By Property (7), Sl should be assigned a 
higher reuse benefit. However, usin the RSI count, Sz 
would be assigned a higher normdiized reuse benefit. 
Even if the existing component was hard to find (be- 
cause of poor retrieval support), it is unclear whether 
the needless introduction of a new external component 
predicates a greater benefit from reuse. 

This kind of needless re-use, by "re-discovering" ex- 
ternal components, might inflate the RSI count and 
thus complicate the return on investment computa- 
tions. This would appear to present difficulties for 
both Ill] and [14]. Intuitively, the problem seems to 
arise from the exclusive focus on the reused code (RSI) 
rather than the manner in which it is reused in the 
rest of the code. Thus simply by inflating RSI, without 
re-using it effectively, one can get an inflated relative 
benefit number. On the other hand, consider a system 
that is implemented without any external components 
at all, but which incorporates a highly modularized and 
parametrized architecture which allows a high degree 
of reuse of internal (custom crafted) components. Such 
a system would have an RSI of zero, but might well re- 
Jize hi h levels of reuse benefit. Our empirical data 
(See f 47 includes some student projects that illustrate 
this possibility. 

Some of the other measures discussed in this sec- 
tion, notably the measures of Frakes and Terry, and 
the R., measure, don't focus solely on the RSI, but 
give credit for each reuse of a component. Poulin gives 
examples of spuriously inflated reuse benefit resulting 
from such measures. Thus both methods are subject 
to anomalies, albeit in different contexts. 

Finally, the RSI measure, (like all measures d i s  
cussed in this section with the exception of RR from 
Section f 3.4 does not give any credit for non-verbatim 
reuse, i.e, t h e reuse of components that have been 
adapted somewhat; RSI is thus not consistent with 
Property 8. Our case study suggests that there is a sig- 
nificant degree of benefit from re-using partially mod- 
ified components. 

3.2 Reuse Level Models 
Unlike the work described in the previous chapter, 

which is concerned exclusively with how much code is 
being reused, Frakes and Terry [9] focus on how code 
is being reused. Their reuse level and frequency mea- 
sures are concerned with how frequently components 
are being used. They distinguish between internal and 
external reuse; total reuse is the sum of these two. 

In calculation of their reuse level and reuse fre- 
quency, Frakes and Terry use threshold levels to de- 
termine when a component is considered being reused. 
A threshold is a value that determines when a module 
will be reused. If a threshold is 2 then an item that 
has been used more than two times is considered to be 
reused. Different threshold values (respectively, ETL 
and ITL can be used for external reuse and internal d reuse. iven these numbers, the number of internal 
and external components (resp., IU and EU) which are 

used more than the threshold can be counted; the total 
number of components is given by T. Frakes and Terry 
also count the frequency of reuse: the number of refer- 
ences to internal and external items (which are reused 
more than the threshold) are counted by IUF and EUF, 
and the total number of references is denoted by TF. 
Given these numbers, the overall reuse level RL) and 6 reuse frequency (RF) measures are compute thus: 

R F  = IUF + E U F  
TF 

The RL & RF measures are two different measures of 
reuse level, which could both be used as indirect mea- 
sures of reuse benefit. For this purpose, these measures 
differ from the RSI measure used by [14]; here, there 
is actually a focus on how the reusable components are 
used, rather than just the total line count of reused 
code. In addition Frakes and Terry give credit for both 
internal and external components. However, RL and 
RF are different. After a given threshold value, RL 
is not sensitive to the number of uses of a particular 
component; therefore, it does not strictly conform to 
Property (4). RF, on the other hand, is usage sensitive. 

However, these measures are insensitive to the cost 
of the modules being reused; thus, they don't incorpo- 
rate Property (5). However, (91 does describe a sim- 
ple method to weight these measures based on compu- 
tation of certain ratios of the average sizes of reused 
modules. While this weighting" method accounts 
for the size to some extent, it is not sensitive to the 
level of reuse of modules of various sizes. According to 
Property(B), it is better to reuse larger modules (ifsize 
is taken as a good proxy for cost). 

Finally, RL and R F  only count verbatim reuse; if 
a slightly modified version of an existing component is 
used a ain, it would be treated as a use of a new compo- 
nent; Bepending on the level at which the threshold is 
set, this may not be recognized as being re-used. Thus, 
RC and R F  may not always conform to Property 8. 
3.3 Size and Frequency Metric - Raf 

In this section, we describe another normalized in- 
direct measure of reuse benefit, R,f , first described in 
[7]. Thii measure tries to account for both how much 
code is being reused, as well as  in what manner it is 
being reused (sf stands for size and jiequency) It uses 
a notion of eqanded code size Sizetf, which indicates 
how much code would have to be wntten to implement 
the system, had there not been any reuse. The actual 
code size is denoted by Sizeact. We model our mea- 
sures in general thus: 

Size, - Size,,* 
Raf (s)  = Size, 

The form of this equation is almost identical with 
the form of the equation (1) on page 2. In fact, equa- 
tion (3) follows directly from equation (1) using a sim- 
ple two step argument. First, we take the size of a 



system to be a good indicator of the effort taken to im- 
plement (and thus the cost of) the system. Second, we 
take the expanded size Size, of the system as a proxy 
for the cost of the system without reuse, and Sizeact 
be a proxy of the actual cost of implementing the sys- 
tem. Sizeact is simply the number of statements in the 
newly written functions of implemented system (not 
counting reused pre-existing code from external repos- 
itories). This is a fixed number, computed in the usual 
way. It should be immediately clear (since Sizeaci is a 
positive non zero number) that if Sizeaf 2 Sizeact, 
the indirect measure defmed above conforms strictly to 
Property 1) on page 3. 

The de k nition of R, makes use of the function call 
graph of a program: 

Definition 1 A callgraph CG S) for a system S is a 
connected, directed graph roote 6 at the main procedure, 
and described by a pair ( Ns, Es ) where the nodes Ns 
represent the finctions in the system, and the edges Es 
represent the finction invocations. For each node n in 
Ns, the in-degree (the number of calls to n) of n is 
denoted by caIls(n), and the code size ofn by size(n). 
EXT(S) is the set of nodes in Ns that represent func- 
tions from edernal libraries, and INT(S) is the rest. 

Size, (S) - Sizeact (S) 
Rsr(S) = 

Sizesf (S) (6) 

With this definition, it's easy to see that R, satisfies 
Property (1). In the case where there is no external 
component use, and each internal component is used 
only once, we get Size, = Sizeac* ; in all other cases, 
Size, > Sizead, as desired. 

The Size, measure is sensitive both to the size of 
the function icing reused, and the number of times it 
is being used. It is easy to see that it conforms to 
Properties (4) and (5) provided we assume that size is 
a good proxy for cost. We remind the reader here that 
Properties (2 & 3) are weaker preliminaries to Property 
(4). . v 

Now consider Property (6). Suppose we have an 
external function component ce in S, of size size(ce) 
which is used i times (i > 1). Now suppose we create 

by removing one use of ce, and re-implementing ce 
as a component cint (internal to S); we also make the 
reasonable assumption that the size of ce is much larger 
than the difference between size(ce) and size(cin'), 
(i.e.,): 

Under this assumption, we can easily show (the details 
are omitted here for brevity, and may be found in [7]) 
that 

as specified by Property (6). 
Now we turn to property (7). Assume that we have 

a system S with an external function cf, invoked i times 
(i > 1). Now we create a mutation 9, where one use of 
cf is replaced by a functionally identical new external 
fiinction c;. 

In the case where size(cf) 2 size(c3) we can show 
a result consistent with Property (7): 

Thus, unlike the purely size-sensitive metrics d+ 
scribed in 3 3.1, Raf doesn't get fooled by the inclu- 
sion of a functionally identical component of the same 
or smaller size. Unfortunately, if the new component is 
larger, this measure is also fooled, and reports a gain in 
reuse ! In general, such phenomena as needlessly large 
components are likely to pose difficulties of any practi- 
cal tool that derives an indirect reuse benefit measure 
from the code. 

Finally, R, only counts verbatim reuse. Use of 
a slightly modified component is not given any reuse 
credit; it can be easily shown that RSf does not con- 
form to Property 8. We now describe a measure that 
actually accounts for non-verbatim reuse. 
3.4 Reuse Ratio 

The reuse ratio has been used for many years in the 
NASA Software Engineering Laboratory [13]. Recently 
this metric has been further investigated on object- 
oriented systems developed in C++ and Ada [2, 151. 
It is the only measure examined here that addresses 
Property 8. Thii measure is defined for a system S, 
with components Ci, i . . . n. For each component Ci, 
we use a Size(Ci), as before. But we now also have 
a change ratio Changei (where 0 < Changei 5 1 ) 
which measures what portion of the component has 
been hand-crafted (added, modified or deleted) for in- 
clusion into S. Thus, for a component Ci drawn from a 
library and used verbatim, Changei would be zero, and 
for a component for which exactly 50% of the code has 
been rewritten Changei would be 0.5. In practice, it is 
difficult to account precisely for the de ree of custom 
coding in a reused component. In 12, 1 8  thii problem 
has been handled by asking the reuser if 25% or more 
of a component had been changed; then, the value of 
Changei is thresholded as follows (IR is a binary value 
standing for js reused) 

IR(i) = 1 if Changei < 0.25 , 0 otherwise 

Using these, Melo et a1 define RR, the reuse ratio 
measure, thus: 

The com utation shown in equation 8 is very similar 
to that use{ by Poulin et a1 in the product reuse level 
number. Indeed, if the IR(i s were all set to zero, 
except for the components w I ich were reused verba- 
tim, the computation is identical. Thus, the analytical 
evaluation here is identical to the discussion in 3 3.1, 



[ Property 11 K,f I RL / RF I RS1 I KR ] 

Table 1: Summary of Reuse Measure Conformance to 
Reuse Benefit Properties. An *Xn indicates that the 
measure conforms to the property, a "-" indicates non- 
conformance, and a "*" indicates partial conformance. 

except for one vital difference: RR is the only mea- 
sure discussed in this paper that actually conforms to 
Property 8. Of course, it conforms only for components 
which are modified 25% or less. This deficiency stems 
from the difficulty of identifying the "degree of cut- 
ting and pastingn in modified components. However, 
we are experimenting with some new algorithms due 
to Baker [l] which might lead to  repeatable, analytic 
approaches to quantifying the level of modification. 

3.5 Discussion 
Table 1 provides a summary of the examined reuse 

measures in terms of their conformance to the proper- 
ties listed in section 2. 

While all of the examined reuse measures satisfy 
properties 2 and 3, none of the measures conform to 
all properties. Property 1 requires that reuse benefit 
be greater than zero and strictly less than one, however, 
the definitions of RR and RSI do not preclude a system 
composed entirely of reused components, so it is possi- 
ble to have RR or RSI equal to 1. There also are some 
similarly unusual cases where RL and RF can be equal 
to 1. So in light of such unusual cases, these measures 
are listed as only partially conforming to property 1, 
as they can equal 1, but can never exceed it. The two 
measures that do not consider internal reuse, (RSI and 
RR), do not satisfy the property associated with inter- 
nal reuse, the sensitivity to multiple reuses (Property 
4 These also do not satisfy Property 7. In addition, L t ey only partially conform to Property 5, since the 
size of reused internal components is ignored. RL and 
RF combine internal and external reuse; if ERL and 
ERL were used, they would conform to Property 6. 
However, they do not strictly account for the size of 
the reused components (Property 5). Moving to Prop 
erty 7: RL and RF are only affected by the frequency 
of reuse of components, and are thus not fooled by the 
needless introduction of new external components, as 
are RSI and RR. R, , can be fooled in some cases, as 
discussed in Section i 3 ,  page 6. R, satisfies all prop- 
erties except for Property 8, which accounts for the 
benefit from modifying an existing component. This 
property is not fully satisfied by any of the measures, 
and only partially satisfied by RR. 

These results suggest that there is room for im- 
provement of these measures. Since there is signifl- 

cant variation in the set of properties satisfied by each 
reuse measure, we would expect similar variation in 
the amount and type of benefit that they predict. We 
re-emphasize here that this is an a-peon' property for- 
mulation. When a large, diverse set of reuse metrics 
data (with associated process data) becomes available, 
the validity of these different assumptions can be eval- 
uated. As we shall see, our initial empirical study using 
student data indicates that some of these properties ap- 
pear to be quite critical; it also indicates that there are 
some practical difficulties to be overcome while using 
some of the metrics listed in table 1. 

4 Experimental Validation 
In order to experimentally validate the metrics dis- 

cussed in the previous sections, we examined the degree 
to which these metrics show an impact on software pro- 
ductivity and quality. To do so, we used the data gath- 
ered in study performed at the University of Maryland 
[2]. Section 4.1 describes the product and process mea- 
sures that were collected in the study, and Section 4.2 
provides a summary of the metrics collected for each 
of the programs in the study. In section 4.3 we present 
and interpret results obtained from the statistical anal- 
ysis performed on the data. 

4.1 Data Collected 
Both product and process data were gathered as 

part of this study. We describe here only the product 
and process data that are relevant to help us validate 
the suite of reuse metrics presented in this paper. For 
further detail about how these data were gathered and 
validated see [2]. 

4.1.1 Product Data 

We have built the software tool infrastructure to gather 
data about 4 different reuse measures: our Rsf metrics, 
the RSI metric used by Poulii and others, and the RL 
and RF metrics of Frakes and Terry. 

Our tools have 3 elements. First, we have a static 
analyzer, built with the GEO++ [6] analyzer genera- 
tor, which analyzes C++ programs and generates call 
graph and function size information. This information 
is generated into flat files. These are then processed 
by a relational database system (Daytona 1121) which 
supports such features as transitwe closure (which is 
needed to identify a connected call graph), and aggre- 
gate queries (which are needed to compute the different 
summary metrics). 

Unfortunately, we did not have a software tool to 
calculate reuse ratio. We used a form, the component 
origination form [2], to capture whether a component 
has been developed from scratch or has been developed 
from a reused component. In the latter case, we asked 
the developers to tell us if more or less than 25 percent 
of a component had been changed. In the former case, 
the component was labeled: Eztensively modified and 
in the latter case: slightly modified. If the component 
was inserted into the system without any modification 
it was labeled: verbatim reuse. Only verbatim reuse 
and slightly modified have been used to calculate reuse 
ratio [2]. 



4.1.2 Effort 

Here we are interested in estimating the effort break- 
down for development phases, and for error correction. 
Again, we ~ised forms filled out by the developers to 
track person-hours expended across development ac- 
tivities. These activities include: 

Analysis. The number of hours spent understand- 
ing the concepts embedded in the system before 
any actual design work. This activity includes re- 
quirements definition and requirements analysis. 
It also includes the analysis of any changes made to 
requirements or specifications, regardless of where 
in the life cycle they occur. 

Design. The number of hours spent performing 
design activities, such as high-level partitioning of 
the problem, drawing design diagrams, specifying 
components, writing class definitions, defining ob- 
ject interactions, etc. The time spent reviewing 
design material, such as walk-through and study- 
ing the current system design, was also taken into 
account. 

Implementation. The number of hours spent writ- 
ing code and testing individual system compo- 
nents 

Rework. This includes the number of hours spent 
on isolating errors, as well as correcting them. 

4.1.3 Number  of Defects 

Here we analyze the number of defects found for each 
system/component. We will use the term defect as a 
generic term, to  refer to either an error or a fault. Er- 
rors and faults are two pertinent ways to  count defects, 
thus they were both considered in this study. Errors 
are defects in the human thought process made while 
trying to understand given information, to solve prob- 
lems, or to use methods and tools. Faults are concrete 
manifestations of errors within the software. One error 
may cause several faults and various errors may cause 
identical faults. In our study, an error is assumed to 
be represented by a single error report form; a fault is 
represented by a physical change to a component. 

4.2 Overview of the Projects 
Table 2 provides descriptive measures of the 

projects included in the study, showing the project 
ID, project size (source lines of code (SLOC ), to- 
tal lifecycle productivity (SLOC/Hour), fault d ensity 
(Faults/KSLOC), and error density (Errors/KSLOC). 

Table 3 shows for each project the reuse measures . 
discussed in the previous sections: Rsf, reuse level, 
reuse frequency, RSI, and reuse ratio. As one can 
see, RSI shows very little variation across the projects: 
most of the projects have RSI equal to zero. Given 
that, we will not analyze the impact of RSI on produc- 
tivity and quality, since the poor distribution in our 
sample can easily bias the statistical analysis. 

( 11) ( SLOG ) Prod. 1 Fault Dens. I Error Dens. I 

.J.w-+ 

6 1 9736 ( 69.54 ( 1.64 1 1.54 
7 1 5255 1 19.91 1 14.27 1 8.37 

Table 2: Size, Productivity, Fault Density, and Error 
Density in the Examined Projects 

Table 3: Reuse Measures in the Examined Projects 

4.3 Results 
To provide some evidence of the usefulness of the 

measure of reuse benefit, we examined the relationship 
between reuse benefit and the quality factors of pro- 
ductivity, defect density, and rework effort. The coef- 
ficients of correlation between these quality measures 
and the measures of reuse benefit are shown in table 
4. The following sections describe our observations on 
the relationship between these quality factors and the 
various reuse measures. 

4.3.1 Productivity 

Productivity is typically calculated as size of the sys- 
tem divided by cost spent to develop it, for some mea- 
sure of size and cost. Keeping the size of a system 
constant, increasing productivity will result in a reduc- 
tion in cost. There are many ways to measure both of 
these quantities, so as a result, there are many different 
measures of productivity. We used the total number of 
hours spent across development phases (analysis, de- 
sign, implementation, testing and rework as our mea- 
sure of cost. Size was calcu ated as the total source 
lines of code (SLOC). 

1 
Using this measure of productivity, we first exam- 

ined the correlations between the various reuse mea- 
sures and productivity. As shown in table 4, the reuse 
ratio measure clearly has the best correlation with this 
measure of productivity. The only other measure that 
has a significant correlation with productivity is hf, 
with a correlation of 0.66. 

A model can be developed to quantify the impact of 
reuse benefit on productivity. Since both reuse benefit 
(R) and productivity (II) are non-negative real valued 



Measure 

Table 4: Experimental Results: Correlations with 
Product Quality Factors 

variables, we can model their relationship as: 

for some coefficients a and b. When there is no reuse, 
productivity is a. As reuse benefit increases, produc- 
tivity increases, with the maximum reuse benefit of 1 
resulting in productivity of a * 2b. Taking the natural 
logarithm of both sides of the equation and simplifying 
yields the following: 

ln(II) = h(a )  + bln(1 + R). 

With this form of the model, we can use a standard 
least squares regression to estimate the coefficients a 
and b. 

Table 5 shows models of this form developed using 
the two reuse measures best correlated with productiv- 
ity. The table shows the calculated coefficients for the 
intercept (ln(a)) and the explanatory variable R (b), 
as well as their standard error and level of significance. 
The models are: 

ln(II) = 2.94 + 2.78 ln(1 + RR) 

Using R,f, the R2 for the model is -51, indicating that 
Rsf explains half the variation in productivity. The 
model developed using RR is stronger, with an R2 of 
0.77. The intercept for this model is 2.94, so when 
RR = 0, ln(II) = 2.94, and thus productivity without 
reuse is e2.94, or 18.94 SLOC/Hour. As RR increases, 
productivity increases. For example, an increase in 
reuse ratio from 0.20 to 0.30 would result in an increase 
in productivity from 31.4 to 39.2 SLOC per hour. As 
there are no projects in this sample with RR greater 
than 50%, any conclusion about productivity for very 
high levels of RR would be purely speculative. 

4.3.2 Product Quality 

We examined the relationship of the reuse measures to 
the product quality measures of fault and error density. 
As with productivity, we used standard definitions of 
fault and error density, Faults per KSLOC and Errors 
per KSLOC, resp. The expected effect is that as reuse 
increases, these measures of fault and error density will 
decrease. The coefficients of correlation of these defect 
density measures with the measures of reuse benefit-are 
shown in table 4. 

Table 5: Comparison of Reuse Measures in Models of 
Productivity 

p-value 1-1 
Table 6: A Mode1 of Error Density Based on Reuse 
Ratio 

For fault density, the RR again has the best correla- 
tion (r=-0.67) followed by RL (r=0.62). However, RL 
had a correlation in the opposite direction, i.e., as RL 
increases, fault density increases. This is the opposite 
of the result for RR and R, f ,  which shows the expected 
relationship that as reuse increases, fault density de- 
creases. One reason that RL (and RF) are correlated 
in this direction is that RL is defined as a measure of 
the density of subprogram calls. Such measures have 
been identified as indicators of an increased error den- 
sity. Another way of looking at this is that given a 
function f that is needed by the developer, if he can 
call an existing function g, there will be an increase 
of a single line of code in the total project SLOC. On 
the other hand, if the developer prefers to create a new 
function g' by copying the code from g, the change in 
project size will be an increase of the SLOC of g. The 
increase with the latter option will be greater than for 
the former, resulting in a smaller defect density for the 
case where code is copied, and a larger defect density 
when the function is called. 

The reuse ratio had the strongest correlation with 
Error Density, showing the expected result, namely, 
that as reuse increased, error density decreased. RSf 
also had a high negative correlation with Error Density 
(Pearson r = -0.62). Again RL and RF had a positive 
correlation with Error Density showing that as the fre- 
quency increases the quality did not increase. Based 
on these results i t  appears that property 4 (which says 
as frequency increases the benefit should also increase) 
may not be applicable to measure the reuse benefit in 
terms of software quality. 

Using an approach similar to that described for pro- 



ductivity, models for defect density can be developed. 
Again, we used a logarithmic form of the model, and 
used a standard least squares regression to obtain es- 
timates of the model coefficients. The model using 
reuse ratio to explain error density stands out as the 
best model. This model is described in table 6, which 
shows the calculated coefficients for the intercept and 
explanatory variable (RR), their associated standard 
errors and pvalues, and the model R2. The model is 

ln(ED) = 1.96 - 3.24 ln(1-k RR) 

Both terms are significant at the 0.01 level. The in- 
tercept term of 1.96 indicates that with no reuse, error 
density is or 7.1 errors per KSLOC, and as reuse 
increases, error density decreases. There appears to be 
a decreasing impact of RR on error density as RR in- 
creases (i.e., the reduction in error density is greater for 
a chan e in reuse ratio from 0 to 0.25 than from 0.25 
to 0.56, suggesting that the initial benefits of reuse 
in terms of error density are likely to be greater than 
susequent incremental increases. This is the opposite 
of what we see in the productivity model based on RR 
l.e., as RR increases, the incremental change in pro- 6' uctivity also increases.) 

4.3.3 Rework Effort 

We also looked at a measure of rework, the percentage 
of the effort that was spent in correcting errors, which 
is simply rework hours divided by total hours. Thii 
measure quantifies the inefficiency in the development 
Drocess due to develo~ment errors. and is inde~endent 
bf how the size of thesystem is computed. 

A 

As indicated in table 4, R, and RR did not correlate 
well with this measure. 

RL and RF had correlations of similar strength, 
however, again they indicate a negative effect, as RL 
and RF increase, the percentage of rework also in- 
creases. Thii is in part due to the correlation with 
defect density discussed in the previous section. 

5 Conclusion 
Thii paper is concerned with an evaluation of indi- 

rect measurement of the benefit of software reuse. Five 
metrics proposed in the literature have been analyti- 
cally and empirically assessed with regard to their ca- 
pabilities to predict productivity and quality in object- 
oriented systems. To analytically evaluate the metrics, 
we have proposed a set of desirable properties of reuse 
benefit measures, and evaluated these metrics in terms 
of their compliance with these properties. 

None of the metrics satisfied all the properties, as all 
had strengths in some areas and weaknesses in others. 
RL and RF fall short in terms of the sensitivity to 
the cost of the reused object and the additional benefit 
from external reuse. RSI and RR do not cover the 

' 

benefit of internal reuse. R, appears to provide a good 
balance, accounting for the benefit of both internal and 
external reuse. However, it does not account for reuse 
via modification, a weakness of all the measures except 
for RR. 

To empirically evaluate the metriw, we have (1) con- 
structed a set of tools to extract these metrics from 

C++ programs, (2 collected process data on the devel- 
opment of a set o 1 small object-oriented systems, and 
then, based on the product and process data collected 
on these systems, (3) verified statistically the correla- 
tions between these metrics and the quality factors of 
productivity and defect density. Finally, for those met- 
rics that correlated well with productivity and defect 
density, we also developed predictive models. 

RR is well correlated with productivity, fault den- 
sity and error density, but, not with the percentage 
of rework effort. Raf has significant correlations with 
productivity and error density, but not with fault den- 
sity of the percentage of rework effort. RL and RF 
appear correlated with fault and error density, and the 
percentage of rework effort, but interestingly, in the 
opposite direction. As RL and RF increase, we see 
an increase in fault density, rework density, and the 
percentage of rework effort. 

A major difference between R, and RLIRF is that 
R,j accounts for component size. This important dif- 
ference may be the reason for the markedly diierent 
results found with these measures, with Raf showing 
some correlation with the quality factors, and RLIRF 
showing either no correlation, or a significant correla? 
tion, but in the opposite direction. 

Another interesting point raised with this work is 
the fact that the modified components also appear to 
have a significant effect in terms of increasing produc- 
tivity and quality, and, thus, should also be considered 
in a comprehensive definition of a reuse metric. Never- 
theless, this raises some questions. For instance, how 
can we accurately verify the extent to which a eom- 
ponent has been changed? What should the modifi- 
cation threshold be? In this work we assumed that 
only components changed less than 25 percent should 
be counted as reused. This threshold may be domain 
dependent, i.e., different organizations should conduct 
em~irical work in order to determine which threshold 
is kost significant in their environment. In addition, 
tools must be built in order to determine automatically 
how much a component has been changed. Thii can, 
in fact, reduce the human error introduced in the anal- 
ysis, thus increasing the accuracy and reliability of the 
results. 

Finally, our empirical study has highlighted a prac- 
tical difficulty in using MI. In four out of the seven 
student projects used in our data, there was no verba- 
tim reuse of components from external libraries. For 
this reason, RSI was zero in four out of seven data 
points. This precludes any useful analysis of the pre- 
dictive power of the RSI data; however, our experi- 
ence indicates that RSI may not provide helpful data 
in projects where a significant number of external com- 
ponents are used only after modification~. From our ex- 
perience, it appears that other metrics offer some abil- 
ity to  explain the variation in productivity and quality 
even in such cases; this suggests that internal reuse may 
be an important factor, and that RSI may be taking 
too strict a view of what constitutes reuse. 

The results indicate that different reuse metrics can 
be used as predictors of different quality attributes. 
For example, reuse ratio and size/frequency reuse met- 
ric each appeared to be well correlated with produc- 
tivity and error density, but this size/frequency met- 



ric did not show any significant result with regard to 
fault density. Further empirical validation is, thus, still 
necessary in order to evaluate these metrics in actual 
software organizations. Empirical work is (in general) 
hobbled by the difficulty in obtaining sufficient process 
data to allow for empirical validation of the metrics. 
This work provides a framework by which reuse met- 
rics can be analytically and empiricdly evaluated prior 
to their use: the analytical properties, software tools 
and data collection programs developed in the frarne- 
work of this study can be used in other studies, thus 
facilitating the replication of this work in academia and 
industry. As a continuation of this work, we intend to: 

Perform case studies at the Software Engineering 
Laboratory (SEL) to assess the feasibility of au- 
tomated methods for determining the amount of 
modification in a component and to further iden- 
tify what is an appropriate threshold of modifica- 
tion to still achieve a reuse benefit, 

Evaluate the set of metries analyzed in this paper 
using the product and process data extracted from 
object-oriented systems under development a t  the 
SEL, 

Evaluate the capabilities of prediction of these 
metrics with regard to fault density, rework and 
maintainability, 

Continue the empirical analyses to better under- 
stand the importance of the proposed properties 
of reuse measures identified in this paper. 

Acknowledgements 
We would like to thank the anonymous referrees for 

their insightful comments; we are also grateful t o  Dr. 
Vic Basili of the University of Maryland (who gener- 
ously provided research resources which helped in the 
realization of the empirical study) and to Dr. Rick 
Greer of AT&T Bell Laboratories (for help with the 
Daytona database system). 

References 
[I] B. Baker. A theory of parametrized pattern 

matching: algorithms and applications. Journal 
of Compd. Sys. Sci., t~ appear, 1995. 

121 V. Basili, L. Briand, and W. Melo. Measuring 
the impact of reuse on quality and productivity 
in object-oriented systems. Technical Report C S  
TR-3395, University of Maryland, Computer Sci- 
ence Department, 1995. 

[3] J. M. Bieman. Deriving measures of softwre reuse 
in object oriented systems. In T. Denvir, R. Her- 
man, and R. W. Whittey, editors, Formal Aspects 
of Measurement, pages 79-82. Springer-Verlag, 
1992. 

[5] Y-F. Chen, B. Krishnamurthy, and K-P. Vo. An 
Objective Reuse Metric: Model and Methodology. 
In Fifth European Software Engineering Confer- 
ence, 1995. 

[6] P. Devanbu. GENOA a customizable, language and 
front-end independent code analyzer. In Proc. of 
14th Int '1 Con5 on Software Engineering (ICSE), 
pages 307-317. IEEE Press, 1992. 

[7] P. Devanbu and S. Karstu. Measuring the benefits 
of software reuse. Technical report, AT&T Bell 
Laboratories, 1994. 

[8] N. E. Fenton. Software Metrics: A Rigorous Ap- 
proach. Chapman & Hall, 1991. 

[9] W. Frakes and C. Terry. Reuse level metrics. Tech- 
nical Report TR 94-03, Virginia Polytechnic Insti- 
tute and State University, 1991. 

[lo] J. E. Gaffney and R. Cruickshank. A general eco- 
nomic model for software reuse. In Proc. of the 
14th Intll Conf. on Software Engineering. IEEE 
Press, 1992. 

[ll] J. E. Gaffney and T. A. Durek. Software reuse 
- key to enhanced productivity: some quantita- 
tive models. Infonnation and Software Technol- 
ogy, 31(5):258-267,1989. 

1121 R. Greer. All about daytona. Technical report, 
AT&T Bell Laboratories, 1994. 

[13] F. McGarry, R. Pajerski, G. Page, S. Waligora, 
V. Basili, and M. Zelkowitz. Software process im- 
provement in the NASA software engineering Iab- 
oratory. Technical Report CMU/SEI-95-TR-22, 
Carniege-Mellon Unv., S/W Eng. Institute, Dec. 
1994. 

[14] J. Poulin, J. Caruso, and D. Hancock. The busi- 
ness case for software reuse. IBM Systems Journal, 
32(4):567-594, 1993. 

[15] W. Thomas, A. Delis, and V. Basili. An analy- 
sis of errors in a reuse-oriented development envi- 
ronment. Technical Report CS-TR-3424, Dept. of 
Computer Science, University of Maryland, Col- 
lege Park, MD, 20742, Feb. 1995. 

I161 E. J .  Weyuker. Evaluating software complexity 
metrics. IEEE Transacadions on Software Engi- 
neering, 14(9):1357-1365,1988. 

141 T. Bolliiger and S Pfleeger. Economics o f  reuse: 
issues and alternatives. Infonnation and Software 
Technology, 32(10):643-652, 1990. 





q u a l i t y  t i m e  FlLlPPO LANUBILE, UNIVERSITY OF MARYLAND 

New views of Sojimare reliability r@ects a czlstomer's vim of 
the products we build and test, as it is mally mea- 

mame ideas sured in terms of&ilures experienced durin ngu 
on s o h a r e  lar system me. But our testing strategy is olen 

- 

- - - and quality based on earlyproduct measures, since we cannot 
measure failures until the sofoaare is placed in the 

productivity. f;eld. This issue, FiZippo Lanubile shows us that 
such measurement is not  gective at predicting the 
likely reliability of the delivered software. 

-Sha~j~&xvrence Pfleeger 

S HAVE A GREAT 
ent for predictive pur- 
on predicting early in 
software components. 
lows extra effort to be 

testiig fault-prone com- 

the real effectiveness 
the sometimes con- 

rs at different times. 
t Direct measures of reliability differ among 

mtoc 
Shari Lawrence 

Pfleeger 
Systems/Sofiware 

451 9 Davenport St. NW 
Washington, DC 

2001 6-441 5 
s.pfleegerQieee.org 

- 
the studies; many measure the number of faults 
discovered during testing, some count the num- 
ber of failures during operation, and others track 
the number of repairs made during maintenance. . 

t Prediction problems are often reduced to 
classification problems by choosing a categorical 
variable as an outcome that may be predicted 
from the predictor variables, for example, group- 
ing all components with at least one fault under 
the high-risk category and all components with 
no faults under the low-risk category. 

t Many study authors advocate a modeling 

technique derived from statistical analysis, machine 
learning, or neural networks-or a combination of 
the three-aiming to show that their own approach 
is "good," without comparing it to any others. 

+ Other study authors show that their modeling 
technique is "better than others," by comparing it 
with just one or two different techniques selected to 
showcase their own technique's advantages. 

+ Studies use different criteria when compar- 
ing various prediction systems, use different defi- 

nitions even when using the same criteria names, 
risk ambiguity when they use informal criteria, 
and fail to capture all aspects of the prediction 
systems studied. 

t Few studies try to define criteria so that the 
capability of the model to actually predict real 
behavior can be determined. 

t All the studies claim to have been successful 
at showing the superiority of the advocated model- 
ing technique; when studies include a comparison, 
the advocated technique always scores highest. 

EMPIRICAL STUDY. Amazed by previous studies' 
high success rate when using predictive techniques, 
but conscious of existing methodological limits, I 
started a research project with Giuseppe Visaggio 
to externally replicate past smdies. Scientists per- 
form replications to increase their ability to genrr- 
alize their results in different settings and times. 
External replications-those independently con- 
ducted by different researchers-are needed 
because empirical observations in support of a 
hypothesis may be in error or be biased by the 
original researcher. Our replication effort exhibit- 
ed the following characteristics. 

We  used our own data, collected during three 

1996 IEEE. Reprinted, with permission, from 
IEEE Software; pp. 131-132,137,1996 



-spa.rd arp 30 ssaua~a~duros ayl painseam 
aM P!I-~S~ se payrssels s! ~uauodmos 
~F-MOI B qsy~ tq 'SIOLC) am prre ysu 
-MOI SE pag!ssep S! ~uauodmos qsu-qS!y 
E VT~M U! 'SIOU~ I aa~ :suopesy!sseIs 
-sw onu ayl 30 suop.xodo~d ayl pamseaur 
am 'sura~sLs uops!pa~d ayl 30 asueur.xo3 
-lad ayl a~eduros 01 ep~~ ayl Suoq 

wopeposse 1-uauaS30 s!s 
-axpodLq aApecuaqe UE ylpi qsu pawpa~d 
ayl pue ysu leal ayl uaanuaq uopeposse 
ou jo srsaylocLig ~pu e Supsa~ Lq lapour 
a~?pa.d e 30 yuo~ alnlosqe ayl passasse 
aM .qs!1 pa~xpald afqepaa ayl 30 [anal 
qsea 103 uumlos auo pue qsu pal alqap 
ayl 30 IaAaI Tea 103 MOJ auo ylpi ppom 
Sugllapun ayl se a1qa1 1GuaSupuos LEM 
-om e BTsn paz!Iauuoj slam eua~us 1~ 
.eualus uonenleaa ayl pa~oldm! aM 

.s!sK[erre ~uauoduros-ledp~d ayl urog 
pa~elauaS uaaq peq ~eyl ss!naur tqeurop 
aalq~ pasn puosas ayl !samseaur hprald 
-uros leuguo 11 ay uo paseq se~ lapour 
1s1g aqL -uo!ssadal spsyo901 prre s!sK~sue 
~ueuyur~usp 103 qssa slapour om ~pq aM 
.ssmaur u!europ 1~uoSoyl.10 30 laqurnu 
laIIeurs e ura~qo 01 da~s Bu!ssasoldald 
e se pamas s!sL~eue ~uauoduros-ledpup6 
-sylomlau s!qde~So~oq pue 'syro~~au 
Imau paladel 'slapour uopeJg!ssep pg01 
'uo!ssa&al spsyo901 's!sL~erre IWU~IU~S!~ 

's!sL[eue ~uauoduros-led!su!~d :k!l!qe!lal 
amyos Sup3pald 103 pasn Lpea~le sanbp 
-qsa~ uoumy!ssep ay ne papnptq aM 

, -h!suap marnos jo alnqFpIe uopnuaur 
-mop ay pue raum~o~ pue pQual urdo~d 
s'pmqeH prre 'apos 30 saq ]uamosuou 
$0 laqumu <apes 30 saq pol 'spwado 30 
laqumu pol 'spwado anbp 30 laqumu 
'hpra~duros speurolsk~ se qsns sa~nqye 

uo!~auaura~dur! !MOB UOP~UIJO~U! PUB 

']no-uq 'uy-uq se qsns salnqpw &!sap 
~u!.xa~os =yam unpo~d 1 1 alaM saIqEueA 
~uapuadap? au -sluauoduros 30 laqumu 
~enba Lla~emproldde ue pau!eluos sassap 
om aqL .slpq pa.ra~oss!p ou ylpi ~uauod 
-mas Lue qsu-MOI se pue <Supsa~ 3-p pa 
-walap slam slpq asoqM mauoduros a1EM 
-1.~0s Lrre qsu-qSq sepaugap aM -muod 
-In03 areqos 30 SSE~ qsu ayl SEM alqeuen 
~uapuadap aqL .salqeueA mapuadaptq pua 
~uapuadap pasn-lsour arl:, asoqs aM 

~~o~d qsea moq 
pawalas Llmopwl 'sluauodum jo sdnod 
malag!p pa~sa~ aslnos Bu!laau@ua aJeM 
-yos pasumpe rre uroq UMEV smsa~ ~uap 
-rus ~uapuadaptq laylo .uopmgpads awes 
ayl urog up~op SI ay q surdold 1mse6 
LZ padola~ap sluaprus 30 sursa~ 'peg 
30 h!s~aapn ayl IE play aslnos Su!laau 
-9ua aleqos a~!sua~~-walo~d e 30 szaaL 



q u a l i t y  t i m e  

tion, defined as the percentage of high-risk a significant departure from the perfor- I set out to do so, it shows that predictive- 
components that actually have been classi- mance of a random prediction, except for modeling techniques are only as good as the 
fied as such by the model. We also consid- i discriminant analysis and logistic regres- data on which they are based. All the predic- 
ered the cost of identifying a component as sion applied in conjunction with the prin- tion systems failed because they assumed a 
needing more verification effort. We mea- ci~al-component analvsis. These two relationship between software product mea- " 
sured both the overall inspection cost, models have good percentages of Type 1 , sures and software faults. This is not always 
defined as the percentage of components 1 error and completeness but also bad per- true. On the conmry, a predictive model, 
that have been tlagged as high-risk, and the I centages of Type 2 error and overall &om the simplest to the most complex, is 
wasted inspection, defined as the percent- ! inspection. The proportion of Type 1 + worthwhile only if used with a local process 
age of verified components that have been ' Type 2 errors and the wasted inspection , to select memcs that are valid as predictors. 
i&orrectIy classified. do-not vary with respect to thd other 

models. Instead of producing more stable 
RESULTS. We built a training set, includ- models, principal-component analysis 
ing two-thirds of the 1 18 tested compo- / built models that were biased toward clas- 

Recently, methods to validate measures of 
internal software atnibutes have been pro- 
posed, based on iterative verification of 
locally collected data. Unfortunately, these 

nents, to create and tune the pr'edictive sifylng components as high-risk j methods cannot guarantee afiori that a sig- 
models. We used the remaining third of nificant relationship will be found between 
the components, which comprised the ; LESSONS LEARNED. Our experience indi- some internal product memc and the soft- 
testing set, to assess the models and com- ; cates that the future behavior of software ware amibute of interest. + 
pare their performances, as shown in products cannot always be predicted suc- 
Table 1. Despite the variegated selection cessfully. Although this sounds obvious, 
of techniques available, no model satisfied I much of the scientific literature reports suc- 
the criterion of predictive validity by I cessful results only in the identification of 
being able to discriminate between com- fault-prone components from produa mea- 
ponents with faults and components with- sures. Publishing only empirical studies with i out faults. All the significance probabili- positive findings can give practitioners unre- 
ties are too high with respect to the most / alistic expectations that are quickly followed 
common values--0.01,0.05,O.l-used to I by equallyunreahtic disillusionment 

Filrppo W k  f a s e n i o r d e r o f t h e  
Experimental Softzvare Engineering . 

Group at the University of Maryland, 
College Park (http://www.cr.umd.edu/ 
p@ectr/SofzEngLESEG.3. He & currently 
on s a b b d *  the Univendy of Bmi, 
IltZy, where he f an askmat pfkom 4 
computer science. He can be reached at 

reject a null hypothesis. No model shows Although the study did not specifically / kzm&e@a..zrmdeclu. 





Defining Factors, Goals and Criteria 
for Reusable Component Evaluation 

Presented at the CASCON '96 conference, Toronto, Canada, November 12-14, 1996. j e z ~ / ~  
Jyrki Kontio, Gianluigi Caldiera and Victor R. Basili 

University of Maryland 
Department of Computer Science 

A.V.Williarns Building 
College Park, MD 20742, U.S.A. 

Emails: Ljkontio I caldiera I basili]@cs.umd.edu 

Abstract: 
This paper presents an approach for defining 
evaluation criteria for reusable software 
components. We introduce a taxonomy of factors 
that influence selection, describe each of them, 
and present a hierarchical decomposition method 
for deriving reuse goals from factors and 
formulating the goals into an evaluation criteria 
hierarchy. We present some highlights from two 
case studies in which the approach was applied. 
The approach presented in this paper is a part of 
the OTSO' method that has been developed for 
reusable component selection process. 

1. Introduction 
Software reuse is considered an important solution 
to many of the problems in software development. 
It is credited with improving the productivity and 
the quality of software development 
[1,4,15,24,30,33], and many organizations have 
claimed significant benefits from it [13,23]. 

Some organizations have implemented 
systematic reuse programs [13], which have 
resulted in in-house libraries of reusable 
components. Other organizations have supported 
their reuse with component-based technologies 
and tools. The increased commercial availability 
of embeddable software components, 
standardization of basic software environments 
(such as Microsoft Windows, Unix), and the 
explosive popularity of the Internet have resulted 
in a new situation for reusable software 

' OTSO stands for Off-The-Shelf Option. The OTSO 
method represents a systematic approach to evaluate 
such an option. 

consumers: there are many more accessible reuse 
candidates. Consequently, many organizations are 
spending much time in reusable component 
selection since the choice of the appropriate 
components has a major impact on the project and 
resulting product. 

Despite their importance, the issues and 
problems associated with the selection of suitable 
reusable components have rarely been addressed 
in the reuse community. Poulin et al. present an 
overall selection process 1231 and include some 
general criteria for assessing the suitability of 
reuse candidates [32]. Some general criteria have 
been proposed to help in the search for potential 
reusable components [24,25]. Boloix and 
Robillard recently presented a general framework 
for assessing the software product, process and 
their impact on the organization [6]. However, 
none of this work is specific to off-the-shelf 
(OTS~) software selection, and the issue of how to 
define the evaluation criteria is not addressed. 
Furthermore, most of the reusable component 
literature does not seem to emphasize the 
sensitivity of such criteria to each situation. 

We have developed a method that addresses the 
selection process of packaged, reusable software, 
or OTS as we refer to it in this paper. The method, 
called OTSO, supports the search, evaluation and 
selection of reusable software, and provides 
specific techniques for defining the evaluation 

"OTS' stands for "off-the-shelf'. The term originates 
from the term "COTS software", i.e., commercial off- 
the-shelf software. In this paper OTS refers to both 
commercial and in-house source code, executables, 
design, documentation, test cases, etc. 



criteria, comparing the costs and benefits of instance of the selection process. 
alternatives, and consolidating the evaluation 
results for decision making [18,19,21]. The main Figure 1 shows the main activities in the OTSO 

characteristics of the OTSO method are as reusable component selection process using a 

follows: dataflow diagram notation. Each activity in 
presented as a process symbol - a circle - and 

A defined, systematic Process that covers the artifacts produced or used are presented as data 
whole reusable component selection process. storage symbols in Figure 1. In the search phase, 
A method for estimating the relative effort or the goal is to identify potential candidates for 
cost benefits of different alternatives. further study. The screening phase selects the 

A method for comparing the "non-financial" most promising candidate; for detailed 

aspects of alternatives, including situations evaluation. In the analysis phase, the results of 

involving multiple criteria. product evaluations are consolidated, and a 
decision about reuse is made. As the selected 

a predefined for product quality alternative is used (deployed), the effectiveness of 
characteristics to be tailored and used in each the reuse decision, eventually, can be assessed. 

Requirement Design 
Project plan Organizational 

specification specification characteristics 

constraints 

application specific and 
functional requirements current practices, existing 

infrastructure, management 
commitment 

Search 
definition 

External OTS selected criteria 
SW sources \ 

Product 

Screening 
Product Evaluation 

In-house OTS YOwiedge criteria 
SW sources 

selected alternatives 
for evaluation 

detailed criteria 
definitions 

< J Evaluation 
results (data) 

\ Cost models 
Evaluation 

Selected OTS ,Decision(s 
Value 

SW estimation 
models 

Figure 1: The main phases in the OTSO process 



Reuse candidates are evaluated in different ways 
in all phases. The OTSO method is based- on 
incremental, evolutionary definition and use of the 
evaluation criteria so that the criteria set can be 
gradually refined to support each phase. While 
Figure 1 presents the overall OTSO process, this 
paper presents the goal-driven criteria definition 
process of the method that has not been described 
publicly so far. Details about other aspects of the 
method are available in separate reports and 
publications [18,19,21]. 

The structure of this paper is as follows. 
Section 2 presents the factors that influence the 
OTS software selection and how the reuse goals 
can be formulated. Section 3 presents how the 
evaluation criteria can be defined and 
decomposed. Section 4 presents applicable results 
from the two case studies with the OTSO method. 
Finally, the conclusion section discusses the 
relevance of our results. 

2. Factors in Reusable Software 
Selection 
The overall relationships among influencing 
factors, reuse goals and evaluation criteria are 
presented in Figure2. The first main task in 
reusable software evaluation is to define the reuse 
goals. This must be based on a careful analysis of 
the influencing factors. We identified five groups 
of factors that primarily influence the OTS 
software selection. In the following sections we 
discuss each of these groups. 

Application requirements are likely to be the 
most important factor in evaluating reusable 
software. Such requirements can include 
functional requirements (such as the ability to 
manage and display graphical geographical data) 
and non-functional requirements (such as 
available memory or speed of operations). The 
requirement specification, if available, should be 
used as a basis for interpreting such requirements. 

The requirement specification, however, can 
only give partial support for the interpretation of 
software reuse goals for two reasons. First, the 
requirement specification typically does not define 
how the system should be implemented or what 
components could be implemented through OTS 
software. Considering the use of OTS software in 
a system means making some assumptions about 
the architecture of the system, and requires some 
decisions on which system features should be 
covered by the OTS software. Second, the 
requirement specification may not be detailed 
enough for evaluating OTS software alternatives. 
In both of these cases the formulation of software 
reuse goals requires interpretation and further 
refinement of requirements, and some design 
concepts. 

Application and domain architecture introduce 
additional elements that need to be evaluated. The 
architecture, in this context, provides a set of 
constraints deriving from how particular 
applications are built: this includes, for instance, 
components and design patterns used or assumed, 
communication and interface standards, platform 
characteristics. All of this introduces a set of 
constraints that may make integration of some 
alternatives impractical or costly. Some kind of 
application mediator, or "middleware", may be 
used to overcome such problems. This mediator, 
however, needs to be either developed or acquired 
from another source and this provides, for 
instance, a cost increment that needs to be 
estimated. 

The application domain may also have some 
specific characteristics that are not addressed by 
OTS software developed for other domains (for 
example, real-time applications vs. batch 
processing). Sometimes the architecture is a given 
and acts as a constraint in the OTS software 
selection; sometimes the selection of the right 
OTS software may determine or influence the 
system architecture. 



Application 
requirements 

Organization 
infrastructure libraries 

project 

constraints 
reuse 

maturity information 

4 v 
f \ 

Reuse Goals and Constraints 

characteristics 
e.g., functionality, e.g., maintenance e.g., cost, schedule 

Evaluation Criteria 

Figure 2: Factors influencing the selection of reusable off-the-shelf software 
may provide a better way to comply with 

Project objectives and constraints may influence standards or may be proven reliable in 
the library selection through the schedule or the implementing some aspects of the library. There 
budget of the project. For instance, early may also be some organizational constraints that 
deadlines or low personnel budget3 may require are set for the project, such as availability of 
the use of externally produced software. Project personnel with specific sltills. 
objectives may also imply the use of external 
software if, for example, these external libraries The availability of features in software reuse 

candidates also affects the evaluation criteria 
definition. This works in two ways. On one hand, 
it is important to check that the evaluation criteria 

Note that this example is not meant to imply that the are based ,on realistic expectations. That is, the 
use of OTS software necessarily results in lower 
overall costs. The example highlights the usual criteria set should not assume characteristics that 

situation where the use of OTS software changes the are provided by any OTS 
cost structure of a project, e.g., development costs On the other hand, it may be useful to know about 
may be lowered but software acquisition costs are the possibilities that OTS software alternatives 
higher. 

58 



offer but that may not have been included in the 
requirement specification. 

Finally, an organization's reuse infrastructure 
and reuse maturity should also be considered 
when defining reuse goals. Reuse maturity 
comprises several issues: an organization's 
experience in reuse, its commitment and interest 
in continuing systematic reuse, the knowledge and 
skills of personnel responsible for reuse, the 
availability of specific tools for supporting reuse 
(configuration management tools, information 
databases, etc.), and the existing software 
development environment [9,17]. Reuse maturity 
is particularly important for the in-house 
production of reusable components. Also, if an 
organization has no experience in OTS software 
reuse, it may have a limited ability to integrate 
OTS software and to estimate the effort required 
for OTS software integration. 

The main point of this discussion is that the 
evaluation criteria should be developed with full 
awareness of all these factors. In most cases, this 
requires that each factor be explicitly analyzed, 
and documented and used as input in the final 
definition of the evaluation criteria. 

Each OTS software reuse situation is different, 
and so are the reuse goals associated with it. 
Based on the analysis of factors as described in 
the previous section, the reuse goals for the 
project need to be stated explicitly. The OTS 
software reuse goal statement essentially should 
describe the following: 

Where and how OTS software is to be used in 
the application; 

The expected benefits of OTS software reuse, 
such as functionality, quality, schedule impact, 
or effort savings; 

Possible constraints for OTS software reuse; 

Cost budget for the use of OTS software. 

The reuse goal statement should be documented 
explicitly, although initially the goal statement 
may seem abstract and simple. Our experience 
indicates that it will be revised and become more 
detailed as the OTS evaluation progresses. 

Reuse objectives can be divided into 
development process goals, maintenance process 
goals and product characteristics goals. 
Development process goals relate to the cost, 
effort and schedule of the development project. 
The maintenance process goals deal with issues 
such as the ease or cost of maintenance and who 

will be responsible for maintenance. Product 
characteristics goals refer to product functionality 
and product quality. 

3. Evaluation Criteria 
3.1 Classes of evaluation criteria 

The factors and goals described in Figure 2 
determine the reuse goals for the system. The 
content and priorities of these goals determine 
which characteristics must be considered in the of 
the OTS software selection process. The 
evaluation criteria themselves can be categorized 
into four main areas: (i) functional requirements, 
(ii) product quality characteristics, (iii) strategic 
concerns, and (iv) domain and architecture 
compatibility. 

Functional requirements: These refer to 
identifiable, functional features or characteristics 
that are specific to the particular situation. These 
criteria are derived from the requirement or design 
specification and are expressed in the form of 
requirements. Here are two examples from an 
application dealing with geographical data: 

Display ocean bathymetry data 
Show political boundaries. 

Product quality characteristics are common 
to a broader set of reuse situations. Typically the 
structure and relationships of these characteristics 
remain the same but their acceptable values may 
vary from case to case. Three examples are: 

Defect rate 
Compliance to the project user interface 
guidelines 
Clarity of documentation. 

Strategic concerns: These are the short-term 
and the long-term effects of the reuse candidate, 
the cost-benefit issues and the organizational 
issues beyond the scope of the project in question. 
These help to consolidate information for decision 
making. Three examples are: 

Acquisition costs 
0 .  Effort saved 

Vendor's future plans. 

Domain and architecture compatibility: An 
application domain or the software architecture 
may also require specific characteristics from 
reuse candidates. For instance, all flight-control 
software must be very reliable and must be 
developed with time-sensitive and reactive issues 
in mind. A reuse candidate originally developed 



Table 1: GQM-based evaluation criteria definition template 

Attribute of GQM 

Object (entity) 

F~~~~ (issue) 

Purpose 

Point of view 
(perspective) 

for accounting software may have fundamental the evaluation goals using the GQM approach, as 
design and performance characteristics that make it provides a well-defined template for 
it unsuitable for such an application area. documenting such evaluation goals [2,3]. Table 1 

Domain compatibility refers to how well the 
presents the template used for GQM goals. The 
object attribute and focus attributes can be derived 

reuse candidate and its features map into the often directly from reuse goals. For example, if a 
domain terminology and concepts. In the case of reuse goal is to reduce development cycle time, 
object oriented reuse candidates, this can refer to 
a match between domain objects and object 

we are evaluating the process (object) and its 
duration (focus). 

definitions in the reuse candidate. Architecture 

Explanation 
The entity being analyzed, e.g., OTS product, OTS 

vendor 
The attributes that are of interest, e.g, cost, reliability, 

or efficiency. 
Evaluate: evaluate the characteristics of the entity 

w.r.t. a relevant benchmark. This attribute is 
typically the same in all reuse evaluation cases. 

- --- 

Whose interest is being expressed, e.g., project 
manager, corporation, customer, developer, etc. 

compatlDllity rerers to sonware or naraware 
architecture requirements that are common to the 
application area. 

Examples are listed below: 

Domain compatibility: 
system states can be modeled and represented 
geographical data manipulation capability 

Architecture compatibility: 
supports or is compatible with CORBA 
compatible with Microsoft Windows OLE. 

The evaluation criteria must be customized for 
each selection situation. The functional 
requirements, which often are central to the 
selection process, are often unique to each 
application. For the product quality characteristics 
and strategic concerns, it is possible to define 
some templates that have stable elements accross 
applications. As an input to product quality 
characteristics, there are several possible sources 
[5,7,10,16]. Figure 3 shows an example of the . 
product quality factors we defined for one of our 
case study projects. 

Examples 

3.2 Hierarchical decomposition of 
evaluation criteria 

OTS product 

Cost 

Evaluate 

Customer 

The evaluation criteria are derived from the 
factors and goals discussed in the previous 
sections. The first step in this process is to define 

OTS vendor 

Viability 

Evaluate 

Development 
organization 

lne purpose atmbute can range nom slmple 
characterization to understanding, evaluation and 
even prediction [2]. However, most often the 
purpose is evaluation. The point of view attribute 
is relevant when there are different stakeholders 
interested in the results and their views need to be 
considered. For example, developer and user 
perspectives may be different in terms of required 
functionality of the product. ) 

The basic steps of criteria decomposition are the 
following [18]: 

1. Identify and formulate evaluation goals using 
the template given in Table 1. For example, an 
evaluation goal could be stated as follows: 
objectlentity: 

2. For each evaluation goal, define a set of high- 
level criteria or questions that characterize it. 

3. For each criterion, write down an unambiguous 
definition of it. 

4. If the value for the criterion can be determined 
with an objective measurement, observation or 
judgment, call it an evaluation attribute, and 
continue to decompose and define other 
criteria. If the criterion is too abstract to be 
measured with a single metric, if it has too 
many aspects to be assessed through 
observation or if it cannot be judged 
objectively, continue decomposing it. 



3. Check the consistency of 
rankings and revise them if 
necessary. 

4. Present the results of the 
evaluation, the alternative with 
the highest priority being the 
one that is recommended as the 
best alternative. 

The rankings obtained through 
paired comparisons between the 
alternatives are converted to 
normalized rankings using the 

Table 2: Examples of evaluation attributes "eigenvalue" method, preferably 
using a software tool that 

The number of items at each level should be automates the calculation process [27]. 

less than 10, preferably around 3 to 5. This process can be illustrated with a simple 
~h~ objective of the criteria-definition process example. Assume that one needs to decide which 

is to decompose criteria into a set of concrete, Web browser to use, Internet Explorer or 
measurable, observable or testable evaluation Netscape (alternatives). Assume that the 
attributes. An evaluation attribute can be an evaluation criteria decomposition process has 
observation, a measurement, or a piece of resulted in just criteria, price and popularity. 
information to be obtained. Table 2 lists examples According to the AHP method we first 
of possible types of evaluation attributes. determine the relative importance of factors, 

resulting in weights for each. New both 
Once the criteria have been defined* the OTSO alternatives (Internet Explorer and Netscape) are 

method relies on the use of the Analytic Hierarchy against these two criteria and their 
process (AHP) for consolidating the evaluation relative rankings (weights) are obtained. Based on 
data for decision-making purposes. The AHP this information, the relative preferences of 
technique was Saat~ for alternatives can be calculated and expressed as 
multiple-criteria decision-making situations numbers totaling one. More information about the 
[26,27].   he technique has been widely and details of the AHP method or the Expert Choice 
successfully used in several fields 1281, including tool is available separate publications [26,27,29]. 
software engineering 1111 and software selection 
[14,22]. It has been reported effective in several From our perspective, the main advantage of 

case studies and experiments [8,12,28,31]. Due to AHP is that it provides a 
the hierarchical treatment of our criteria, AHP fits approach for consolidating information about 

well into our evaluation process as well. AHP is alternatives using multiple criteria. AHP can be 

supported by a tool that supports the used to "add UP" the characteristics of each 

entering of judgments and performs all the alternative. Furthermore, an additional benefit of 
necessary calculations [29]. AHP is that we can choose the level of 

consolidation. We recommend that consolidation 
The AHP is based on the idea of decomposing a be carried out only to a level that is possible 

multiple-criteria decision-making problem into a without sacrificing important infomation. on the 
criteria hierarchy. At each level in the hierarchy other hand, some may avoid 
the relative importance of factors is assessed by overwhelming the decision with too 
comparing them in pairs. Finally, the alternatives detailed, unstructured information. 
are compared in pairs with respect to the criteria. 
Rephrasing the AHP approach in the OTSO The weighting of alternatives is done using the 
framework, the evaluation proceeds as follows AHP mthod, preferably using a supporting tool 
[11,27]: 1291. Preferences are collected and consolidated 

1. Define the importance of factors on each level. 
to the level stakeholders prefer. The AHP allows 
the consolidation of all qualitative information 

2. Define the preferences of alternatives Over the and financial information into a single ranking of 
lowest level factors in the criteria tree. alternatives. However, we believe that this would 

condense valuable information too much. Instead, 



we recommend that information about the 
evaluation be consolidated to a level where a few 
main items remain so that stakeholders can 
discuss their impact and preferences. The full 
consolidation can be done at the end as a sanity 
check, if desired. 

4. Case Studies 
We carried out two case studies using the OTSO 
method. The results of these case studies are 
reported separately [IS, 19,211. The first case 
study assessed the overall feasibility of the 
method and the second one focused on the 
comparison of analysis methods. Both case studies 
took place in the NASA's Earth Orbiting System 
(EOS) program with Hughes Information 
Technology Corporation and were dealing with 
real software development projects facing a 
COTS selection problem. 

Our first case study dealt with the selection of a 
library that would be used to develop an 
interactive, graphical user interface for entering 
location information on Earth's surface areas. 
This case study used the OTSO method's 
hierarchical and detailed criteria definition 
approach. Part of the criteria hierarchy is 
presented in Figure 3. The main conclusion was 
that the OTSO method was a feasible approach in 
COTS selection and its overhead costs were 
marginal [1 81. 

The first case study also showed that OTS 
package features can change the application 
requirements: one of the OTS alternatives was 
able to display ocean bathymetry data graphically. 

Although this was not initially specified as a 
requirement, the application designers considered 
it a valuable feature and proposed it to be 
included in the requirements specification. This 
important feedback loop is characterized by the 
arrow from the search/screening/evaluation 
contour in Figure 1. 

The second case study dealt with the selection 
of a hypertext browser for the EOS information 
service. This case study included a comparison 
between two analysis methods, the AHP method 
and a weighted scoring method. 

A total of over 48 tools were found during the 
search for possible tools. Based on the screening 
criteria, four of them were selected for hands on 
evaluation. The evaluation criteria were derived 
from existing, broad requirements. However, as in 
the first case study, the requirements had to be 
elaborated and detailed substantially during this 
process. 

This case study further supported our 
conclusion of the low overhead of the OTSO 
method. Furthermore, this case study involved 
several evaluators, and our criteria definition 
approach improved the efficiency and consistency 
of the evaluation. We also found an unexpected 
result when comparing the two analysis methods: 
they yielded different rankings of the COTS 
alternatives even though they were based on the 
same data [19,20]. In our opinion, this highlights 
the importance of appropriate analysis and data 
consolidation techniques in such evaluations. 



interoperability programmtng 
language 

User interface UI ouidellnss 

Chanpesneeded 

- 
Module interlaces Changes needed 

Changes needed 

List of 
characteristics . incompatibilities 

Logical interlace 
class count 

Hybrid class 
count 

Defect rate 

Description ol 

Fault tolerance 

Reliability Classification 01 

Recoverability Test rssvlir 

Usage problem 
Eflort to use list 

O~erabilitv 

Product 
quality 

characte- 
ristics 

Time to zoom in 

Time behavior - Response time 

Time lo scroll 

Efficiency / Initial memory 

Resource 
used 

behavior 
Memory usage Size 01 ob'jecl 

I 
Memory leakage 

Adaptability 

Portabilitv roblem list 

Additional SW 
and HW needed 

Figure 3: Example of a product evaluation criteria hierarchy 



5. Conclusions 
The OTSO method was developed to consolidate 
some of the best practices we have been able to 
identify for OTS software selection. The 
experiences from our case studies indicate that our 
method is feasible in an operational context: it 
improves the efficiency and consistency of 
evaluations, it has low overhead costs, and it 
makes the COTS selection ,decision rationale 
explicit in the organization. The detailed 
evaluation criteria also contribute to the 
refinement of application requirements. 

The evaluation criteria definition approach 
presented in this paper is a central element of the 
OTSO method. The underlying assumption of our 
approach is that as each situation is different, the 
factors, goals and evaluation criteria will need to 
be defined for each situation separately. By 
formalizing this criteria definition process, it is 
possible to reuse the OTS software selection 
experiences better, leading to a more efficient and 
reliable selection process. 

Although our case studies were both performed 
in the same application domain, we have not 
encountered any domain specific characteristics 
that would limit the applicability of the method in 
other domains. Also, while the case studies 
themselves were relatively small, the evaluation 
processes, and the resulting criteria, were quite 
extensive. This leads us to suggest that the method 
may be able to scale up to larger situations as 
well. However, further validation is necessary to 
determine this with more confidence. 

6. Acknowledgments 
This work has been supported by the Hughes 
Information Technology Corporation and the EOS 
Program, as well as by the Software Engineering 
Laboratory, a joint software process improvement 
organization between NASA, Computer Sciences 
Corporation and University of Maryland. 

Gianluigi Caldiera is a Research Manager at the 
Department of Computer Science at University of 
Maryland. His research and professional activities 
are in software engineering, with special focus on 
software quality assurance and management, 
software metrics, software reuse and software 
factories, software process improvement, and 
quality standards. In his more than 15 years of 
professional and academic experience, he has 
consulted for Government and industry in both 
Europe and United States. He can be reached at 
gcaldiera@cs.umd.edu. 

Victor R. Basili is a professor in the Institute for 
Advanced Computer Studies and the Department 
of Computer Science. He is a co-founder and a 
director of the Software Engineering Laboratory. 
Professor Basili is also co-editor-in-chief of the 
International Journal of Empirical Software 
Engineering. He can be reached at 
basili@cs.umd.edu. 

8. References 

[I] B. Barnes, T. Durek, J. Gaffney, and A. 
Pyster. "A Framework and Economic 
Foundation for Software Reuse,". In: 
Tutorial: Sofrware Reuse: Emerging 
Technology, ed. W. Tracz. Washington: 
IEEE Computer Society, 1988.p~. 77-88. 

[2] V. R. Basili, "Software Modeling and 
Measurement: The Goal/Question/Metric 
Paradigm," CS-TR-2956, 1992. Computer 
Science Technical Report Series. University 
of Maryland. College Park, MD. 

[3] V. R. Basili, G. Caldiera, and H. D. 
Rombach. "Goal Question Metric 
Paradigm,". In: Encyclopedia of Sofrware 
Engineering, ed. J. J. Marciniak. New York: 
John Wiley & Sons, 1994.p~. 528-532. 

[4] T. Birgerstaff and C. Richter, "Reusability 
Framework, Assessment, and Directions," 
IEEE Sofrware, vol. 4, March. pp. 41-49, 
1987. 

7. About the Authors [5] B. W. Boehm, J. R. Brown, and M. Lipow, 

Jyrki Kontio is a researcher at the Department of 
Computer Science at University of Maryland. His 
research interests include risk management, 
process improvement, process modeling, 
technology management, and software reuse. He 
is on a leave-of-absence from Nokia Research 
Center, completing his Ph.D. on software risk 

"Quantitative Evaluation of software 
Quality," pp. 592-605, 1976. Pcodeedings of 
the Second International Conference on 
Software Engineering. IEEE. 

[6] G. Boloix and P. N. Robillard, "A Software 
System Evaluation Framework," IEEE 
Computer, vol. 28, 12. pp. 17-26, 1995. 

management.- ~e can be reached at 
jkontio@cs.umd.edu. 



[7] J. P. Cavano and J. A. McCall, "A 
Framework for the Measurement of Software 
Quality," ACM SIGSOFT Sojiware 
Engineering Notes, vol. 3, 5. pp. 133-139, 
1978. 

[8] A. T. W. Chu and R. E. Kalaba, "A 
Comparison of Two Methods for 
Determining the Weights Belonging to Fuzzy 
Sets," Journal of Optimization Theory and 
Applications, vol. 27,4. pp. 531-538, 1979. 

[9] T. Davis, "Toward a reuse maturity model," 
eds. M. L. Griss and L. Latour. pp. Davis-t- 
1-7, 1992. Proceedings of the 5th Annual 
Workshop on Software Reuse. University of 
Maine. 

[lo] M. S. Deutsch and R. R. Willis. "SofhYare 
Quality Engineering - A total Technical and 
Management Approach," gnglewood Cliffs: 
Prentice-Hall, 1988.3 17 pages. 

[ l l ]  G. R. Finnie, G. E. Wittig, and D. I. Petkov, 
"Prioritizing Software Development 
Productivity Factors Using the Analytic 
Hierarchy Process," Journal of Systems and 
Software, vol. 22, pp. 129-139, 1995. 

[12] E. H. Forman, "Facts and Fictions about the 
Analytic Hierarchy Process," Mathematical 
and Computer Modelling, vol. 17, 4-5. pp. 
19-26,1993. 

[13] M. L. Griss, "Software reuse: From library to 
factory," IBM Systems Journal, vol. 32, 4. 
pp. 548-566, 1993. 

[14] S. Hong and R. Nigam. "Analytic Hierarchy 
Process Applied to Evaluation of Financial 
Modeling Software,". In: Proceedings of the 
1st International Conference on Decision 
Support Systems, Atlanta, GA, 
Anonymousl981. 

[15] J. W. Hooper and R. 0. Chester. "SofhYare 
Reuse: Guidelines and Methods," R.A. 
Demillo (Ed). New York: Plenum Press, 
1991. 

[ 161 ISO. "Information technology - SofhYare 
product evaluation - Quality characteristics 
and quidelines for their use, ISOBEC 
9126: 199l(E)," Geneve, Switzerland: 
International Standards Organization, 199 1. 

[17] P. Koltun and A. Hudson, "A Reuse Maturity 
Model," ed. W. B. Frakes. pp. 1-4, 1991. 
Proceedings of the 4th Annual Workshop on 
Software Reuse. University of Maine. 
Department of Computer Science. 

[18] J. Kontio, "OTSO: A Systematic Process for 
Reusable Software Component Selection," 
CS-TR-3478, 1995. University of Maryland 
Technical Reports. University of Maryland. 
College Park, MD. 

[19] J. Kontio, "A Case Study in Applying a 
Systematic Method for COTS Selection," 
1996. Proceedings of the 18th International 
Conference on Software Engineering. 

[20] J. Kontio and S. Chen, "Hypertext Document 
Viewing Tool Trade Study: Summary of 
Evaluation Results," 44 1-TP-002-001, 1995. 
ECS project Technical Paper. Hughes 
Corporation, ECS project. 

[21] J. Kontio, S. Chen, K. Limperos, R. 
Tesoriero, G. Caldiera, and M. S. Deutsch, 
"A COTS Selection Method and Experiences 
of Its Use," 1995. Proceedings of the 20th 
Annual Software Engineering Workshop. 
NASA. Greenbelt, Maryland. 

[22] H. Min, "Selection of Software: The Analytic 
Hierarchy Process," International Journal of 
Physical Distribution & Logistics 
Management, vol. 22, 1. pp. 42-52, 1992. 

[23] J. S. Poulin, J. M. Caruso, and D. R. 
Hancock, "The business case for software 
reuse," IBM Systems Journal, vol. 32, 4. pp. 
567-594,1993. 

[24] R. Prieto-Diaz, "Implementing faceted 
classification for software reuse," 
Communications of the ACM, vol. 34, 
5.1991. 

1251 C. V. Ramamoorthy, V. Garg, and A. 
Prakash, "Support for Reusability in 
Genesis," pp. 299-305, 1986. Proceedings of 
Compsac 86. Chicago. 

[26] T. L. Saaty. "Decision Making for Leaders," 
Belmont, California: Lifetime Learning 
Publications, 1982.291 pages. 

[27] T. L. Saaty. "The Analytic Hierarchy 
Process," New York: McGraw-Hill, 1990. 
287 pages. 

[28] T. L. Saaty. "Analytic Hierarchy,". In: 
Encyclopedia of Science & Technology, 
Anonymous McGraw-Hill, 1992.p~. 559- 
563. 

[29] T. L. Saaty, Expert Choice software 1995, 
ver. 9, rel. 1995. Expert Choice Inc. IBM. 
Windows 95. 



[30] W. Schiifer, R. Prieto-Diaz, and M. 
Matsumoto. "Sojiware Reusability," W. 
Schafer, R. Prieto-Diaz, and M. Matsumoto 
(Eds). Heme1 Hempstead: Ellis Horwood, 
1994. 

[31] P. J. Schoemaker and C. C. Waid, "An 
Experimental Comparison of Different 
Approaches to Determining Weights in 
Additive Utility Models," Management 
Science, vol. 28,2. pp. 182-196, 1982. 

1321 W. Tracz, "Reusability Comes of Age," 
IEEE Software, vol. 4, July. pp. 6-8, 1987. 

[33] W. Tracz. "Software Reuse: Motivators and 
Inhibitors,". In: Tutorial: Sofrware Reuse: 
Emerging Technology, ed. W. Tracz. 
Washington: IEEE Computer Society, 
1988.p~. 62-67. 

Note: Some of the technical reports and papers 
describing the OTSO method are available 
through "http:llwww.cs.umd.edu/users/jkontiof'. 



--i 
d.29 11 / 

9 :c;- 
. 4' ,/7$%:>, ; - 

SECTION 3-SOFTWARE MODELS 

The technical papers included in this section were originally prepared as indicated below. 

* "Characterizing and Modeling the Cost of Rework in a Library of Reusable Sofhvare 
Components," V. R. Basili, S. E. Condon, K. El Emam, R. B. Hendrick and W. L. 
Melo, International Conference on Software Engineering (ICSE-19), May 1997, pp. 
282-29 1 





Characterizing and Modeling the Cost of Rework in a 
Library of Reusable Software Components 366;r?S3 

9+ 
Victor R. Basili Steven E. Condon Khaled El Emam Robert B. Hendrick Walcelio Melo 

University of CSC Fraunhofer IESE CSC CRIM 
Maryland 10 1 10 Aerospace Rd. Sauenviesen 6 101 10 Aerospace Rd. 1801 McGill College 

Computer Science Lanham-Seabrook, D-6766 1 Lanham-Seabrook Montreal, Quebec 
College Park, MD MD Kaiserslautern MD Canada 

20742 USA 20706 USA Germany 20706 USA H3A 2N4 
basili@cs.umd.edu scondon@csc.com elemam@iese.fhg.de bhendric@cscmail.csc.com wmelo@crim.ca 

ABSTRACT 
In this paper we characterize and model the cost of rework in 
a Component Factory (CF) organization. A CF is responsible 
for developing and packaging reusable software 
components. Data was collected on corrective maintenance 
activities for the Generalized Support Software reuse asset 
library located at the Flight Dynamics Division of NASA's 
GSFC. We then constructed a predictive model of the cost of 
rework using the C4.5 system for generating a logical 
classification model. The predictor variables for the model 
are measures of internal software product attributes. The 
model demonstrates good prediction accuracy, and can be 
used by managers to allocate resources for corrective 
maintenance activities. Furthermore, we used the model to 
generate proscriptive coding guidelines to improve 
programming practices so that the cost of rework can be 
reduced in the future. The general approach we have used is 
applicable to other environments. 

separate entity from the organization that produces 
applications. The CF is responsible for developing and 
packaging reusable software components. It creates and 
maintains a software component repository for future reuse 
and supplies reusable components to the development 
organization upon demand. 

Several  s tudies  have empirically examined the  
characteristics of reusable components. For example, [22] 
investigated new versus reused code in a large collection of 
FORTRAN projects to analyze the pros and cons of creating 
a component from scratch versus modifying an existing 
component. Also in [25], eight medium scale Ada projects 
were assessed with respect to the defects found in newly 
developed and reused components. However, none of these 
works were concerned with software components that were 
developed exclusively for reuse. As far as we know, studies 
of reuse have focused on the side of the project organization, 
which reuses the components, rather than on the side of the 

Keywords CF, which creates the components. The primary reason for 
Software Process Improvement, cost of rework, software this different focus appears to be that not many software 
metrics, classification models, prediction models. companies have a CF set up to develop and maintain 

INTRODUCTION reusable software components. Another potential 
explanation is that the few existing CFs have not collected Previous research has shown that reuse has a sufficient data allowing them to evaluate the different potential to h~rove productivity and aspects of the development and maintenance of reusable product quality [6][25][19]. For example, effective reuse of components. knowledge, processes and products from previous - - 

experience can decrease software development cost, reduce In this paper we present a study that characterizes and 
project delivery time and improve software quality [5][13]. models the cost of rework for a library of reusable 

components. This library, known as the Generalized Support However, reuse will not just hap~en-rather, components SoftWare (GSS) reuse asset library, is located at the ~ l i ~ h ~  must be designed for reuse, and organizational elements Dynamics Division (FDD) of NASA's Goddard Space Flight must be created to projects to take advantage the Center (GSFC). Component development began in 1993. reusable software artifacts [2][11][26]. Subsequent efforts focused on generating new components 
To facilitate the packaging and reuse of software to populate the library and on implementing specification 
development experience, an infrastructure called the changes to satisfy mission requirements. The first 
Component Factory (CF) has been proposed 141. The CF is a application using this library was developed in early 1995. 

Copyright 1997 IEEE. Published in the Proceedings of the 19th The asset library currently consists of 921 Ada83 

International Conference on Software Engineering (ICSE-19), 515 KSLoC. Based On a 
May1997, Boston, MA. Personal use of this material is permitted. review the first 58 GSS error lo2 
However, permission to reprintlrepublish this material for these 921 components have required error ~onection one or 
advertising or promotional purposes or for creating new collective more times. We first characterize the 58 error correction 
works for resale or redistribution to servers or lists, or to reuse any reports in terms of source of error, class of error (both 
copyrighted component of this work in other works, must be defined below), effort required to isolate the error, and effort 
obtained from the IEEE. 

1997 IEEE. Reprinted, with permission, from Proceedings of the 19th International 
Conference on Software Engineering (ICSE-19), Boston, MA, May 1997; pp. 282-291 

69 SEL-97-002 



required to correct the error. We then use a machine learning 
algorithm, C4.5 [21], to construct a model for approximate 
prediction of the cost of rework ("high" or "low"), using 
internal source code metrics of the components that are 
changed. The prediction model can help managers of the 
GSS asset library in the decision-making process by 
providing them with guidelines for predicting where 
corrective maintenance resources will most be needed. The 
model also consists of a set of easily interpretable coding 
guidelines that can be applied in improving current practices 
in order to reduce the cost of future rework. We expect that 
the process used to model rework in the GSS environment 
can be used in other environments to provide equally 
effective prediction models and coding guidelines that are 
appropriate for those environments. 

In [16], various modeling techniques were used to predict 
maintenance productivity. In that article, the only product 
metric that was considered was a software size measure 
based on LOC. In [8], a machine learning algorithm was also 
used to predict the cost of rework in an Ada environment 
using internal product metrics. Unlike the components we 
have studied, however, the components analyzed in [8] were 
developed to satisfy specific application requirements. The 
current paper is, to our knowledge, the first that applies 
machine learning techniques to  help manage the 
maintenance of reusable components, and to improve the 
way these components are produced in order to reduce 
maintenance costs within a CF. 

The paper is organized as follows. It first presents the 
framework in which this study was conducted: the FDD, the 
Software Engineering Laboratory (SEL), and the GSS 
domain engineering and application deployment processes. 
The paper then presents the method for data collection and 
analysis. Then, the results of our analysis, including 
descriptive statistics that characterize the components and a 
predictive model of rework effort, are presented. We 
conclude the paper with a summary and directions for future 
work. 

ENWRONMENT OF THE STUDY 

The FDD 
GSFC manages and controls NASA's Earth-orbiting 
scientific satellites and also supports human space flight. For 
fulfilling flight dynamics responsibilities for both of these 
complex missions, the FDD developed and now maintains 
over 100 different software systems, ranging in size fiom 10 
thousand source lines of code (KSLOC) to 300 KSLOC, and 
totaling approximately 4.5 million SLOC. This software 
covers three separate subdomains of the FDD mission: 
mission planning, orbit determination, and attitude1 
determination. 

To increase the amount and type of reuse, and at the same 
time to drastically reduce the cycle time needed to develop 
and test new software systems, the FDD embarked on the 
GSS Domain Engineering Process in 1993. This process 
achieves rapid deployment by utilizing an object-oriented 

1. The term "attitude" refers to a spacecraft's orientation in space. 

architecture in which the reusable assets are the generalized 
specifications for the reusable software components, as well 
as the reusable software components themselves (written in 
Ada83). Adopting this architecture and process results in a 
paradigm shift from developing software applications to 
conjiguring software applications. The GSS reuse asset 
library is the software component repository examined in 
this paper. 

The SEL 
The Software Engineering Laboratory began in 1976 with 
the goals of understanding the software process and product 
in the FDD, determining the impact of available 
technologies, and infusing the identifiedlrefined methods, 
techniques, and products back into the environment. The 
approach has been to identify technologies with potential, 
apply them, and study their effect, based on studying the 
impact of the changes on such issues as cost, reliability, and 
quality. The participating organizations are the FDD, the 
University of Maryland, and Computer Sciences 
Corporation. 

Over the years, the SEL has investigated numerous 
techniques and methods in over a hundred projects to 
understand and improve the software development process 
and product in their environment [20]. The result of this 
legacy is an organization and personnel that are quite 
interested in experimentation with new technologies and not 
averse to change. They are also a part of an environment 
that is quite successful at the type of work in which they are - - 
involved. 

The approaches used for learning include the concept of the 
Experience Factory (EF). The focus of the EF in the SEL is 
on collecting metrics and lessons learned from standard 
projects and from special experiments, and then analyzing 
these data and packaging them into guide books, models, and 
training courses that can be spread to all areas of the 
development organization. The EF is different from the 
Project Organization (PO) which focuses on the 
development and maintenance of applications. Their 
relationship is depicted in Figure 1. The SEL EF has 
developed and packaged: 

resource models and baselines (e.g., local cost models, 
resource allocation models) 
change and defect baselines and models (e.g., defect pre- 
diction models, types of defects expected for the applica- 
tion) 
project models and baselines (e.g., actual vs. expected 
product size) 
process definitions and models (e.g., process models for 
Cleanroom, Ada waterfall model) 
method and technique evaluations (e-g., best method for 
finding interface faults) 
products and product parts (e-g., Ada generics for simula- 
tion of satellite orbits) 
quality models (e.g., reliability models, defect slippage 
models, ease of change models), and 
lessons learned (e.g., risks associated with an Ada devel- 
opment). 



Figure 1: The relationship between the Experience Factory 
and the Project Organization. 

Figure 2: The relationship between the Component Factory 
and the Project Organization. 

These models are built to understand the local environment, 
identify areas for improvement, attempt improvement via 
change, and form bases for evaluating that change against 
goals. 

The Component Factory (CF) organization is a sub- 
organizational structure of the EF-an addition to the 
traditional EF. The CF focuses on generating a configuration 
architecture and reusable components, based on learning 
over time. This learning is in the form of analysis and 
synthesis of what is most effective for reuse (as well as what 
is expected to be needed for configuring applications) for the 
future development of products in a certain class. To staff a 

reusable class components. The PO takes advantage of this 
architecture and asset library to configure new systems. The 
PO'S mission analysts now compare mission requirements to 
the asset library's functional specifications and produce a 
mission speciJication document tha t  t e l l s  the  PO'S 
application configurers-application developers are no 
longer needed-how to configure the desired system from 
the reuse library assets. The traditional elements of the EF, 
together with the CF staff, then study how effective this 
process and the asset library have been for future 
improvement 

Figure 3: The GSS domain engineering and 
application deployment process. 

The GSS Process 
The activites of the CF and the PO in the GSS domain 
engineering and application deployment process are shown 
in more detail in Figure 3. The process relies on five 
functionally distinct teams, although some personnel may 
overlap between teams (particularly between the component 
engineers and the application configurers). The domain 
analysts write the class and category specifications. The 
component engineers code the classes and categories that, 
together with the specifications, make up the GSS reuse asset 
library. The mission analysts analyze the mission 
requirements and specie which classes need to be used for a 
given mission and how they should be configured. The 
application configurers configure the desired mission 
applications from the available classes and categories in the 
GSS reuse asset library, instantiate the generics, and perform 
integration testing of the application. The application testers 
c6nduct acceptance testing of the configured mission 
application. 

CF, some members of the PO functionally become members DATA COLLECTION AND ANALYSIS METHOD 
of the CF, although they may continue to think of themselves 
still as PO members. (See Figure 2.) That is, some mission Definitions 
analysts and application developers become domain analysts Errors are defects in the human thought process that are 
for the CF, and some application developers become made understand and given 
component engineers for the CF. The domain analysts information, solve problems, or use methods and tools- 
design the architecture and class specifications reuse Faults are concrete manifestations of errors within the 

asset library. The component engineers then construct the software. 



In this study, an error is represented by a single software 
Change Request Form (CRF) [15] filled by developers and 
configurers to institute and document a change to one or 
more components. A CRF results in modifications to one or 
more components in the reuse asset library. CRFs are also 
generated for enhancements, requirements changes, and 
adaptation. The current paper examines only error correction 
CRFs. 

A fault pertains to a single component and is evidenced by 
the physical change of that component in response to a 
particular error CRF. In this study, we define a component as 
as an Ada file in configuration management. A fauliy 
component version becomes afixed component version after 
it is corrected. We are only interested in the faulty 
component versions. 

Data Collection 
We collected data on: (1) error identification and error 
correction (which follow initiation of a CRF), including the 
names and version numbers of the source code components 
that had faults in them, and (2) source code metrics 
characterizing these particular components. 

Between 9th March 1994 and 2 1 st September 1995, a total 
of 58 GSS error correction CRFs were generated, meaning 
58 errors were identified. (In addition, 96 additional GSS 
CRFs were generated for requested enhancements, 
adaptations, and requirements changes.) Most of the GSS 
error correction CRFs were initiated by configurers, who 
uncovered problems during instantiation of the Ada generics 
and integration testing of the configured application, prior to 
turning over the configured application to acceptance testing. 
A very small minority of the CRFs-perhaps ten percent- 
were initiated by a maintainer of the reuse asset library 
following the report of a failed application test item by the 
independent tester group during conductance of acceptance 
testing of the application.. 

The CRF data analyzed by our study consisted of (1) the 
classification of errors by source and class, (2) the names of 
components changed to correct the errors, (3) the effort 
expended to isolate all faults associated with the error, and 
(4) the effort required to correct all of these faults. Each of 
these is described below. 

Isolation and correction effort was measured on a 4-point 
ordinal scale: 1 hour, fiom 1 hour to 1 day, fiom 1 to 3 days, 
and more than 3 days. In addition, the maintainer provides 
the source of the  error (requirements, functional 
specification, design, code, or previous change). Once an 
error is found during configuration and testing, the 
maintainer finds the cause of the error, locates where the . 
modifications are to be made, and determines that all effects 
of the change are accounted for. Then the maintainer 
modifies the design (if necessary), code, and documentation 
to correct the error. Once the maintainer fixes the error, the 
maintainer provides the names of the components changed 
(in our case the faulty components). The maintainer also 
specifies the class of the error (initialization, internal/ 
external interface, user interface, database, algorithm, etc.). 

The Amadeus tool [ l ]  was used to extract source code 

metrics from all faulty component versions. A description of 
the source code metrics that were found useful is given in the 
results section of this paper. If after the extraction of some 
metrics it was found that they had zero variation (e-g., the 
number of Goto7s), we excluded these metrics from further 
analysis. 

Data Analysis: Characterization 
The first data analysis task was to characterize or describe 
the errors. The objective of this characterization is to 
understand better the nature of the errors and how they are 
distributed. For this, basic pie charts were used. 
Furthermore, basic bivariate analysis using contingency 
tables and chi-square tests [24] was conducted to identify if 
there were any relationships between the source and class of 
errors and the rework effort. 

Since the contingency tables tended to be sparse in some 
instances (i.e., cell frequencies approaching zero), we 
dichotomized each of the isolation and correction cost 
variables. We therefore considered isolation or correction 
effort of 1 hour as Low, and effort greater than 1 hour to be 
High. 

Data Analysis: Modeling 
A cost of rework model should allow: (1) the prediction of 
which components are likely to be associated with costly 
rework, and (2) provide programming guidelines that can be 
used to prevent costly rework in the future. The cost of 
rework is measured as the total effort taken to isolate and 
correct an error. 

Unit of Analysis 
The unit of analysis for developing the model is a faulty 
component version. During rework, a total of 118 changes 
were made to 102 components to fix these 58 errors. Four of 
the components were changed three times (i.e., on three 
different CRFs), 8 components were changed twice, and the 
remaining 90 were changed only once. 

Approximately 75% of the components in the library are 
generated using a code generator. When software changes 
are necessary, maintainers do not make changes directly to 
the outputs of the code generator. Instead, the inputs to the 
code generator are changed, and new versions of the output 
components are generated. Given that rework effort is only 
directly affected by the characteristics of the component 
versions that are actually changed by the maintainers, 
component versions that are automatically regenerated by 
the code generator should not be included in our analysis. 
Where the components associated with a CRF include the 
input to the code generator as well as the output component, 
we excluded the modified output versions in our analysis. 
This leaves a total of 76 faulty component versions which 
are the basis of our analysis. 

Model Spec$cation 
The model that we developed identifies component versions 
that are associated with costly rework rather than trying to 
predict the exact effort for reworking a component version. 
We therefore use the characteristics of a faulty component 
version as input into the model, and the total rework effort 
for the error as the output of the model. Given that the model 



we developed is a classification model, it classifies a 
component version into ones of two rework cost categories: 
Low Cost and High Cost. (Note that these categories are 
different from the one described in the "Characterization" 
paragraph above because, for the model we are interested in 
total rework effort, while in characterization we look at 
isolation and correction separately.) This allows the model to 
predict whether a component version is associated with a 
costly, or otherwise, error. 

Modeling Technique 
The modeling technique that we used is a machine learning 
algorithm called C4.5 [21]. The C4.5 algorithm partitions 
continuous attributes, in our case the internal product 
metrics, finding the best threshold among the set of training 
cases to classify them on the dependent variable. As well as 
being useful for prediction, the generated tree provides 
decision rules characterizing component versions that fall 
into each one of the two rework cost categories. 

We chose this  technique because the models are 
straightforward to build and are also easy to interpret. In 
addition, this class of modeling techniques has been used in 
the software engineering literature to build prediction 
models [23], and therefore there already is some familiarity 

hours, the category of "1 hour to 1 Day" was changed to 4.5 
hours, the category of "from 1 to 3 Days" was changed to 16 
hours, and the category of "more than 3 Days" was changed 
to 32 hours. We then summed up these values for isolation 
and correction costs. This gives us an average overall rework 
cost. The median of total rework cost per CRF was 5 hours, 
and we used that as the cutoff point for dichotomization. 
Based on this dichomotomization, we have 33 component 
versions that were associated with errors requiring a low cost 
of rework and 43 that required a high cost of rework. 

Independent Variables 
Internal product metrics have been widely used to predict 
quality attributes such as productivity and software quality 
1141. Here, we are interested in studying the use of internal 
product metrics of the faulty GSS component versions to 
predict the cost of rework. Previous research investigated the 
use of the characteristics of the change as the basis for the 
prediction of correction effort [ lo],  however, the 
characteristics of the change are usually not available before 
the change is actually made (or at least not before isolation 
of the error). We only wanted to use information that would 
be available before isolation in order to develop a model for 
predicting total rework effort. 

with i t . 0 f  course, other classification techniques, e.g., Evaluation ofthe Model 
Optimized Set Reduction [9] or logistic regression [6], could To evaluate the model, we need criteria for evaluating the 
have been used. However, our goal here is not to compare overall model accuracy and for evaluating the strength of the 
classification techniques. rules. Evaluating model accuracy tells us how good the 

Potential Application of the Model 
A prediction identifying component versions that are going 
to be associated with costly errors can help managers 
allocate resources for the maintenance activities. The 
availability of rules as part of the model can help prevent 
high rework cost in the maintenance environment. For 
example, rules that characterize high rework cost can be 
t r e a t e d  a s  proscriptive programming guidelines for 
developing future components. It is on proscriptive rules that 
we focus in this study. 

It should be noted, however, that the model does not identifj 
which component versions in the asset library are likely to 
have faults, only which of the faulty versions should be more 
or less expensive to isolate and correct. Application of such 
predictions assumes that the manager knows beforehand 
which components are likely to contain a fault. Models for 
the prediction of fault-prone Ada components in the SEL 
environment have been developed in the past [9]. Once a 
component version has been identified as potentially fault- 
prone, then it is possible to predict the cost of rework 
category when fixing an error that leads to faults in that 
version. Using this additional information, a manager can 
improve the resource allocation for maintenance. 

model is expected to be as a predictor. Evaluating the 
strength of the rules tells us the extent to which we can trust 
these rules as programming guidelines. 

Evaluating Prediction Accuracy 
Three criteria for evaluating the accuracy of predictions are 
the predictive validity criterion, and measures of correctness 
and completeness. These are defined below with reference to 
Table 1. Table 1 shows symbols for frequencies. 

A criterion of prediction validity has been presented in [17]. 
This basically involves laying out the li-equencies as in Table 
1, and calculating the chi-square statistic. If the value is 
larger than a critical value then it is claimed that the model 
has predictive validity. The authors state that a model that 
does not meet the criterion of predictive validity should be 
rejected. This does not necessarily mean that a model that 
meets the predictive validity criteria should be accepted (it 
would be easy to demonstrate that if the classification model 
predicted all High Cost components as Low Cost and vice 
versa - i.e., very high misclassification - it would still have 
high predictive validity). We use this criterion to determine 
whether there is any association between the real rework cost 
of a component and its actual rework cost. 

Dependent Variable 
To build a classification model, we dichotomize our 
dependent variable, which is the total cost of rework. We 
converted the four effort categories into average values 
following [3]. We assumed an 8 hour day, and took the 
average value for each of the categories of rework. 
Therefore, the category of "1 Hour7' was changed to 0.5 



Predicted Rework Cost 

Table 1: Evaluating the accuracy of predicted classifications. 

Low Cost High Cost 

Correctness is defined as the percentage of component 
versions that were predicted to be costly to rework and were 
actually costly to rework. We want to maximize correctness 
because if correctness is low, then the model is identifying 
more component versions as being costly to rework when 
they really are not costly to rework, which could lead to an 
over-allocation of resources to making changes (i.e., 
wastage). 

Real Rework Cost Low Cost 

High Cost 

correctness = ( 

Completeness is defined as the percentage of those 
component versions costly to rework and were predicted to 
be costly to rework. We want to maximize completeness 
because as completeness decreases, more versions that were 
costly to rework are mis-identified as not costly to rework, 
which would lead to a shortage of resources for making 
changes.. 

nl 1 

n2 1 

RESULTS 

n12 

4 2  

Characterizing Errors 

Distribution of Errors by Error Source 
Figure 4 shows the overall distribution of errors (the 58 
errors) by error source. Requirements and functional 
spec i f i ca t ion  e r r o r s  a r e  t h o s e  t r i g g e r e d  by a 
misunderstanding of user requirements, and are introduced 
into the system by the process of transforming user 
requirements into project requirement specifications. Design 
errors are those introduced in the process of transforming 
requirements and specifications into detailed (component- 
level) design. Coding errors are those that occur when 
transforming the detailed design to code, such as mistyping 
a variable name, incorrectly coding an assignment statement, 
or incorrectly coding the exit criteria of a loop. Finally, 
errors resulting from a previous change are those that were 
not in the system until some other change was implemented 
(in which case the implementation of the previous change 
did not consider all of its possible effects, or the change was 
simply implemented incorrectly). 

Completeness = ( n2:fu2 x loo 

In order to calculate values for correctness and 
completeness, we used a V-fold cross-validation procedure 
[7]. For each observation X in the sample, a model was 
developed based on the remaining observations (sample - 
X). This model was then used to predict whether observation 
X-will have high rework or low rework. This validation 
procedure is commonly used when data sets are small. 

EvaIuation of RuIes 
The generated model from all 76 versions is also useful for 
providing proscriptive guidelines to programmers. The 
guidelines inform the programmers of the characteristics of . 
faulty components that tend to require costly rework. By 
producing components that do not have these characteristics, Figure 4: Distribution of errors by source. 
there is a greater chance that components will be produced 
that are not costly to rework. There are two ways for 
evaluating such rules. First by measuring the number of 
cases that a rule classified correctly. Second, by appeal to the 
intuition of programmers in the environment (i.e., do the 
rules make sense to them). 



Figure 5: Distribution of errors by class. 

Coding errors are responsible for approximately half of the 
errors found during acceptance testing (45%), followed by 
errors from requirements and functional specifications 
(29%), previous changes (17%), and finally design (9%). 

It is interesting to note the small amount of design errors 
compared with requirements, specification, and coding 
errors. In part, this stems from the fact that most of the 
"design" of the GSS library is done during the specification 
phase. The object classes and the relationship between such 
classes of the three types of applications developed in the 
FDD (orbit, attitude and mission support) are, in fact, 
defined during the requirements analysis phase. The 
description of the methods of GSS classes are also done 
during the analysis. 

Distribution of Errors by Error CIass 
The components in the library are based on generalizations 
of existing algorithms that were previously used in earlier 
systems. Therefore logic and computational errors are 
expected to be low (17% and 5% respectively as seen in 
Figure 5). 

Initialization errors are responsible for 17% of the errors 
found during acceptance testing. (Initialization errors are 
those which result from an incorrectly initialized variable, 
failure to reinitialize a variable, or because a necessary 
initialization was missing; failure to initialize or reinitialize a 
data structure properly upon a component's entrylexit is also 
considered an initialization error). Once an application is 
created using the component library, a minimal set of 
integration tests are run. Particularly for an initial version of 
an application, this can result in a large number of 
initialization errors since this would be the first time the 
components have been configured in this fashion. 

for the large incidence of Data errors is that the Ada compiler 
catches a large proportion of the errors that would fall in the 
other categories, but many common Data errors will pass 
through compilation. This could be, for example, specifying 
a variable as POSITM3 instead of NATURAL. 

Characterizing the Cost of Rework 

Distribution of Errors By Cost of Isolation and Correction 
Most of the GSS errors had a low isolation cost (60%) and a 
low correction cost (64%). It can be hypothesized that the 
design of the GSS architecture and the use of coding 
standards help reduce the time necessary to isolate errors, as 
well as the application of object-oriented design principles. 
Another explanation for the relatively low rework costs in 
general is that the people responsible for correcting errors in 
the GSS components have participated in the development of 
these components. They have, therefore, a good 
understanding of the design and realization strategies 
implemented into the code. 

It should be noted that the median number of components 
changed for each CRF is 1 (maximum is 6), and the median 
number of other components examined is zero (with a 
maximum of 5). To test the hypothesis that the number of 
changed and examined components is related to the cost of 
isolation and correction, we used the Mann-Whitney U test 
1241. No difference was found for the number of components 
examined when isolation cost was considered. When 
considering correction cost, it was found that more 
components are changed for high correction cost CRFs 
compared to low cost CRFs (at an alpha level of 0.05). No 
difference was found for number of components examined 
and correction cost. 

Impact of Error Source on Rework Eflort 
Table 2 shows the distribution between the categories of 
error isolation cost and the error source. The contingency 
table contains the frequency of CRFs in each cell and the 
percentage of the total. We combined the Requirements and 
Functional Specification sources together into one 
"Analysis" category to avoid having expected frequencies 
less than one in the table. Likewise, Table 3 shows the 
distribution between the categories of error correction cost 
and the source of error. 

Observation of the table indicates that for analysis sources, 
the isolation and correction costs tend to be low. We used the 
Pearson chi-square statistic to determine if there is a general 
association between source and rework cost. The probability 
values for both the isolation cost and the correction cost table 
were not significant at the 0.05 alpha level.'. Therefore, there 
is no association between source of error and isolation nor 
correction cost. 

Data (value or structure) are responsible for the largest 
proportion of errors caught by the configurers and testers 
(see Figure 5). Data errors are those provoked by any error 1. The approximation of the x2 statistic to the chi-square distribution as- 

resulting from an incorrect use of a data ~~~~~l~~ sumes that expected frequencies are not too small. This is usually interpreted 

of data errors are the use of incorrect subscripts for an to mean having at least 20% of expected frequencies greater than 5 and no 
cell having an expected frequency less than 1 for tables with degrees of fiee- the use of the the use of the unit of dom greaterthan 1 1121. However, it has been suggested that the mnvention- 

Or the of an incorrect of a1 chi-square statistic may be used for 2xc tables where all expected 
a variable local to the component. One potential explanation frequencies are as low as [18]. 



Table 2: Relationship between error source and isolation cost. 

Table 3: Relationship between error source and correction cost. 

Computational Data Initialization Interface Lonic I Total 

Total 
21 

37 

58 

Previous 
Code Design Analysis Change 

HIGH Correction 
Cost 

LOW Correction 
Cost 

Total 

HIGH 
Isolation 

Cost 
LOW 

Isolation 
Cost 

Total 

9 
15.52% 

17 
29.31% 

26 

Table 4: Relationship between error class and isolation cost. 

1 

1.72% 

2 
3.45% 

3 

Total 
21 

37 

58 

Computational Data Initialization Interface Logic 

3 
5.17% 

2 
3.45% 

5 

Table 5: Relationship between error class and correction cost. 

HIGH 
Correction 

Cost 
LOW 

Correction 
Cost 

Total 

11 

19% 

15 
25.86% 

26 

5 
8.62% 

12 
20.69% 

17 

1 
1.72% 

2 
3.45% 

3 

4 
6.9% 

6 
10.34% 

I 0  

3 

5.17% 

7 
12% 

10 

11 
18.97% 

15 
25.86% 

26 

Z 

3.45% 

7 
12% 

9 

2 
3.45% 

8 
13.79% 

10 

ti 

10.34% 

4 
6.9% 

10 

23 

35 

58 

4 
6.9% 

5 
8.62% 

9 

3 
5.1 7% 

7 
12% 

10 



Predicted Rework 
Cost 

Low High 
Cost Cost 

Real Rework Cost Low 33 
Cost 

High 43 
Cost 

35 41 76 

Table 6: Predicted versus real rework categories. 

Impact of Error Class on the Cost of Rework 
Table 4 shows the distribution between the class of error and 
the isolation cost. We combined the Internal and External 
Interface categories to avoid having cells with expected 
frequencies less than one. The relationship between source 
and correction cost is depicted in Table 5. It can be observed 
from the tables that interface errors tend to cost less to 
isolate, and initialization errors tend to cost less to correct. 
Chi-square tests however do not identify any statistically 
significant association for either of the two tables. 

Modeling the Cost of Rework 
Table 6 shows the relationship between real and predicted 
rework. The predictive validity criterion for the contingency 
table presented in Table 6 is met at a one-tailed alpha level of 
0.05. The values of correctness and completeness are shown 
in Figure 6. We found that correctness was 76% and 
completeness 72%. These values were perceived to be 
sufficient for decision making, especially when combined 
with expert judgment. 

In this paper we are concerned with rules that characterize 
component versions that are costly to rework. The 
proportion of components that match the rule and are 
classified correctly by the rule give us a measure of how 
accurate a particular rule is. The model we developed had 
three interpretable rules for classifying high rework cost 
component versions. These are shown in Figure 7. For 
engineers involved with the GSS asset library, the rules were 
perceived to be intuitive in the sense that they express the 
fact that "more complicated things are more likely to cost 
more to correct." Moreover, the rules formalize the 
characteristics of the more complicated component versions. 

The three rules can be used as maximal thresholds when 
developing new components. In some cases, there may be 
good design reasons for a component to exceed the 
threshold(s). Therefore the rules ought not be interpreted as 
strictly proscriptive. If a new component matches one or 
more of the rules, then the developer can decide whether it 
needs to be changed to reduce its potential for being 
associated with an error that is costly to isolate and correct. 

Figure 8 shows the 3 internal product metrics that were 
found useful in developing this model. These 3 metrics were 
automatically selected by C4.5 from the set of metrics 
provided by Amadeus. 

Figure 6: Correctness and completeness results for the 
prediction model. 

Correctness 

Completeness 
76% (31141) 

72% (3 1/43) 

I ProgrammerExceptionsUsed > 2 
I 

1 83% I 

Rule@) 

Functioncalls > 38 

Figure 7: Proscriptive coding rules and their accuracy. 

Accuracy 

100% 

I Metric Name I Brief Description 1 

/ ProgrammerExceptionsUsed 1 The number of exceptions used I 

Functioncalls 

Declarationstatements 

I - 
I in the file. I 

Figure 8: Description of the metrics that were found useful 

The number of function calls. 

The number of declaration 
statements, including those 
with and without initialization. 

- 

for building the model. 

The proscriptive guidelines provided in Figure 7 were found 
from error data for a specific reusable components library. 
Caution should be exercised in attempting to generalize 
these rules beyond this context and applying them in a 
different environment. The overall approach we have used, 
however, can easily be generalized to other contexts. For 
example, after collecting the appropriate data, another 
organization could develop models for prediction and for 
producing coding guidelines to manage and reduce rework 
effort. 

CONCLUSIONS 
In this paper we reported on a study to model and understand 
the cost of rework in a library of reusable software 
components. We described how rework costs are distributed 
during the error correction process, and developed a model 
to predict the component versions that are associated with 
errors that are costly to rework. The model was also used to 
develop proscriptive coding rules that can be used by 
programmers as guidelines to reduce the cost of rework in 
the future. 

Extensions of this work would include developing models 
for predicting components that have a high risk of faults (to 
help managers focus testing and inspections) and that can 
also be used to provide guidelines to programmers. We have 
used a specific set of internal product metrics for developing 
the model. These metrics tended to be counts of elements of 
a component. A different set of metrics that better 
characterize the structure and design of components may 
improve the predictive quality of the model, and also would 
provide guidelines for improving design practices. 



Furthermore, it would be informative to compare models 
where cost of rework is the dependent variable with models 
where risk of fault is the dependent variable to determine if 
the derived guidelines from the  two models are 
complementary or contradictory. 

ACKNOWLEDGEMENTS 
The authors wish to thank Lionel Briand, Steve Burke, 
Minna Makarainen, Mark Nicholson, Mari Sykes, and 
Carolyn Seaman for their help in data collection and 
preparation, comments on this work and reviews of earlier 
versions of this paper. The work reported in this paper was 
partially funded through NASA grant 01-5-26393 and 
NASA contract NAS5-3 1000 (subcontractor no. HQ- 
001057). Walcelio Melo was sponsored by Bell Canada, 
Software Quality Group, for the work reported in this paper. 

REFERENCES 
1. Amadeus Software Research Inc.: "Getting Started with 

Amadeus." Amadeus Measurement System. 1994. 
2. R. Banker, R. Kauffinan and D. Zweig: "Repository 

Evaluation of Software Reuse." In IEEE Transactions on 
Sofware Engineering, 19(4):379-3 89, April 1993. 

3. V. Basili and B. Pemcone: "Software Errors and Com- 
plexity: An Empirical Investigation." In Communications 
of the ACM, 27(1):42-52, January 1984. 

4. V. Basili, and H.D. Rombach: "The TAME Project: 
Toward an Improvement-oriented Software Environ- 
ment." In IEEE Transactions on Software Engineering 
14(6):758-773, June 1988. 

5. V. Basili, and H.D. Rombach: "Support for Comprehen- 
sive Reuse." In Software Engineering Journal, 6(5):303- 
3 16, September 199 1. 

6. V. Basili, L. Briand and W. Melo: "A Validation of 
Object-Oriented Design Metrics as Quality Indicators." 
In IEEE Transactions on Software Engineering Decem- 
ber 1996. 

7. L. Breirnan, J. Friedman, R. Olshen and C. Stone: Classi- 
$cation and Regression Trees. Published by Wadsworth, 
1984. 

8. L. Briand, W. Thomas, and C. Hetmanski: "Modeling 
and Managing Risk Early in Software Development". In 
Proceedings of the International Conference on Sojiware 
Engineering, pages 55-65, 1993. 

9. L. Briand, V. Basili and C. Hetmanski: "Developing 
Interpretable Models with Optimized Set Reduction for 
Identifying High Risk Software Components." In IEEE 
Transactions on Software Engineering SE-19 (1 1): 1028- 
1044,1993. 

10.L. Briand and V. Basili: "A Classification Procedure for 
the Effective Management of Changes during the Main- 
tenance Process". In Proceedings of the International 
Conference on Software Maintenance, pages 328-336, 
1992. 

11. G. Caldiera, and V. Basili: "Identifying and qualifying 
reusable software components." In IEEE Sojiware, 
pp.61-70, February 1991, . 

12.W. Cochran: "Some Methods for Strengthening the Com- 

mon x2 Tests". In Biometrics, 10:4 17-45 1, 1954. 
13.W. Frakes, and S. Isoda: "Success factors of systematic 

reuse." In IEEE Software, pp. 15-19, September 1994. 
14.W. Harrison: "Software measurement: a decision-process 

approach." Advances in Computers, 39:5 1-1 05. 1994. 
15.G. Heller, J. Valett and M. Wild: Data Collection Proce- 

dure for the Software Engineering Laboratory (SEL) 
Database. Technical Report SEL-92-002, Software Engi- 
neering Laboratory, 1992. 

16.M. Jorgensen: "Experience with the Accuracy of Soft- 
ware Maintenance Task Effort Prediction Models". In 
IEEE Transactions on Software Engineering 2 1 (8):674- 
68 1, August 1995. 

17.F. Lanubile and G. Visaggio: "Evaluating Predictive 
Quality Models Derived from Software Measures: Les- 
sons Learned". Technical Report ISERN-96-03, Interna- 
tional Software Engineering Research Network, 1996. 

18.R. Lewontin and J. Felsenstein: "The Robustness of 
Homogenity Tests in 2xN Tables". In Biometrics, 2 1 : 19- 
33, 1965. 

19.W. Lim: "Effects of Reuse on Quality, Productivity, and 
Economics." In IEEE Software, pp.23-30, September 
1994. 

20.F. McGany, R Pajerski, G. Page, S. Waligora, V. Basili, 
and M. Zelkowitz: An Overview of the Software Engi- 
neering Laboratory. Technical Report SEL-94-005, Soft- 
ware Engineering Laboratory, 1994. 

2 1 .J. R. Quinlan: C4.5: Programs for Machine Learning. 
Morgan Kauhann Publishers, Sao Mateo, CA, 1993. 

22.R. Selby: "Empirically Analyzing Software Reuse in a 
Production Environment". In W. Traca (ed.) Software 
Reuse: Emerging Technology. IEEE Press, 1988, 

23.R. Selby and A. Porter: "Learning from Examples: Gen- 
eration and Evaluation of Decision Trees for Software 
Resource Analysis." In IEEE Transactions on Software 
Engineering, 14(2): 1743- 1747. 1988. 

24.S. Siege1 and N. Castellan: Nonparametric Statistics for 
the Behavioral Sciences. McGraw Hill, 1988. 

25.W. Thomas, A. Delis, and V. Basili: "An Analysis of 
Errors in a Reuse-oriented Development Environment." 
Technical Report, University of Maryland, 1995. 

26.C. Wohlin, and P. Runeson: "Certification of Software 
Components." In IEEE Transactions on Software Engi- 
neering, 20(6):494-499, June 1994. 



I * ..' 'I 
.!?< 4t  ; ;. 

SECTION 4-TECHNOLOGY EVALUATION 
(.' r . 

The technical papers included in this section were originally prepared as indicated below. 

"A Knowledge-Based Approach to the Analysis of Loops," S. K. Abd-El-Hafiz and V. 
R. Basili, IEEE Transactions on SofhYare Engineering, vol. 22, no. 5, S. May 1996, 
pp. 339-360 

a Experiences @om an Exploratory Case Study with a Software Risk Management 
Method, J .  Kontio, H .  Englund and V. R. Basili, Computer Science Technical Report, 
CS-TR-3705, UMIACS-TR-96-75, August 1996 

"An Empirical Stud-j of Communication in Code Inspection," C. B. Seaman and V. R. 
Basili, Proceedings of 19th International Conference on SofhYare Engineering (ICSE- 
19), May 1997, pp. 96-1 06 

"How Reuse Influences Productivity in Object-Oriented Systems, " Communications of 
the ACM, V .  R. Basili, L. C. Briand and W. L. Melo, vol. 39, no. 10, October 1996, pp. 
104-1 16 





A Knowledge-Based Approach 57-~/ 

Abstract-This paper presents a knowledge-based analysis approach that generates first order predicate logic annotations of 
loops. A classification of loops according to their complexity levels is presented. Based on this taxonomy, variations on the basic 
analysis approach that best fit each of the different classes are described. In general, mechanical annotation of loops is performed 
by first decomposing them using data flow analysis. This decomposition encapsulates closely related statements in events, that can 
be analyzed individually. Specifications of the resulting loop events are then obtained by utilizing patterns, called plans, stored in a 
knowledge base. Finally, a consistent and rigorous functional abstraction of the whole loop is synthesized from the specifications of 
its individual events. To test the analysis techniques and to assess their effectiveness, a case study was performed on an existing 
program of reasonable size. Results concerning the analyzed loops and the plans designed for them are given. 

Index Terms--First order predicate logic, formal specifications, knowledge base, loops, program understanding, reverse engineering. 

P ROGRAM understanding plays an important role in 
. nearly all software related tasks. It is vital to the main- 

tenance and reuse activities. Such activities cannot be per- 
formed without a deep and correct understanding of the 
component to be maintained or reused. Program under- 
standing is also indispensable for improving the quality of 
software development activities such as code reviews, de- 
bugging, and some testing approaches. All these develop- 
ment activities require programmers to read and under- 
stand programs. 

Due to the importance of program understanding, there 
has been considerable research on techniaues and tools for 
analyzing and understanding computer programs. Within 
these efforts, substantial interest is usually directed towards 
the specific topic of analyzing loops. This interest stems 
mainly from inherent reasoning difficulties involving re- 
peated program state modifications and the fact that loops 
have a major effect on program understandability [421. 

To analyze loops and reason about their properties, some 
approaches define heuristics that can be used to guide a 
search for a loop invariant 1191 or function 1321. However, 
heuristic techniques in general are not always useful. After 
applying the heuristics a considerable number of times, one 
may or may not succeed in finding a correct invariant or 
function. Other approaches focus on developing algorithmic 
techniques for finding the invariants or functions of specific 
simple classes of loops. The research performed by Basu and 
Misra [8], Dunlop and Basili 1121, Katz and Manna 1261, and 
Wegbreit 1491 is- representative of these loop analysis ap- 

S.K. Abd-El-Hafiz is with the Engineering Mathematics Department, 
Faculty of Engineering, Cairo University, Giza, Egypt. 
E-mail: elhafiz@cairo.eun.edu. 
V.R. Basili is with the Department of Computer Science, University of 
Maryland, College Park, M D  20742. E-mail: basili@cs.umd.edu. 

Manuscript received Mar. 11,1994; revisedlan. 19,1996. 
Recommended for acceptance by D. Wile. 
For information on obtaining reprints of this article, please send e-mail to: 
transs@computer.org, and reference IEEECS Log Number S95491. 

proaches. These algorithmic approaches analyze loops 
through the use of formal, semantically sound, and unambi- 
guous notation. Although some of them provide guidelines 
on how to mechanically generate loop invariants or func- 
tions, no algorithmic techniques were actually used to im- 
plement automatic analysis systems. A different approach, 
that analyzes loops by mechanically decomposing them into 
smaller fragments, was adopted by Waters 1471. Even though 
Waters' approach does not address the issue of how to use 
this decomposition to mechanically annotate loops, it is espe- 
cially interesting because of its practicality. 

To analyze complete programs, the knowledge-based a p  
proaches utilize a knowledge base of plans in providing in- 
telligent analysis results. Plans are defined as units of knowl- 
edge representing, or necessary for identifymg, abstract pro- 
gramming concepts [151,[161, [241,[371, [381, [481. These ap- 
proaches are inspired by the cognitive studies [31], [41],[43] 
which suggest that the understanding process is one in which 
programmers make use of stereotyped solutions to problems 
in making sophisticated high-level decisions about a pro- 
gram. These knowledge-based approaches are all imple- 
mented, to varying degrees, in automatic analysis systems. 
Some of these approaches are: graph-parsing [381, 1501; t op  
down analysis using the program's goals as input 1231, 1241; 
topdown analysis using a functional representation of pro- 
grams that relates the program code and goals to a proof of 
correctness [61, [331; heuristic-based object-oriented recogni- 
tion [151, 1161; transformation of a program into a semanti- 
cally equivalent but more abstract form with the help of 
plans and transformation rules [271, [291,[461; and decompo- 
sition of a program into smaller more tractable parts using 
control flow analysis [I71 or program slicing 1181. Even 
though these approaches demonstrate the feasibility and use- 
fulness of the automation of program understanding, they 
lack some important features. 

Most of the knowledge-based program analysis and un- 
derstanding approaches produce program documentation 

1996 IEEE. Reprinted, with permission, from IEEE Transactions on 
Software Engineering, vol. 22, no. 5, pp. 339-360; May 1996 



that is generally in the form of structured natural language This study tests several hypotheses related to the pre- 
text [91, [151, 1161, [171, 1241, 1361, [381, [501. Such informal sented analysis approach: 
documentation gives expressive and intuitive descriptions . A loop complexity dimensions are indicators of its 
of the code. However, there is no semantic basis that makes amenability to analysis. 
it possible to determine whether or not the documentation . me loop ~ecomposition and plan design methods can 
has the desired meaning. This lack of a firm semantic basis make the plans applicable to many loops that are dif- 
makes informal natural language documentation inherently ferent in their designs and functions. This, in turn, can 
ambiguous. increase plan utilization. 

Some of the knowledge-based approaches rely on real- . ~h~ analysis techniques can be automated. 
time user-supplied information that might not be available 
at all times. For instance, goals a program is supposed to test the first two and to characterize the 
achieve [6], [24] or transformation rules that are appropriate pradical limits the a case On a set 
for analyzing a specific code fragment [27], 1461 are not al- 77 loops in an existing Pascal program for mi- 

ways clear to the user. Others have difficulty in analyzing versity has been performed. The program has l~~~~ 

nonadjacent program statements [29]. In addition, a signifi- lines of and the loops have the 
cant amount of program analysis and understanding re- programg language features such as pointers/ pro- 
search used toy programs that are less than 100 lines of cedure and function and nested loops. the 

code to validate proposed approaches. Realistic evaluations loops not recursive and proce- 
of these approaches, which give quantifiable results about dure calls. Recursion is not being by Our 

recognizable and unrecognizable concepts in real and ex- To test the third a prototype 

i s h g  programs, are needed. such evaluations can also tool, which annotates loops with predicate logic annotations, 

serve as a basis for empirical studies and future compari- 
sons with other approaches 1401. Section 2 of this paper gives some of the definitions 

To address the above-mentioned drawbacks, we present used. Section 3 introduces the loop taxonomy. sections 4 
a knowledge-based approach to the automation of program and describe the techniques used for flat and 

analysis. It combines and builds on the strengths of a prac- nested loops, Section discusses the 

tical program ~ecomposition method [471, the axiomatic presented and highlights its advantages and limitations. 

correctness notation [19], and the knowledge-based analysis describes the case study was performed and 

approaches. It mechanically documents programs by gen- gives the ~esults of the analysis. Section 8 briefly explains 
erating first order predicate logic annotations of their loops. the design and structure the prototype 
The advantages of predicate logic annotations are that they and future research are 
are unambiguous and have a sound mathematical basis. given in 9- A and give the 
This allows correctness conditions to be stated and verified, and used the rest the paper- 
if desired. Another advantage is that they can be used in 
assisting formal development of software using such Ian- 2 DEF~N~T~ONS 
guages as VDM and Z [251,[451. 

A family of analysis techniques has been developed and We start by defining some of the notation used throughout 

tailored to cover different levels of program complexity. this paper. First, we give the definitions related to the rep- 

This complexity is determined by classifying while loops resentation of while loops. 

along three dimensions. The first dimension focuses on the A control-flow graph is a directed graph that has one node 

control computation of the loop. As defined by Pratt [35], for each simple statement and one node for each control 

the control computation for a loop is that part concerned predicate. There is an edge from node I to node J if an exe- 

with the initialization, modification, and testing of the vari- cution of J can immediately follow that for I 1211. 

ables which determine the flow of control into, through, Let the abstract representation of the while loop be while B do 

and out of the loop. The second dimension focuses on the S where the condition B has no side effects and the state- 

complexity of the loop condition as determined by the ments S are representable by a single-entry single-exit con- 

number of clauses it has. The third dimension focuses on trol-flow graph. This representation abstracts from the 

the complexity of the loop body. Based on this taxonomy, syntax of the specific imperative programming language 

the analysis techniques that can be applied to the different being used. Though the approach described here applies to 

loop classes are described. all loops having this abstract representation, examples and 

In general, we annotate loops with predicate logic asser- illustrations are given using Pascal. Using this abstract rep- 

tions in a step-by-step process as depicted in Fig. 1 111. The resentation, a control uariable of the while loop is a variable 

analysis of a loop starts by decomposing it into fragments, that exists in the condition B and is modified in the body S. 

called events. Each event encapsulates the loop parts that The sequence of values scanned by a control variable are 

are closely related, with respect to data flow, and separates these values that get assigned to the control variable and 

them from the rest of the loop. The resulting events are then actually used in the loop body. 

analyzed, using plans stored in a knowledge base, to de- Now, we give some definitions that introduce the lan- 

duce their individual predicate logic annotations. Finally, guage and terminology used in the analysis. A concurrent 

the annotation of the whole loop is synthesized from the assignment is a statement in which several variables can be 

annotations of its events. assigned simultaneously. We use the form u,, v,, . . ., v,, := e,, 

82 SEL-97-002 



, - - - - . . - - - - - - - 

Annotation : - - - - - - - - - 
- . . . . . . . . . 

3 j : = i i :  Predicate : 
I x : = o  

' , she 
Events 

ti 

: d 
* _ _ _ _ _ . . _ . _ _ _ _ L  

Fig. 1. Overview of the analysis approach. 

e,, ..., en to assign every ith expression from the right hand 
list to its corresponding ith variable from the left hand list 
[141, [321. A conditional assignment is a set of one or more 
guarded concurrent assignments separated by commas ','. 
When the guard (i.e., the Boolean expression), of a concur- 
rent assignment is satisfied, the modifications performed on 
a variable are given by the concurrent assignment 1141, [32]. 
Similar to Gries' definition of the alternative command, all 
the guards must be well defined [141. However, it is possi- 
ble that all guards evaluate to false. In this case, no variable 
is modified (i.e., the conditional assignment evaluates to a 
skip command [141). It should also be noted that because 
we are only analyzing deterministic programs, all the 
guards are mutually exclusive. 

Any variable assigned in a conditional assignment de- 
fines the data flow out of the statement. Any variable refer- 
enced by a conditional assignment defines the data flow into 
the statement. Two conditional assignments are said to be 
circularly dependent if some variable is responsible for data 
flow out of one statement and into the other, either directly 
or indirectly, and vice versa. 

To design the analysis techniques that best fit different lev- 
els of program complexity, we classlfy while loops along 
three dimensions. The first dimension focuses on the con- 
trol computation part of the loop. The other two dimen- 
sions focus on the complexity of the loop condition and 
body. Along each dimension, a loop must belong to one of 
two complementary classes as shown in Table 1. In this 
classification, the loops in the middle column are expected 
to be more amenable to analysis than the corresponding 
ones in the right column. 

Within the first dimension, we differentiate between sim- 
ple and general loops. Simple loops have a behavior similar to 
that of for loops. They are defined by imposing two restric- 
tions: the loop has a unique control variable, and the modifi- 

cation of the control variable does not depend on the values 
of other variables modified within the loop body. Loops that 
do not satisfy these conditions are called general loops. 

Along the second dimension, the complexity of the loop 
condition can vary between two cases. In the noncomposite 
case, B is a logical expression that consists of one clause of 
the conjunctive normal form [39]. In the composite case, 
more than one clause exists. Along the third dimension, the 
complexity of the loop body varies between flaf and nested 
loop structures. In flat loop structures, the loop body cannot 
include other loops. In nested structures, however, the loop 
body includes one or more loops. 

TABLE 1 
THE THREE DIMENSIONS USED FOR CLASSIFYING LOOPS 

As depicted in Fig. 2, the analysis of flat loops is performed 
in a step-by-step process divided into four main phases. 
Descriptions of these phases and their application to the 
example shown in Fig. 3 are given in the remainder of this 
section [3]. In this example, a simple loop with a noncom- 
posite condition scans a segment of the array capacity 
searching for its minimum. 

Dimension 
1. Control computation 
2. Complexity of condition 
3. Complexity ofbody 

Com~lementary classes 
Simple loop i General loop 

Noncomposite condition j Composite condition 
Flat loop ! Nestedloop 

Knowledge L2.J 
Fig. 2. Analysis of flat loops. 

~ m g  - PV&E(UL 

wc - Decompose 

WY - 
----.I- 

Analyze 

Events - 

Normalize 

Representation 

Form 

Events 
+ 

B... 
4 



j, index, min, mm-of-rooms: integer; 
capacity: array[l .. max_room] of integer; 

while j < mm-of-rooms + 1 do begin 
if capacityb] < rnin then begin 

index := j; 
mzn := capacityb]; 

a d ;  
j :=j+ 1 

end; 

Fig. 3. Analysis of flat loops. 

4.1 Normalization of the Loop Representation 
The purpose of this phase is to make the loop representa- 
tion independent of the programming language and the 
implementation specific details. 

Normalization of the Loop Condition. The loop condi- 
tion is converted into a standard normal form, which is the 
conjunctive normal form. This normal form represents a well- 
formed formula (wff) in predicate logic as a conjunction of 

. clauses where a clause is defined to be a wff in conjunctive 
normal form but with no instances of the and connector 1391. 
For example, the loop condition x < a or (y < b and z < c) is 
transformed to the conjunction of two clauses. The first 
clause is (x < a or y < b) and the second is (x  < a or z < c). 

Normalization of the Loop Body. A single unwinding of 
the loop body is performed by symbolic execution [41 that 
gives the net modification performed on each variable in one 
iteration of the loop, if any 171. We use the conditional as- 
signment notation to represent the result of this symbolic 
execution. 

After converting the loop condition and body into the 
aforementioned standard forms, they are further normal- 
ized by performing some simplifications. Arithmetic ex- 
pressions are simplified by converting them into an internal 
canonical form for polynomials, manipulating them, and 
converting them back to their external form 1341. Predicate 
simplifications are performed using rule-based transforma- 
tions. Since the simplification details are dependent on our 
specific prototype implementation, they are not discussed 
during the description of the analysis phases. 

For the loop given in Fig. 3, the condition is already 
in conjunctive normal form containing the one clause 
j < num-of-rooms + 1. The symbolic execution does not 
change the body of the loop. However, the net modification 
performed on each variable is given in the form of a condi- 
tional assignment as follows: 

sists of a maximal set of conditional assignments such that 
any two conditional assignments in the set are circularly 
dependent. 

To obtain the loop segments, we assume that the condi- 
tional assignments of the symbolic execution result corre- 
spond to the nodes of a directed graph. An edge from node 
Ci to node C, exists if and only if there is data flowing out of 
Ci into Ck and Ci and C, are distinct. The strongly connected 
components of this graph correspond to the loop segments 
1101. 

For the loop shown in Fig. 3, the three conditional as- 
signments of the symbolic execution result form a directed 
graph G with three edges: two from C3 to C, and C,, and one 
from C2 to C,. Since there are no cycles in G, its strongly con- 
nected components correspond to its nodes. Thus, the loop 
segments correspond to C,, C,, and C3. 

Because the analysis of a segment might be dependent 
on the analysis results of other segments, a segment analy- 
sis result should be obtained before analyzing the segments 
dependent on it. That is why we need to order the segments 
according to their data flow dependencies 1471. Assuming 
that S is the set of segments in the loop body, the order of 
each segment is determined by the following algorithm: 

Name 

CI 
c2 

CB 

1) Setmtol. 
2) While the number of segments in S is 1 1 do 

a) Identify the maximal subset of S such that each of 
its segments does not have data flowing out into 
other segments of S. 

b) Let the order of the identified segments be m. 
C) Remove the identified segments from S. 
d) Increment m. 

3) Let the final order of each segment be (m - old order). 

Conditional Assignment 
capacity[j] < min index := j, 

capacityIj1 < min min := capacity[j], 
true*j:=j+ 1 

Step 2 of the above algorithm assigns unique orders to 
the segments such that order of S, > order of S, if and only 
if there is data flowing, either directly or indirectly, from 
segment S, to segment S,. Step 3 produces an irreflexive 
partial order of the segments. The resulting ordering rela- 
tion 'analyzed before,' is denoted by '+'. It is irreflexive 
because it is meaningless for a segment to be analyzed be- 
fore itself. It satisfies the antisymmetric property because 
any two distinct segments, by definition, have no circular 
dependencies. The design of the above algorithm ensures 
the satisfaction of the transitive property. Moreover, it is 
possible for two segments to be unrelated (i.e., they can 
have the same order). 

In the example given in Fig. 3, let the segments of the 
loop be S,, S,, and S3 that correspond to C,, C,, and C3, re- 
spectively. The orders assigned to these segments using the 
above algorithm are: 

4.2 Decomposition of the Loop Body 
To facilitate the mechanical generation of loop annotations, 
the symbolic execution result is uniquely decomposed into Notice that the segment that defines j, S ,  has the lowest 
segmenfs of code that can be analyzed separately. Each seg- order because the other two segments, S, and S2, reference j 
ment encapsulates the statements that are interdependent (i.e., S3 3 S1 and S3 3 S2). Similarly, S2 + S1 because min is 
with respect to data flow. The loop segments are partitions of defined in S, and referenced in S,. Since the premise of the 
the loop body symbolic execution result. Each segment con- conditional assignment that modifies j is true, it is removed. 

84 SEL-97-002 

Order Name Segment 
1 
2 
3 

S3 
s2 
s1 

j :=j+1 . 

capacity[j] < min =, min := capacity[j] 
capacity[j] < min 3 index := j 



4.3 Formation of the Loop Events 
To represent the abstract concepts in a loop, we use the 
loop body segments and the clauses of the loop condition to 
form the loop events. We define two categories of loop 
events: basic events and augmentation events. 

Basic Events (BEs) are the fragments that constitute the 
control computation of the loop. A BE consists of three parts: 
the condition, the qumeration, and the initialization. The condi- 
tion consists of only one clause from the loop condition. The 
enumeration is a segment responsible for the data flow into 
the condition (i.e., the variables assigned in the enumeration are 
referenced by the condition). The initializafion is the initializa- 
tion of the variables defined in the enumeration. 

To form BEs, each clause of the loop condition is used as 
the condition of a unique BE. Then, the enumeration of each 
BE is constructed from the highest order segment(s) having 
data flow into the condition. If a clause has no segment re- 
sponsible for the data flow into it, this means that this clause 
is redundant and should be removed from the loop condi- 
tion. If a segment is responsible for the data flow into the 
loop condition but remains with no clause associated with it, 
this segment is used as the enumeration of a new BE whose 
condition is set to frue. The initializations of the control vari- 
ables defined in a BE are included in the initialization part. 

The BE of the loop given in Fig. 3 is formed by combin- 
ing the unique condition clause, ( j  < num-of-rooms + I ) ,  
with the only segment that is responsible for the data flow 
into it, SJ. Since the loop under consideration has no ini- 
tialization~, we use the notation j? to denote the initial 
value of the variable j. As a result, the BE has the following 
form: 

condition: j < num-of-rooms + 1 
enumeration: j := j + 1 
initialization: j := j? 

Augmentation Events (AEs) are the fragments that con- 
stitute loop computations other than the control computa- 
tion. An AE consists of two parts: the body and the initializa- 
tion. The body is one segment of the loop body that is not 
responsible for the data flow into the loop condition. The 
initialization is the initialization of the variables defined in 
the body. 

After identifying the BEs, the AEs bodies are formed 
from the segments of the loop that did not get used in BEs. 
The initialization of each variable defined in an AE is then 
included in it. 

For the loop shown in Fig. 3, the remaining segments S, 
and S, constitute the bodies of two AEs given below. The 
notation rnin? and index? are used to denote the initial val- 
ues of the variables rnin and index 

1) AE 1 
body: capacity[j] < rnin 3 rnin := capacify[jl 
initialization: rnin := min? 

2) AE 2 
body: capacity[jl < min * index := j 
initialization: index := index? 

Finally, we give each event (basic or augmentation) the 
same order as the segment it utilizes. This enforces the con- 
dition that the variables referenced in an event are either 

85 

defined in a lower order event or not modified within the 
loop at all. As mentioned in the previous subsection, this 
makes it possible to propagate the results of analyzing an 
event to the analysis of other events dependent on it. 

The three events of the loop shown in Fig. 3 are thus or- 
dered as follows. 

1)  BE (order 1)  
condition: j < num-ofrooms + 1 
enumeration: j := j + 1 
initialization: j := j? 

2) AE (order 2) 
body: capacity[jl < min * min := capacity[j] 
initialization: min := rnin? 

3) AE (order 3) 
body: capacify[j]< rnin * index := j 
initialization: index := index? 

4.4 A Knowledge Base of Plans 
To analyze the loop events, we utilize plans stored in a 
knowledge base. We use the term 'plan' to refer to a unit of 
knowledge required to identify an abstract concept in a 
program. Our plans are used as inference rules [151, [161. 
Their basic structure is divided into two parts: the antece- 
dent and the consequent. When a loop event matches a plan 
antecedent, the plan is fired. The instantiation of the infor- 
mation in the consequent represents the contribution of this 
plan to the loop specifications. To guarantee the accuracy of 
the predicate logic specifications included in the conse- 
quents, no partial matches with antecedents are allowed 
(i.e., the antecedent has to be completely matched). 

The knowledge base is designed so that any two plans 
do not have similar antecedents. Thus, a loop event can 
only match the antecedent of a unique plan. It should also 
be noted that the possibility of designing as many plans as 
the number of loop events in a specific program is reduced 
because the loop events encapsulate abstract concepts that 
can occur in different loops. Section 7 will examine this is- 
sue of the knowledge base size in more detail. 

Corresponding to the two event categories, we have two 
plan categories: Basic Plans (BPS) and Augmentation Plans 
(APs). BPS analyze BEs and APs analyze AEs. Plans are fur- 
ther classified according to the kind of loops they analyze. 

In case of simple loops, the sequences of values scanned 
by the control variable during and after the execution of a 
simple loop can be easily written because the control com- 
putation is isolated from the rest of the loop. The loop con- 
dition, the control variable's initial value, and the net modi- 
fication performed on the control variable in one loop it- 
eration, if any, provide sufficient information for writing 
these sequences. This specific information about the control 
computation of the loop can be used to produce equally 
specific loop specifications. The plans that analyze simple 
loops can include these sequences and utilize them in 
writing the loop specifications. The loop specifications pro- 
duced for simple loops are the preconditions, invariants, 
and postconditions. The formal approach used for deriving 
the invariants is the axiomatic approach [141, 1191, [201. In 
this approach, if we assume that B, S, So, I, P, and Q are the 
loop condition, body, initialization, invariant, precondition, 
and postcondition, respectively, then the relations between 



them are given in the following rules. In these rules, the 
notation P{SIQ means that if the predicate P is true before 
executing the first statement of the program part S, and if S 
terminates, then the predicate Q will be true after execution 
of S is complete. 

1 {while B do S) I and -, B, 
(I and B 3 Q), and 
(P + T), where T is deduced from T{Soll. 

The analysis of general loops is not as straightforward as 
that of simple ones. In many cases, it might not be easy, or 
even possible, to obtain such specific knowledge because 
the control computation of the loop is not as determinate 
and isolated as in the case of simple loops. The sequences of 
values scanned by the control variable(s) and the program 
state at the end of the loop are usually dependent on the 
combined indeterminate effects of several events and the 
values of some program variables. As a result, the plans 
that analyze general loops neither include the aforemen- 
tioned sequences nor utilize them in writing the loop speci- 
fications. The loop postcondition can only be deduced after 

. the synthesis of the loop invariant. The postcondition is 
formed by taking the conjunction of the loop invariant with 
the negation of the loop condition [141, 1191. Using this 
method to obtain the loop postcondition yields predicates 
that might not be as informative and concise as those of 
simple loops. As a result, additional simplifications might 
be needed to reduce the complexity and improve the read- 
ability of general loops postconditions. 

For instance, consider the simple loop shown in Fig. 3. 
The sequence scanned by the control variable at any point 
during the loop execution is j? to j - 1. This sequence is 
needed to write the part of the invariant: 

rnin = MIN({min?} u {capacitytj? .. j - I])), 
where MIN(s) is the minimum of the set s and u is the set 
union operator. The final sequence of values scanned by the 
control variable in this loop is j? to num-of-rooms. This se- 
quence is needed to write the part of the postcondition: 

rnin = MIN({min?} v {capacity[j? .. num-of-rooms 11). 

In the general loop given in Fig. 4, however, there is no 
guarantee that the final sequence scanned by the control 
variable j will be j? to num-of-rooms. The value of the final 
sequence is dependent on the interaction of the two events 
that modify flag and j, and the contents of the variables ca- 
pacity and limit. As a result of this generality of the control 
computation, the sequences of values scanned by the con- 
trol variable($ and, consequently, the postcondition parts 
of the individual events cannot be written. 

while (j <= -of-room + 1 )  and (flag =false) do begn 
if capacity[j] < limit then begin 

index := j; 
flag := true 

end; 
j : = j +  1 

end 

To accommodate the differences between simple and 
general loops, we have two categories of BPS. Determinate 
BPS (DBPs) contain in their consequents information re- 
garding the postcondition and the sequences of values 
scanned by the control variable. Indeterminate BPS (IBPs), 
on the other hand, do not contain such information. We 
also have two categories of APs. Simple APs (SAPS) utilize 
the above sequences in writing the loop specifications, in- 
cluding its postcondition. General APs (GAPS) do not in- 
clude the loop postcondition part or utilize the above se- 
quences. These plan categories are shown in Fig. 5. It 
should be noticed that because the information contained in 
the consequents of IBPs is a subset of that contained in the 
consequents of DBPs, DBPs can be used in analyzing gen- 
eral loops. In such cases, we neglect the information re- 
garding the control sequences and the postcondition in the 
DBPs consequents. However, because IBPs consequents do 
not contain such specific information, IBPs cannot be used 
in analyzing simple loops. 

Plans 
0 

Basic Plans (BPS) Augmentation Plans (APs) 

Determinate BPS Indeterminate BPS Simple APs General APs 
@Bps) (LBPs) (SAPS) (GAPS) 

Fig. 5. Plan categories. 

In general, The information included in a plans antece- 
dent and consequent are described below. In this descrip- 
tion, the words printed in bold correspond to fields in the 
plans (see Figs. 6 and 7). 

An antecedent contains the following information: 

1) An individual listing of the control variables, in the 
control-variables part, which serves to underscore 
their importance and to facilitate the design, read- 
ability, and comprehension of the plan. 

2) Generic patterns of BEs and AEs that are used to 
match stereotyped loop events. 

3) Knowledge needed for the correct identification of the 
plans such as data taype informaiton and the results 
of analyzing previous events. This knowledge is 
given in the firing-condition. 

A consequent includes the following information: 

1) Knowledge necessary for the annotation of loops with 
their Hoare-style I191 specifications. The precondition 
and invariant have the usual meaning [19]. The post- 
condition part gives information, in case of simple 
loops, about the variables values after the loop execu- 
tion ends. It is correct provided that the loop executes 
at least once. If the loop does not execute, no variable 
gets modified. 

2) In case of DBPs, knowledge about the sequence of 
values scanned by the control variables at any point 
during and after the loop execution is captured in se- 
quence and final-sequence, respectively. 

Fig. 4. Example of a general loop. Fig. 6 and Fig. 7 show two example plans of the categories 
DBP and SAP, respectively. To convey the basic analysis 



ideas within a reasonable space limit, we only show simpli- 
fied versions of the plans. The suffix '#' is used to indicate 
terms in the antecedent (or consequent) that must be 
matched (or instantiated) with actual values in the loop 
events. 

plan-name 
antecedent 

control-variables 
condition 
enumeration 
initiatiation 
firing-condition 

consequent 
precondition 
invariant 
postcondition 
sequence 
final-sequence 
inner-addition 

where, 
i . . j  
succ (x) 
PRED (x) 
SHIFT 

DBP, (ascending enumeration) 

v d  
vm#R#exp# 
var# := SUCC(vm#) 
v d  := vm?# 
(R# is relational operator that equals 5 or <) and 
(v& is of a discrete ordinal type) and 
(Noncomposite or general loop condition) 

Sequence of integers from i up to j inclusive. 
The successor of x. 
The predecessor of x. 
The identity function if R# equals <. Equals 
PRED otherwise. 

Fig. 6. A determinate basic plan. 

plan-name 
antecedent 

control-variables 
body 
initialization 
firing-condition 

consequent 
precondition 
invariant 

postcondition 

S& (find minimum) 

v# 
a#[&@] R# Ihsf: *Ihs# :=a#[exp#] 
Ihs := Ihs?# 
(R# equals 2 or <) 

true 

Ihs =MIN({lhs?#l u {a#[+ ;Gum, 11) 
Ihs - - MIN({lhs?#} .u 

v# 

(a#[exP# -q-e 11) 
inner-addition Same as invariant. 

where, 
m s )  The minimum of the sets. 

Fig. 7. A simple augmentation plan. 

The plan DBPl (Fig. 6) represents an enumeration con- 
struct that goes over a sequence of values of a discrete ordi- 
nal type in an ascending order with a unit step. In the case 
where the loop has a composite condition, the sequence, fi- 
nabsequence and postcondition of this plan are written in a 
more general form that enables deducing the corresponding 
sequence, final-sequence and postcondition of the loop 
from the multiple BEs it contains. The plan SAP5 (Fig. 7) 
searches for the minimum of a segment of the array a# and 
stores it in the variable Ihs#, 

The knowledge base in a specific application domain 
should be created by an expert in both formal specifications 
and this domain. The expert should analyze the commonly 
used events in this domain and create new plans or im- 
prove on already existing ones. In creating this knowledge 
base, its size should be controlled by increasing the u 9Yi 

tion of the designed plans. The loop decomposition method 
was designed for this purpose; to reveal the common algo- 
rithmic constructs that can be incorporated in many differ- 
ent loops. The hypothesis is that this decomposition can 
have a positive effect on plan utilization and, hence, on the 
size of the knowledge base. Improvements on the structure 
and/or the knowledge represented in the plans can also 
make the plans applicable to a larger set of events. 

Knowledge representation improvements, called absfuac- 
tions, involve replacing some of the terms in a plan with 
more abstract ones that make the plan capable of analyzing 
more cases. For example, replacing the addition operator, +, 
in a plan that analyzes an accumulation by summation 
event by a more abstract one that denotes either addition or 
multiplication represents an abstraction of this plan. The 
new plan can analyze both accumulation by summation 
and accumulation by multiplication events. 

Structural improvements to a plan m o w  the basic 
structure into a tree structure that allows the inclusion of sev- 
eral similar plans in one tree-structured plan. The root of the 
tree corresponds to an antecedent part that should match 
loop events. The edges of the tree correspond to local firing- 
conditions that control the selection of the appropriate con- 
sequents given in the remaining tree nodes. In other words, a 
tree-structured plan consists of a single antecedent and sev- 
eral consequents organized into one or more tree structures 
as shown in Fig. 8. The consequents are organized into one 
tree if the default consequent exists. Otherwise, they are or- 
ganized into more than one tree (forest). In order to select a 
specific tree-structured plan, the event under consideration 
should satisfy the antecedent first. Within the plan, local fir- 
ing-conditions guide the search for the suitable consequent. 
The more general the consequent, the closer it is to the root of 
its tree (e.g., consequent 1 of Fig. 8 is more general than con- 
sequent 1.1). Firing-conditions located at the same level are 
mutually exclusive. This means that only forward search is 
needed and no backtracking is required. When the event sat- 
isfies the antecedent, the search for the appropriate conse- 
quent starts at the appropriate root going down in the tree as 
far as possible. The edge between a parent and a child can 
only be taken if the local firing-condition associated with 
this edge is satisfied. 

Tree-structured plans can be used to detect special cases 
and output loop specifications that are simple and concise. 
They can also be used to analyze similar events whose 
specifications vary depending on their environment (e.g., 
data types, control computation of the loop, .. ., etc.). 
. For instance, the plan SAP5 (Fig. 7) can be structurally im- 

proved as shown in Fig. 9. The antecedent is similar to that 
shown in Fig. 7 except for the firing condition. The antece- 
dent firing-condition now allows R# to be matched with 
more relational operators. Three local firing-conditions and 
the consequents cover three different variations. Consequent 
1, which is similar to the consequent of the basic plan in Fig. 
7, is for finding the minimum. Consequent 1.1 further simpli- 
fies the resulting annotations based on special values of lhs# 
and the analysis information of the control variable 7%. Con- 
sequent 2 is for finding the maximum. 

Using the tree-structured plans can lead to a reduction in 
the size of the knowledge base since several plans can be 

SEL-97-002 



Antecedent r - l  
, ,.-.------. .--. .--- 

I Default j 
I Consequent j 

/ Consequent I I / Consequent 2 1 I Consequent n 1 

 onse sequent 1.1 Consequent 1.m 1 I I 
Fig. 8. The tree structure of a plan. 

Antecedent o f  SAP, 
(Shown in Fig. 7) 

I Oli is an element of I<=, <. 1) 

R# is an element of {<=, <) 

Consequent 1 / 
precondition: true 
invariant: Ih& = MIN({lhs?#) U {a#[exp# zmFIIOC]}) 
postcondition: Ihs# = MIN({lhs?#J U {a#[ 

ZaCsalm"Q 1)) 

precondiion: hue 
invariant: I N =  m{a#[exp# ~&,,,,,, 1) 

postroadition: Ihs#= MIN{a#[exp# , v & n n r p ~ , ,  I }  

Conseauent 1.1 

Fig. 9. Structural improvement to the plan SAP,. 

(v# is analyzed by DBP, with 
final-sequence = init# .. final#) and 
W?#= a#IPRED(initll) 

combined together into a larger one having a unique antece- 
dent. However, the identification of the proper consequent 
becomes more complicated due to the required tree search. 

4.5 Analysis of the Events 
The events are analyzed by trying to match them with the 
antecedents of the knowledge base plans. When an event 
satisfies the antecedent of a plan, the appropriate conse- 
quent of the matched plan is instantiated giving the contri- 
bution of the event to the loop specification. The precondi- 
tion, invariant, and postcondition of the loop are formed by 
taking the conjunction of the corresponding parts of the 
event analysis results. When some event(s) do not match 
any library plans, the analysis only generates partial speci- 
fications of the loop. 

To represent the results of matching loop events with 
plan antecedents, we define the Analysis Knowledge nota- 
tion. The Analysis Knowledge, AK(v), of a variable v modified 
by a certain loop event consists of an n-tuple where n is 
dependent on the specific matched plan. The first term of 
the tuple is the name of the matched plan. The remaining 
(n - 1) terms are the results of matching the # terms with 
the actual values in the event. 

Consequent 2 
precondition: hue 
invariant: Uls# = MAX((Ihs?#) U {a#[@ zmIIOC 1)) 
postcondition: Ihs# = MAX({lhs?#} U {a#[ 

ex+ 2,- I}) -1 

The resulting AK tuples for the events of the loop given 
in Fig. 3 are shown in Fig. 10. The first line of Fig. 10 shows 
that the event that modifies the variable j is matched with 
the antecedent of plan DBP, (Fig. 6). The plan variables var# 
and var?# are matched with the event variables j and j?, 
respectively. The plan relational operator R# and expres- 
sion exp# are matched with < and num-of-rooms + 1, re- 
spectively. The remaining two lines of Fig. 10 can be simi- 
larly interpreted. This AK information is used to instantiate 
the consequents of identified plans. The instantiation re- 
sults are given in Fig. 11. In this figure, the event and plan 
responsible for the production of each predicate are shown 
to its left. The first two events are analyzed by the plans 
DBP, (Fig. 6) and SAP5 (Fig. 71, respectively. The plan, 
SAP,,, which analyzes the third event is not shown here 
because it is similar to the plan SAP,. It searches for the 
location of the minimum instead of the minimum. Finally, 
the synthesized loop specifications are shown in Fig. 12. 

AKU - (DBP,, wr#: j ,  var?#: j?, I#: <, ex,&: nummoffrcom + I) 
AK(nrin) = (SAP,, v#: j, a#: cqciry, eq#: j, IN; min, Ihr?#: min?) 
AK(index)= (SAPnI. Y#: j, a#: cupcity, M: j, rhr#: min, rhr?#: min?, IN: index, INrr?#: index?) 

Fig. 10. The AK tuples for the events of the loop given in Fig. 3. 



Precondition: 
Event Pian Predicate 

1 DBP, j? - 1 < -of-rooms + 1 
2 SAP, true 

the initial value of a variable var, does this notation 
consistently refer to the value of var before the start of 
the outermost loop in the nested construct? If not, 

3 capacity[index?] = min? how can this incon&tency be removed? 

Invariant: 
Event ~ i a n  Predicate while B, do begi4 Location 4 

1 DBP, j? 5 j < num-of-rooms + 2 
2 SAP, , min =MZW({min?} u {capacityb? .. j -  11)) S~ 

capaciq[index] = rnin 
while Bi do begip Location L2 

Postconditmn: 
Event Plan Predicate 

1 DBP, j = num-of-rooms + 1 end; 
2 SAP, min = MW({min?} u {capacityfi? .. mcm_of-room])) 
3 SAKI capacity[index] = min s2 

end; 
Fig. 11. The instantiations for the events of the loop given in Fig. 3. 

Fig. 13. A nested structure of while loops. 

Precondition: 
(j? - 1 < nummoffrooms + 1 )  and 
(capacity[idx?] = min?) 

Invariant: 
(j? S j < num-of-rooms + 2)  and 
(min =MZW({min?) u {capacity[i? .. j - 11)) and 
(capaciiy[index] = min) 

Postcondition: 
(j = mrm_of-room + 1) and 
(min =MiV({min?} u {capacitylj?.. num-of-rooms]))) and 
(capacity[index] = rnin) 

Fig. 12. The synthesized specifications of the loop given in Fig. 3. 

To rigorously analyze nested loops using Hoare's axiomatic 
approach 1191, [201, the following problems need to be 
solved: 

1) How to represent and utilize the analysis results-of 
inner loops? A technique for analyzing flat loops has 
been described in Section 4. Can the same basic tech- 
nique be used for outer loops (loops containing other 
loops)? What modifications, if any, need to be per- 
formed on the basic analysis technique to utilize the 
results of analyzing inner loops in the analysis of 
outer loops? 

2) How to modify the resulting specifications to facili- 
tate Hoare-style verification? [191, 1201 This problem 
can be further divided into two subproblems, which 
are explained using the nested construct shown in 
Fig. 13. In this nested construct, let Ii and I, be the in- 
variants of the inner and outer loops, respectively. 
a) Can the above invariants be used to satisfy Hoare 

verification conditions that connect the specifica- 
tions of inner and outer loops in the nested con- 
struct? In other words, is it possible to prove the 
following rules: 

(Ii and 7 (B,) {S,I I, (1) 

(I, and B,) IS,} Ii (2) 

b) If the above invariants use the notation var? to denote 

To solve these problems, the analysis of nested loops is 
performed by recursively analyzing the innermost loops 
and replacing them with sequential constructs that repre- 
sent their functional abstraction. The functional abstraction 
of an outer loop depends on the functional abstraction of 
the inner ones and not on the details of their implementa- 
tion or structure. 

Since this recursive analysis approach is performed bot- 
tom-up, complete knowledge of inner loop functions is 
available during the analysis of an outer loop. Thus, the 
invariant of an outer loop can be directly designed to satisfy 
the verification rules that are similar to rule (2) listed above. 
Despite the fact that inner loops are likely to contain refer- 
ences to variables defined in the outer loois, inner loops are 
analyzed in isolation of the outer ones enclosing them. As a 
result, a complete proof of nested constructs requires 
adapting the inner loop specifications to the context and 
initializations provided by the outer loop. More specifically, 
inner loop invariants and, consequently, postconditions 
might not be strong enough to satisfy the verification rules 
that are similar to rule (1). Some predicates might need to 
be added to the inner loop invariants and postconditions to 
enable the verification of such rules. The context adaptation 
phase derives these predicates and adds them to the inner 
loop specifications. Moreover, the consistency of using the 
notation var? to denote the initial value of a variable var is 
ensured using the initialization adapfafion phase. 

We start in Section 5.1 with some definitions that explain 
how we extract the initialization of a loop in a nested con- 
struct, whether it is the outermost loop or an inner one. 
'Sections 5.2-5.4 present solutions to the two research prob- 
lems mentioned above. Sections 5.2 and 5.3 offer a solution 
to the first research problem. Section 5.4 presents a partial 
solution to the second problem. In these sections, the de- 
scriptions of the analysis steps are interspersed with their 
application on the selection sorting example given in Fig. 
14. In this example, a simple nested loop repeatedly scans 
an array segment searching for its minimum. It inter- 
changes the minimum with the first element in the seg- 
ment. It stops after the array capacity[l .. num~of~roomsl has 
been sorted in ascending order. The inner loop of this ex- 
ample is the same one given in Fig. 3. 



5.1 Definitions 
In the following definitions, we limit the initialization of a 
loop to assignment statements. Conditional statements are 
not considered as initializations to reduce the complexity of 
the resulting loop specifications. Thus, resulting loop speci- 
fications are representative of the loop function without 
composing it with the function of preceding conditional 
statements. 

i ,  j ,  index, rnin, num-of-rooms: integer; 
capacity: array[l .. max_room] of integer; 

i := 1 .  

while i I num-of-room - 1 do begin 
index := i; 
min := capacity[i]; 
i : = i +  1 ;  
j : = i ;  
while j < num-of-room + 1 do begin 

i f  capacityv] < min then begin 
index := j ;  
rnin := capacity[j]; 

end; 
j : = j +  1 

end; 
capacity[index] := capaeity[i - I ] ;  
capacify[i - I ]  := rnin 

end; 

Fig .  14. Example of a nested loop. 

The initialization of a loop that is not enclosed by another loop 
is assumed to be a set of assignment statements of the form 
identifier := expression, which are immediately placed before 
its start. These statements give initial values for identifiers 
that get modified within the loop body. If this assumption 
cannot be satisfied or, equivalently, the loop initialization is 
unavailable, the notation v? is used to denote the initial 
value of a variable v just before the start of the loop. 

If we have two nested while loops, the adaptation path of 
the inner loop is a sequence of statements extracted from 
their control-flow graph representation. This sequence con- 
tains all the statements, simple or compound, that are com- 
pletely located along the paths starting from the outer loop 
control predicate node and ending at the inner loop control 
predicate node. In this path, the relative order of the state- 
ments is kept unchanged. 

The initialization of an inner loop in a nested construct is 
obtained by, first, symbolically executing its adaptation 
path to produce the net modification performed on each 
variable, if possible. Statements of the form identifier := ex- 
pression are, then, extracted from the symbolic execution 
result. Statements are extracted if they satisfy the following 
two conditions: 

1) The identifier is one of the variables modified within 
the inner loop body. 

2) The expression does not reference any of the variables 
modified along the adaptation path. 

If the initialization of a variable v that gets modified within 
the loop body is not given by the extracted statements, the 

notation v? is used to denote its initial value just before the 
start of the loop. 

The first condition, in the above definition, ensures that 
the initialization statements are utilized by the inner loop 
events. The second condition ensures that the values of iden- 
tifier and expression, just before the start of the inner loop, are 
equal. For example, if the adaptation path is i := i + 1; j := i, 
then its symbolic execution gives the concurrent assignment 
i, j := i + 1, i + 1. Taking j := i + 1 as an initialization statement 
is not allowed because the values of j and i + 1, just before the 
start of the loop, are not equal (the values of j and i are 
equal). The second condition also prevents using statements 
of the form, say, x := x + 1 as initializations. 

To extract the initialization of the inner loop given in Fig. 
14, we use the above definitions. First, we need to symboli- 
cally execute the adaptation path of the inner loop. Since 
there is only one path between the start of the outer loop and 
the start of the inner one, the adaptation path includes all the 
statements completely located on this path. The adaptation 
path is: index := i; rnin := capacity[i]; i := i + 1; j := i. 

The symbolic execution of the adaptation path yields the 
concurrent assignment: index, rnin, i, j := i, capacify[il, i + 1, 
i + l .  

Then, we need to extract initialization statements of the 
form identifier := expression from the symbolic execution 
result. The variables modified within the inner loop body 
are: index, min, and j. Thus, the statements that satisfy the 
first condition of the above definition are: index := i, 
rnin := capacity[i], and j := i + 1. However, these statements 
are not valid initialization statements because their right 
hand sides reference the variable i that gets modified along 
the adaptation path. In other words, these statements do 
not satisfy the second condition of the above definition. As 
a result, the initialization statements of the inner loop are 
written by using the notation v? to denote the initial value 
of a variable v as follows: index := index?, min := rnin?, and 
j := j?. 

5.2 Analysis of Inner Loops and Representation of 
Their Analysis Results 

The analysis of inner loops is performed using the same four 
phases described, in Section 4, for flat loops. To analyze an 
outer loop in a nested construct, the analysis results of its 
inner loops must be represented in a way that reveals the 
functionality of the inner loops and the flow of data into and 
out of the inner loops. The data flow information is needed to 
perform the decomposition of the outer loop body. 

Though the resulting AK tuples or predicate logic anno- 
'tations can be used to represent the inner loop analysis re- 
sults, they either include too much detail or the deduction 
of the required information is difficult, respectively. Hence, 
the solution is to use a formalism that is similar to function 
calls; the name encapsulates the functionality while the ar- 
guments indicate the data flow information. The formalism 
used for this purpose is called an Abstraction Class (AC). 

An AC is a knowledge base object that transforms the de- 
tailed analysis results of an inner loop to a more abstract rep- 
resentation that facilitates the analysis of outer loops. It 
groups AK tuples based on some common functionality and 
ignores the unnecessary implementation specific details. The 



common functionality is documented to explain the purpose Using similar analysis, the AK of the variable min is 
of designing the AC and to enhance its modifiability. Fur- found to belong to ACsA= (Fig. 16). The AK of the variable 
thermoie, the definition of an AC offers an abstract repre- 
sentation of its elements that specifies the data flow informa- 
tion. This abstract representation facilitates the mechanical 
manipulation of ACs. An Abstraction Class (AC) consists of 
three parts: 

1) The elements part consists of generic AK tuples that 
are separated by the symbol ' I '. 

2) The common-function describes the functionality that 
the elements of this class share by using common in- 
stantiated final-sequence, postcondition, or invari- 
ant parts of the matched plans. 

3) The representafion is a unique abstract representation 
that gives the class name, followed by the following 
arguments (separated by semicolons and enclosed 
between two parentheses): the list of expressions re- 
sponsible for the data flow into this AC, the list of 
variables defined by the AC, the control variables of 
the loop under consideration, and a unique number 
identifying the loop being analyzed. 

The representation part contains the class name that is 
an arbitrary and unique name. It also contains the argu- 
ments responsible for the data flow into and out of the AC 
so that they can be used during the data flow analysis. The 
control variables and unique number of the loop are used 
in the design of some plan consequents. To simplify the 
presentation, the last two arguments are only listed when 
heeded. 

The AK of some variable belongs to a specific AC if it 
matches an AK tuple existing in the elements part. The 
symbol '*' is used to denote irrelevant information. An ex- 
pression, exp, enclosed between two brackets in the ele- 
ments part implies that the expression should be matched 
with the corresponding instantiated element of the actual 
AK to deduce the value of the variables defined in it. Some 
of these variables are utilized in forming the AC arguments. 

The AK of the variable j analyzed in the inner loop of 
Fig. 14 has the following form: 

AK(]? = (DBP,, van% j, var?#: j?, R#: <, exp#: num-of-rooms + 1). 

This AK belongs to the AC in Fig. 15 because it matches 
the first AK tuple of the elements part. If we had imple- 
mented this loop with the condition j 5 num-of-rooms in- 
stead of j < num-of-rooms + 1, it would have belonged to 
the same AC. This is because it matches the second AK tu- 
ple of the elements part. These two different implementa- 
tions belong to the same AC because they have the common 
function of going over the integer sequence j? .. 
num-of-rooms in an ascending order. 

elements (DBP,, var#: [v], var?#: *, R#: 2, +: pnalj) 
I 
(DBP,, var#:[v], var?#: *, R#: <, +: [SUCCVinaf)]) 

common-function The instantiated final-sequence of the plan is: v? .. 
final 

representation ACDB,(v,final; v) 

Fig. 15. An abstraction class for ascending enumeration. 

index belongs to ACSAnl. Because ACSAn, is similar to 

ACsA5, it is not shown here. ACsA- includes the AK tuples 

that have the common function of finding the minimum of 
an array segment irrespective of the enumeration direction 
(ascending or descending) and the index of the array ele- 
ment being checked (v, PRED(v), or SUCC(v)). It should be 
mentioned that ACDBZ is similar to A&,, but for descend- 

ing enumeration. The ACs of the variables modified in the 
inner loop of Fig. 14 are, thus, as follows: 

AK(j) E AC,,, ( j ,  num- of - rooms; j) 

AK(min) E ACsA, (capacity, j ,  num- of - rooms, min; min) 

AK(index) E ACsAnl (capacity, j, num- of - rooms, min, index; index) 

elements (SAP3, vX: [v],  a#: [a],  &:[PRED(v)], Ihd: [lhs], lhs?t: *), where 
AK(v) e ACDB2 ([SUCC(/inao]. [SUCC(init)]) 

(SAP,, vX: [v],  a#: [a],  &: [v], 1 M :  [lhs], l h ? t :  *),where 
AKW E A C D B ~  (VinalJ, [init]) or 

AK(v) E ACDBl ([init], @all) 

I 
(SAP,, vX: [v],  a#: [a], &: [SUCC(v)], lh&: [Ih], 1h?t: *), 
where 

AK(v) E ACDB,([PRED(init)l. IPRFo(/inaOl) 

common-function The instantiated posteondition of the plan is: 
I h s  = MIN({lh?} u {a[init ..finall}) 

representation ACSA , (a. init,final, I h )  

Fig. 16. An abstraction class for finding the minimum. 

After analyzing an inner loop, we replace it with the 
concurrent assignment that assigns to the list of variables 
modified by it the result of their analysis. If the AK of a 
variable belongs to a predefined AC, its abstract represen- 
tation, as deduced from the identified AC, is assigned to it. 
If the AK of the variable, var, does not belong to a prede- 
fined AC, we assign the form UAC(ak-list; var) to it, where 
UAC stands for Unknown AC and ak-list is a list represent- 
ing the AK data. The ak-list and var are used, during auto- 
matic analysis, to provide information on the unanalyzed 
parts of the loop. 

Conceptually, the described replacement is equivalent to 
replacing the inner loop with a set of function calls that as- 
sign to each variable changed in the inner loop the desired 
value. This replacement preserves the control flow depend- 
encies because the concurrent assignment is placed at the 
same relative location within the outer loop body. It also 
preserves the data flow dependencies between the variables 
because the ACs clearly state what variables are responsible 
for the data flow into and out of it. 

Replacing the inner loops given in Fig. 14 with the de- 
scribed concurrent assignment gives the following modi- 
fied outer loop: 

i := 1; 
while i S num-of-rooms - 1 do begin 

index := i; 
min := capacity[il; 
i := i + 1; 



. . 1 := 1; 

j, rnin, index := AC,,, (j, num- of - rooms; j), 
ACsA5 (capacity, j, num- of - rooms, rnin; mid, 
ACsAn, (capacity, j, num- of - rooms, min, index; index); 

capacity[index] := capacity[! - 11; 
capacity[i - 11 := rnin 

end; 

5.3 Analysis of Outer Loops 
After modlfylng an outer loop body, we analyze it using the 
previously described method for analyzing flat loops (Section 
4), as if it does not contain any other loops inside it. This can 
be done since the inner loop(s) have been replaced by ordi- 
nary sequential constructs. The only difference, in this case, is 
that high-level plans are used in addition to the usual (low- 
level) ones. High-level plans are those that utilize ACs. 

Adding another classification level, based on whether 
the plan is low-level or high-level, to the four plan catego- 
ries shown in Fig. 5, we get eight plan categories. These 
new plan categories are shown in Fig. 17. The advantage of 
this plan classification scheme is that it indexes plans for 
rapid access given the loop and event types. 

The strength of this approach for analyzing nested con- 
structs is that it can scale up to handle more than two nested 
loops. This is because the inner loops can be recursively ana- 
lyzed and replaced by sequential constructs. Any outer loop 
can thus be analyzed by using the high-level plans in addi- 
tion to the low-level ones. If we are unable to analyze one of 
the inner loops, the analysis of the outer loop proceeds as far 
as possible. That is, we can only analyze outer loop events 
that are independent of the unanalyzed inner loop events. In 
such cases, partial analysis results are produced. An outline 
of the application of the analysis steps on the modified outer 
loop of Fig. 14 is given below. 

The ordered events of the modified outer loop are as 
follows: 

1) BE (order 1) 
condition: i I num-of-rooms - 1 
enumeration: i := i + 1 
initialization: i := 1 

2) AE (order 2) 
body: capacity[il, capacity[ACsAn, (capacity, i + 1, 

num- of - rooms, capacify[il, i; index)] : = 

ACSAB (capacity, i + 1, num- of - rooms, 

capacity[il; rnin), capacity[i] 

initialization: capacity := capacity? 
3) AE (order 2) 

body: j :=ACDB, (i + 1, num-of-rooms; j); 
initialization: j := j? 

4) AE (order 3) 
body: rnin :(ACsA,(capacity, i + 1, num-of-rooms, 
capacity[il; min) 
initialization: min := min? 

5) AE (order 3) 
body: index := (ACSA,, capacity, i + 1, num-of-rooms, 
capacity[il, i; index) 
initialization: index := index? 

The first event is matched with the antecedent of the 
plan DBP, (Fig. 6). The second event is matched with a 
Simple High-level AP (SHAP) that represents the selection 
sorting concept. Because the variables j, rnin and index do 
not explicitly contribute to the outer loop specifications, the 
last three events are matched with SHAPs that produce true 
predicates. These variables implicitly affect the outer loop 
specifications through their abstraction classes that get used 
by the second event. For details concerning the plans used 
and the event analysis results, refer to [I]. The final synthe- 
sized analysis results are given below. The first event is 
responsible for the production of the first conjugate of each 
predicate. The second event is responsible for the produc- 
tion of the rest of the specifications. 

Precondition: 

(0 I num-of-rooms - 1) 

Invariant: 

(1 I i I num-of-rooms) and 
(FOXALL ind: 1 I ind 5 i - 1: capacity[ind] = 
MIN({capacity[ind.. num-of-roomsl}) and ' 
PERM(capacity, capacity?) 

Postcondition: 

(i = num-of-rooms) aizd 
(FORALL ind: 1 5 ind I num-of-rooms - 1: capacityIind1 = 

MIN({capacity[ind .. num-of-rooms] I) and 
PERM(capacity, capacity?) 

The resulting predicate logic annotations produced for 
the inner and outer loops can be used to assist the under- 
standing of the nested construct. An understanding of the 
sorting algorithm can be formed using the predicate 

(min = MIN({min?} u {capacity[j?.. num-of-rooms]})) and 
(capacity[index] = min) 

of the inner loop postcondition and the predicate 

(FORALL ind: 1 ind 5 num-ofrooms - 1: capacity[ind] = 
MIN({capacity[ind .. num-of-rooms])) and 
PERM(capacity, capacity?) 

of the outer loop postcondition. However, such specifica- 
tions cannot be proved using Hoare-style 1191 axiomatic 
correctness. To be able to prove the outer loop invariant, the 
predicate 

(1 5 i - 1 I num-of-rooms - I)  and 
(FOXALL ind: 1 I ind 5 i - 2: capacity[indl = 

MIN({capacity[ind .. num-of-rooms]}) and 
PERM(capacity, capacity?) 

should be added to the invariant of the inner loop. This 
predicate provides information about the context of the 
inner loop, which is needed to prove rule (1) of the second 
research problem that is given at the beginning of this sec- 
tion. In addition, j?, rnin?, and index? in the inner loop 
'specifications should be replaced with i, capacity[i - 11, and 
i - 1, respectively. 

5.4 Adaptation of Inner Loop Specifications 
To be able to prove that the implementations of nested con- 
structs satisfy their specifications, the specifications of inner 



Plans 

Basic Plans (BPS) Augmentation Plans (APs) 

Fig. 17. New plan categories. 

loops need to be strengthened to include information about By taking the conjunction of the two instantiated inner- 
the context of outer loops enclosing them. To ensure that addition- parts, the inner-addition of the example given in 
the notation uar? is consistently used to denote the initial Fig. 14 is: ., 
value of a variable wr  before the start of the outermost (l num-of-rooms - l) and 
loop, variables of the form uar? in specifications of inner (FORALL ind: 1 I ind I i - 1: capacity[indl = 
loops need to be replaced by their actual values. These tasks 

MIN({capacify[ind.. num~of~roomsl~) and are performed in the context and initialization adaptation 
phases. The remainder of this subsection describes how to PERM(capacity, capacity?) 

perform these adaptations. In this description, it is assumed 
that the adaptation path of an inner loop, that is defined in 
Section 5.1, only includes assignment and conditional 
statements. The cases in which this assumption is not satis- 
fied are discussed in Section 6. 

Context Adaptation. While analyzing the outer loop, we 
have complete knowledge of an inner loop function. Thus, 
this is the best time to generate a context related predicate 
inner-addition, which strengthens inner loop invariants. By 
studying the differences between the current outer loop 
invariant part and the generated inner loop invariant part, 
we design and add an inner-addition field to the conse- 
quents of the knowledge base plans. This field provides any 
predicates that should be added to the invariants of inner 
loops to enable the verification of rules similar to: (Ii and 7 
Bi) {S2] Io. After analyzing an outer loop, the instantiated 
inner-addition fields are synthesized, by conjunction, to 
form the predicate inner-addition. 

For instance, assume that the plan DBPl (Fig. 6) is used 
to analyze an ascending enumeration construct of an outer 
loop having the control variable var#. While analyzing the 
inner loop in isolation, no knowledge exists about uar# be- 
ing an outer loop control variable that scans a specific se- 
quence of values. Hence, the inner-addition filed of DBPl 
should provide this information in the form of the predi- 
cate: var?# 5 uar# R# exp#. 

Analyzing the BE of the outer loop given in Fig. 14 using 
DPB, yields the following instantiated inner-addition: 

Similarly, when the inner loop of this sorting example is 
analyzed in isolation, its invariant does not include any 
information about the sorted segment of the array capacity. 
Thus, the inner-addition part of the outer loop selection 
sorting plan should provide the following predicate: 

(FORALL ind: 1 2 ind < i - 1: capacity[ind] = 
MIN({capacity[ind .. num-of-rooms])) and 
PERM(capacity, capacity?) 

However, the synthesized inner-addition is designed to be 
correct at a fixed reference point which is location L, (see 
Fig. 13). This is because during the design of the library 
plans there is no knowledge, a priori, of the statements 
physically located along the adaptation path. The effect of 
the statements along the adaptation path should be taken 
into consideration to get the corresponding correct predi- 
cate, inner-addition,, at location L,. 

By comparing the inner-addition produced for the loop 
given in Fig. 14 to the predicate that should be added to the 
inner loop specifications (given at the end of Section 5.3), it 
is clear that they are not exactly the same. This is because 
the effect of the statements along the adaptation path has 
not been taken into consideration yet. 

The context adaptation uses inner-addition and the ad- 
aptation path to find inner-addition,.The predicate inner- 
addition, is deduced by reversing the effect of the state- 
ments along the adaptation path on the variables in inner- 
addition 1141. For example, if the adaptation path changes i 
to i - 1, then all the free occurrences of i in inner-addition are 
replaced by i + 1 to generate inner-addition,. 

This reversing (or inversion) is performed, mechanically, 
by introducing a set of auxiliary variables that replace all 
the free occurrences, in inner-addition, of the variables modi- 
fied along the adaptation path. Conceptually, the auxiliary 
variables denote the state of the corresponding original 
ones at location L,. 

For the example shown in Fig. 14, the auxiliary variable 
i, replaces the variable i in inner-addition. Since the variable 
capacity is not modified along the adaptation path, no corre- 
sponding auxiIiary variable is introduced for it. The modi- 
fied inner-addition, which is called inner-additionl, has the 
form: 

(1 5 i, I num-of-rooms - 1) and 

(FORALL ind: 1 I ind 5 i, - 1: capacity[ind] = 
MIN({capacity[ind.. num-of~roomsl)) and 
PERM(capacity, capacity?) 



We then form a predicate, aux-values, that represents the 
relation between the auxiliary variables, used at location L,, 
and the corresponding original ones, used at location L,. 
This predicate is formed using the symbolic execution re- 
sult of the adaptation path. First, the introduced auxiliary 
variables should replace their corresponding actual ones 
that are responsible for the data flow into the symbolic exe- 
cution result. The predicate equivalent of the statements 
that m o d e  the original variables are, then, generated and 
conjunctioned together. 

The predicate equivalent of an assignment statement is 
produced by replacing the assignment sign with an equal 
sign. Conditional assignments can be converted into as- 
signment statements of the form: var := choice (conditionl, 
valuel, condition2, value2, . . ., etc.), where the right hand side 
is equal to value1 if condition1 is true, value2 if condition2 is 
true, and so on. The resulting assignment statement is con- 
verted into a predicate as described before. 

In the example shown in Fig. 14, the symbolic execution 
result of the adaptation path is: 

index, rnin, i, j := i, capacity[i], i +1, i +1. 

The context adaptation replaces i by i, in the right hand side 
to produce: 

index, rnin, i, j := i,, capacity[i,], i,+l, i,+l. 

The statement that modifies the original variable i is i := 
i, + 1. The predicate equivalent of this statement, i = i, + 1, is 
the predicate aux-values. 

The required correct predicate inner-addition, is the con- 
junction of aux-values and inner-addition,. The predicate in- 
ner-addition,, which is actually added to the inner loop in- 
variant, has the form: 

(1 5 i, 5 num-of-rooms - 1) and 

(FORALL ind: 1 5 ind i, - 1: capacityIind] = 
MIN((capacity[ind .. num~of~roorns])) and 
PERM(capacity, capacity?) and 
i = i , + l  

Initialization Adaptation. The initialization adaptation 
replaces each variable of the form var?, in an inner loop 
specification, with its value as deduced from its adaptation 
path and the invariant of the enclosing loop. After this re- 
placement, the notation var? is reserved for referring to the 
state of a variable var before the start of the outermost loop. 
The notation var,,, is used to refer the value of var as de- 
duced from the invariant of the loop enclosing it. 

The initial value of a variable var is extracted from the 
symbolic execution result of the adaptation path. If the 
symbolic execution result assigns the value varadap, to var, 

then varnhp, is the needed initial value. However, varahpt 

needs to be modified so that it is expressed in terms of the 
program state at location L2 and not location L1. This modi- 
fication is performed in the same way we modified inner- 
addition. That is, vau,dapt is modified to varadaP~@wl  variables 

auxilliary vnriables ' 

However, if var itself occurs in varndnp,, it should, first, be 

replaced by var,,,,, to avoid a circular definition of the ini- 
tial value of var. In short, every var? in the inner loop speci- 

original vnrinbles fication is replaced by ((varadnPt ) ~ ~ o U t m  )auxiliary vnrinbles). 

For instance, the symbolic execution result of the adap- 
tation path of the example shown in Fig. 14 is: 

index, rnin, i, j := i, capacity[il, i + 1, i + 1. 

The variable j? in the inner loop specification is replaced by 

( ( i  + l);outer I;, ), where i = i, + 1. So, j? is effectively replaced 
by i. Similar analysis shows that rnin? and index? should be 
replaced by capacity[i - I ]  and i - 1, respectively. 

In summary, the specification of the inner loop shown in 
Fig. 14 is adapted by adding the predicate inner-addition, 
that is simplified to: 

(1 I i - 1 5 num-of-room - 1) and 

(FORALL ind: 1 S ind 5 i - 2: capacity[indl = 
MIN({capacity[ind .. num-of-rooms]}) and 
PERM(capacity, capacity?) 

The initial variables j?, min?, and index? are replaced with i, 
capacity[i - I ] ,  and i - 1, respectively. These adaptation re- 
sults are exactly the ones described at the end of Section 5.3. 

In this paper, a knowledge-based program understanding 
approach has been described. The resulting predicate logic 
annotations are unambiguous and have a sound mathe- 
matical basis that allows correctness conditions to be stated 
and verified, if desired. The analysis approach does not rely - 
on real-time user-supplied information and can analyze 
nonadjacent loop parts. 

However, there are limitations to this approach. These are: 

Practical limitations related to the effort and ingenuity 
needed to design the plans. 
Theoretical limitation related to the generation of con- 
cise postconditions for general Imps. 
Theoretical limitation related to the adaptation of in- 
ner loop specifications in some nested loops. 

The practical limits stem from the plan designers inabil- 
ity to formally analyze complicated loops and find their 
invariants despite the fact that these invariants exist theo- 
retically. The resulting specifications are as accurate, read- 
able, and correct as the plans are. That is why the tasks of 
designing plans and managing the knowledge base, for a 
specific application domain of interest, should be per- 
formed by an expert in both the desired domain and formal 
specifications. 

. The first theoretical limit was discussed in Section 4.4. In 
case of general loops, we cannot produce loop postcondi- 
tions as intelligently and concisely as for simple loops be- 
cause it was not possible to include postcondition parts in 
the plans designed for analyzing individual events of gen- 
eral loops. Thus, additional simplifications of the postcon- 
ditions that transforms them into more readable ones might 
be required. 

The second theoretical limit occurs in nested structures 
having the following characteristic: the adaptation path of 
an inner loop contains statements other than assignment 
and conditional statements (e.g., loops or procedure calls). 



The context and initialization adaptations cannot, in gen- 7.1 Objectives 
eral, be performed for such cases. The reason for this limi- The main objective of this case study was to test our analy- 
tation is that the context and initialization adaptations are sis approach and to assess its effectiveness when applied to 
based on the fact that assignment statements and, to a lesser a fixed set of loops in a real and pre-existing program of 
extent, conditional statements can be easily inverted in a some practical value. To this effect, we collected the data 
mechanical way [141. However, if there are loops, proce- needed for performing the following validations and 
dure calls, or function calls, this inversion cannot be per- characterizations: 
formed mechanically. Performing such an inversion is 
equivalent to finding the specifications of arbitrary pro- 
gram fragments containing nonsequential constructs and 
representing their analysis results in terms of equational 
specifications that can be easily inverted. The presented 
approach can perform symbolic execution of sequential 
constructs and can produce first order predicate logic speci- 
fications of loops. However, these two different capabilities 
have not been integrated to produce invertible equational 
specifications of arbitrary program fragments. 

The second theoretical limitation only affects the ability 
to prove that the loop implementations satisfy the resulting 
specifications. It does not affect the ability to assist the un- 
derstanding of nested loops. This is because the approach 
still produces meaningful specifications of the whole con- 
struct. For instance, it has been shown that an understand- 
ing of the sorting algorithm in our example was possible 
before performing the adaptation steps. In addition, the 
context and initialization adaptation can be performed in 
some special cases. One special case occurs when the vari- 
ables used in the inner-addition do not get modified along 
the adaptation path. Another special case happens when 
variables, whose initial values need to be replaced, do not 
get modified along the adaptation path. In the first case, the 
context adaptation does not need to modlfy the predicate 
inner-addition. In the second case, the initialization adapta- 
tion directly replaces var?, if any, with its value as deduced 
from the outer loop invariant. A third special case occurs 
when the loops located on the adaptation path are simple 
ones. In this case, the adaptation of an inner loop specifica- 
tion can be performed using postcondition parts of its pre- 
ceding loop, which are in equational form, instead of its 
outer loop invariant. It should be noted that the first theo- 
retical limit partly affects the second one. If we were able to 
include equational postconditions in the plans that analyze 
general loops, they could have been used in the adaptation 
steps. 

The program chosen as a case study of our loop analysis 
process deals with scheduling a set of university courses. It 
has about 1,400 lines of executable Pascal source code. 
There are a total of 39 modules (functions and procedures). 
A complete listing of the requirements, specifications, de- 
sign, and code documents is given elsewhere [221. In this 
program, there are 77 loops that cover all the classes in our 
taxonomy. Many of these loops involve sorting, searching, 
and scheduling algorithms. Because of the interactive na- 
ture of this program, it contains several other loops that 
perform input error detection as well as warning and error 
messages generation. 

Test the hypothesis that a loop complexity dimensions 
are valid indicators of its amenability to analysis. 
Test the hypothesis that the loop decomposition and 
plan design methods of our approach can make the 
plans applicable in many different loops and, hence, 
increase their utilization. 
Characterize the practical limits of the analysis 
approach. 

7.2 Method 
The case study was performed, manually, prior to the im- 
plementation of the prototype tool. Case study results are, 
thus, not affected by the limits of the implementation that 
are given at the end of Section 8. The set of 77 loops in the 
described program were extracted along with their initiali- 
zation~. This set included 25 for loops, which were trans- 
formed to their equivalent while loops. The loops analyzed 
had the usual programming language features such as 
pointers, procedure and function calls, and nested loops. To 
design, and prove, assertions of loops containing pointer 
variables, the notation and techniques of Luckham and 
Suzuki [30] were used. Procedures that were called from 
within loops had to be formally analyzed, using Hoare 
techniques [20], to obtain rigorous descriptions of their 
functionality and data flowing into and out of them. 

During the study, every loop under consideration was 
first decomposed into its basic and augmentation events. 
Then, every event was analyzed in order to design a plan 
suitable for it. If no plan was available in the knowledge 
base to match the event under consideration, or a similar 
event, a new plan was developed with designer defined, 
candidate specifications. The plan was then modified and 
tailored to give correct specifications by trying to prove the 
loop invariant using Hoare techniques 1191. If a plan that 
matched a similar event, but not the exact one under con- 
sideration, existed in the knowledge base, improvements on 
the structure and/or the knowledge represented in the ex- 
isting plan were considered. 

As the number of analyzed loops increased, the experi- 
ence gained led to the evolution of the knowledge base. The 
monitored usage of the knowledge base served to improve 
some of the plans in terms of their structure, knowledge 
representation, number, and naming conventions. As a re- 
sult, the knowledge base was more suitable for the domain 
under consideration. 

The designed plans (BPS and APs) were not only limited 
to those which provided functional specifications but also 
included plans that discarded unnecessary detail about 
temporary variables and plans that provided warning and 
error messages. It should also be mentioned that the re- 
sulting formal specifications were not formulated in terms 
of concepts specific to the application domain. Even though 



such domain independent specifications can increase the 
chance of reusing the plans, they sometimes have the dis- 
advantage of being more difficult to read 171. 

We decided not to specifically design plans for the 
analysis of 12 loops (15.6%) in the case study. The unique 
and complex nature of these loops suggested that the effort 
needed to design their analysis plans highly outweighs ad- 
vantages that could be gained from their expected extent of 
utilization in this specific application domain. That is, the 
partial analysis of the 12 loops in this case study is mainly 
attributed to the practical limitation discussed in the previ- 
ous section. These 12 loops were arbitrarily numbered from 
pl through p12. They were analyzed using the available set 
of plans to determine whether useful partial specifications 
could be obtained. 

7.3 Results and Analysis 
Tables 2 and 3 give the data collected to test the hypothesis 
that a loop complexity dimensions are indicators of its 
amenability to analysis. Table 2 gives the number of loops 
completely analyzed in each class defined by our taxon- 
omy. Along the first dimension, the available and analyzed 
numbers of Simple (S) and General (GI loops are given. In 
the second dimension, the available and analyzed numbers 
of loops with Noncomposite (N) and Composite (C) condi- 
tions are given. Finally, the available and analyzed num- 
bers of Flat (F) and Nested (N) loops are given along the 
third dimension. Using the three classification dimensions, 
any loop must belong to one of the 8 e3) equivalence 
classes given in Table 3. In this table, the available and 
analyzed numbers of loops in each of these equivalence 
classes are shown. The table also gives the total numbers of 
events and their averages for the analyzed loops in each 
class. 

The results given in Tables 2 and 3 support the hypothe- 
sis that the classification taxonomy helps in predicting a 
loop amenability to analysis. Table 2 shows that the pre- 
sumably more complex classes always have lower percent- 
ages of completely analyzed loops than the presumably less 
complex ones. For example, the percentages of completely 
analyzed flat and nested loops are 98 and 54, respectively. 
All flat loops were completely analyzed except for one loop 
(loop p10) that contained a call to a procedure with a par- 
tially analyzed nested loop (loop p9). This percentage 
variation is even more notable when further investigated 
along the five available equivalence classes of Table 3. Per- 
centages range from 100% for SNF and SCF to 22% for 
GCN. The numbers of events in the analyzed loops further 
support the interpretation that the classification of a loop is 
an indicator of its complexity and, correspondingly, its 
amenability to analysis. For example, while SNF loops 
(Flat) have an average of 2.4 events/loop, SNN loops 
(Nested) have an average of 5.6 events/loop. 

Table 4 summarizes the data collected to examine the 
plan utilization issue. It shows the number of events ana- 
lyzed by each of the designed plans. It also shows the total 
utilization of the plans in each of the six available catego- 
ries. Since only one high-level basic plan (IBP,) was de- 
signed, we do not differentiate between low and high-level 
BPS. During the iterative process of designing the plans, 

some of them underwent abstractions and others were 
structurally improved into tree structures. The " or + super- 
script is used to denote those plans that underwent ab- 
stractions or structural improvements, respectively. For 
example, plan DBP, was used 45 times and had a tree- 
structured design. 

The 48 plans designed were utilized in analyzing a total 
of 235 events. A closer examination of the results in Table 4 
shows that a set of 27 plans (56%) analyzed 214 events 
(91%). The remaining 21 plans were only used once. These 
results indicate that if we focus on a specific application 
domain, there is bound to be a kernel of events that can be 
captured by a relatively reasonable number of plans. On the 
other hand, there will also be plans that, as in our study, 
may be used just once. The emphasis should be on the de- 
sign of the plans that cover the kernel. 

TABLE 2 
NUMBER OF COMPLETELY ANALYZED LOOPS 

ALONG THE THREE DIMENSIONS 

TABLE 3 
NUMBER OF COMPLETELY ANALYZED LOOPS 

IN THE AVAILABLE CLASSES 

Number analyzed 
22 

TABLE 4 
UTILIZATION OF THE DESIGNED PLANS 

The 10 plans that underwent improvements to their 
structure and knowledge representation (21%) analyzed 
149 events (63%). The average number of utilization of the 
plans vary from 4.9 (with standard deviation of 8) for all 48 
plans to 14.9 (with standard deviation of 11.8) for the 10 

Name 
(subscript) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

16 
17 3 

Plan category 
DBP 
45* 
6* 
8 
9f 
1 
- 
- 
- 
- 
- 
- 

SLAP 
23'+ 
I 
3' 
1 
1 
1 
1 

20 
3 
- 
- 

LBP 
4 

15' 
1 
2 
2 
2 

- 
- 
- 
- 

GLAP 
4 

13*+ 
1 
2 
1 
1 
1 
1 
- 
- 
- 

SHAP 
3+ 

13*+ 
1 
1 
1 
1 
2 
2 
2 
1 
2 

GHAP 
3 
2 
- 
- 
- 
- 
- 
- 
- 
- 
- 



improved plans that are marked with the + and + super- 
scripts. These numbers support the argument that com- 
monly used plans get more chances to be revised and 
adapted and this, in turn, leads to their higher utilization. 

We also notice, from Table 4, that even though nine 
SLAPS analyzed 72 events, double the number of SHAPs 
(19) only analyzed 39 events. This indicates that simple 
'low-level' blocks of code are more frequently utilized than 
the more complex 'high-level' ones. 

In general, the results in Table 4 show that the 
events/plan ratio is high (4.91, especially in case of the 
plans that underwent structural and knowledge represen- 
tation improvements (14.9). This indicates that the decom- 
position and plan design methods tend to have a positive 
effect on plan utilization and, consequently, on the size of 
the knowledge base. However, since our main objective 
was to validate and evaluate the analysis approach, we de- 
signed many plans (21) that were only used once. These 
plans helped us in evaluating the analysis approach in 
loops with, say, high nesting level or a large number of pro- 
cedure calls. Since these plans were designed to handle sin- 
gle specific events, they are probably not fully developed. 
The analysis of more loops in the same application domain 
should either eliminate or improve them. 

Tables 5 and 6 summarize the data collected to deter- 
mine which kinds of loops are more appropriately analyzed 
by the approach. Table 5 provides some insight into the 
practical limits of the approach. It gives different charac- 
teristics of the partially analyzed loops. Table 6 compares 
some of these characteristics to the corresponding ones of 
the completely analyzed loops. To provide a more detailed 
insight into the analyzed loops, some loop source codes are 
given in Appendix C. 

The second theoretical limitation, described in Section 6, 
only occurred in loop p9. That is, the partial analysis of the 
12 loops in this case study was mainly because of practical 
limitations. Analyzing loops pl-p6 and p8-p9 using the 
current set of plans yielded no partial results. Loop p10, 
whose characteristics are compatible with those of the 
completely analyzed loops, was almost completely ana- 
lyzed; four out of five events were analyzed. The fifth event 
was not analyzed because it contained a call to a procedure 
with a partially analyzed nested loop (loop p9). Loops p7 
and p12 yielded some minor partial analysis results. Loop 
p l l  gave considerable partial analysis results. 

It is clear from Table 5 that alrnost all of the partially 
analyzed loops are nested (11 out of 12) and contain proce- 
dure calls (10 out of 12). They have an average size of 43.2 
executable source lines of code and an average of 12.4 
modified variables. Table 6 shows that some of these char- 
acteristics are considerably different from the correspond- 
ing ones for the completely analyzed loops. For example, 
the completely analyzed loops have an average size of 10.5 
executable source lines of code and an average of 3.4 modi- 
fied variables. While the average number of events in the 
completely analyzed loops is 3.3, the partially analyzed 
loops have 11.9 events on the average. This case study has 
given us the impression that loops of up to five events were 
more easily analyzed than others. 

However, we noticed in some loops (p7, p8, pll,  and 
p12) that some events closely match some of the designed 
plans. A larger domain of study could have improved those 
plans or resulted in designing similar ones that can contrib- 
ute more to the specifications of such loops. 

Even though the results of the case study are encourag- 
ing, further experimentation is, in our opinion, needed to 
investigate the generality and efficiency of the presented 
approach with respect to various application domains. This 
experimentation can serve to characterize the cases in 
which this approach can work best. 

TABLE 5 
CHARACTERISTICS OF THE 12 PARTIALLY ANALYZED LOOPS 

TABLE 6 
COMPARISON BETWEEN THE COMPLETELY 

AND PARTIALLY ANALYZED LOOPS 

L w p  # 

pl 
p2 
p3 
p4 
p5 
p6 
p7 

p10 
pl l  
pl2 

8 IMPLEMENTATION 
To demonstrate the feasibility of automating our knowledge- 
based analysis approach, a prototype tool, which annotates 
loops with predicate logic annotations, has been designed [21. 
LANTeRN, which stands for "Loop ANalysis Tool for Rec- 
ognizing Natural-concepts," has been developed using Lisp. 
The input to the current version of LANTeRN is in the form 
of a loop to be analyzed, and its declarations, written in a 
subset of Pascal. It is assumed that the input Pascal program 
has been previously compiled successfully. LANTeRN's out- 
put includes the loop classification, loop events along with 
names of the plans they match, individual event analysis 
results, and synthesized and adapted final results. Its knowl- 
edge bases contain plans and ACs from the case study. The 
test cases were also used from the case study. It should also 
be mentioned that the specifications presented in this paper 
were generated by LANTeRN. 

In the current implementation, construction of the plans 
and ACs is not automated. That is, we manually populated 
the knowledge bases. However, no human interaction is 
needed during the utilization of the plans and ACs during 
analyzing loops. The construction of the tree-structured 
plans, especially in case of large knowledge bases, can be 
facilitated by the design of automated techniques that assist 

SEL-97-002 

Characteristics 
C*ss 

GCN 
GCN 
GCN 
GCN 
GCN 
SNN 
SNN 
GCN 
SNN 
GCF 
GCN 
SNN 

Pamally analyzed 
loops 
11.9 

(SD = 4.8) 
43.2 

(SD = 15.7) 
12.4 

(SD = 4.9) 

Characteristics 
(m terms of average numbers) 

Events 

Executable SLOC 

Modified variables 

Completely analyzed 
loops 
3.3 

(SD = 2.1) 
10.5 

(SD = 8.3) 
3.4 

(SD = 2.5) 

Events 

13 
9 
13 
9 
13 
17 
20 
8 
5 
5 
12 
19 

ExkUablc 
SLOC 

48 
30 
46 
32 
49 
53 
53 
36 
29 
13 
52 
77 

Moditiedwirbla Pointer 
wirbla 

0 
0 
0 
0 
0 
2 

2 
3 
0 
4 
4 

cmkol 
3 
3 
3 
3 
3 
1 
1 
2 
1 
2 
3 
1 

naamntml 
10 
6 
10 
6 
10 
16 
19 
7 
4 
4 
11 
20 

h n c e d ~  
u L  

5 
2 
3 
2 
4 
7 

4 0 1 1  
4 
0 

1 

Fuaniou 
u L  

4 1  
2 1  
2 2  
2 1  
2 2  
2 1  

0 1  
0 2  

1 2 0  
1 4 2  

4 

b C I  

lwps 

3 .  



in their acquisition and development. For instance, several 
knowledge base plans might have the same antecedent 
parts except for the firing-conditions. Other plans might 
have antecedents that represent special cases of a more 
general antecedent. Automatically identifying such plans 
and combining them into more sophisticated tree structures 
is an interesting topic for future study. 

The first phase in the implementation is a translation 
phase that converts the input into a language independent 
form. The loop initialization and body are converted into a 
set of lisp function calls. The loop condition, however, is left 
in its predicate form. Data type information is also ex- 
tracted. The translation results are stored in a global data 
base so that they can be easily accessed by all analysis 
phases. After the translation phase, the rest of the prototype 
can be used to analyze loops independent of the imperative 
programming language used. 

Starting from the innermost loop(s), all input loops are 
recursively analyzed. If the loop body contains inner 
loop(s), the AK tuples of the inner loop(s) are used to 

. search for the matching ACs in the AC knowledge base. 
The inner loop(s) are then replaced by a concurrent assign- 
ment in terms of the found ACs as explained in Section 5.2. 
After this replacement, the four main phases of the loop 
analysis approach are implemented by following the de- 
scriptions given in Section 4. Two kinds of simplifications 
are performed in LANTeRN. The simplification of arithme- 
tic expressions is performed by converting input expres- 
sions into an internal canonical form for polynomials, ma- 
nipulating them, and converting them back to their external 
form 1341. Predicate simplifications, however, are limited. 
They are performed using rule-based translation with a set 
of logical identities serving as rules. 

Because LANTeRN was designed for the specific pur- 
pose of demonstrating that our approach can be automated, 
its user interface is primitive and the only structured type 
currently being handled is the array type. Because of the 
second limitation, all loops considered in our case study 
were analyzed by LANTeRN except for those which in- 
cluded pointers. 

In this paper, a knowledge-based loop analysis approach has 
been described. This approach mechanically generates rigor- 
ous unambiguous predicate logic annotations of computer 
programs. It is a bottom-up analysis approach that does not 
rely on real-time user-supplied information that might not be 
available at all times (e-g., the goals a program is supposed to 
achieve). In addition, it enables partial recognition and analy- 
sis of stereotyped, nonadjacent program parts. 

A case study was performed on a real and existing pro- 
gram of some practical value. This case study served to 
partially validate the analysis approach and to characterize 
its practical limits. To demonstrate the feasibility of auto- 
mating our knowledge-based analysis approach, a proto- 
type tool, which annotates loops with predicate logic an- 
notations, has been designed and implemented 121. 

The approach can assist in the maintenance and reuse 
activities by producing semantically sound and expressive 

predicate logic annotations of programs. Since many pro- 
grams are undocumented, underdocumented, or misdocu- 
mented, a major part of the maintenance task is spent in 
recognizing and understanding abstract programming con- 
cepts 151, [28]. Automation of program analysis and under- 
standing can, thus, contribute to maintenance tools and 
methods and provide support for various maintenance ac- 
tivities. Program analysis and understanding is also crucial 
for code reuse since the reuser must be aware of what a 
code component does. Understanding reusable code com- 
ponents can be achieved by augmenting them with a pre- 
cise and clear description of their functionality 171. If these 
descriptions are in the form of formal specifications, they 
can be further used in generating test cases and assessing 
the correctness of the implementation. Automation of pro- 
gram understanding is needed to facilitate the quick and 
efficient population of a reuse repository with well docu- 
mented components [41, [11 I. 

However, when annotating complicated and large pro- 
gram parts, these formal specifications can become hard to 
read. The readability of such specifications can be enhanced 
if they are further abstracted. This abstraction can be per- 
formed by replacing a formal statement with another one 
that is formulated in terms of a more widely known and 
understood concept [131. Domain abstractions can further 
abstract the formal specifications with concepts specific to 
the application domain. The domain specific replacements 
can be explicitly performed by producing the abstract and 
then the domain specific ones. Otherwise, they can be im- 
plicitly performed by designing the plans such that their 
consequents are directly written in terms of the domain 
specific terms. In the former case, the knowledge base plans 
are more aeneral and can be used in several different do- 
mains. TG last stage that performs the higher level ab- 
stractions can be tailored to the needs of different domains 
and thus enhances the portability of the system. The latter 
approach, however, is easier to implement mechanically 
b i t  reduces the generality of the plan& 

With respect-to software development, predicate logic 
plays an important role in development of software using 
such languages as VDM and Z [251, [441, [511. S' ince our 
loop analysis technique produces predicate logic annota- 
tions, it can assist such formal development methods. Our 
reverse engineering approach can provide assistance in the 
last development stage that moves from operation specifi- 
cations to imperative-programming language implementa- 
tions. That is, the presented loop analysis technique can 
help in showing that proof obligations generated during the 
operation refinement vrocess are satisfied. It should be 
koted, however, that {he mathematical notations used in 
VDM, Z, and our plans are not the same. To transform one 
mathematical notation to another. simple svntactic varia- 
tions need to be performed. For det&ledJdescription of 
how our approach can assist in program development with 
VDM and Z, refer to [2J. 

There are some practical and theoretical limits to the 
presented approach. The practical limits are due to the dif- 
ficulty of designing the knowledge base plans. The theo- 
retical limits occur in nested structures with adavtation 
paths that contain statements other than assignment and 
conditional statements. They also occur while deriving the 
postconditions of general loops. 

- 

98 SEL-97-002 



Future work includes extensions and improvements of the 
analysis approach, experimenting with the techniques in 
various application domains, and improvements on the pro- 
totype tool. The analysis approach needs to be expanded to 
perform an intelligent analysis of complete program modules 
that include nonalgorithmic constructs such as stacks and 
queues. We need to investigate the utilization of additional 
information and bowledge in the source code (e.g., com- 
ments, variable names) to assist in plan recognition. Per- 
forming empirical studies in various application domains can 
serve to address and investigate several issues related to the 
acquisition and development of plans and the generality and 
efficiency of the presented approach with respect to different 
application domains. Finally, the developed tool served to 
demonstrate that the analysis techniques can be automated 
[2]. For practical utilization of such a tool, it needs to be en- 
hanced to support additional programming language fea- 
tures and improve the user interface. 

a 

X EY 

X"Y * 
var? 

varoutet 

(FORALL x: pl: p2) 
and 
B 
MIN s 
MAX s 
or 

The negation operator 
The implication operator 
x is an element of y 
Union of the sets x and y 
Denotes an irrelevant information 
Value of var before an operation or a loop 
Value of var as deduced from the outer 
loop invariant 
Value of var as deduced from the adapta- 
tion path of the current inner loop 
Sequence of integers from i up to j inclu- 
sive 
For all x values that satisfy pl, p2 is true 
The logical conjunction operator 
While loop condition 
The minimum of the set (or sequence) s 
The maximum of the set (or sequence) s 
The logical disjunction operator 
The result of substituting y for each free 
occurrence of x in P 
If the predicate P is true before executing 
the first statement of the program part S, 
and if S terminates, then the predicate Q 
will be true after the execution of S is 
complete 
Array a is a permutation of the array b 
The predecessor of x 
The successor of x 

AC 
ACDE 

ACS* 

AE 
AK 
AP 
BE 
BP 
DBP 
GAP 
GCF 

Abstraction Class 
AC that abstracts AK tuples whose first term is 
a DBP 
AC that abstracts AK tuples whose first item is a 
SAP 
Augmentation Event 
Analysis Knowledge 
Augmentation Plan 
Basic Event 
Basic Plan 
Determinate Basic Plan 
General Augmentation Plan 
General loop, Composite condition, Flat 

99 

GCN 
GHAF 
GLAP 
GNF 
GNN 
IBP 
LANTeRN 

SCF 
SCN 
SHAP 
SLAP 
SNF 
SNN 
UAC 

General loop, Composite condition, Nested 
General High-level Augmentation Plan 
General Low-level Augmentation Plan 
General loop, Noncomposite condition, Flat 
General loop, Noncomposite condition, Nested 
Indeterminate Basic Ran 
Loop ANalysis Tool for Recognizing Natural- 
concepts 
Simple loop, Composite condition, Flat 
Simple loop, Composite condition, Nested 
Simple High-level Augmentation Plan 
Simple Low-level Augmentation Plan 
Simple loop, Noncomposite condition, Flat 
Simple loop, Noncomposite condition, Nested 
Unknown Abstraction Class 

The following four figures provide a more detailed insight 
into the analyzed loops. The first two figures (Figs. 18 and 
19) show two of the completely analyzed loops. The last 
two figures (Figs. 20 and 21) demonstrate two of the par- 
tially analyzed loops. These two loops were referenced as 
pl and p9, respectively. 

, :=I .  
course-i := 0; 
flag := false; 
while (i <= num-of-courses) and not flag do begin 

if course-no = course-no-db[i] then begin 
course-i := i; 
flag :=true 

end else 
i : = i + l  

end 

Fig. 18. First example of a completely analyzed loop. 

numumofqref := 0; 
validgref-list := nil; 
while pref-list <> nil do begin 

nun-ofjref := num-ofqref + 1; 
i:= 1; 
flag := false; 

while (i <= num-of-times) and not flag do begin 
if pref_list".p-index = time-slot-db[i] then begin 

new(temp-list); 
temp-list".p-index := i; 
if num_ofgref = 1 then 

temp-listA.pqtr :=nil 
else 

temp-listA.pqtr := validgref-list; 
validgref-list := temp-list; 
flag:=true 

end else 
i := i+ l  

end; 

if i > numumofoftimes then begin 
writelnfline # ', line-no: 3, ' ** ', msgbuf); 
writelnf no such preference in the db : ', pref_listA.p-index); 
num_ofgref := num-ofgref - 1 

end; 
pref-list := preflilistA.pgtr 

end 

Fig. 19. Second example of a completely analyzed loop. 



IEEE TRANSACTIONS ON SOFlWARE ENGINEERING, VOL. 22, NO. 5, MAY 1996 

error := false; 
num_of-rooms := 0; 
gcnext-line( 1, buffer); 
line-no := line-no + 1; 
rnsgbuf := buffer; 
flag := false; 
while (buffer <> 'eof) and (num-of-rooms < rnaxrooms)and not flag do begin 

token := get_token([';', ':'I, buffer); 
if token = '; ' then begin 

flag := true 
end; 
if not flag then begin 

if not chk-fmt-rrn-no(token) then begin 
error :=true 

end; 

{The following loop was completely analyzed.) 
i := I; 
while i <= str-length do begin 

room_no[i] := token[i]; 
i : = i t  1 

end; 
token := get-token([';', ':'I, buffer); 
if token = ': ' then 

token := get_token(['; ', ':'I, buffer); 
cap := string-to-int(token); 
if not chk-range--(cap) then 

error := true; 
if not error then 

if not &-dup(room_no) then begin 
num-of-rooms := num-of-rooms + 1 ; 
classroom~db[num_of~rooms] .room_no := room-no; 
classroom-db [num-of-rooms] .capacity := cap 

end else begin 
writeIn('1ine #', line-no: 3, ' ** ', msgbuf); 
writeln(' classroom entry specified more than once :', ro-no, '** ignored **') 

end; 
token := get-token([';', ':'I, buffer); 
if token = '; ' then 

flag :=true 
else 

ifnum-of-rooms <> maxrooms then begin 
gcnext-line(1, buffer); 
line-no := line-no + 1 ; 
msgbuf := buffer 

end 
end 

end; 

Fig. 20. Partially analyzed loop number p l  . 



slot-full :=true; 
tempqgres := pg-reserve; 
while tempqg-res o nil do begin 

{The following loop was completely analyzed.} 
tempPtimeslots := tempqg_resA.timeslots; 
while (temp-timeslots<>nil)and(temp-times1otsA.times1ot<%e) do 

temp-timeslots := temp-timeslotsA.tqtr; 

iftemp-timeslots <> nil then begin 
temp-room-list := temp-timeslotsA.roomlist; 
if (tempeny,roommlist nil) and (temp_room-bstA.r_index = room) thm begu~ 
temp-timeslotsA.roornlist := temp-timeslotsA.roomlistA.rqtr; 
if temp-timeslotsA.roomlist 0 nil then 
slototfdl := false 

end else begin 
slot_ful := false; 
if temp-room-list <> nil then begin 

{The following loop was completely analyzed.} 
flag := false; 
while not flag and (temp_ro~m~bst'".rqtr <> nil) do 
iftemp-room-listA.r_ptrA.rAindex <> room then begin 

temp-room-list := temp-room-bstA.rgtr 
end else 

flag :=true; 

if temp-room-listA.rqtr 0 nil then 
temp-room-listA.rqtr := temp_room-listA.rjtr/\.rqtr; 

end 
end 

end; 
tempgg-res := tempqgresA.res_next 

end; 

Fig. 21. Partially analyzed loop number p9. 

We thank Lionel Briand, Gianluigi Caldiera, Walcelio Melo, 
Carolyn Seaman and Barbara Swain for their helpful con- 
tributions to a variety of aspects presented in this paper. 
This research was supported in part by the Office of Naval 
Research under Grant No. N00014-87-k-0307 to the Uni- 
versity of Maryland. 

[ll S.K. Abd-El-Hafiz and V.R. Basili, A Knowledge-Based Approach to 
Program Understanding. Kluwer Academic Publishers, 1995. 

[21 S.K. Abd-El-Hafiz and V.R. Basili, "A Tool for Assisting the Un- 
derstanding and Formal Development of Software," Proc. Sixth 
Int'l Conf. Software Engineering and Knowledge Engineering, Jur- 
mala, Latvia, pp. 36-45,1994. 

131 S.K. Abd-El-Hafiz and V.R. Basili, "Documenting Programs Us- 
ing a Library of Tree Structured Plans," Proc. Conf. Software Main- 
tenance," Montreal, Canada, pp. 152-161,1993. 

141 S.K. Abd-El-Hafiz, V.R. Basili, and G. Caldiera, 'Towards Auto- 
mated Support for Extraction of Reusable Components," Proc. 
Conf. Software Maintenance, Sorrento, Italy, pp. 212-219,1991. 

151 A. Abran and H. Nguyenkim, "Analysis of Maintenance Work 
Categories Through Measurement," Proc. Conf. Software Mainte- 
nance, Sorrento, Italy, pp. 104113,1991. 

[61 D. Allemang and B. Chandrasekaran, "Functional Representation 
and Program Debugging," Proc. Sixth Ann. Knowledge-Based Soft- 
ware Engineering Conf., Syracuse, N.Y., pp. 167-178,1991. 

[7] V.R. Basili and S.K. Abd-El-Hafiz, "A Method for Documenting 
Code Components," The 1. of Systems and Software, to appear. 

[8] S.K. Basu and J. Misra, "Proving Loop Programs," IEEE Trans. 
Software Engineering, vol. 1, no. 1, pp. 76-86,1975. 

[9] K. Bertels, P. Vanneste, and C. De Backer, "A Cognitive Ap- 
proach to Program Understanding," Proc. Working Conf. Reverse 
Engineering, Baltimore, Md., pp. 1-7,1993. 

[lo] G. Brassard and P. Bratley, Algorithmics: Theory Practice. Prentice 
Hall, 1988. 

[Ill G. Caldiera and V.R. Basili, "Identifying and Qualifying Reusable 
Software Components," Computer, vol. 24, no. 2, pp. 61-70,1991. 

[12] D.D. Dunlop and V.R. Basili, "A Heuristic for Deriving Loop 
Functions," ~ E E E  Trans. Software Engineering, vol. 10, nor 3, pi. 
275-285.1984. 

[13] R.B. France and V.R. Basili, "A Pattern-Driven Approach to Code 
Analysis for Reuse," Tech. Report CSTR-2802, Dept. of Computer 
Science, Univ. of Maryland, College Park, Md. 1991. 

[14] D. Gries, The Science of Programming. Springer-Verlag, 1981. 
[15] M.T. Harandi and J.Q. Ning, "PAT: A Knowledge-Based Program 

Analysis Tool," Proc. Conf. Software Maintenance, Phoenix, Ariz., 
pp. 312-318,1988. 

[I61 M.T. Harandi and J.Q. Ning, "Knowledge-Based Program Analy- 
sis," IEEE Software, vol. 7, no. 1, pp. 7481,1990. 

[I71 J. Hartman, "Understanding Natural Programs Using Proper 
decomposition," Proc. 13th Int'l Conf. Software Engineering, pp. 62- 
73, Austin, Tex., 1991. 

1181 P.A. Hausler, M.G. Pleszkoch, R.C. Linger, and A.R. Hevner, 
"Using Function Abstraction to Understand Program Behavior," 
IEEE Software, vol. 7, no. 1, pp. 55-63,1990. 

[19] C.A.R. Hoare, "An Axiomatic Basis for Computer Programming," 
Comm. ACM, vol. 12, no. 10, pp. 576-580,583,1969. 



1201 C.A.R. Hoare, "Procedures and Parameters: An Axiomatic Ap- 
proach," Symp. Semantics of Algorithmic Languages, pp. 102-116. 
Springer-Verlag, 1971. 

1211 C.S. Hsieh, "Slice, Chunk, and Dataflow Anomaly as Datalog 
Rules," The]. of Systems and Software, vol. 16, no. 3, pp. 197-203,1991. 

[22] P. Jalote, An Integrated Approach to Software Engineering. Springer- 
Verlag, 1991. 

[23] W.L. Johnson, Intention-Based Diagnosis of Novice Programming 
Errors, Morgan Kaufmann, 1986. 

[24] W.L. Johnson and E. Soloway, "PROUST: Knowledge-Based Pro- 
gram Understanding," IEEE Trans. Software Engineering, vol. 11, 
no. 3, pp. 267-275,1985. 

[251 C.B. Jones, Systematic Software Development Using VDM. Prentice 
Hall Int'l, 1990. 

I261 S. Katz and Z. Manna, "Logical Analysis of Programs," Comm. 
ACM, vol. 19, no. 4, pp. 188-206,1976. 

1271 K. Lano and P. Breuer, "From Programs to Z Specifications," Z 
User Workshop, J.E. Nicholls , pp. 46-70. Springer-Verlag, 1989. 

1281 B.P. Leintz and E.B. Swanson, Software Maintenance Management. 
Addison-Wesley, 1980. 

I291 S. Letovsky, "Program Understanding with the Lambda Calcu- 
lus," Proc. 20th Int'l Joint Conf. on Al, pp. 512-514,1987. 

[301 D.C. Luckham and N. Suzuki, "Verification of Array, Record, and 
Pointer Operations in Pascal," TOPLAS, vol. 1, no. 2, pp. 226-244, 
Oct. 1979. 

1311 K.B. McKeithen, J.S. Reitman, H.H. Rueter, and S.C. Hirtle, 
"Knowledge Organization and Skill Differences in Computer 
Programmers," Cognitive Psychology. vol. 13, pp. 307-325,1981. 

1321 H.D. Mills, V.R. Basili, J.D. Gannon, and R.G. Hamlet, Principles of 
Computer Programming: A Mathematical Approach. Allyn and Ba- 
con, 1987. 

1331 W.R. Murray, Automatic Program Debugging for Intelligent Tutoring 
Systems. Morgan Kaufmann, 1988. 

[341 P. Norvig, Paradigms of Artificial Intelligence Programming: Case 
Studies in Common Lisp. Morgan Kaufmann, 1992. 

1351 T.W. Pratt, "Control Computations and the Design of Loop Con- 
trol Structures," IEEE Trans. Software Engineering, vol. 4, no. 2, pp. 
81-89,1978. 

I361 A. Quilici, "A Hybrid Approach to Recognizing Programming 
plans," Proc. Working Conf. Reverse Engineering, pp. 126-133, Bal- 
timore, Md., 1993. 

I371 C. Rich, "A Formal Representation for Plans in the Programmer's 
Apprentice," Proc. Seventh Int'l Joint Conf. on Al, pp. 1,044-1,052, 
Aug. 1981. 

1381 C. Rich and L.M. Wills, "Recognizing a Program's Design: A Graph- 
Parsing Approach," IEEE Software, vol. 7, no. 1, pp. 82-89,1990. 

1391 E. Rich and K. Knight, Artificial Intelligence. McGraw-Hill, 1991. 
I401 P.G. Selfi-idge, R.C. Waters, and E.J. Chikofsky, "Challenges to the 

field of Reverse Engineering," Proc. Working Conf. Rmerse Engi- 
neering, Baltimore, Md., pp. 144-150,1993. 

1411 E. Soloway, "Learning to Program = Learning to Construct 
Mechanisms and Explanations," Comm. ACM, vol. 29, no. 9,pp. 
850-858,1986. 

[421 E. Soloway, J. Bonar, and K. Ehrlich, "Cognitive Strategies and 
Looping Constructs: an Empirical Study," Comm. ACM, vol. 26, 
no. 11, pp. 853-860,1983. 

1431 E. Soloway and K. Ehrlich, "Empirical Studies of Programming 
Knowledge," IEEE Trans. Software Engineering, vol. 10, no. 5,1984. 

1441 J.M. Spivey, "An Introduction to Z and Formal Specifications," 
Software Engineering I., pp. 40-50, Jan. 1989. 

1451 J.M. Spivey, The Z Notation: a Reference Manual. Prentice Hall Int'l, 
1992. 

1461 M. Ward, F.W. Calliss, and M. Munro, "The Maintainer's Assis- 
tant," Proc. Conf. Software Maintenance, Miami, Fla., pp. 307-315, 
1989. 

[471 R.C. Waters, "A Method for Analyzing Loop Programs," IEEE 
Trans. Software Engineering, vol. 5, no. 3, pp. 237-247,1979. 

1481 R.C. Waters, 'The Programmer's Apprentice: A Session with 
KBEmacs," IEEE Trans. Software Engineering, vol. 11, no. 11, pp. 
1,296-1,320, Nov. 1985. 

I491 B. Wegbreit, "The Synthesis of Loop Predicates," Comm. ACM, 
vol. 17, no. 2, pp. 102-112,1974. 

1501 L.M. Wills, "Flexible Control for Program Recognition," Proc. the 
Working Conf. Reverse Engineering, Baltimore, Md., pp. 134-143, 
1993. 

Salwa K. Abd-El-Hafiz received the BS degree 
in electrical engineering from Cairo University, 
Egypt, in 1986 and the MS and PhD degrees in 
computer science from the University of Mary- 
land, College Park, Maryland, in 1990 and 1994, 
respectively. She is currently an assistant pro- 
fessor at the Engineering Mathematics Depart- 
ment, Faculty of Engineering, Cairo University, 
Giza, Egypt. Her primary research interests in 
software engineering are program understand- 
ing, the application of artificial intelligence to 

software analysis, and software specification. Other interests include 
software maintenance, reuse, and measurements. Dr. Abd-El-Hafiz is 
a member of the IEEE Computer Society. 

Victor R. Basili ((M'83-SM'84-F'90) is a pro- 
fessor in the Institute for Advanced Computer 
Studies (UMIACS) and the Computer Science 
Department at the University of Maryland, Col- 
lege Park, Maryland, where he served as chair- 
man for six years. He was involved in the design 
and development of several software projects, 
including the SlMPL family of programming 
languages. He is currently measuring and 
evaluating software development in industrial 
and government settings and has Sewed as a 

consultant to many agencies and organizations, including IBM, Mo- 
torola, HP, Boeing, Xerox, NRL, NSWC, and NASA. 

Dr. Basili works on the development of quantitative approaches for 
software management, engineering, and quality assurance, using 
models and metrics for improving the software development process 
and product. He helped found and is one of the principals of the Soft- 
ware Engineering Laboratory, a joint venture between the NASA God- 
dard Space Flight Center, the University of Maryland, and the Com- 
puter Sciences Corporation that was established in 1976. He received 
the first Process lmprovement Achievement Award for the GRO Ada 
experiment in 1989 and the NASAIGSFC Productivity lmprovement 
and Quality Enhancement Award for the Cleanroom project in 1990. 

Dr. Basili has authored more than 100 journal and refereed confer- 
ence papers. In 1982, he received the Outstanding Paper Award from 
IEEE Transactions on Software Engineering for his paper on the 
evaluation of methodologies. He has served a s  editor-in-chief of IEEE 
Transactions on Software Engineering; general chair of the 15th Inter- 
national Conference on Software Engineering held in 1993 in Balti- 
more, Maryland; program chair of the sixth International Conference on 
Software Engineering in 1982 in Japan; and general or program chair 
of several other conferences. He was treasurer of the IEEE Computing 
Society Board of Governors and a member of the Board of Directors of 
Verdix Corp. He serves on the editorial board of the Journal of Sys- 
tems and Software and is an IEEE fellow. He is a member of the Engi- 
neering Excellence Council for the Xerox Cop. He. serves as a co- 
editor-in-chief of a new journal, Empirical Software Engineering, An 
International Journal, to be published by Kluwer Academic Publishers 
beginning in April 1996. 

[511 T.c.P. Woodcock, "Structuring Specifications in Z," Software Engi- 
neering I., pp. 51-66, Jan. 1989. 



August 1996 

Experiences from an Exploratory Case Study 
with a Software Risk Management Method 

Jyrki ~ontio*, Helena ~ n ~ l u n d f  and Victor R. ~as i l i*  

* Institute for Advanced Computer Studies and Software Metrics Laboratory 
Department of Computer Science Department of Computer & Systems Sciences 

University of Maryland Kungliga Tekniska Hogskolan 
A.V.Williams Building Electnun 230 

College Park, MD 20742, U.S.A. S-164 40 Kista, Sweden 
Email: {jkontio, basili} @cs.umd.edu Email: d9 1-hen@nada.kth.se 

Version 1.00 
Status: Final 

Release date: November 1, 1996 

Abstract: 

This paper presents the results of an exploratory case study in which a 
risk management method was used and compared with a method 
currently used by the organization. The goal of the case study was to 
obtain feedback on an early version of a risk management method, called 
Riskit, that has been developed at the University of Maryland. This paper 
also presents an overview of Riskit method version 0.10 and describes 
the comparison method currently used by the case study organization, as 
well as the case study design. 



Table of Contents 

1 . Introduction ................................................................................................................................. 4 
2 . Acknowledgments ....................................................................................................................... 4 
3 . Motivation for Risk Management ............................................................................................... 4 
4 . The Riskit Method. version 0.10 ................................................................................................. 5 

................. ......................................... 4.1 Decomposing Risk: The Risk Analysis Graph .... 5 
4.2 The Riskit Risk Management Process ................................................................................... 9 

4.2.1 Review and Defme Goals ............................................................................................. 10 
........................................................................................... 4.2.2 Identify and Monitor Risks 12 

................................................................................................................ 4.2.3 Risk Analysis 12 
................................................................. 4.2.4 Plan Risk Control ........................... ....... 15 

4.2.5 Risk Control ................................................................................................................. 18 
..................................................................................................................... 5 . Case Study Design 18 

..................................................................................................... 5.1 Case Study Organization 18 

..................................................................................................... 5.2 The Comparison Method 19 
5.3 Case Study Goals and Metrics ............................................................................................. 20 
5.4 Case Study Arrangements ................................................................................................... 22 
5.5 Validity Threats ................................................................................................................... 23 

6 . Case Study Results .................................................................................................................... 24 
.............. .............................................................................................. 6.1 Goal Review ,... 24 

6.2 Risk Identification ............................................................................................................... 25 
6.3 The Comparison Method ..................................................................................................... 26 
6.4 Riskit Method ...................................................................................................................... 27 

6.4.1 Risk Analysis ............................................................................................................... 27 
6.4.2 Plan Risk Control ......................................................................................................... 30 

7 . Case Study Analysis .................................................................................................................. 34 
7.1 Qualitative Characterization of the Methods ...................................................................... 34 
7.2 Cost and Time ..................................................................................................................... 35 
7.3 Granularity, Coverage and Accuracy .................................................................................. 36 

........................................................................................................................... 7.4 Feasibility 3 8  
7.5 Efficiency ............................................................................................................................ 39 
7.6 Effectiveness ....................................................................................................................... 40 

8 . Conclusions ............................................................................................................................... 40 
............................................................................................................................... 9 . References 4 1  



List of Figures 

Figure 1: Definition of the Riskit analysis graph ...................................................................... 6 
Figure 2: The Riskit risk management cycle ................................................................................. 10 
Figure 3: The Riskit analysis graph example ................................................................................ 13 
Figure 4: Options for risk management decision making ............................................................. 16 
Figure 5: The timeline of case study activities ........................................................................... 23 
Figure 6: Results of the risk element classification ....................................................................... 26 
Figure 7: The result of initial risk analysis using the Riskit analysis graph .................................. 28 
Figure 8: Results of risk analysis step ....................... ... ............................................................ 32 
Figure 9: Final results of the Riskit process - risk controlling actions ......................................... 33 

List of Tables 

................................................................................................ Table 1: Examples of risk elements 6 
Table 2: Riskit analysis graph symbols ........................................................................................... 8 

............................................ Table 3: Overview of outputs and exit criteria of the Riskit process 10 
Table 4: Goal and constraint definition template .......................................................................... 11 
Table 5: Risk factor attribute table ................................................................................................ 13 
Table 6: Risk event attribute table ................................................................................................. 14 
Table 7: Risk outcome attributes .................................................................................................. 14 
Table 8: Risk consequence attributes ............................................................................................ 14 
Table 9: Results of the comparison method's risk management tool .......................................... 20 
Table 10: MCU project goals ........................................................................................................ 25 
Table 1 1 : Risks identified ............................................................................................................. 25 

................................... Table 12: Risk controlling actions produced by the comparison method 27 
........................................................ Table 13: Risk event probability classification and rankings 29 

............... Table 14: Risk scenarios selected for risk control planning and corresponding actions 31 
...................................................................... Table 15: Study effort distribution in person-hours 36 

Table 16: Coverage and granularity metrics for risks analyzed ............................................... 37 
.............................. Table 17: Coverage and granularity metrics for controlling actions analyzed 38 

....................... Table 18: Efficiency metrics used in the case study analysis for the two methods 39 



1. Introduction 

This paper presents the results of an exploratory case study in which a recently developed 
risk management method was used and compared with a method currently used by the case study 
organization. The primary goal of this work was to obtain feedback on an early version of a risk 
management method that had been developed at the University of Maryland. The method, called 
Riskit, is based on a graphical modeling technique that supports qualitative analysis of risks. This 
case study used an early version of the method (version 0.10) and the results of the case study 
were used to improve the method. 

This paper presents the Riskit method version 0.10, the comparison method currently used 
by the case study organization, as well as the results of the case study that was performed. 

2. Acknowledgments 

We would like to thank the Software Engineering Laboratory for the opportunity to cany out 
the case study described in this report. Sharon Waligora (CSC) recommended the study and lead 
to Jean Liu (CSC) who was instrumental in finding a suitable project to work on. Sharon also 
gave us valuable comments on earlier versions of this report. We are also grateful to Scott Green 
(NASA) who supported the experiment from NASA's side and provided feedback on this report. 
Filippo Lanubile helped us to discuss our experimental design and arrangements more 
thoroughly. The biggest contribution, however, to the project was given by Thomas Gwynn of 
the Computer Sciences Corporation. He made much of his time and expertise available for the 
case study and his comments and insights proved to be essential in the execution and analysis of 
the study. 

3. Motivation for Risk Management 

Software development is often plagued with unanticipated problems that cause projects to 
miss deadlines, exceed budgets, or deliver less than satisfactory products. While these problems 
cannot be eliminated totally, some of them can be controlled better by taking appropriate 
preventive action. Risk management is an area of project management that deals with these 
threats before they occur. Organizations may be able to avoid a large number of problems if they 
use systematic risk management procedures and techniques early in projects. 

Several risk management approaches have been introduced during the past decade (Boehm, 
1989; Charette, 1989; Carr et al. 1993; Karolak, 1996) and while some organizations, especially 
in the U.S. defense sector (Boehm, 1989; Edgar, 1989), have defined their own risk management 
approaches, most organizations do not manage their risks explicitly and systematically 
(Ropponen, 1993). Risk management based on intuition and individual initiative alone is seldom 
effective. 

When risk management methods are used, they are often simplistic and users have little 
confidence in the results of their risk analysis results. We believe that the following factors 
contribute to the low usage of risk management methods in practice: 



Risk is an abstract and fuzzy concept and users lack the necessary tools to define risk 
more accurately for deeper analysis. 

Many current risk management methods are based on quantification of risks for analysis 
and users are rarely able to provide accurate enough estimates for probability and loss for 
the analysis results to be reliable. 

Risks have different implications to different stakeholders. Few existing methods provide 
support for dealing with these different stakeholders and their expectations. 

Each risk may affect a project in more than one way. Most existing risk management 
approaches focus on cost, schedule or quality risks, yet their combinations or even other 
characteristics (such as future maintenance effort or company reputation) may be 
important factors that influence the real decision making process. 

Many current risk management methods are perceived as complex or too costly to use. A 
risk management method should be easy to use and require a limited amount of time to 
produce results, otherwise it will not be used. 

Given the increasing interest in risk management in the industry, we believe that for risk 
management methods to be applied more widely, the risk management community will need to 
address the above issues. Furthermore, risk management methods should also provide 
comprehensive support for risk management in projects, they should provide practical guidelines 
for application, they should support communications between participants, and they should be 
credible. The Riskit method was developed to address these issues. 

4. The Riskit Method, version 0.10 

This section presents an overview of the Riskit method as it was defined when the case study 
was carried out (Kontio, 1995). It is important to point out that a new version of the method is 
being released at the time of writing of this report (Kontio, 1996), largely based on the feedback 
obtained during the case study described in this report. 

4.1 Decomposing Risk: The Risk Analysis Graph 

In everyday language risk can mean various things, it can refer to a possibility of loss, it can 
mean events that cause loss, it can refer to objects, characteristics or factors that usually are 
associated with danger or loss (Anonymous, 1992). Clearly, the range of different meanings 
associated to the word risk is too broad for accurate discussion and analysis. 

The Riskit analysis graph is a graphical formalism that is used to define the different aspects 
of risk more formally. The Riskit analysis graph can be seen both as a conceptual template for 
defining risks, as well as a well-defined graphical modeling formalism. In both cases, it can be 
used as a communication tool during risk management. 

When we use the term risk on its own, we are using it in its original, somewhat fuzzy 
meaning: risk is defined as a possibili~ of loss or any characteristic, object or action that is 
associated with that possibility. The two important characteristics of risk are loss and 
uncertainty. Despite the obvious disadvantages of such broad definition, we have noticed that in 
the early stages of risk identification and analysis it is beneficial to have such a "fuzzy" concept 
to facilitate discussion. 



may influence 

7 : :  7 

I 
Risk scenario I 

I I 
L-------,-,-,-,----,---------------J 

Figure 1: Definition of the Riskit analysis graph1 

The Riskit analysis graph is used during the Riskit process to decompose risks into clearly 
defined components, risk elements, as we call them in this document. The components of the 
Riskit analysis graph are presented in Figure 1. Each rectangle in the graph represents a risk 
element and each arrow describes the possible relationship between risk elements. The 
relationship arrow is read in the direction of the arrow, that is, "[a] factor mav influence the 
probability of [a] risk event7'. We have also defined the allowed cardinalities2 of these 
relationships, written in parenthesis on each relationship arrow, read in the direction of the arrow. 
We will define the components of the graph in the following paragraphs. 

Table 1: Examples of risk elements 

Risk element 

Risk factor 

Risk event 

Risk outcome 

Risk Effect 

Note that in the later versions of the method this has been modeled differently, i-e., "event" and "outcome" are 
combined and "consequence" is replaced by a "reaction". 
* In this context cardinality refers to the number of allowed connections between risk elements. E-g., in Figure 1 the 
one-to-many relationship between "risk outcome" and "risk consequence" indicates that each risk outcome can have 
more than one risk consequence but each risk consequence can only have one risk outcome associated with it. 

Note that this is different from ''a change in requirements", which would be a risk event. When defined as a factor, 
"unstable requirements" refers to the characteristics of the situation. 

Software Engineering Examples 
inexperience of personnel 
use of new methods 
use of new tools 
unstable requirements3 
a system crashes 
a key person quits 
extra time spent on learning a method 
A major requirements change 
the system out of service for a time, some 
data lost 
knowledge is lost, effort shortage 
less time spent on actual development 
system operational after delay, back up data 
restored 
recruiting process initiated, staff reassigned 
added cost %OK 
two calendar-month delay 
some functionality lost 
reputation as a reliable vendor damaged 

General Examples 
a high cholesterol diet 
living near a fault line of earth's plates (e.g., 
San Francisco) 
wet (slippery) driving conditions 
a doctor's diagnosis of a patients heart problem 
an earthquake 
a car accident 

awareness of the heart problem 
buildings collapse, injuries to humans 
car demolished, passenger injuries 

treatment of heart problem 
reconstruction of roads and building 
treatment of injuries, purchase new car 
hospital stay, cost of medical care 
cost and inconvenience of reconstruction, loss 
of human lie, medical expenses 
medical costs, permanent injury effects, raised 
insurance premiums 



A risk factor is a characteristic that affects the probability of a negative event (that is, risk 
event) occurring. A risk factor describes the characteristics of an environment, it is not an event 
itself. Examples of risk factors are listed in Table 1. Risk factors that are documented typically 
increase the probability of risk events occurring, but they may also reduce them (e.g., "the 
development team recently developed a similar application"). 

The purpose of risk factors is not to document all possible characteristics that may influence 
a risk event as there may be an infinite number of such factors. Instead, a risk factor is relative to 
the general assumptions made for the situation (e-g., project), that is, it documents aspects that 
are somehow different from the "normal" situation. As the arrow in Figure 1 shows, each risk 
factor can influence one or more risk events. 

A risk event represents the occurrence of a negative incident - or a discovery of information 
that reveals negative circumstances. Risk event is a stochastic phenomenon, that is, it is not 
known for certain whether it will happen or not. This uncertainty can be characterized by a 
probability estimate associated to the risk event. Examples of risk events are listed in Table 1. 

As the arrow in Figure 1 shows, each risk event can be influenced by many risk factors. 
However, a risk event does not have to have a risk factor associated with it. Each risk event 
results in one or more risk outcomes. In case there are more than one risk outcome associated 
with the risk event, the different outcomes represent stochastic relationships. 

The risk outcome describes the state of the project domain4 after the risk event has occurred 
and before any corrective reaction is taken. Risk outcome essentially describes the immediate 
situation after the risk event. Examples of risk outcomes are listed in Table 1. Risk outcomes can 
influence the probabilities of other risk events. If the influence is stochastic, they are have a 
similar relationship as a risk factor has to a risk event. In case of a deterministic relationship (that 
is, a risk outcome directly results in another risk event) the outcome of the resulting deterministic 
risk event should be included in the original risk outcome. 

If a risk event occurs, the resulting outcome is rarely accepted as such. Instead, organizations 
take some corrective reaction5 that reduces the negative impact of the risk event. The risk 
consequences represent the state of project domain after corrective reaction has been taken. 
Examples of risk consequences are listed in Table 1. These corrective reactions are an important 
part of understanding what is the overall impact of the risk event to the project domain. Each risk 
outcome is associated with one or more risk consequences, as shown by the one-to-many 
relationship arrow the corresponding arrow in Figure 1. Risk consequences may also influence 
the probabilities of other risk events, as indicated by the arrow in Figure 1. 

The risk eflect represents the impact of risk scenario to project goals after risk has occurred 
and corrective reactions have been carried out. The effects are stated for all goals that are 
affected. For instance, it could be that a risk event Was a loss of a key person in a project. 
Corrective reaction includes search for a new person and training of that person. The final effect 
on project goals could be a delay (search and training took time) and added cost (search and 
training costs and reduced productivity). Examples of different effects on goals are listed in 

- -- - 

PTOject domain refers to all relevant characteristics of the project and organization. 
Note that we use the term "corrective reaction" to action that is taken after the risk event occurs, as opposed to 

controlling actions that are taken before risk events occur. 



Table 1. Each risk consequence can have one or more risk effects associated with it (see 
Figure 1). 

the goal was defined. 
The effect is entered as a positive or negative value on each goal and the unit of measure must be 
included. A zero ('O") is used to indicate that there is no impact for a given goal. Thus, the format is: 
<sign> <effecb <unb 
Below are some examples: 

Sched: + 2 mo two month increase in project duration 
Cost -$I00 K 

Table 2: Riskit analysis graph symbols 

While the effect on goals represents the impact the risk had on each goal, the concept of 
utility loss captures how severe the loss has been to different stakeholders. The concept of utility 



loss is based on the utility theory6, a concept used in economics and decision theory (Von 
Neumann and Morgenstern, 1944; French, 1989). Increased costs that are within the limits of 
project contract may not have any meaningful utility loss associated with the project manager. 
However, the customer paying the bill will consider this loss higher. Also, analyzing utility loss 
separately allows more appropriate consideration for non-linear and discontinuous utility 
functions7. 

The utility loss is estimated for each relevant stakeholder. Thus, each risk effect has at least 
one utility loss estimate associated with it. 

We use the term risk scenario for any unique event-outcome-consequence combination. Risk 
scenario is marked in Figure 1 with a named rectangle. Each such scenario can be associated with 
risk effect and, correspondingly, a set of utility losses. Examples of risk elements can be seen in 
Figure 3. 

The risk elements can be visually represented in the Riskit analysis graph. The Riskit 
analysis graph is based on a graphical modeling formalism developed to support the modeling of 
risk elements and risk scenarios. The definition of Riskit analysis graph symbols is given in 
Table 2. 

4.2 The Riskit Risk Management Process 

This section presents an overview of the Riskit method as it was used during the case study 
(i-e., version 0.10 of the method). More details are available in a separate report (Kontio, 1995). 
The updated method has been documented separately (Kontio, 1996). 

The risk management cycle in a project can be viewed as consisting of some basic activities: 
review and definition of goals; risk identification and monitoring; risk analysis; risk control 
planning; and controIling of risks. The flow of information between these activities is represented 
in Figure 2. The activities in Figure 2 are represented by circles (process symbols in the dataflow 
diagram notation used) and the arrows represent information flows between entities. Each of the 
activities can be instantiated several times during the project duration and they may be enacted 
concurrently. However, the most critical instances of the risk management cycle are the ones 
enacted in the beginning of the project. 

The risk management approach used in the Riskit method aims at proactive risk 
management, it attempts to identify actions that can be taken before risks occur, including 
making contingency plans (that is, the action of planning for reactions should the risks occur). 
Strictly speaking, once a risk occurs, it is no longer a risk but a problem that needs attention. 

The utility theory states that people make relative comparisons between alternatives based on the utility (or utility 
loss) that they cause. The utility is the level of satisfaction, pleasure or joy that a person feels or expects. 
' There are strong reasons to assume that utility functions are both non-linear (Friedman and Savage, 1948; Boehm, 
1981) and there are points of discontinuity in it. 



potential risk items 

goals, expectations, 
constraints. monitor 

I 
expected results 

\ 
prioritized, 

quantified risks 

Plan risk Q (J 
selected actions 

Figure 2: The Riskit risk management cycle 

Table 3: Overview of outputs and exit criteria of the Riskit process 

- 
Riskit step 

Review and definition 
of goals 

Risk identification and 
monitoring 

Risk analysis 

Risk control planning 

Controlling of risks 

4.2.1 Review and Defme Goals 

Risks do not exist without a reference to goals, expectations or constraints that are associated 
with a project. If goals are not recognized, the risks that may affect them may be ignored totally 
or, in the best case, they cannot be analyzed in any detail as the reference level is not defined. 
Some of a project's goals typically have been explicitly defined but many relevant aspects that 
influence management decisions may be implicit. Therefore, it is necessary to begin the risk 
management process of a project by a carem review, definition and refinement of goals and 
expectations that are associated with a project. 

Description. 
Review the stated goals for the project, refine them and 
define implicit goals and constraints explicitly. 
Recognize all relevant stakeholders and their associations 
with the goals and constraints. 
Identify all potential threats to the project using multiple 
a,rw,,. 
Monitor the risk situation. 

Classify identified risks into risk factors and risk events. 
Complete risk scenarios for all risk events. 
Estimate risk effects for all risk scenarios 
Estimate probabilities and utilii losses of risk scenarios. 
Select the most important risks for risk control planning. 
propose risk controlling actions for most important risks. 
Select the risk controlling actions to be implemented. 
Implement the risk controlling actions. 

Output 
Explicit goal and constraint 
definition 

An unanalyzed list of potential 
risks 

Completed risk analysis graphs 
for all identified risks. 

Selected risk controlling actions 

Reduced risks. 
* 



A goal is a general statement of purpose, direction or objective. We have used the term goal 
in a broad meaning in this text. When defined more accurately, there are three types of possible 
goals: 

Objective: A goal that has an achievable, well-defined target level of achievement, e-g., 
"drive from A to B in one hour". 

Driver: A goal that indicates a "direction" of intentions without clearly defined criteria 
for determining when the "goal" has been reached, e.g., "drive from A to B as 
fast as you can". 

Constraint: A limitation or rule that must be respected, e.g., "... while obeying al l  traffic 
laws". 

The Rislcit process is initiated by a review of project's goals, which often leads to definition 
of some additional, previously implicit objectives, drivers and constraints. The purpose of this 
step is to produce formal definitions of these issues for the stakeholders that the project manager 
must satisfy. The goals and constraints are expressed using the template presented in Table 4. 

Table 4: Goal and constraint defmition template 

Goal attribute 

Name 

Type of goal 

Description 

Stakeholder(s) 

Measurement unit 

Target value 

Direction of increasing utility 

Required value range 

As Table 4 indicates, goals are linked to different stakeholders that are affiliated with a 
project. This information will later be used in risk analysis to compare and rank risks. The 
stakeholders also determine the scope of a project's risk management mandate: which 
stakeholders are to be defended by the project's risk management activities and which are beyond 
the risk management mandate of the project. This needs to be explicitly defined for the project, 
possibly including a prioritization of stakeholder interests. 

Description 
Name of the goal. 

Objective /driver / constraint 

Description of the goal. 

Names of the stakeholders for the goal. 

Measurement unit used for the goal (e.g., $, date, or person-month). 

Target value for the goal. Relevant for objectives and possibly for 
constraints. 
Definition of whether an increase or decrease in goal value increases the 
utility near the target. 1-e., whether an increase in goal value is good or bad. 
Stated as "growing" or *decreasingw. 
Minimum or maximum value required for the goal. 

The goals and constraints are often defined in the project plan or the project contract. 
However, all the goals and, especially, constraints may not be in these documents. For instance, 
efficient resource utilization may be an important consideration for the contractor but this 
typically is not considered a project goal. However, if these goals are real for some of the 
stakeholders in the project, they must be included in the risk management process. Goals and 
constraints can typically be found in the following areas: 



schedule 

0 resources used, most often personnel time 

cost of development 
product requirements, which can include both functional and other quality characteristics. 

resource utilization 
technical constraints, such as hardware platforms, operating systems and use of particular 
software tools 

The goal review can be considered completed when project manager and stakeholders have 
agreed on the goals and they are formally defined. However, the goal definition process may 
often need to be re-initiated as new goals are identified during the risk analysis process. 

4.2.2 Identify and Monitor Risks 

The identify and monitor activity is enacted more thoroughly in the beginning of the project 
and repeated frequently later in the project as the risk situation is monitored. 

The goal of the initial identify and monitor activity is to identify all possible risks that the 
project may face. It produces a gross list of potential risk factors and risk events for the project, 
possibly some risk outcomes as well. There are various techniques that can be used to facilitate 
effective risk element identification, such as brainstorming, checklists (Boehm, 1989; Carr et al. 
1993; Karolak, 1996), critical path analysis, and review of goals. 

The later instances of the identify and monitor process rely on the results of the initial 
identification process. The goal of these later process instances is to identify any changes in the 
risk situation. Changes can include identification of new risks, changes in the risk factor or event 
information or the consequences of the risk events. The Riskit analysis graph is used as a 
supporting tool to discuss possible changes. 

The risk identification and monitoring activity can be considered completed when the 
participants have agreed that the produced risk list is comprehensive enough for the project's 
purposes. The output of the activity is a "raw" list of risks, i.e., each risk has been briefly 
described. 

4.2.3 Risk Analysis 

Risk analysis is a process where the information from the identify and monitor process is 
used and risks are analyzed in detail. The purpose of this activity is to provide detailed 
descriptions of project's risks so that highest risk elements and appropriate risk controlling action 
can be planned and implemented in the next step of the Riskit cycle. 

The Riskit analysis process consists of the following steps: 

Classify identified risks into risk factors and risk events. 

Complete risk scenarios for all risk events. 

Estimate risk effects for all risk scenarios. 

Estimate probabilities and utility losses of risk scenarios. 



The first step, classifying risks into risk factors and risk events, is based on the risk list 
produced during the identification and monitoring step. The categorization is based on the 
definitions given in section 4.1 and results are documented in the Riskit analysis graph (Table 2). 
An example of a Riskit analysis graph is given in Figure 3. 

r consequence 
no action 

I Stand: I 

Enen 

Efton: 
Sched: 

Outcome con~quence 
some project work overtime 

knowledge lost Desc: 
Desc: 

Event 

Figure 3: The Riskit analysis graph example 

I I Outcome Func: 
Pual: 

HW access time spent Prod: 
bottlenecks ' waiting Stand: 

Prob: Dasc: 

I Effect 1 
Effon: 
Sched: * Func: 
Pual: 
Prod: 

The classification of risks into factors and events is supported by two templates that augment 
and formalize the graphical presentation of the Riskit analysis graph. Table 5 and Table 6 present 
these two templates. 

Lose personnel 
Plob: 

Table 5: Risk factor attribute table 

Risk factor attributes 

Name 

Description 

NormaVassumed reference 
level 

Project's risk factor state 

Enen 

Effon: 
Sched: 
Func: 
Pual: 
Prod: 
Stand: 

Enen 

Effon: 
Sched: 
Func: 
Pual: 
Prod: 
Stand: 

Effecl 

Effon: 
Sched: 

Outcoma Consmqumnce 

Fanor required effort assign new staff 
GUI-tool unavailable 

familiarity Dsx: 
Desc: 

Description 
Name of the risk factor to be used as an identifier. 

Description of the risk factor. 

Description of the Ihormaln level for the risk factor. 

Description of the risk factors state for the project 

Pual: i prod: IUnc: I 

' 

Fanor 

Event 
Unrealistic 

effort estimation 
Pmb: Con~qumnce 

GUI experience add resources: 
. outwme 

more work than 
planned Event 

Desc: 
Hasty decisions 
to OK new req. 
Pmb: 



Table 6: Risk event attribute table 

As factors and events are being reviewed and positioned on the Riskit analysis graph, the 
relationships between the two are documented by "influence" arrows Table 2. 

The classification process also reviews the listed risks and, when necessary, combines, 
decomposes or even deletes risks as they are discussed. It is also likely that new risk factors or 
events may be recognized during the classification process. 

The next step in the analysis is to define risk scenarios for all risk events, i.e., define risk 
outcomes and risk consequences in a scenario. Each risk event has at least one risk outcome, in 
which case there is a deterministic "result in" relationship between the event and the outcome. 
Sometimes the outcome may be probabilistic and more than one possible outcome needs to be 
defined. In such a case, a stochastic connector is used to indicate "may result in" relationship (see 
Table 2). Similarly, there is at least one risk consequence for each risk outcome (marked by a 
deterministic relationship) but sometimes alternative lines of action need to be considered and 
they are marked with a stochastic relationship connector. Templates for risk outcome and risk 
consequences are presented in Table 7 and Table 8, respectively. 

Table 7: Risk outcome attributes 

Risk outcome attributes 

Name 

Description 

Certainty of the outcome 

Description 
Name of the risk outcome to be used as an identifier. 

Description of the outcome after the risk occurrence. Describes 
the project state after the event before any other action is taken 
and this does not need to be directlv linked to project goals. 
Assessment of the probability of the outcome if the risk event 
occurs (when not deterministic). 

Table 8: Risk consequence attributes 

Risk consequence attributes 

Name 

Description 

Description 
Name of the risk consequence to be used as an identifier. 

Description of the risk consequence, i-e., the results of possible 
set of actions that may be required to correct the situation. Note 
that some of the consequences should be mutually exclusive. 



After the risk scenarios have been completed, the risk effects on goals are estimated. 
Depending on the estimation methods and tools available, the effects can be stated qualitatively 
(e.g., as textual descriptions or classifications h i g h ~ m e d i ~ o w )  or quantitatively. Ranges can be 
expressed as well, if participants consider this necessary. 

Not all goals are affected by all risk scenarios and sometimes the effects may be positive for 
some goals (e.g., loss of personnel may reduce costs while delaying schedule and limiting 
functionality). Effects on goals are documented in the Riskit analysis graph with the dedicated 
symbol (see Table 2). 

The final step in risk analysis is to rank or estimate the probabilities and utility losses for 
each risk scenario. The Riskit method itself does not dictate how accurate these estimates are. 
They may be estimates based on historical data and expressed in ratio scale metrics (e.g., 
probabilities of events) or they may be ordinal scale rankings of items (Fenton, 1991). As a 
general rule we suggest that estimates are done using the type metrics that can be supported by 
the available data or experience. If relevant, reliable historical data exist on probabilities of the 

. events, probabilities may be stated in percentage points. If reliable methods are used to elicit 
utility loss estimates (e-g., (Saaty, 1990)), they may be expressed in ratio scale preference values. 
However, it may often be more practical to use ordinal scale rankings or classification categories 
for this purpose. The goal of risk management is primarily to identi& the most important risks to 
be controlled. This identification does not require precise quantification of risks. 

The utility losses should be estimated separately for all different stakeholders that are to be 
defended against risk under the risk management mandate of the project. 

The probabilities and utility losses are marked in the appropriate risk element symbols in the 
Riskit analysis graph (see Table 2). 

4.2.4 Plan Risk Control 

Once the risks have been analyzed and ranked, possible controlling action is planned. The 
goal of this activity is to determine which risk control activities are necessary to take. This 
involves three main steps: 

Select the high risk scenarios to be considered for risk control. 

Define possible preventive risk management action for each high risk scenario. 

Select cost-effective actions for all high risk scenarios. 

The Riskit method does not advocate any strict rule in determining what are the highest risk 
scenarios to be controlled. Traditionally, risk exposure (i.e., probability * loss) has been used as a 
metric for risk. If scenario probabilities and utility losses were quantitatively estimated, risk 
exposures of different scenarios can be used to select highest risk scenarios. 

If either probability or loss has been estimated using an ordinal scale, high risk scenarios 
must be selected using a more qualitative approach, i.e., ranking scenarios into pareto optimal8 
sets, considering scenarios that are in the highest sets, and continuing selection into lower sets 
until risk scenarios become so insignificant that they do not require any further consideration. 

A choice a is considered pareto optimal over b when V i & >= bi and 3 i > bi (French, 1986; Keeney and Raiffa, 
1976). 



Once the high risk scenarios have been selected, possible controlling actions are proposed 
for each of them. Identifymg possible controlling actions is a creative process and can be c&ed 
out in a free format manner. w e  have also used a simple taxonomy ofrisk controlling actions as 
a checklist to verify that no obvious categories of actions are ignored. This taxonomy is presented 
in Figure 4. 

B y  information 

NO risk reducing 
action 

Wait and see 1 
/ I Resource 

ntingency plans 
Proactive risk 
management 

tactics 

reservation 

Over-engineering 
Acquired recovery 

options 
Over-staffing 

Create slack 

Risk transfer Share risk 1 

Reduce 
\ ,  , A probability of I - 

Reduce risk consequences 

, 
Reduce event influence risk 

probabilii factors 

Figure 4: Options for risk management decision making 

The first set of options in Figure 4, no risk reducing action means that an organization does 
not take any immediate action to prepare for risk or to reduce risk. Buying informution is an 
option that is used when the management does not have enough information to decide what to do 
about a risk and there is a possibility to obtain more information. In principle, it is only a 
temporary option that results in a new decision as the information becomes available. After 
additional information becomes available, some of the other options are selected. Buying 
infomation can take many forms. Sometimes information can be literally bought from outside 
sources, such as market research organizations or by hiring a consultant that knows about the 
area that risk is relevant to. However, more typical way of buying information is to develop 
prototypes, run simulations, initiate feasibility studies or conduct, e.g., performance tests. 



The wait and see option can be used in two situations. First, it is a good option for all risks 
that are considered to be small enough not to require any other action. Second, it can also be 
considered when there are no inexpensive ways of obtaining additional information and a major 
part of the risk is in the uncertainty of the magnitude of the risk itself. In other words, the ranges 
of estimates of risk are wide and management has no special reason to believe that higher risk 
estimates are probable. This option, in fact, would be the same as the reactive strategy we 
discussed earlier. Clearly, using this option to cover high uncertainty risks is, to say it simply, 
risky. A conservative approach would be to use some of the other options for high uncertainty 
risks. 

Contingency planning means that recovery plans are made for a risk. These plans should 
describe the actions that will be taken if the risk occurs. Note that this option does not imply that 
any other preparations are made. Plans are written and approved and they are put on the side and 
used only if risks occur. Contingency plans do not reduce risk, or loss, to be exact. They help 
organization to make sure that there is a way to recover from the risk. Contingency plans, in 
effect, are a way to detail the size of loss. 

The options under the term Reduce loss build upon recovery plans and include some 
additional actions that reduce the loss that would result if the risk were to occur. The Acquired 
recovery options refers to a set of actions that buy options that can be used to limit the loss. They 
typically have a cost associated with them. The Resource reservation option refers to a situation 
where some resources are reserved for limiting the impact of risk if the risk occurs. Resources 
can be human, computer or fmancial. Over-engineering mean implementing some features in the 
product or design so that there will be alternative ways of action if the risk occurs. For instance, 
Over-engineering could mean that extra effort is spent during design or coding to make sure that 
alternative system architecture or compilers can be used. Over-stafing may be introduced to 
make sure that more than one person knows enough about each area in the project. All these 
actions buy different options that can be started if risks occur. 

Risk transfer can include three different options. The most straight-forward way is to create 
slack in the aspects of project are threatened, i-e., relax objectives of constraints. In other words, 
lengthen the schedules, make more memory available, or increase budget. Due to competitive 
situations this may be often -cult. However, if risks are analyzed and communicated well to 
the management and customers of the project, this option is likely to work better than without 
risk management. 

It is also possible to share risks. Sharing can happen, e-g., with customers or subcontractors 
of the project. Again, a critical issue is to analyze the risks well and communicate their 
significance to all stakeholders. This typically requires, sometimes lengthy, contractual 
negotiations. 

It is also possible to obtain a management approval for some risks. In such a case the 
management accepts the risk and takes the responsibility for it. Project is still responsible for 
monitoring the risk but additional actions are not taken. This option may be used when a project 
is very important for the organizations and there are no available resources for reducing risk. 

Reducing the probability of risk can take many forms and is dependent on the type of risk 
that is to be managed. We have divided this into two categories, reduce event probability and 
reduce probability of negative consequences if the risk occurs. For instance, personnel 



unavailability probabilities can be reduced, to some degree, by financial incentives (project 
reward on completion) or by addressing the causes that may result in personnel unavailability. 
Good engineering or design practices can diminish the probability of performance or memory 
problems. 

Once the potential risk controlling actions have been identified, their costs and estimated 
impacts need to be estimated. The selection of appropriate actions is based on the available 
resources for risk control and risk reduction effectiveness of the proposed actions. In principle, 
actions with highest risk reduction leverageg (Boehm, 1989) while monitoring that the risk 
control budget is not exceeded (e.g., some risk controlling action may have a very high risk 
reduction leverage but the overall cost may be too high for the available budget). 

The controlling actions can be presented in the Riskit analysis graph to document their 
intended and estimated impact. This is done by a specific symbol, an oval, that has arrows 
pointing to the entities that are targeted (see Table 2). This will highlight how each risk reducing 
action is intended to influence the risks. 

4.25 Risk Control 

The control process implements the risk controlling actions. From the perspective of the 
Riskit method this is a project management activity that is not explicitly supported by the Riskit 
method. However, as risk controlling actions are implemented, they are marked with a 
checkmark in the Riskit analysis graph. As new information about risks becomes available, the 
identify and monitor activity may be initiated. 

5. Case Study Design 

5.1 Case Study Organization 

This case study was carried out at the Software Engineering Laboratory (NASA, 1995). The 
SEL is a partnership orgauization that was established in 1976 at NASA Goddard Space Flight 
Center (GSFC) by its Flight Dynamics Division W D ) ,  Computer Sciences Corporation (CSC) 
and the department of Computer Science at University of Maryland. The SEL was established for 
understanding and improving the software products and development process in the FDD. The 
SEL has a consistent and long track record of systematic process improvement and in 1994 it was 
awarded the first lEEE Computer Society Software Process Achievement Award to "recognize 
its outstanding achievements in software process improvement" (McGarry et al. 1994). 

The SEL has also been a working example of the Experience Factory and Quality 
Improvement Paradigm in practice (Basili et al. 1992). The software product and process 
improvement in the SEL have been improved over, the years based on systematic data collection, 
analysis and organizational learning (Basili and Green, 1994). 

The SEL supports the s o h a r e  development within the FDD. Software developed by the 
FDD is mainly scientific applications that process data received from earth orbiting satellites in 
the areas of orbit, attitude and mission analysis. The total FDD software development staff, 

Risk Exposure,,, - Risk Exposure,,, 
Risk reduction leverage is defines as 

Risk Reduction Cost 



including contractor support, is approximately 250-275, and about half of this is allocated to 
software maintenance. Typical project involves between 5 to 25 staff members and results in 
system size of 100-300 KSLOC. The SEL itself has a staff of 10-15 analysts (McGarry et al. 
1 994). 

The project selected for study was a small utility that was part of the Flight Dynamics 
Support System (FDSS) developed by the FDD in support of the Tropical Rainfall Measuring 
Mission (TRMM). The utility, known as the Maneuver Command Utility (MCU), produces 
spacecraft maneuver cornmind sheet for use by mission operators. The project had been 
estimated to be approximately 5 person months in effort and was scheduled to take place between 
October 1995 and January 1996, including independent system testing. Two people had been 
assigned to the project along with the project manager. 

The project manager that participated in our case study had been using the comparison risk 
management method for about three years and had used it in close to ten projects. 

. 5.2 The Comparison Method 

The project organization in our case study used a systematic risk management approach that 
was supported by a tool. Based on our assessment, the case study organization's risk 
management was more mature than what the industry average seems to be (Ropponen, 1993). 

The case study organization has provided most managers with training on risk management, 
primarily focusing on the risk management tool that is used. Risk management is a required 
activity in all projects and risks are discussed with the management and customer frequently. 
Risk estimates are normally updated monthly. 

The risk management approach is supported by a spreadsheet-based tool that guides risk 
analysis and helps in quantifying and ranking the risks. This internally developed tool has been in 
use since 1992 and it has been updated and improved during its usage. This risk management tool 
seems to be the driver of the risk management process in projects. 

The comparison risk management tool collects the following information about each risk: 

Risk title, i.e., the name of the risk 

Risk description, i.e., a textual description of the risk 
Risk source, i.e., list of causes or factors that contribute to the risk 

Risk impact, i.e., a description of the impact the risk would have on the project 

Importance to the customer, i.e., ranking of risk's impact on the customer (expressed as 
Hi / Med / Lo) 

Current status, i.e., what has been done to the risk item (open / closed / in mitigation) 

Probability of occurrence, i-e., estimated probability of risk occurring, expressed as a 
probabiity percentage 

The tool also collects information about the impact of risk if no mitigation action is taken, 
estimating the impact on quality (using a scale of Hi / Med / Lo / None), schedule impact (in 
weeks) and cost impact (in $K). The weight of these impacts can be set for each risk. 



Once each risk has been identified, information about risk mitigation plans is entered into 
the tool: 

a description of the risk mitigation approach 

the trigger that is used to initiate the risk mitigation 
quality impact of the risk mitigation 

schedule impact of risk mitigation, i.e., the time delay caused by risk mitigation, 
regardless of whether .mitigation is successful or not 

cost impact of risk mitigation, i.e., the additional cost caused of risk mitigation action is 
taken, regardless of whether mitigation is successful or not 

probability of risk mitigation success 

The above information is used to calculate the risk analysis results using three scenarios 
(i) risk does not occur and no mitigation is done, (ii) risk occurs and mitigation is done but fails, 
and (iii) risk occurs, mitigation is done and it succeeds. These scenarios and the attributes used 
are presented in Table 9. 

I I I I Probability I 80% I 2% I 18% I 
I Risk does not occur 

no mitigation is done 
risk occurs 

mitigation is done but fails I mitigation is succesful 

I I I 

I Cost I $16 K I $26 K I $18 K I 
* the values do not necessarily represent actual data 

Quality factor 

Schedule 

Table 9: Results of the comparison method's risk management tool 

The decision of the appropriate risk mitigation action is left to decision makers evaluating 
the risk analysis data. 

None 

10 weeks 

We interviewed the participating project manager after he had completed the risk analysis 
using the comparison method. According to him, the main benefit of the method is that it forces 
projects to think about risks frequently, every month. The approach also gives a quantitative 
indication of whether risk mitigation should be done. The results are often used in the decision 
making with management. 

When inquired about the usage experiences and possible problems with the comparison risk 
management approach, the project manager pointed out that probability values are difficult to 
obtain and there is little support for estimating them, yet they play a critical role in the risk 
analysis process. "The risks associated with the estimation errors and assumptions used when 
making these estimates may contain some risks", he pointed out. 

Med 

17 weeks 

5.3 Case Study Goals and Mefrics 

The objectives of the case study were to assess the feasibility of the Riskit method in an 
industrial project, investigate the cost and time effectiveness of the method, evaluate the 

None 

12 weeks 



credibility of the method, and compare the Riskit method with the method currently used by the 
project. Furthermore, the case study was used to provide practical feedback on the use of the 
method. 

Before our case study we initially formulated our evaluation goals and case study metrics in 
detail using the GQM method (Basili et al. 1994; Basili, 1992). These GQM-based metrics are 
presented in appendix A. Even though we used most of these metrics in our questionnaire and 
interviews, they did not result in useful data for our analysis. As we anticipated this problem, we 
documented the case study in detail so that different types of analyses could be done after the 
case study, i.e., exploring data or issues that were not necessarily identified in advance. This was 
done by taking detailed notes during the interviews and observation sessions, storing all the 
artifacts produced during the case study and writing synthesis reports shortly after the sessions. 

Our first evaluation goal, expressed using the format GQM method (Basili et al. 1994; 
Basili, 1992) was as follows: 

Analyze the Riskit method 
in order to characterize it 

with respect to its feasibility 
from perspective of project manager 

in the context of an industrial project. 

We considered the Riskit method feasible, which was our hypothesis, if it meets the 
following criteria: 

The method produces intended results, i.e., is able to list and rank potential risks and is 
able to produce a list of controlling action. 

The method can be applied within reasonable time and effort. We are using the 
recommendations from Ropponen's survey as a guideline: effort allocation between two 
and eight percent of the project total is considered reasonable (Ropponen, 1993). 

The users of the method give a positive opinion of its feasibility. 

In order to evaluate this goal and hypothesis we collected all the output the method 
produced, including intermediate ones, collected effort data, and interviewed the method user 
after the use of the method. 

Our second goal was to investigate the cost and time effectiveness of the method. This was 
also described as a GQM goal: 

Analyze the Riskit method 
in order to characterize it 

with respect to its cost-effectiveness 
from perspective of project manager 

in the context of an industrial project. 

This goal attempted to measure the effort required to use the method, relative to various 
aspects of the method, such as number of risks identified and number of risk controlling actions 
proposed. 

Our third goal was to evaluate the credibility of the method. This was also described as a 
GQM goal: 



Analyze the Riskit method 
in order to characterize it 

with respect to its credibility 
from perspective of project manager 

in the context of an industrial project. 

We define a risk management method's credibility as the level of confidence its users have 
in the results, i.e., the degree to which the output of the method is believable (Gan-abrants et al. 
1990; Kontio, 1994). This was assessed through asking about the level of confidence directly 
from the method user as well as monitoring whether the proposed risk controlling actions were 
actually implemented. 

Our fourth goal was to compare the Riskit method with the method currently used by the 
project. This was defined as the following GQM goal: 

Analyze the Riskit method and the comparison method 
in order to compare them 

with respect to effort, granularity, coverage, accuracy and effectiveness 
from perspective of project manager 

in the context of an industrial project. 

As we intended to discover qualitative differences between the methods we did not specify 
specific metrics for this goal in advance. Instead, we planned to use the data collected to identify 
possible differences and compare the methods qualitatively. 

5.4 Case Study Arrangements 

We arranged our case study so that we were able to compare the two risk management 
methods used in the project, the Riskit method and the comparison method. As Figure 5 shows, 
the case study started by a joint session where project goals were reviewed and risks identified. 
Using the list of risks produced the project manager used the comparison method to carry out risk 
analysis the way he normally does it. After this the risk analysis using the Riskit method was 
carried out. After both analyses the project manager decided on which risk controlling actions he 
should actually take. 

The project manager performed the first risk analysis on his own and documented the results 
of his analysis, including the risk controlling action he was planning to take. 

The Riskit method was applied in a session where the method expert (i-e., the method 
author, J. Kontio) facilitated the session. This was done for two reasons. First, the project 
manager's time was not available for training him well enough in the method so that he could 
have reliably applied it on his own. Second, by facilitating the Riskit risk analysis we hoped that 
we would be able to avoid the effect caused by having applied the comparison method first. 

Figure 5 also shows where and how we collected the case study data. A dashed line to the 
vertical line from a case study activity indicates whether we used observation or interviews and 
questionnaire to obtain relevant data. A connector appearing after an activity box indicates that 
the information was obtained after the activity was completed. 



I lnterviewlquestionaire 0 

The 
comparison 

method 
activities 
---.----.--.-. 

Joint 
activities 

# I I + Observation q I ? ? I I 
I I I I 

I I Gompar~son 
I 

I I I 
I I I I 

I 
method risk 4 I I analysis I I 

I 

I I (Oct 5-61 I I 
I 

1 I 1 
I 

recommended I 
I action 

I 
I 

RZ.~  I 
review/ identification list I 

risks I risk controlling 
(Sept 28) I action 

--....---...*. ---....--.--------....-..-...---.. 
recommended 

Riskit action 

method Riskit method 
risk analysis 

activities 

Figure 5: The timeline of case study activities 

5.5 Validity Threats 
In this section we discuss the limitations that our case study design had with respect to 

validity of the results. 

As we had only a single project in the study we were forced to apply the methods in 
sequence and this may have lead to some maturation effects (Campbell and Stanley, 1963; Judd 
et al. 1991), i.e., the accumulated time spent on risk management may have increased 
participant's awareness and knowledge about risks. We tried to minimize this effect by taking 
two specific actions. First, even though the dedicated risk identification session is a 
characteristic of the Riskit method and not of the comparison method, we decided to conduct a 
joint risk identification session for both methods. We reasoned that risk identification would be 
especially vulnerable to maturation effect and could seriously bias the results. As risk 
identification is not a main aspect of the Riskit method we did not consider this a serious 
compromise in the method comparison. Second, we avoided analyzing risks in the identification 
session. We simply listed candidate risks and tried not to analyze or discuss them in any detail. 

The sequential application of methods may also have caused a multiple treatment effect: the 
latter, Riskit method application may have been influenced by earlier analysis done using the 
comparison method. We tried to control this threat by carrying out the latter risk analysis as 
independently from the comparison method analysis as possible: we asked the project manager 
not to think about the results of the comparison method, we used the original list of risks as a 
starting point, and we facilitated the Riskit risk analysis session according to the Riskit method. 
Two observations lead us to believe that multiple treatment effect did not occur or was minimal: 
the risks selected for aualysis were different and the method user clearly indicated that the 
analysis processes were so different that he himself did not observe any effect, the Riskit method 
seemed to have immersed the user so that he "forgot" his previous analysis. 



The interviews and associated questions may have posed some construct validity and 
instrumentation threats in the study. As the Riskit method sessions were observed and the session 
notes reviewed shortly after each session, the Riskit observations were not affected by this threat. 
The interview sessions potentially may have been affected by this threat. As we discussed in 
section 5.3, the main research constructs were explicitly defined we have reported the resulting 
data in detail later in this report. It should be noted that many of the original metrics and 
questions turned out not to be applicable in the study or produced no responses from the method 
user. In retrospect, these questions and metrics seemed to have been the result of our attempts to 
"over-measure" the study. 

The fact that we facilitated the Riskit risk analysis session may have caused a different kind 
of bias in the results, i.e., a construct validity threat similar to the Hawthorne effect (Cook and 
Campbell, 1979). It is plausible that the facilitator may have contributed to the analysis or that 
the mere presence of a facilitator and a scribe may have improved the performance of the project 
manager. We tried to minimize these effects by maintaining a strictly facilitating role in the 
analysis (we refrained from actually making any judgments or conclusions) and by strictly 
following the Riskit method. However, we cannot rule out the possibility that either our 
participation or unconscious contributions might have affected the analysis. 

As the method developer was involved in the execution of the study and in the analysis of 
the results the experimenter expectancies may have influenced the results. We tried to control 
this threat by involving an experimenter whose sole research interest was in the experimental 
design and by documenting the case study results and outputs in detail in this report. This way 
outside, objective readers can evaluate possible bias independently. 

Overall, we believe that our study design and arrangements prevented any significant validity 
threats to our results, The two most important validity threats relate to constructs used: the Riskit 
method changed two important parameters in risk analysis: the amount of effort spent and 
number of people participating. With the Riskit method more time was spent on risk analysis and 
risk control planning than with the comparison method. With the Riskit method there also was a 
member of the technical staff present in the analysis session present. While these factors quite 
likely had an effect on the results, they are also characteristics of the Riskit method. In other 
words, they were part of the control variable that we wanted to study. 

6. Case Study Results 

The following sections describe the progress of the risk analysis in the case study. 

6.1 Goal Review 

The goal review session was organized jointly for the two methods in the September 28 
meeting (Figure 5), even though it is a step specified for the Riskit method (ver 0.10). The goals 
were listed in the session and the necessary information, as defined by the Riskit (ver 0.10) 
templates (Kontio, 1995) was documented. The resulting goal defmitions are presented in 
Table 10. The goals were not formally articulated in the session in the format given in Table 10, 
however. This was done intentionally in order to minimize the possible influence to the 
comparison method that did not call for an explicit review of goals. 



Quality 
NASA testing 

Productivity CSC LOCIhr 2.8 higher is better 

Standards compliance CSC N/A compliance to N/A 
standards 

Table 10: MCU project goals 

The goal review was done in the beginning of a meeting that continued as a risk 
identification session. 

6.2 Risk Identification 

The project manager and two members of the technical staff participated in the risk 
identification session, as well as the experiment organizers, J. Kontio acting as a facilitator and 

1. Unstable requirements 
2. Mismatch between specification and actual requirements 
3. Mismatch between user interface (UI) tool and required functionality. May have to change design to use the user interface 

tool. 
4. Not familiar with tool (UI or other) 
5. Not experienced in GUI development 
6. Compatibility with AMPT, reuse. AMPT- Automated Maneuver Planning Tool. Long-term support utility, in planning phase. 

AMPT wil have, among other things, same functionality as the MCU. They may want to reuse MCU, and MCU will likely be 
replaced by AMPT in the future. 

7. Platform familiarity. No longtime experience with the platform: UNlX and C 
8. External interface problems. The tools and programs providing the input to MCU are changing. This may cause change of file 

format. 
9. Staff reassigned. Customer may give directions to s k i  priorities, e.g., to the mainframe rehosting project. In this case all the 

goals will be changed. 
10. Lose personnel. 
1 1. Bottlenecks resources. Workstations and network may be occupied since more and more of the work move from mainframes. 
12. Customer contact availability. If customer contact person changes or he is not available, important decisions may be 

postponed or have to be made by project manager. 
13. Personnel turnover. Personnel may be relocated to other tasks (rehosting project) and be replaced by people witfi less 

experience. 
14. Overhead of experiment Lots of time spent in meetings and doing expa tasks due to the experiment. 
15. Unrealistic effort estimation. Effort estimation is not so accurate in preliminary design phase. 
16. Not following standards. Not meeting company project standards 
17. Dierent acceptance criteria between customer and vendor. 
18. Unanalyzed acceptance of requirements changes 
19. TBDs in the specification. Things 'to be defined', requirements that are left unspecified. 

Table 11: Risks identified 



H. Englund as the observer and scribe. 

We used three approaches in the risk identification session. First, we carried out a free- 
format brainstorming session where participants were allowed to name any risk and it was 
recorded on the white board. There was little discussion on the items. This session identified the 
first 14 risks listed in Table 11. These risks were identified in about 25 minutes. 

After the free brainstorming step the facilitator asked participants to look at the project goals 
and consider possible threats, to them. This goal-driven analysis produced the risks 15 and 16 
(Table 11) and lasted less than ten-minutes. 

Finally, we used the Taxonomy-Based Questionnaire (TBQ) of the SEI (Carr et al. 1993) and 
went through the relevant questions to check whether they would prompt participants to 
recognize any additional risks. This yielded risks 17-19 and one additional goal that was not 
identified in the initial goal review session. 
The TBQ session lasted one hour. 

Version 0.01 
The session concluded with a list of 

identified risks. They were not classified 
into the risk analysis graph as this would 
have had an unintended effect on the 
comparison method. 

6.3 The Comparison Method 

The project manager participating in the 
project carried out the comparison method 
risk analysis on his own. He was given the 
list of identified risks and he selected three 
risks to work on: 

UI tool integration (composite of 
risks 3 and 4 in Table 1 1) 

AMPT compatibility (risk 6 in Table 
11) 
inadequate s-11g (composite of 
risks 9 and 10 in Table 11) 

4. GUI-to01 
familiarity 

5. GUI 
experience 

7. Platform 
familiarity 

1. Req'ments 
changes 

2. Mismatch 

3. Ul tool 

6. AMPT 
compability 

changes 

bottlenecks 

contact 

14. Experiment 
overhead 

15. Bad effort 
estimation 

16. Not 
following 

criteria 

18. Hasty agree 
to new changes 

19. TBDs in 
specification 

Note that he consolidated some risks 
together for his analysis. These risks, in his 
judgment, were the most important ones to 
consider, based on their impact, probability . 
and possibilities for control. The risks and 
their selected risk controlling actions 
produced by the comparison method are 
listed in Table 12. Figure 6: Results of the risk element 

classification 



Risk I Selected controlling actions Proposed but not implemented 

Acs: Add staff or negotiate for more 
time (same as A R ~ )  

UI tool integration 
(containing risk 3) 

AMPT 
compatibility 
(unique) 

Inadequate 
staffing 
(~erhpping) 

A=: Estimate cost and schedule 
impact and provide to ATR (unique) I 

Aci: Apply lessons leamed from previous UI tool 
integration (unique) 

Ac2: Have UI personnel review design and 
implementation products (overlapping A R ~ )  

Ac~:  Present detailed design walkthrough to 
analysts to ensure a consistent understanding 
of design approach (same as Aw) 

Ac~: Finish all unit designs before coding (unique) 
ACS: <repeated> 
Ac~: Have available staff work extra 

I hours (unique) I 
Note that actions A, and A, appear twice in the table but are each counted as one action. 

Table 12: Risk controlling actions produced by the comparison method 

The method user spent two hours on risk analysis using the spread-sheet based tool, which is 
normal for the type of projects he has been involved with. An example of the comparison 
method's output is presented in Table 9. 

6.4 Riskit Method 

6.4.1 Risk Analysis 

After the risk identification session we grouped the identified risks (Table 11) into risk 
factors and risk events and placed them on the Riskit analysis graph, resulting in a graph 
presented in Figure 6. This was done without project manager's participation and was a relatively 
straight-forward task, taking approximately a .  hour to complete. Note that the names and 
meanings of some risks were slightly modified during this process to avoid ambiguity and 
overlapping of risks. The numbering used in Figure 6 refers to numbering used in Table 11 to 
maintain traceability of elements. 

After the initial classification of risk elements into the Riskit analysis graph, we extended the 
graph by adding the other elements that belong to the graph. An initial version of this positioning 
was done without project manager to save his time. The results of this analysis are presented in 
Figure 7. 



The resulting graph was used as a starting point in the Riskit risk analysis session with the 
project manager and one member of the technical staff. The graph was first reviewed and 
changes were made to correspond to project manager's perception of the situation. This resulted 
in the following changes: 

Risk event "AMPT compatibility" (risk number 6 in Table 11) was dropped because it 

Version 0.03 k F - 4  
U.N 0 c.- 

8. EXL i n u B w  - ~ x t .  interhw 1 ~ e w  ext. 
changes incnmp8tibls inlerlaw deVt ha: 

c.IC: c.r: I 

e"", c.".*znn I 
6. AYPT hi cost of hlbm 

compatibility inbgmtjon 
c.*: 

NASA changes postpolu the 
FLOX projut gals * 

project 
4. Gut-tool 
I.nilirity 

c.Y: 

E n r  w.- 
19. TED'S in mgo(iati0nr 

with nutomar 
mlr: 

0"- 

diwgmemant fllrl 

customer with C W I ~ S I  Ena: 
conmct .nil. c.w: Cmtmct wnllicl aw: 

FVK: 

6- c-- 
16. Not tutu,. m.ht 

lollcwing problems 
srtndards mr. 

Figure 7: The result of initial risk analysis using the Riskit analysis graph 



was not any of the identified goals or stakeholders in the project. 

Risk event "staff reassigned" (risk number 9 in Table 11) was dropped because this 
would occur as a customer requirement and is therefore not a risk to any stakeholder. 

Risk event "no customer contact available" (risk number 12 in Table 11) was dropped 
because this would be an unrealistic event (i.e., having infinitely small probability and if 
occurred, not being a risk to the project contractor). 

Risk event "replacement staff inexperience" (risk number 13 in Table 1 1) was dropped 
because of dropping risk 9 ("staff reassigned") due to their causal relationship. 

Risk event "TBDs in the specification" (risk number 19 in Table 11) was dropped as the 
specification document had been reviewed and there had not been any TBDs. 

A new risk event was added: "staff hours not available". This was done to separate the 
scenarios where staff members leave the project (risk event 10 in Table 1 1) and when 
their time becomes unavailable, e.g., because of the prioritization of other projects. This 
risk event was numbered as risk 20 in Figure 7. 

Table 13: Risk event probability classification and rankings 

Probabilities of risk events were estimated next. This was done using the following 
approach: 

Each risk event was categorized into as "high", "medium" or "low" using a discussion 
and consensus opinion of the project manager and the member of the technical staff. 

Both project manager and the member of the technical staff independently ranked risks 
from most likely to least likely. 

Rankings of the two individuals as well as the results of the classification approach were 
compared to spot any inconsistencies. 



The results of this estimation process are presented in Table 13. As the Table 13 shows, all 
three estimation approaches yielded results that are reasonably close to each other. Thus, we 
assumed that we had obtained a reliable ranking of risks and used the results of the high- 
medium-low classification in the remainder of the analysis. 

The next step was to review and refine each risk scenario and estimate the impact of each 
scenario to project goals. The impacts were quantified or described verbally as they affected the 
project goals. We then asked project manager to classify the "pain", i.e., utility loss, of each 
scenario into "High", ""Mediuin" and "Low". The results of this activity are presented in Figure 8, 
together with other results of the -analysis. The pain rankings are marked as the last attribute in 
the boxes representing the effects of each scenario (the right-most boxes in Figure 8). Scenarios 
with high pain and events with high probability have been highlighted by darkening the banner of 
the corresponding boxes. 

6.4.2 Plan Risk Control 

The final step in the Riskit method was to identify risks that should be controlled and 
propose some risk controlling actions. For risk control planning activity we selected the event- 
scenario combinations that met any of the following conditions: 

the event-scenario combination had both high probability and high pain; 

the event-scenario combination had high probability associated with medium pain, or 

the event-scenario combination had high pain associated with medium probability. 

Note that we used our judgment in interpreting the above criteria and also reviewed all other 
scenarios to determine whether they would deserve further consideration even though they did 
not meet the above criteria. 

The risk scenarios that were selected for risk control planning are listed in the left hand 
column of Table 14. For each risk scenario we tried to identi@ possible risk controlling action 
that could be taken. As a tool in this process we used the risk controlling action taxonomy 
(Kontio, 1995) to act as a checklist for proposing controlling actions. 

The possible actions and their impacts on the risks were also documented in the Riskit 
analysis graph, as shown in Figure 9. The risk controlling actions are marked as ovals in 
Figure 9. 



Table 14: Risk scenarios selected for risk control planning and corresponding actions 

done well (same as Ac3) changes in detail (unique) 

15. Unrealistic effort 
estimation (weriapping) 

10. Lose personnel 
(unique) 

20. Staff hours 
unavailable (unique) 

ARS: Make sure alternative UI tool experts 
are available (unique) 

h 6 :  Consult current UI tool experts to check 
whether it satisfies the project needs 
(overlapping Ac2) 

Am: Review estimates at walk-through 
review (unique) 

Am: Create slack (effort and schedule) with 
customer (same as Ac5) 

Am: Agree on project priority with other 
managers (unique) 

ARIO: Coordinate staff allocation with other 
managers (unique) 

A~12: Document well (unique) 





Version 0.06 

GUI 0xpori.n~. r l  

Figure 9: Final results of the Riskit process - risk controlling actions 

, , * , h  Stan& NE . ' 5 ,  
- P.*: hl ;,$$$mg$fl 

+ .  
m.nl m-. ' ' c--r. 

P M : ~  I * ,  my: 8 me: au.8: NE 
, + - 0.3 rlosmr 

, '  Stand: NE 

- 
. 

, ' 

Ell: +lo% 0.3 sm 
S c W  +l -k 
Funs: -? 

17. Dinamnl dis.praomen1 " ' ' oogoti.lionr 
.SUP!. crilana wilh ~ s l o m ~ ~  ' with a t m e r  



7. Case Study Analysis 

In the following sections we present the case study data and analyze the data with respect to 
the case study goals we had (presented in section 5.3). As we indicated earlier by Figure 5, the 
information about the methods was collected through observation, analysis of the artifacts 
produced, and interviews. 

7.1 Qualitative Characterization of the Methods 

We used questionnaires and interviews to inquire the method user's experiences and 
opinions about the two methods. All questions were sent to him in advance by email, he replied 
to the questions and we held an interview session to discuss his responses in more detail. The 
following represents the method user's responses to the main questions asked from him1': 

Are the methods easy to understand and use? 

"Riskit is easier to get started with - method of identihing risks is better defined. 
[Comparison method] provides better risk summary. Riskit follows a more scientific 
way of determining a risk's likelihood of occurrence. [Using the comparison method] 
we guess at the probability. 
Although the Riskit method had a better defned process, it would have been dificult to 
apply without facilitation. 

"Comparison method is easier to use, it has a simple, well-defined input format. " 

Comment the output format of the methods. 

"[The comparison method] quantifies risks and provides a good textual summary of 
them - good for individuul risks but does not provide a high-level analysis of all risks, 
as Riskit does. Riskit has a complex and busy graph, but ranks risks well and presents 
them in a good summary table." 

"[The comparison method] cannot highlight the most important risks, Riskit does this 
clearly and gectively -perhaps its greatest asset." 

What is your opinion of the usability and practical value of the Riskit method? 

"The method is usable and practical, it is a better risk management method, a more 
complete one. It may be better utilized in longer, riskier projects. 

"Riskit is certainly more thorough, [the comparison method] may find too few risks." 

"Riskit takes more resources. The [Riskit analysis] graph was too big." 

How much confidence did you have in the risk analysis results produced by the Riskit 
method and why? 

"I did have confidence in what it produced because of the process that was used, 
because of its more complete analysis of risks and because of the risk ranking process it 
used " 

lo While most of the answers are verbatim quotes from the email responses, some the answers have been combined 
from more than one question, as they were addressed in different parts of the follow-up interview. 



Which method, or which combination of them, would you recommend for use? 

"Apply the brainstorming [risk identificatio~] and risk ranking approach, as these do 
not increase the costs by much. Try out the complete Riskit method on selected projects. 
Use the [comparison method] for documenting each risk." 

We have evaluated the qualitative responses from three perspectives: ease of use, input and 
out formats, and practical value of the method. 

It is difficult to compare the ease of learning and ease of use of the methods. While the 
Riskit method has some underlying, more complex principles in it, it is better documented and its 
application was facilitated in the case study. On the other hand , the comparison method had been 
used by the method users for several years and they had initially received training on it. However, 
given that the method user was able to apply and understand the method without any training in a 
facilitated session leads us to suggest that there are no significant differences in the ease of 
learning and ease of use between the methods. 

Regarding the input and output formats of the methods, the comparison method seems to 
have an advantage in entering information in it - it has clearly defined items that need to be 
entered into the tool. It also seems to provide good summaries of each individual risk, although 
this observation may be largely due to the method user's familiarity of the output. The Riskit 
method seems to provide a better overview of the risk situation in the project and highlights most 
important risks well. 

The method user expressed clearly more confidence in the results produced by the Riskit 
method. He saw it as a more thorough and complete method. In particular, he valued its risk 
analysis and ranking approach. He also indicated an interest in applying or experimenting with 
the method, or its components, in future projects. 

7.2 Cost and Time 

The cost and effectiveness of the method was analyzed based on the data presented in 
Table 15. As we discussed earlier, the risk identification session was shared between the 
methods. Thus, it is not straight-forward to sum up the effort used by the methods as a separate 
risk identification session is not normally part of the comparison method. If the risk identification 
session is included in the totals of both methods, the comparison method consumed 11 person 
hours and the Riskit method 20 person hours. I f  the risk identification step is excluded, 
corresponding figures are 3 and 12 hours, as Table 15 shows. It would be even plausible to 
compare the comparison method's 3 hours against the total of Riskit method's 20 hours, as they 
actually represent approximations of what ''normally" would have happened without the 
experimental arrangements. 



Table 15: Study effort distribution in person-hoursll 

7.3 Granularity, Coverage and Accuracy 

We have analyzed the granularity and coverage of the two methods by defining a set of 
specific metrics for risks and controlling actions that were produced. We realized that a mere 
counting of risk or controlling actions fails to account for the granularity and coverage of 
respective items. Thus, we use the following additional metrics to characterize the methods: 

Number of same risks/actions produced by the method, i.e., riskslactions that are judged 
to be same or very similar to a risk described by the other method. 

Number of unique risks/actions produced by the method, i-e., riskslactions that have not 
been identified by the other method and which do not overlap or are subsumed by other 
method's riskslactions. 

Number of subsumed risks/actions, i.e., riskslactions that are subsets of riskslactions 
ident5ed by the other method. 

Number of containing risks/actions, i-e., riskslactions that include one or more of the 
risks/actions identified by the other method. 

Number of overlapping risks/actions, i.e., risks/actions that have some similarities but do 
not belong to any of the previous categories. 

We used the above definitions to classify the risks selected for risk control planning and the 
controlling actions that were produced. Table 16 presents the metrics produced by the analysis of 
coverage and granularity of risks that were selected for risk control planning for each method. 

When analyzing the risks we chose to compare the risks that were selected to risk control 
planning. The list of identified risks could not be used because the identification session was a 
joint session for both methods. We have marked the classification of each risk in Table 12 and 
Table 14 in parenthesis in the right-hand column, e.g., the text "(unique))) indicates that the risk thus 
marked was a unique risk for the method. 

As Table 16 shows, the Riskit method analyzed more risks than the comparison method. 
However, direct count of analyzed risks is not a meaningful indicator of the differences between 

I'  Some clarifications are necessary in order to interpret the data in Table 15 correctly. First, the item "study 
management" includes preparation and planning for the study, data collection and creating additional documentation 
for the purposes of the study. Consequently, we have estimated the editing work on the Riskit Analysis Graphs to 
have taken 1.5 hours. Second, the UMD personnel's time for the study management task was not accurately 
measured (thus the "NA" item in the corresponding cell). 



methods. The difference between the number of unique risks produced by the methods is more 
interesting: Riskit analyzed five unique risks compared to one of the comparison method's. 

Table 16: Coverage and granularity metrics for risks analyzed 

The comparison method's "UI tool integration" was a containing risk to Riskit method's 
subsumed risk "UI tool limitations". As there was only one pair of containing/subsumed risks we 
cannot make any conclusions from this particular data. In general, however, a high number of 
subsumed risks indicates finer granularity and, if the subsumed risks cover all or most of the 
containing risk, this can be considered more precise description of the risks in a situation. 

Riskit Method 
0 
5 
1 
0 
1 
7 - 

Metric 
same risks 
unique risks 
subsumed risks 
containing risks 
overlapping risks 
Total 

Risks "Inadequate staffing" (comparison method) and "Unrealistic effort estimation" (Riskit) 
were considered overlapping. 

Comparison Method 
0 
1 
0 
1 
1 
3 

Given the data about the analyzed risks in the case study, the risk management methods 
seem to differ in their coverage. If we assume that the union of analyzed risks represents the 
"real" risks in the situation and count same, subsumed, containing and overlapping risks as one 
instance each, the risk coverage ratios for each method can be calculated as follows: 

comparison method: 318 = 38% 

Riskit method: 718 = 88% 

We would like to emphasize that due to the assumptions and interpretations made during the 
above analysis, the above figures should be interpreted conservatively. 

We repeated a similar process for risk controlling actions that were produced. Table 17 
presents this data. The classification of actions into our categories have been marked in Table 12 
and Table 14 in parenthesis in the middle and left-hand columns. 

As Table 17 shows, the Riskit method proposed more controlling actions than the 
comparison method. It also produced a higher number of unique controlling actions. Using the 
same principle as above, the coverage ratios for risk controlling actions are as follows: 

comparison method: 7/16 = 44% 

Riskit method.. 12/16 = 75% 

The above figures suggest that the coverage of actions proposed by the Riskit method is 
higher, i.e., it proposed a wider range of actions to be considered for implementation. 



Table 17: Coverage and granularity metric5 for controlling actions analyzed 

We assess the accuracy of the methods indirectly through the risk controlling actions that 
were actually taken in the project, vs. the actions that were planned. The rationale for this metric 
is that we assume that the project manager, as a rational decision maker, will take the necessary 
cost efficient action in the project as further information about the project becomes available. 
Any action that was planned but not implemented indicates that (i) risk situation changed after 
the action was planned, (ii) the action did not address a big enough risk to justify it, or (iii) the 
action was not considered effective enough to justify its costs. 

According to the project manager, there were no recognizable changes in the risk situation 
after the risk control planning and taking the action. Thus, we are using the ratio 

Risk controlling action accuracy ratio = number implemented actions 1 number of planned actions 

as an indicator of the accuracy of the results produced. Below are the corresponding ratios 
for the two methods: 

comparison method: 4/9 = 44% 

Riskit method: 10/12 = 83% 

These figures lead us to suggest that the Riskit method was more effective in proposing 
accurate risk controlling actions, i-e., it proposed actions that were considered worth 
implementing in the project. 

It is also noteworthy to highlight that the Riskit method addressed a risk that actually 
realized: the UI tool was considered unsuitable for the project and an alternative tool was used. 
The risk controlling action that was taken mitigated the potential negative impact of this risk in 
advance. The comparison method addressed a containing risk ("UI tool integration") for the same 
risk but did not recognize the controlling actions that directly mitigated the risk. 

7.4 Feasibility 

Our first goal was to investigate the feasibility of the Riskit method in industrial context 
(page 21). The criteria we defined for determining feasibility were met. First, the method 
produced intended results (identified risks, ranked them and proposed controlling action). 
Second, the overall effort spent on the use of the method was 12 hours. This is 20% of the 
management time of the project, and 2% of the total effort in the project, i-e., well within the 
effort limit proposed by Ropponen's survey (Ropponen, 1993). Third, as we reported in section 
7.1, the method user gave a positive assessment of the method with respect to its thoroughness, 



indicated a higher level of confidence in its results and considered its risk ranking approach more 
sound. 

Based on these findings we conclude that the Riskit method was a feasible approach in the 
case study project. We would like to point out that the validity threats described in section 5.5 
prevent us from generalizing this conclusion outside this project with confidence. However, none 
of the validity threats directly contradicts such generalization, either. 

7.5 Efficiency 

The evaluation of the efficiency of the method was based on the data obtained in the 
characterization process described in sections 7.1 to 7.3. We Defined two derived metrics to 
characterize the efficiency. The first one, risk coverage efficiency index, utilizes the risk coverage 
ratio, defined in section 7.3, and the effort used for risk management using the method. The 
rationale for this metric is that the risk coverage ratio represents the best available information of 
the coverage of all relevant risks in a situation. Dividing this by the effort expended to reach that 

. coverage gives an indication of a method's efficiency in risk analysis. 

The second metric, risk controlling action efficiency index, utilizes the concept risk 
controlling action accuracy ratio, defined in section 7.3, and effort for the method. The rationale 
for this method is that the total of implemented actions represent the best available information 
about the correct action to take in a situation. As the risk controlling action accuracy ratio 
numerically describes how well the method was able to produce the ideal set of actions, 
normalizing the risk controlling action accuracy ratio by effort expended gives an indication of 
risk controlling action efficiency. 

The effort used in these calculations was the method's total effort without the shared risk 
identification session (see Table 15). The two metrics and corresponding data are presented in 
Table 18. 

Table 18: Efficiency metrics used in the case study analysis for the two methods 

Metric 

risk coverage efficiency index = 
risk coverage ratio / risk management effort 

risk controlling action efficiency index = 
risk controlling action accuracy ratio / risk management effort 

As the results of Table 18 show, the comparison me&od is more efficient in analyzing risks 
and proposing actions. This is not surprising, since the comparison method analyzed fewer risks 
and proposed fewer actions. It is quite likely that the most obvious risks and actions are the least 
costly to produce. The relative efficiency decreases as more risks and actions are analyzed and 
proposed. Consequently, we do not think that efficiency is an effective metric to evaluate a risk 
management method. 

Method 

38%/3=13% 

44%/3=15% 

Riskit Method 

88%/12=7% 

83%/12=7% 



7.6 Effectiveness 

The evaluation of effectiveness of the methods is to consider whether the unique risks 
produced by the methods resulted in actions that were actually implemented and whether these 
actions were unique. From this perspective, the comparison method produced one unique risk 
("AMPT compatibility7') whose controlling action (Ac3) was the same as one of Riskit method's 
implemented actions (ARz). Riskit, on the other hand, produced five unique risks and seven unique 
risk controlling actions (see Table 14). This seems us to suggest that while the marginal 
efficiency if the Riskit method was lower, its overall effectiveness was higher. 

8. Conclusions 

The purpose of exploratory case studies is to provide real-world data, experience and 
feedback to in order to identify problems, interesting relationships or concepts, or simply to 
provide a basis for ideas and innovation. From this perspective the case study was an exploratory 
one - it gave us insights to the issues in risk management and how the Riskit method addresses 
these issues. A secondary goal was to investigate the feasibility of the method. 

The case study had a major impact on the further development of the method. The Riskit 
Analysis Graph was simplified and revised, the Riskit process description subsequently detailed, 
and several application guidelines were identified. 

The case study also served to characterize and evaluate the method. Based on the analysis of 
our experiences we have concluded that Riskit is a feasible method in an industrial context. The 
Riskit method seems to cover risks comprehensively and propose risk controlling actions 
accurately. Furthermore, it seems to provide a good overall view of risks and its results seems to 
be credible. However, it seems to consume more resources than the default method. It seems that 
Riskit may be a method to be applied when projects are large or when risks are high. Small, low 
risk projects may be better off with simpler and less costly risk management approaches. 

Given the limited size of the case study and limited number of data points available, it is too 
early to generalize these findings with any confidence. However, they indicate that the method 
has several potentially significant benefits. 



9. References 
Anonymous (1992) The American Heritage Dictionary of the English Language, 3rd edn. U.S.A. 

Microsoft BookshelfYHoughton Mifflin Company. 
Basili, V.R. (1992) Software Modeling and Measurement: The GoaVQuestion/Metric Paradigm. 

CS-TR-2956, College Park, MD: University of Maryland. 
Basili VR, Caldiera G, M c G w  F, Pajerski R, Page G, and Waligora S. The Software 

Engineering Laboratory - an Operational Software Experience Factory. 370 p. -38 1 .(1992) 
Basili, V.R., Caldiera, G. and Rombach, H.D. (1994) Goal Question Metric Paradigm. In: 

Marciniak, J.J. (Ed.) Encyclopedia of Software Engineering, pp. 528-532. New York: John 
Wiley & Sons 

Basili, V.R. and Green, S. (1994) Software Process Evolution at the SEL. IEEE Software 11,58- 
66. 

Boehm, B.W. (1981) Software Engineering Economics, Englewood Cliffs, N.J. Prentice Hall. 
Boehm, B.W. (1989) Tutorial: Software Risk Management, IEEE Computer Society Press. 
Campbell, D.T. and Stanley, J.C. (1963) Experimental and Quasi-Experimental Designs for 

Research, Boston: Houghton Mifflin Co. 
Carr, M.J., Konda, S.L., Monarch, I.A., Ulrich, F.C. and Walker, C.F. (1993) Taxonomy-Based 

Risk Identifiation, SEZ Technical Report SEI-93-7R-006, Pittsburgh, PA: Software 
Engineering Institute. 

Charette, R.N. (1989) Software Engineering Risk Analysis and Management, New York: 
McGraw-Hill. 

Cook, T.D. and Campbell, D.T. (1979) Quasi-Experimentation: Design & Analysis Issues for 
Field Settings, Chicago: Rand McNally College Pub. Co. 

Edgar, J.D. (1989) Controlling Murphy: How to Budget for Program Risk (originally presented 
in Concepts, summer 1982, pages 60-73). In: Boehm, B.W. (Ed.) Tutorial: SofhYae Risk 
Management, pp. 282-29 1. Washington, D.C. IEEE Computer Society Press 

Fenton, N.E. (1991) Somare Metrics A Rigorous Approach, London: Chapman & Hall. 
French, S. (1986) Decision Theory: An Introduction to the Mathematics of Rationality, 

Chichester: Ellis Horwood. 
French, S. (1989) Readings in Decision Analysis, London: Chapman and Hall. 
Friedman, M. and Savage, L.J. (1948) The Utility Analysis of Choices Involving Risk. Journal of 

Political Economy 56,279-304. 
Garrabrants, W.M., Ellis m, A.W., Hoffman, L.J. and Kamel, M. (1990) CERTS: A 

Comparative Evaluation Method for Risk Management Methods and Tools. In: Anonymous 
Proceedings of the Sixth Annual Computer Security Applications Conference, pp. 25 1-257. 
Los Alamitos: IEEE Computer Society Press 

Judd, C.M., Smith, E.R. and Kidder, L.H. (1 991) Research Methoak in Social Relations, 6th edn. 
Fort Worth: Harcourt Brace Jovanovich College Publishers. 

Karolak, D.W. (1996) Software Engineering Risk Management, Washington, DC: IEEE. 



Keeney, R.L. and Raiffa, H. (1976) Decision with Multiple Objectives: Preferences and Value 
Tradeoffs, New York: John Wiley & Sons. 

Kontio, J. (1994) Software Engineering Risk Management: A Technology Review Report. 
PI-4.1, Helsinki, Finland: Nokia Research Center. 

Kontio, J. (1995) Riskit: An Analytical Model for Risk Management. working paper. 
Kontio, J. (1996) The Riskit Method for Software Risk Management, version 1.00. College park, 
MD: University of Maryland. 

McGarry, F., Pajerski, R., Page, G,, Waligora, S., Basili, V.R. and Zelkowitz, M.V. (1994) 
Software Process Improvement in the NASA Software Engineering Laboratory. CMUlSEI-94- 
TR-22, Pittsburgh, PA: Software Engineering Institute. 

NASA (1995) Software Engineering Laboratory World Wide Web home page: 
http://fdd.gsfc.nasa.gov/seltext.html. 

Ropponen, J. (1993) Risk Management in Information System Development. TR-3, Jyvibkyla: 
University of Jyvibkylii, Department of Computer Science and Information Systems. 

Saaty, T.L. (1990) The Analytic Hierarchy Process, New York: McGraw-Hill. 
Von Neumann, J. and Morgenstern, 0. (1944) Theory of Games and Economic Behavior, 

Princeton: Princeton University Press. 



An Empirical Study of Communication in Code 
Inspect ions 

*/: f *- *A:-. 2 
Carolyn B. Seaman Victor R. Basili - &--a .J &..* 

Institute for Advanced Computer Studies Institute for Advanced Computer Studies / 2P 
Computer Science Department Computer Science Department ?& 

University of Maryland University of Maryland ,Y&B 4 

College Park, MD, USA College Park, MD, USA 
(301) 405-2721 (301) 405-5497 

cseaman@cs.umd.edu basili@cs.umd.edu 

ABSTRACT 
This paper describes an empirical study which addresses 
the issue of communication among members of a soft- 
ware development organization. In particular, data 
was collected concerning code inspections in one soft- 
ware development project. The question of interest is 
whether or not organizational structure (the network of 
relationships between developers) has an effect on the 
amount of effort expended on communication between 
developers. Both quantitative and qualitative methods 
were used, including participant observation, structured 
interviews, generation of hypotheses from field notes, 
some simple statistical tests of relationships, and in- 
terpretation of results with qualitative anecdotes. The 
study results show that past and present working re- 
lationships between inspection participants affect the 
amount of meeting time spent in different types of dis- 
cussion, thus affecting the overall meeting length. Re- 
porting relationships and physical proximity also have 
an effect, as well as the point in the project that an in- 
spection occurs. All but the last of these factors are or- 
ganizational structure relationships. The contribution 
of the study is a set of well-supported hypotheses for 
further investigation. 

tasks effectively) [12]. It is also clear that efficient in- 
formation flow is affected by the relationship between 
development processes and the organizational structure 
in which they are executed. A process requires that cer- 
tain types of information be shared between developers 
and other process participants, thus making information 
processing demands on the development organization. 
The organizational structure, then, can either facilitate 
or hinder the efficient flow of that information. These 
relationships between general concepts are pictured in 
Figure 1. 

The study described in this paper addresses the pro- 
ductivity aspects of communication. In particular, it 
empirically studies how process communication effort 
(the effort associated with the communication required 
by a development process) is influenced by the orga- 
nizational structure (the network of relationships be- 
tween developers) of the development project. In this 
paper, we examine the organizational structure of one 
particular project, the code inspection process used, and 
the time and effort associated with inspection meetings. 
We found that organizational attributes are significantly 
related to the amount of time inspection participants 
spend in different types of discussions. The aim of this 

Keywords study is not to test or validate hypotheses about rela- 
empirical study, communication, process, organizational tionships between these variables, but to  explore what 
structure, inspections relationships might exist and try to explain those rela- 

INTRODUCTION 
tionships. Our contribution, then, is a set of proposed 
hypotheses, along with an argument, in the form of sup- 

Many factors which impact the success of software de- porting evidence, for their further examination. 
velopment projects still defy our efforts to control, pre- 
dict, manipulate, or even identify them. One factor that Although the importance of efficient communication, 
has been identified [3] but is still not well understood is and its relationship to organizational structure, is well 
information flow. It is clear that information flow im- supported in the organization theory literature [ll, 51, 
pacts productivity (because developers spend time com- it has not been adequately addressed for software devel- 
municating) as well as quality (because developers need opment organizations. Communication has been iden- 
information from each other in order to carry out their tified as an important factor in how developers spend 

their time [12], and some organizational characteristics 
which affect its efficiency have been suggested [3, 81. 
Some, but surprisingly little, of the "process" work in 
software engineering has dealt with information flow or 
organizational structure [I, 2, 131. I t  has been pos- 
tulated that informal communication is usually more 

1997 ACM. Reprinted, with permission, from Proceedings of the 19th International 
Conference on Software Engineering (ICSE-19), Boston, MA, 19W; pp. 96-106 



Development 
Process 

Organizational 

information 
processing processing 

requirements channels and barriers 

Flow 

information 

L I Productivity I 
Figure 1: Relationships between concepts relevant to this work 

valuable than formal, interpersonal communication [9] 
(which includes what we have termed process commu- 
nication). However, there is still a need for focused 
studies of the latter because, unlike informal commu- 
nication, formal communication can be planned for and 
controlled, if we know the factors which can be manip- 
ulated to make it more efficient. Studies of human com- 
munication must, by definition, be empirical studies be- 
cause they deal with non-analytical entities (i.e., people) 
which have few universally applicable laws or theories 
governing their behavior. Concepts such as communica- 
tion, process, and organization must be studied where 
they occur, in real software development projects. 

The study combines quantitative and qualitative re- 
search methods. Qualitative data is data represented 
as words and pictures, not numbers 161. Qualitative 
methods are especially useful for generating, rather than 
testing, hypotheses. Quantitative methods are gener- 
ally targeted towards numerical results, and are often 
used to confirm or test previously formulated hypothe- 
ses. They can be used in exploratory studies such as this 
one, but only where well-defined quantitative variables 
are being studied. We have combined these paradigms 
in order to flexibly explore an area with little previous 
work, as well as to  provide compelling evidence to sup- 
port the hypotheses we present. 

for the summer of 1996 (as of this writing, it has not 
yet been delivered). 

The two aspects of the project which are of interest 
are the development processes used (in particular the 
communication required by those processes), and the 
organizational relationships between the process partic- 
ipants. 

This study focuses on the project's code inspection pro- 
cess. We relied initially on a written document, the 
Code Inspection Procedure, which defined the tailored 
inspection process for this project, including the rele- 
vant steps and roles. Throughout the study, however, 
we updated our understanding of the inspection process 
through observation and interviews. Inspections were 
conducted after unit test, before submitting the code 
to configuration control. Both code and unit test prod- 
ucts (test plan and results) were inspected. It should 
be noted that some of the code inspected was produced 
by a code generator, which was used to write skeletons 
for all the classes developed, and some of the support- 
ing code. The inspection meeting (the unit of analy- 
sis for this study) was one step in the inspection pro- 
cess. Inspection meeting participants included the "au- 
thor", who had implemented and unit tested the C++ 
classes being inspected, the "moderator7', a "code in- 
spector", and a "test inspector". In some cases, more 

STUDY SETTING developers were assigned to inspect the code or test. All 
The project used for this study involved the develop- . the observed inspections occurred at CSC, and involved 
ment of mission planning software for NASAIGoddard mostly CSC personnel. The objective of the inspection 
Space Flight Center's Flight Dynamics Division (FDD). meeting was to  record defects which had been found by 
Much of the development was contracted to Computer the inspectors during their preparation. 
Sciences Corporation (CSC). About 20 technical leads 
and developers (most from CSC) participated in the We have defined organizational structure as a net- 

work of organizational relationships. These relation- inspection process during the course of the study, al- 
though more participated in the project. The project ships include management, or reporting, relationships 

began in early 1995, and the first release was scheduled and physical proximity. Information about these types 



of relationships came mainly from organizational doc- 
uments, and was validated through interviews. Other 
organizational relationships we studied were past and 
present working relationships, which existed between 
many of the CSC and FDD personnel. 

The organization and process information described 
above was modeled using a formalism called Actor- 
Dependency models (AD models) [15]. This model also 
included the actual data collected, and allowed us to  
automate some of the data analysis. 

The process used to produce the AD model is known as 
prior ethnography [lo], the practice of taking some time 
before data collection begins to become familiar with the 
study setting. In November and early December of 1995, 
the researcher attended team meetings, conducted open- 
ended interviews with several developers and managers, 
observed several inspection meetings (without recording 
data), and was introduced to all project participants. 
The goal was to become familiar with the setting, pro- 
duce the AD model, and choose the relevant dependent 
and independent variables. 

RESEARCH M E T H O D S  
The data and methods employed in this study are both 
quantitative and qualitative. The data collection phases 
were largely qualitative. The qualitative part of the 
data analysis began about halfway through data collec- 
tion, and resulted in the generation of initial hypotheses. 
Quantitative analysis began with the coding of the data 
into numeric values corresponding to the study vari- 
ables. Then various statistical techniques were used to 
discover relationships between the variables. This anal- 
ysis was guided initially by the hypotheses generated 
by the qualitative analysis. Finally, qualitative analy- 
sis was also used after the initial statistical results were 
generated in order to  help clarify and explain them. All 
of these techniques are discussed briefly in the follow- 
ing sections and are elaborated during the discussion of 
results. 

D a t a  Collection 
The data for this study was collected between Decem- 
ber, 1995, and April, 1996. The data collection proce- 
dures included gathering official documents, participant 
observation [14], and structured interviews [lo]. 

The official documents of an organization are valuable 
sources of information because they are relatively avail- 
able, stable, rich, and non-reactive, at least in compari- 
son to human data sources [lo]. Some of the documents 
which provided data for this study were: 

organizational charts 

process descriptions 

inspection data collection forms 

e online newsgroup 

Much of the data for this study was collected during 
participant observation of 23 inspection meetings. Dur- 
ing the observations, the observer collected data on the 
lengths and topics of discussions, but did not play a 
direct role in the inspection process. 

The other important data source was a set of interviews 
conducted with inspection participants. These inter- 
views were semi-structured; each interview started with 
a specific set of questions, the answers to which were 
the objective of the interview. However, many of these 
questions were open-ended and were intended for (and 
successful in) soliciting other information not foreseen 
by the interviewer. 

D a t a  Analysis 
Initial qualitative analysis on the data began about 
halfway through data collection. The first analysis was 
similar to the "constant comparison method" described 
by Glaser and Strauss [7] and the comparison method 
suggested by Eisenhardt in [4]. The method consisted 
of a case-by-case (meeting-by-meeting) comparison in 
order to reveal patterns among the characteristics of 
inspection meetings. The goal of this initial analysis 
was to  suggest possible relationships between variables. 
These suggested relationships would then be further ex- 
plored quantitatively where appropriate. 

The quantitative variables chosen for analysis fall into 
three categories. First are the dependent variables, all 
of which have to do with the time or effort spent in the 
inspection process. Secondly, there is a set of indepen- 
dent variables which represent the issues of interest for 
this study, i.e., organizational issues. Finally, there are 
two intervening variables, size and complexity of the in- 
spected material. These variables must be taken into 
account so that the relationships between independent 
and dependent variables will not be masked by them. 

The quantitative analysis used in this study was fairly 
simple and straightforward. We began by looking at 
descriptive statistics (mean, minimum, maximum, me- 
dian, standard deviation) for each of the variables. This 
helped to form an overall picture of the scope and shape 
of the data. Then we calculated Spearman correlation 
coefficients to determine which variables were statisti- 
cally related (especially which organizational character- 
istics were related to measures of communication effort). 

Qualitative data and findings were also used to help il- 
luminate and explain the statistical findings. This was 
done in a more a d  hoc way, by simply searching the field 
notes for anecdotes or quotes which shed some light on 
a particular finding. As well, after the initial quanti- 
tative results were generated, they were presented to 
several key developers on the project. This technique is 



called member checking [lo]. The developers' responses 
to and explanations for those results were recorded qual- 
itatively and also helped illuminate the statistical re- 
sults. There are several examples of this in the next 
section. 

RESULTS 
Figure 2 depicts the network of relationships between 
factors that affect meeting length, according to the find- 
ings of this study. Each box represents a study variable 
or some other factor that became .relevant during the 
course of the analysis. Each arrow represents some sort 
of relationship between two variables (e.g. a correla- 
tion) that was found in the data. We will discuss these 
variables and relationships in detail in the following sub- 
sections. 

Components  of Meet ing Length  
Although this study used dependent variables reflective 
of all parts of the inspection process, this paper presents 
results relating only to the inspection meeting itself, in 
particular the length of the meeting. Besides the actual 
meeting length, other relevant variables break the meet- 
ing length down into the time spent in various types of 
discussion. All of these variables are measures of com- 
munication effort because they describe the effort ex- 
pended during the meeting, which was entirely a com- 
munication activity. 

The defect discussion time associated with an inspection 
consists of time taken by raising, recording, and dis- 
cussing actual defects. Global discussion time includes 
discussion of issues that are applicable to other parts of 
the system as well as the code being inspected. Since 
this includes the raising and discussing of "global" de- 
fects, this category overlaps with the defect discussion 
category. Unresolved discussion time refers to  discussion 
of issues which could not be resolved during the meeting. 
Administrative time includes time spent in administra- 
tive activities as well as the discussion of administrative 
or process issues. Miscellaneous discussion time includes 
miscellaneous discussions of a technical nature, includ- 
ing raising and discussing questions about the code be- 
ing inspected which are not determined to be defects. 
Aside from the overlap between "defect" and "global" 
discussion time, the categories are mutually exclusive. 

The meeting time devoted to  each discussion type is 
strongly correlated with meeting length, but defect dis- 
cussion time is the most strongly correlated. Not only 
does the amount of time spent discussing defects in- 
crease for longer meetings, but so does the percentage 
of time spent in discussion of defects. In other words, 
much of what makes a long meeting long is due to extra 
time spent discussing defects. 

However, other discussion types also play a role in de- 
termining the length of an inspection meeting. The 

amount of time spent discussing unresolved and global 
issues increases for longer meetings, as does the per- 
centage of meeting time devoted to such discussions. 
Miscellaneous discussion time also seems to account for 
a considerable amount of the extra time spent in longer 
meetings. 

Relatively speaking, the time spent in administrative 
tasks in an inspection meeting stays fairly constant and 
is nearly independent of the meeting length. 

Organizational and Othe r  Factors 
To determine which organizational characteristics are 
relevant with respect to the amount of time spent in 
different types of discussion (and thus to the overall 
length of the meeting), we examined relationships be- 
tween variables statistically using Spearman correlation 
coefficients. This test was chosen because it is non- 
parametric and does not require that the underlying 
distributions of the variables be normal. To examine the 
effect of the intervening variables, we also conducted the 
same tests between variables after subsetting the data 
by size and complexity. This was done to see whether or 
not certain relationships existed, not for all the inspec- 
tions, but only for inspections of material of a certain 
size or complexity. 

The objective of this study was to generate theory, not 
test it. The presentation of results below is summarized 
periodically with the hypotheses generated by the study 
findings. 

Defect Discussion Time 
The amount of time spent discussing defects during an 
inspection meeting is usefully broken down into two 
components. First of all, as might be expected, the 
defect discussion time is closely tied to the number of 
defects reported (Spearman coefficient 0.93, p<.001). 
However, there is some variation in the "defect discus- 
sion duration", which is the average amount of time 
spent discussing each defect raised in a meeting. It is 
useful to separate these two factors because the data 
shows that they are affected by different variables. 

Data on the number of defects reported came from 
copies of the Inspection Data Collection Form for each 
inspection observed. These forms included a lot of other 
information about the inspection, most of which had al- 
ready been collected during observations, so the forms 
served as a validation instrument. 

It is somewhat surprising that the number of defects 
reported in a meeting is statistically unrelated to the 
size of the material being reviewed. Size, one of the two 
intervening variables used in this study, was coded into 
a three-level ordinal variable for analysis purposes. Size 
information was also provided on the Inspection Data 
Collection Forms. 



Independent Variables I Dependent Variables I 

Administrative 

Organizational 

Complexity of 
Miscellaneous 

Inspected Material 

Figure 2: The network of relationships between variables. 



The other intervening variable in this study, complex- 
ity of the inspected material, did seem to have a mod- 
erate effect on the number of defects reported. Fewer 
defects were reported when complexity was high (Spear- 
man coefficient -0.5, p<.05). It might be reasonable to 
assume that material of high complexity actually con- 
tained fewer defects (maybe because it was assigned to 
more skilled developers). However, another explanation 
is that complex code was not inspected as carefully as 
less complex code. Fewer defects may have been re- 
ported because inspectors had to spend more time un- 
derstanding the code and thus did not have adequate 
time to search for defects. Complexity was originally 
coded on a five-point subjective scale (based on inter- 
view data, described below), but was collapsed down to 
three levels for analysis. 

Hypothesis: The more complex the material 
is, the fewer defects will be reported. 

Under certain conditions, fewer defects tended to be re- 
ported when the inspection participants were more fa- 
miliar with each other. Two measures of familiarity 
were used in this study, both based on pairs of inspec- 
tion participants, and both ratio-valued. Present famil- 
iarity reflects the degree to  which the participants in an 
inspection interact with each other on a regular basis, 
and thus share common internal representations of the 
work being done. The value of this variable is the pro- 
portion of pairs of participants in the set of inspection 
participants who interact with each other on a regu- 
lar basis. Past familiarity reflects the degree to  which 
a set of inspection participants have worked together 
on past projects. This is assumed to contribute to a 
shared internal representation, not of the current work, 
but of the application domain in general, and a shared 
vocabulary. Past familiarity represents the percentage 
of pairs of participants who have worked together on 
past projects. Both types of familiarity measures are 
based on information gathered during interviews with 
each project member. 

When the material being inspected was of low complex- 
ity, fewer defects were reported when the inspection par- 
ticipants were very familiar with each other, based on 
either past or present working relationships (Spearman 
coefficients -0.95 and -1, respectively, p<.l). Also, no 
matter what the complexity, fewer defects were reported ' 

when the inspection participants were familiar based on 
past working relationships and the material inspected 
was small in size (Spearman coefficient -0.87, p<.l). So, 
for some types of material, closer past or present work- 
ing relationships between the inspectors results in fewer 
defects reported. This may indicate that developers are 
reluctant to report all the defects they find in material 
authored by close colleagues, or that they tend not to in- 

spect such material as carefully as that authored by de- 
velopers who are less familiar to them. Yet another pos- 
sible explanation is that the familiarity measures also 
reflect the average experience of the inspection partici- 
pants. That is, people who have been working (in the 
company or on the project) longer will be more familiar 
with more people. Thus the fewer number of defects 
is actually a result of experience, not familiarity. How- 
ever, no significant correlations were found between the 
familiarity measures and a rough measure of experience 
which was formulated for this purpose. 

Hypothesis: The more familiar the inspec- 
tion participants are with each other, the fewer 
defects will be reported. 

Familiarity information was collected through inter- 
views. Each interview used a tailored interview form, 
or guide [14], which included the questions and top- 
ics to  be covered. These included information missing 
from the data form for a particular inspection, questions 
about organizational relationships, data on inspection 
activities other than the meeting, and information on 
the code inspected. These forms were not shown to 
the interviewee, but were used as a checklist and for 
recording answers and comments. In some cases, the 
more straightforward questions were asked via email. 
This was requested by the project management to  re- 
duce the amount of time the project personnel had to 
spend in interviews. Most interviews were audiotaped in 
their entirety. Extensive field notes were written imme- 
diately after each interview. The tapes were used during 
the writing of field notes, but they were not transcribed 
verbatim. 

Another indication of familiarity is whether or not the 
author was in the "core group" which, for the purposes 
of this analysis, is defined as the eight developers who 
interact with other developers the most. This group 
consisted entirely of CSC developers, including the two 
CSC technical leads. All of the inspections included 
participants in the core group, but very few inspections 
involved exclusively core group members. 

Inspections with a core-group author had less than half 
the number of reported defects than those with non-core 
group authors. And when the author was one of the 
technical leads, the number of reported defects was less 
than a third than in other inspections. One developer 
explained this latter result by explaining that one of 
the technical leads is very experienced, and the other, 
although not very experienced, is "a whiz". The classes 
assigned to the technical leads also tended to be lower 
in complexity than other classes as well. 

There is also some evidence that extensive unit testing 
prior to  the inspection reduces the number of defects 



reported in the meeting, which is intuitively logical. In 
two inspections, such extensive testing took place. In 
one of the inspections, one defect was reported, and 
two were reported in the other (much lower than the 
average of about 9). The low defect level cannot be 
explained by size or complexity. Because there were 
so few defects, there was very little defect discussion 
time, and the meetings themselves were correspondingly 
short. This result was especially satisfying to  the devel- 
opers to whom it was presented. Two developers, who 
both had leadership roles on the pro3ect, expressed the 
opinion that unit testing was a vital part of the devel- 
opment process, and this result was an indication that 
i t  was effective. However, since we do not know the ac- 
tual defect densities of these classes, we might conclude 
that the inspectors may not have inspected as carefully 
because they knew that the classes had had extensive 
unit testing. 

Hypothesis: When more unit testing is per- 
formed prior to the inspection, fewer defects 
are reported. 

There is also evidence that organizational and physi- 
cal distance have an effect on the number of defects 
reported. Organizational distance refers to the degree 
of management hierarchy between members of the or- 
ganization. In this study, each inspection was either or- 
ganizationally "close" (all the participants reported to 
the same CSC manager) or organizationally "distant" 
(at least one participant from FDD was present). Phys- 
ical distance reflects the number of physical boundaries 
between the inspection participants. In this study, phys- 
ical distance takes on three values, corresponding to a 
set of inspection participants with offices on the same 
corridor, in the same building, or in separate buildings. 
The data used to  evaluate the distance measures was 
collected during the prior ethnography phase, and was 
stored in the AD model built during that phase. 

Both organizational and physical distance played a role 
in one particular inspection with respect to  the num- 
ber of defects reported. This inspection meeting was an 
outlier, the longest in'the data set, at 100 minutes. The 
author was an FDD developer, while all the inspectors 
were from CSC (this was an unusual situation in the 
data set). Consequently, the inspectors were not very 
familiar with the class before they had inspected it in 
preparation for the meeting. This meeting also had the 
highest number of defects reported in the data set, 42. 
This may have been partly a direct result of the high 
organizational and physical distance between the par- 
ticipants, particularly the author. Fourteen (compared 
to an average of 2) of the defects were global in nature, 
meaning that they were defects that had been raised 
in previous inspections. However, the author of the 

outlier inspection was physically and organizationally 
removed from the participants in those previous inspec- 
tions. This may have contributed to a lack of communi- 
cation about the global defects. This is consistent with 
remarks from developers, who described developers in 
other parts of the organization as "isolated". 

Hypothesis: The closer the inspection partic- 
ipants are, either physically or in the reporting 
structure, the fewer defects will be reported. 

The other factor contributing to the amount of time 
spent discussing defects, besides the number of defects 
reported, is the defect discussion duration, or the aver- 
age amount of time spent discussing each defect. The 
defect discussion duration, surprisingly, is unrelated to 
either size or complexity of the inspection material. In 
fact, it is not correlated, in general, with any of the 
study variables. Significant correlations were found only 
under certain conditions. For example, for material of 
medium complexity, the duration of global defect dis- 
cussions decreased over time. That is, the later in the 
project that the inspection occurred, the less time was 
spent discussing each global defect (Spearman coeffi- 
cient -0.81, p<.05). As discussed in the next section, 
this most likely has more to  do with the global nature 
of those defects than any property of defects in general. 

In summary, a large part of the variation in meeting 
length is accounted for by the amount of time spent dis- 
cussing defects, which in turn is largely dependent on 
the number of defects reported. This finding is some- 
what comforting because the main purpose of an in- 
spection meeting is, usually, to discuss defects. The 
number of defects is related to  nearly all of the study 
variables, under different circumstances. However, the 
defect discussion duration also plays an important part 
in the amount of meeting time spent discussing defects. 
Unlike the number of reported defects, the defect dis- 
cussion duration does not seem to be affected in general 
by any of the organizational variables, but under cer- 
tain conditions it seemed to decrease over the course of 
the project. It should be noted that defect data was 
not available for 6 of the inspection meetings observed. 
The findings related to  the number of defects or the 
defect discussion duration are based on only 17 inspec- 
tion meetings, instead of the 23 that comprise the whole 
dataset. 

Global Discussion Time 
The time spent discussing global issues (including global 
defects) in an inspection meeting was strongly affected 
by a number of factors, as can be seen from the prolif- 
eration of arrows pointing to  it in Figure 2. 

First of all, global discussion time tended to be lower 
when the inspection participants were very familiar 



with each other, based on past working relationships. the inspection participants, physically, the less 
This correlation was not particularly strong in general time they will spend discussing global issues. 
(Spearman coefficient -0.38, p<.l),  but was stronger for 
inspections of small amounts of material or material Hypothesis: The distance between inspec- 
of low complexity. Also for material of low complex- tion participants in the reporting structure has 
ity, there was a strong tendency for global discussion an effect on the time they will spend discussing 
time to be low when the inspection participants cur- global issues, but depends on the size and com- 
rently worked together a great deal (i.e. when present plexity of the material being inspected. 
familiarity was high, Spearman coefficient -0.9, p<.05). - - 

In other words, people who interact on a regular basis 
spend less time discussing global issues only when the 
material being inspected is not very complex, but past 
working relationships have a more general effect. One 
developer addressed the latter result by observing that 
coding standards (which were the subject of many of the 
global discussions) are similar on all projects at CSC. 
So people who have worked together on past projects 
have most likely worked through some of these global 
issues together before, and thus it takes them less time 
to discuss them in the present. Also, it may be that 
developers are likely to discuss such issues outside the 
meeting with inspectors with whom they have worked 
before, thus reducing the need to discuss them during 
the meeting. 

Hypothesis: The more familiar the inspec- 
tion participants are with each other, the less 
time they will spend discussing global issues. 

There were some very specialized relationships between 
global discussion time and organizational and physical 
distance in some parts of the data. 

For material of low complexity, there was strong ten- 
dency for more time to be spent discussing global is- 
sues when the inspection participants were organiza- 
tionally or physically distant (Spearman coefficient 0.87, 
p<. 1). However, the effect of organizational distance on 
global discussion time is very different when we restrict 
the data to inspections of large amounts of material. 
For such inspections, there was less global discussion 
time when the participants were organizationally dis- 
tant (Spearman coefficient -0.64, p<.l). That is, more 
organizationally distant inspection participants spent 
less time on global issues when inspecting large amounts 
of material. These results are contradictory, and they 
imply that any effect that organizational distance has 
on the amount of global discussion time is overshad- 
owed by the size and complexity of the material to in- 
spect. It may be that large size, at  least in some cases, 
leaves little time for inspectors to  spend on "cosmetic" 
defects, which are often global. On the other hand, low 
complexity may allow inspectors to  spend more time on 
such defects. 

Hypothesis: The closer the workspaces of 

This low complexity case is illustrated with the outlier 
meeting mentioned earlier (the longest meeting, at  100 
minutes). The distance measures for this meeting were 
high, and it also included a large amount of global dis- 
cussion. Global discussion constituted 18 minutes of 
the inspection meeting, which was much higher than 
the average of about 4 minutes. The complexity of the 
material was low, and it was small in size. The major 
factor seemed to be the organizational and physical dis- 
tance of the author. Below is an excerpt from the field 
notes: 

One of the reasons this inspection was so long 
was that every "global" issue that had been 
hashed over in previous inspections was hashed 
out here as well, even a lot of things that had 
already been taken care of in [the code genera- 
tor]. However, they all seemed to be a surprise 
to  [the author], who hadn't gotten any of this 
presumably because he's at  [FDD]. 

In some of the results above, the complexity of the ma- 
terial being inspected played a role by determining the 
conditions under which some results held. But complex- 
ity also had a direct relationship with global discussion 
time in the dataset as a whole. In general, the more 
complex the material, the less time was spent discussing 
global issues (Spearman coefficient -0.58, p<.005). This 
may indicate that, with highly complex material, the 
available time was spent discussing weightier issues than 
global defects, which are often "cosmetic". 

Hypothesis: The more complex the material 
being inspected, the less time will be spent dis- 
cussing global issues. 

Global discussion time also decreased over time to some 
extent, especially for material which was large or highly 
complex (Spearman coefficient -0.53, p<.001). This was 
explained by one developer as largely due to the role of 
the code generator, which was being developed concur- 
rently. Many of the defects which were raised repeatedly 
in different inspections (i.e. global defects) were even- 
tually remedied by implementing the fixes into the code 
generator. So, early in the project, a lot of effort was 



made to specify these problems and solutions carefully 
for the developers of the code generator, so that they 
would be implemented correctly. 

Hypothesis: The later in the project the in- 
spection occurs, the less time will be spent dis- 
cussing global issues. 

Other Discussion Types 
Miscellaneous discussion time does not decrease signifi- 
cantly over time, nor is it significantly related to size or 
complexity. However, one component of miscellaneous 
discussion time (the amount of time spent asking and 
answering questions about the code being inspected) 
tends to be lower when the inspection participants are 
familiar, based on present working relationships (Spear- 
man coefficient -0.65, p<.l). As explained by one devel- 
oper, people who work together a lot are simply used to  
communicating, so can relay ideas very quickly. They 
also tend to discuss many issues outside the meeting, so 
less time is spent on them in the meeting. 

As mentioned earlier, the time spent in administrative 
tasks in an inspection meeting is relatively constant, re- 
gardless of the meeting length. However, time spent in 
administrative tasks did decrease over time (Spearman 
coefficient -0.52, p<.05), especially for inspection mate- 
rial of low complexity. This is largely due to the fact 
that much of the administrative time in early inspection 
meetings was spent in asking and discussing questions 
about the inspection process itself. Inspections were 
just beginning on this project, the inspection process 
document had just been released, and inspections were 
being performed differently for this project in several 
ways. Inspection process questions consumed up to 5 
minutes of each inspection meeting of the first 10 (out 
of 23) inspections observed. After that, process ques- 
tions did not arise, and the administrative procedures 
became a "habit", as one developer put it. Even with 
the extra time in the early inspections, however, differ- 
ences in administrative time between inspection meet- 
ings does not account for very much of the variance in 
meeting length. 

In general, more meeting time was spent on unresolved 
issues early in the project than later (Spearman coeffi- 
cient -0.49, p<.05). This was because, as one developer 
explained, developers at first made an effort to  resolve 
every issue during the meeting, even if they eventually 
found they couldn't. However, they later came to rec- 
ognize more quickly which issues were best referred to 
someone else. 

CONCLUSIONS 
This paper describes an empirical study of code inspec- 
tion meetings in a NASA-sponsored software develop- 
ment project. The relevant variables in this study were 

process communication effort (in particular the effort 
expended in inspection meetings, in general and in dis- 
cussions of different types) and characteristics of the 
organizational structure (reporting relationships, famil- 
iarity, physical proximity). We found that several orga- 
nizational characteristics have an effect on the amount 
of time spent in different types of discussions during in- 
spection meetings. Below, we present our findings in the 
form of testable hypotheses, which are the main contri- 
bution of this work (these are also presented graphically 
in Figure 2). 

First, we presented results that showed that two of 
the major factors that make longer inspection meet- 
ings longer are the time spent discussing defects and 
the time spent discussing global issues. Furthermore, 
the time spent discussing defects is mostly determined 
by the number of defects reported during the meeting. 
The following hypotheses (similar to  those presented 
previously) represent the study findings which relate to 
factors affecting the number of defects reported: 

H 1  The more the inspection participants interact 
with each other on a regular basis, the fewer defects 
will be reported. 

H 2  The more the inspection participants have 
worked together in the past, the fewer defects will 
be reported. 

H 3  The more closely related the inspection par- 
ticipants are in the reporting structure, the fewer 
defects will be reported. 

H 4  The closer the workspaces of the inspection 
participants are, physically, the fewer defects will 
be reported. 

H5 The more complex the material is, the fewer 
defects will be reported. 

H 6  When more unit testing is performed prior to 
the inspection, fewer defects are reported. 

Except for the last two of the above hypotheses, all of 
these point to the conclusion that developers will report 
fewer defects in material authored or inspected by other 
developers with whom they are "close" (in terms of or- 
ganizational distance, physical distance, or familiarity). 
~n fo r tuna t e l~ ,  this finding cannot be fully interpreted 
without knowing more about the error histories of the 
classes inspected. That is, we cannot know whether 
those classes which had fewer reported defects actualiy 
had fewer defects, or whether the closeness of the in- 
spection participants influenced the inspectors to find or 
report fewer defects than actually existed. A follow-up 
study of testing data could provide the insight necessary 



to address this question. It is important to look at this 
issue closely because the number of reported defects ap- 
pears to have a very strong influence on meeting length. 
In fact, aside from the various types of discussion times, 
it is the only variable that is strongly and directly as- 
sociated with meeting length. Thus it is important to 
know what factors affect the number of defects reported, 
besides the actual number of defects in the code. 

For example, suppose we extrapolate the above general 
conclusion (close inspection participants report fewer 
defects) to imply that close inspection participants re- 
port a lower percentage of the defects that actually exist 
in the code. This is as reasonable a statement as any, 
as we have no reason to assume that the distribution 
of defects in classes inspected by a close group is any 
different from that of other classes. This would indicate 
that, while choosing a close set of inspection partici- 
pants would seem to make the inspection meeting more 
efficient, it would seriously degrade its effectiveness. 

Another factor in the length of inspection meetings is 
the time spent discussing global issues, or those issues 
that arise repeatedly and are relevant to the system as 
a whole, not just the code being inspected. This study 
indicated that the time spent discussing such issues is 
strongly related to the organizational relationships be- 
tween inspection participants, as detailed by these hy- 
potheses: 

H7 The more the inspection participants have 
worked together in the past, the less time they will 
spend discussing global issues. 

H8 The more the inspection participants interact 
with each other on a regular basis, the less time 
they will spend discussing global issues. 

H9 The distance between inspection participants 
in the reporting structure has an effect on the time 
they will spend discussing global issues, but de- 
pends on the size and complexity of the material 
being inspected. 

HI0 The closer the workspaces of the inspec- 
tion participants, physically, the less time they will 
spend discussing global issues. 

HI1 The later in the project the inspection occurs, 
the less time will be spent discussing global issues. ' 

H12 The more complex the material being in- 
spected, the less time will be spent discussing global 
issues. 

In general, it can be concluded that inspection partici- 
pants who are "close" spend less time discussing global 
issues. This is likely due to several factors, including the 

amount of discussion which goes on outside the inspec- 
tion meeting, the shared vocabulary that arises from fa- 
miliarity which facilitates communication, and a shared 
understanding of the actual issues that come up repeat- 
edly. Because less time is spent in global discussion, a 
close group of participants also results in a shorter meet- 
ing. This says nothing, however, about the effectiveness 
of such a meeting. 

These hypotheses could all be tested in carefully con- 
trolled experiments that are designed for that purpose. 
The study described here provides some evidence of 
their validity. 

This study peels back just one layer of understanding 
about the role organizational structure plays in the ef- 
ficiency of inspection meetings. Many other, deeper, 
questions remain, however. For example, what makes 
an inspection efficient? Is an efficient inspection meet- 
ing necessarily shorter? Does it have less discussion of 
some types and more of another? The answers to ques- 
tions like these lie, at  least in part, on the goals and ob- 
jectives of inspection meetings, which vary from project 
to  project. If they can be answered for a particular 
project, then studies like the one described here can 
provide guidance as to the organizational factors which 
can be manipulated to meet the project goals. 

Some of the qualitative data in this study indicated the 
complexity of these underlying questions. In the out- 
lier meeting mentioned earlier, for example, recall that 
the number of defects reported was very high and the 
author was organizationally and physically distant from 
the other participants. He had not interacted with the 
inspectors during implementation of that class. This 
suggests the following argument. Different developers 
may be sensitive to different types of code errors, de- 
pending on their experience. The developers with whom 
an author consults during development, then, will help 
to eliminate certain types of errors from that author's 
code. If those same developers are those who inspect 
that code, they may not find many errors because those 
they are most aware of have already been eliminated. 
But if a different set of developers inspects the class, 
then they may bring different sensitivities to  the inspec- 
tion and thus find other errors (although they may take 
longer to do it). This may be what happened during 
the long outlier inspection. One developer addressed 
this very issue during an interview: 

She can imagine that if the inspectors are the 
same people who helped craft the code, then 
they're not likely to find anything wrong with 
it. So this may be a reason to choose inspectors 
that are not that familiar with the code. 

The above anecdote is meant simply to underscore the 



fact that the work described in this paper helps to en- 
able a whole area of research. Further work in the ef- 
fects of organizational structure on the productivity of 
development processes has potential for profoundly in- 
fluencing the success of software development projects. 
This study not only illustrates one effective way of con- 
ducting such investigations, but also provides some hy- 
potheses with which to  begin. 

ACKNOWLEDGEMENTS 
The authors would like to thank the members of the 
development team on the project used for this study 
for their patient cooperation. We would also like to  
thank the Experimental Software Engineering Group at 
the University of Maryland for their input at various 
stages of this work, including review of drafts of this 
paper. Also helpful were the commentsfrom anonymous 
ICSE reviewers on the original submitted version of this 
paper. 

REFERENCES 

[I] B. Curtis, H. Krasner, and N. Iscoe. "A Field Study 
of the Software Design Process for Large Systems". 
Communications of the ACM, 31(11), Nov. 1988. 

[2] K. M. Eisenhardt. "Building Theories from Case 
Study Research". Academy of Management Re- 
view, 14(4):532-550, 1989. 

[3] J .  R. Galbraith. Organization Design. Addison- 
Wesley, 1977. 

[4] J . F. Gilgun. "Definitions, Methodologies, and 
Methods in Qualitative Family Research". In Qual- 
itative Methods in Family Research. Sage, 1992. 

[5] B. G. Glaser and A. L. Strauss. The Discovery 
of Grounded Theory: Strategies for Qualitative Re- 
search. Aldine publishing Company, 1967. 

[6] H. Krasner, B. Curtis, and N. Iscoe. "Communica- 
tion Breakdowns and Boundary Spanning Acitivi- 
ties on Large Programming Projects". In G. Olsen, 
S. Sheppard, and E. Soloway, editors, Empirical 
Studies of Programmers, second worlcshop, chap- 
ter 4, pages 47-64. Ablex Publishing, New Jersey, 
1987. 

[7] R. E. Kraut and L. A. Streeter. "Coordination in 
Software Development". Communications of the 
ACM, 38(3):69-81, Mar. 1995. 

[8] Y. S. Lincoln and E. G. Guba. Naturalistic Inquiry. 
Sage, 1985. 

[lo] D. E. Perry, N. A. Staudenmayer, and L. G. 
Votta. "People, Organizations, and Process Im- 
provement". IEEE Software, July 1994. 

[ l l ]  S. J .  Taylor and R. Bogdan. Introduction to Qual- 
itative Research Methods. John Wiley and Sons, 
1984. 

[12] E. Yu and J .  Mylopoulos. "Understanding "why" 
in software process modeling, analysis, and design7'. 
In Proceedings of the 16th IEEE International Con- 
ference on Software Engineering, Sorrento, Italy, 
1994. 

[9] J .  March and H. A. Simon. Organizations. John 
Wiley, New York, 1958. 





j , c  ', ' 
V i c t o r  R .  B a s i l i ,  L i o n e l  C. Bria i red,  3 8 

a n d  W a l c C l i o  L .  M e l o  .rz- . - < * '  :s 
*>%+p/ L ? ,  

ECT-OR ENTED SY 

LTHOUGH reuse i s  assumed to be especially 

valuable in building high-quality software, 

as wel l  as in 00 development, l imited 

empirical evidence connects reuse with 

product iv i ty  and quality gains. The 

authors9 e,ight-system study begins t o  

define such benefits in an 00 frame- 

work ,  mos t  notably in te rms of 

reduced defect density and rework, as 

well as in increased productivity. 
1997 ACM. Rephkd,  h~ pedssion, from 

C o m m d c a G o m  of the ACM, vol, 39, no. 10) pp. 104 - 1316 



T 
HIS article presents the results of a study conduct- 
ed at the University of Maryland in which we 
assessed the impact of reuse on quality and p ro  
ductivity in object-oriented ( 0 0 )  systems. Reuse 
is assumed to be an effective strategy for building 
highquality software. However, there is currently 

little empirical information about what to expect from 
reuse in terms of productivity and quality gains. 

The study is one step toward a better understanding 
of the benefits of reuse in an 00 framework in light of 
currently anilable technology. Data was collected for 
four months-September through December 1994- 
on the development of eight small (less than 15,000 
source lines of code [KSLOC] ) systems with equivalent 
functional requirements. All eight projects were devel- 
oped using the WaterfBll-style Sofnvare Engineering Life 
Cycle Model, an 00 design method, and the CU pro- 
gramming language. The study found significant bene- 
fits from reuse in terms of reduced defect density and 
rework as well as increased productivity. These results 
can also help software org&izations assess new reuse 
technologies against a quantitative and objective base- 
line of comparison. 

Software reuse can help produce quality software 
more quickly. Software reuse is the process of using 
existing software artifacts instead of building them 
from scratch [18]. Broadly speaking, the reuse process 
involves three steps: 

Selecting a reusable artifact 
Adapting it to the purpose of the application 
Integrating it into the software product under 
development 

The major motivation for reusing software artifacts 
is to decrease software development costs and cycle 
time by reducing the time and human effort required 
to build software products. Some research [3, 11, 213 
suggests that software quality can be improved by 
reusing quality software artifacts. Some work has aIso 
hypothesized that software reuse is an important fac- 
tor in reducing maintenance costs because, when 
reusing quality objects, the time and effort required to 
maintain software products can be reduced [4, 191. 
Thus, the reuse of software products, software process 
es, and other software artifacts is considered the tech- 
nological key to enabling the software industry to 
achieve required levels of productivity and quality [7]. 

This article assesses the i m ~ a c t  of Droduct reuse 
on software quality and produdtivity in h e  context of 
00 systems. 00 approaches are assumed to make 
reuse more efficient from both financial and techni- 
cal perspectives. However, there is little empirical eci- 
dence that high efficiency is actually achieved with 
current technology. Therefore, what's needed is a 
better understanding of the potential benefits of 00 
for reuse-as well as current 00 limitations. We view 

several quality attributes as dependent variables, 
including rework effort and number/density of 
defects found during the testing phases. 

Validating the Hypotheses 
Participants in our empirical study were the students 
of a graduate-level class offered by the Department of 
Computer Science at the University of Maryland. The 
class's objective was to teach 00 software analysis and 
design. The students were not required to have pre- 
vious experience or training in the application 
domain or in 00 methods. All students had some 
experience with C or C++ programming and rela- 
tional databases and therefore had the basic skills 
needed for the study. 

To control for differences in skills and experience, 
the students were randomly grouped into eight teams 
of three students per team. To ensure the teams were 
comparable with respect to the ability of their mem- 
bers, the following two-step procedure (known as 
blocking 1171) was used to assign students to teams: 

Each student's level of experience was character- 
ized. We used questionnaires and performed inter- 
views. We asked the students about their previous 
working experience, their student status (part-time 
or full-time), their computer science degree (B.S., 
M.S., Ph-D.), their previous experiences with analy- 
sis/design methods, and their skill in various pro- 
gramming languages. 
Each of the eight most experienced students was 
randomly assigned to a different team. Students 
considered most experienced were computer sci- 
ence Ph.D. candidates who had already imple- 
mented large (less than or equal to 10 KSLOC) C 
or C++ programs and those with industrial experi- 
ence of more than two years in C programming. 
None of the students had experience in 00 soft- 
ware analysis and design methods. Similarly, each 
of the eight next most experienced students was 
randomly assigned to different groups; this ran- 
dom assigning was repeated for the remaining 
eight students. 

Each team was asked to develop a management 
information system supporting the rental/return 
process of a hypothetical video rental business and the 
maintenance of customer and video databases. Such an 
application domain had the advantage of being easily 
comprehensible; therefore, we could make sure that 
system requirements could be easily interpreted by stu- 
dents regardless of their educational background. 

The development process was performed accord- 
ing to a sequential software engineering lifecycle 
model derived from the Waterfall model and includ- 
ing the following phases: analysis, design, implemen- 
tation, testing, and repair. A document was delivered 



at the end of each phase-analysis document, design 
document, code, error report, and modified code. 
Analysis and design documents were checked to veri- 
f j  they matched the system requirements. Errors 
found in these first two phases were reported to the 
students. This verification and error checking maxi- " 
mized the chances that implementation would begin 
with a correct 00 analysis/design. Acceptance test- 
ing was performed by an independent group. During 
the repair phase, the students were asked to correct 
their system based on the errors found by the inde- 
pendent test group. 

The Object Modeling Technique (OMT), an 00 
analysis and design method, was used during the 
analysis and design phases 1201. The C++ program- 
ming language, the GNU sofnvare development envi- 
ronment, and OSF/MOTIF were used during 
implementation. Sun Microsystems Sparc works6- 

dents received a tutorial describing how to itnplement 
OSF/Motif applications. In addition, a C++ program- 
mer familiar with OSF/Motif applications was avail- 
able to answer questions about the use of OSF/Motif 
widgets and the libraries. A hundred small pro,pms 
exemplifying how to use OSF/Motif widgets were also 
provided. In addition, the code sources and the com- 
plete documentation of the libraries were provided. 
Finally, it should be noted that the studengwere not 
required to use the libraries and that, depending on 
the particular design they adopted, different reuse 
choices were expected. 

To define the meuics to be collected during the 
experiment, we used the Goal/Question/Metric 
(GQM) paradigm 15, 71. The study's goal was to ana- 
lyze reuse in an 00 software development process for 
evaluation with resDect to rework effort. defect densi- 
ty, and productivity from an organizational point of 
view. In other words, our objective was to assess the 
following assumptions in the- context of 00 systems 
developed under currently available technology: 

A hiih reuse rate results in a lower likelihood of defects. 
A high reuse rate results in lower rework effort, 
that is, less effort to repair software products. 
A high reuse rate results in higher productivity. 

According to the GQM paradigm, we had to define 
a set of questions pertinent to the defined experi- 
mental goal and a set of metrics allowing us to devise 

tions were used as the implementation platform-a 
development environment and technology represen- 
tative of what is currently used in industry and acade- 
mia. Our results are thus more likely to be 
generalizable to other development environments. 

We provided the students with three libraries: 

MotiEApp. This public-domain library includes C++ 
classes on top of OSF/MOTIF for manipulating 
windows, dialogs, and menus [22]. The MotifApp 
library provides a way to use the OSF/Motif wid- 
gets in an 00 programming/design style. 
GNU library. This publicdomain library is in the 
GNU C++ programming environment and con- 
tains functions for manipulation of strings, files, 
lists, and more. 
C u  database library. This library gives a C++ 
implementation of multi-indexed &Trees. 

We also provided a specific domain application 
library to make our study more representative of 
industrial conditions. This library implemented a 
graphical user interface (GUI) for insertion and 
removal of customer records and was implemented in 
such a way that the main resources of the OSF/Motif 
widgets and MotifApp library were used. Therefore, 
the library contained a small part of the impiementa- 
tion required for developing the rental system. 

No special training was provided to teach the stu- 
dents how to use these libraries. However, the stu- 

answers-to these questions. MTe do no; present the 
complete GQM here, only the metrics we derived. 
However, the metrics described in the next section 
were derived by following the GQM methodology [GI. 

Independent and Dependent Variables 
Here we define the study's independent variables 
(e-g., size, amount of reuse) and dependent variables 
(e.g., productivity, defect density). We intend to 
make the underlying assumptions and models clear, 
so a precise terminology is used in the rest of the arti- 
cle. A thorough and formal discussion of these issues 
can be found in [lo]. 

The size of a system S is a function Size(S) charac- 
terized by several properties, including the following: 

Size cannot be negative (property Size.1). 
We expect size to be null when a Vstem does not 
contain any component (property Size.2). 

*More important, when components do not have 
elements in common, we expect Size to be additive 
,(property Size.3). 

From these simple properties, other properties can 
be derived, as discussed in [lo]. 

Let us assume an operator called Components, 
which, when applied to a system S, gives the distinct 
components of S, so that: 

Components(S) = {C1, .-., Cn), such that if Ci=Cj 
then i=j, where i, j=l, ..., n. 



The size of a system S is given by the following function: 

Size (S) = C Size (c) 
c E Components(S) 

where Size(c) can be defined as, for instance, the 
number of source lines of code of the component c. 
However, as discussed later, measuring size in the 
context of reuse raises difficult measurement issues 
related to such 00 mechanisms as inheritance and 
aggregation of classes [20]. 

HE amount of reused code in a system S is a 
function Reuse($, also characterized by the 
properties Size.lSize.3; that is, Reuse(S) is an 
instance of a size metric. Therefore, Reuse can- 
not be negative (property Size-1), and we 
expect it to be null when a system does not con- 

tain any reused element (property Sie.2). When reused 
components do not have reused elements in common, 
we expect Reuse to be additive (property Sie.3). 

The way we define Reuse(S) must take into account 
specific 00 concepts, such as classes and inheritance. 
For instance, consider a class C, which is included in 
a system S. There are five cases: 

1. Class C belongs to the library LC. In this case we 
have verbatim reuse, that is, an existing class is 
included in the system S without being modified. 
Therefore: 

Reuse (C) = Size (C) 

As we are dealing with an 00 language allowing 
inheritance, all ancestors of C, as well as all classes 
aggregated by C, also have to be included in S. As 
all C ancestors and all classes aggregated by C also 
belong to the library, including a library class may 
trigger an apparent large amount of verbatim reuse. 

2. Class C is a new class created by specializing, 
through inheritance, a library class LC. This case is 
a variation of the first case, that is, the class LC 
and all its ancestors and subclasses (aggregated 
classes) will be included in S and will be dealt with 
in a way similar to verbatim reuse. 

3. Class C is a new class that aggregates a library class 
LC. This case is also a variation of the first case, 
that is, the class LC and all its ancestors and sub- 
classes will be included in S and will be considered 
in a way similar to verbatim reuse. 

4. Class C has been created by changing the existing 
class EC. Reuse can be estimated as: 

where %Change represents the percentage of C 
added to or modified from EC. 

However, the percentage of change is difficult to 
obtain. As a simplification, we asked the developers to 

tell us if more or less than 25% of a component had 
been changed. In the former case, the class was 
labeled as extensively modified; in the latter case, the 
class was labeled as slightly modified. Therefore, 
reuse rates were computed based on the following 
approximations: 

Extensively modified: Reuse (C) = 0 
Slightly modified: Reuse(C) = Size(C) 

We show later that slightly modified and verbatim 
reused components are quite similar from the point 
of view of defect density and rework. Thus, the 
approximation appears to be reasonable. 

3. Class C was created from scratch. In this case, the 
amount of reuse of the class C is 0: 

Now assume a function called Classes, which when 
applied to a system S, yields all classes of the sys- 
tem S, so that: 

Classes(S) = {C1, ..., Cn}, such that if Ci=Cj, then 
i=j, where i j=l, ..., n. 

Reuse of a system S is given by the following function: 

Reuse (S) = C Reuse (c) 
c € Classes(S) 

We are also particularly interested in knowing the 
reuse rate in a particular system. Reuse rate is mea- 
sured by the following function: 

ReuseRate (S) = Reuse (S) /Size (S) 

This metric has the property of being normalized: 0 I 
ReuseRate(S) I 1. 

The first three cases show that the size measures of 
systems can be artificially inflated. Only a more 
detailed static analysis of the code would permit more 
precise size measurement by distinguishing what is 
actually used from what is inherited. This issue is 
addressed when defining measures of productivity 
and defect density. 

Here we are interested in estimating the effort 
breakdown for development phases and for error cor- 
rection: 

Person-hours per development activity, including: 
Amlysk. Th e number of hours spent understanding 
the concepts embedded in the system before any 
actual design work, including requirements defini- 
tion and requirements analysis, as well as analysis of 
changes made to requirements or specifications, 
regardless of where in the l ie  cycle they occur. 
Design. The number of hours spent performing 
design activities, such as high-level partitioning of 



the problem, drawing design diagrams, specifying 
components, writing class definitions, and defining 
object interactions. The time spent reviewing 
design material, such as doing walk-throughs and 
studying the current system design, was also taken 
into account. 
Implementation. The number of hours spent writ- 
ing code and testing individual system compo- 
nents, including: person-hours per error (referred 
to as rework), such as number of hours spent iso- 
lating an error and correcting it. We are also inter- 
ested in rework efficiency, that is, how easily 
modifiable a class or a system is. To measure such 
an attribute, we normalize rework effort by the size 
of classes and the number of faults, or changes, 
respectively. 

Here we are interested in measuring the produc- 
tivity of each team. The measure used'was the 
amount of code delivered by each project vs. the 
effort to develop such code, so: 

Productivity (S) = Size (S) /DE (S) 

where, in the study: 

Size(S) is first operationally defined as the number 
of lines of code delivered in the system S. Other 
size measures, such as function points, could have 
been used, but lines of code fulfilled our require- 
ments and could be collected easily. More impor- 
tant, we were looking at the relative sizes of 
systems addressing similar requirements and there- 
fore of similar functionality. However, because of 
the effect of inheritance on size measurement, we 
also measured size by excluding verbatim reused 
classes. This exclusion is not fully satisfactory 
because it underestimates the size of systems with a 
large amount of verbatim reuse classes. Neverthe- 
less, it provides an additional insight on productiv- 
ity complementary to our first measure. In 
addition, since all systems are supposed to be func- 
tionally equivalent, we also measured productivity 
by assuming that systems all have an equivalent 
size; therefore, effort was assumed to be inversely 
proportional to productivig. Again, this relation- 
ship is an approximation and is another interest- 
ing way to look at productivity. 
DE(S) (development effort) is defined as the total 
number of hours a group spent analyzing, design- 
ing, implementing, and repairing the system S. 

Here we analyze the number and density of defects 
for each system component. We use the term defect 
generically to refer to either an error or a fault. 
Errors and faults are two pertinent ways to count 
defects, and both were considered in the study. 
Errors are defects in the human thought process 
made while trying to understand given information, 
to solve problems, or to use methods and tools. Faults 
are concrete manifestations of errors in the software. 

One error may cause several faults, and various errors 
may cause identical faults. Density is defined as: 

where #Defects(S) is defined as the total number of 
defects detected in the system S during test phases. 

I 
N the study, an error is assumed to be repre- 
sented by a single error report form filled out by 
the independent tester group; a fault is repre- 
sented by a physical change to a component, 
that is, in this particular context, a C++ class. 
Error density is first operationally defined as the 

number of errors found in a system over the number 
of KSLOC contained in the svstem. As for ~ roduc-  
tivity, and for the same reasons, we also used a size 
measure excluding verbatim reused classes. Again 
we assumed that system sizes are roughly equivalent. 
In this case, defect counts were assumed to capture 
defect density. 

Now assume that, in order to correct error El,  two 
classes-Cl and C2-have been modified, whereas, 
in order to correct E2, only class C2 was modified. In 
this case, the fault density of S is three fa.ults per 
KSLOC. 

To apportion errors to specific classes, we have to 
account for the fact that one error could result in 
changes to several classes. In this case, we follow a 
procedure illustrated by the following example: 

The error weight affecting C1 will be equal to 0.5 
because two classes were modified to correct El. 
The error weight of C2 will be equal to 1.5 because 
two classes weie modified to correct El,  and only 
C2 was modified to correct E2. 

This procedure is formally represented as: 

where: 

I ErrorWeight(Ci) I is the error weight associated 
with the class Ci; 
{Eg ... Ein] is the set of errors in which the class Ci 
was affected; and 
I Classes-affected(E--) I is the number of classes 'J affected by the error E-. 

!I' 

We used the approach in [ 5 ] ,  which proposes 
using forms for collecting data and gives guidelines 
for checking the accuracy of the information gath- 
ered. We used three different types of forms tailored 
from those used by the Software Engineering Labo- 
ratory [5]: 

P e r s o ~ e l  Resource Form. This form is used to 
gather information about the amount of time the 
software engineers spent on each software develop 
ment phase. 



Component Origination Fonn. This form is used 
to record information characterizing each compo- 
nent in the project under development at the time 
it gets into configuration management. This form 
is also used to capture whether the component has 
been developed from scratch or from a reused 
component. In the latter case, we collected the 
amount of modification-none, small, or large- 
needed to meet the system requirements and 
design, as well as the name of the reused compo- 
nent. By small/large, we mean less/more than 
25% of the original code has been modified. 
Error Report Form. This form was used to gather 
data about (1) the errors found during the testing 
phase. (2) the components changed to correct 
such errors, and (3) the effort expended in cor- 
rectina it. The last item includes: 

Assessing the differences in quality across reuse 
categories-new, extensively modified, slightly 
modified, verbatim 
Computing an approximate project reuse rate and 
assessing its statistical association with project quality 

In the first form of analysis, projects are considered as 
separate entities; in the second, trends across projects 
are analyzed in a way that assumes the projects are 
comparable. In addition, the first type helps usjustiQ 
the definition of the reuse metric we used for the 
study. 

Note that during the analysis we did not distin- 
guish between "horizontal" and "vertical" reuse; that 
is, the code reused from the generic libraries and the 

" 
- Determining precisely what change was needed 
- Understanding the chaage or finding the cause mmm- 
of the error 
- Locating the point where the change was to be m m  
made 
- Determining that all effects of the change were 
accounted for 
- Implementing the correction, including design 
changes, code modifications, and regression testing 

Validity 
The study's validity can be analyzed from two per- 
spectives: internal (What threats to the conclusions 
can we draw from the study?) and external (How 
generalizable are these results?) [ l i ] .  With respect 
to internal validity, we can say that subjects were 
classified accordino to their ability and assigned 
randomly to form v"equivalent' teams. Therefore. 
we are less likely to obtain biased results due to dif- 
ferences in ability across teams. However, perform- 
ing a formal controlled experiment would have 
required assignment of random levels of reuse to 
projects and classes-not feasible in practice. And 
because of this inability to assign random levels of 
reuse, reuse rates might be associated with other 
factors. 

Concerning external validity, we can say that even 
though students are not industrial programmers, we 
have trained them thoroughly and we used an appli- 
cation domain intuitive enough to avoid misunder- 
standings when interpreting the requirements. In 
addition, we used a development environment repre- 
sentative of what is available in industry for 00 soft- 
ware development. Another possible threat to 
external validity is that our systems were relative'ly 
small, so their conceptual complexity may be limited 
when compared to large software development appli- 
cations. However, the inherent limitation of such 
empirical studies can't be avoided. 

Software Product Reuse and Software Quality 
M7e analyzed the impact of code reuse on software 
quality, investigating avo aspects of quality: defect den- 
sity and rework. We present the results in two ways: 

code reused from the domain-specific libraries have 
been combined. Even though comparing the benefits 
of these two kinds of software product reuse would be 
interesting, it is beyond the scope of this article. 

Reuse VS. Defect Density 
The first analysis compared reused and newly created 
code from the perspective of defect density. We 
looked at defects according to avo definitions: errors 
and faults. At the class level, we used a simple mea- 
sure of size-lines of code-but other size measures 
codd have been used for the same purpose. Howev- 
er, since we were comparing systems developed based 
on identical requirements and of similar functionali- 
ties, we think this simple and convenient size measure 
is at least precise as a relative measure between pro- 
jects. At the system level, three different measures of 
defect densities were investigated. 

We first examined the relationship between classes 
and defect density to see if reused classes are less 
prone to defects. In addition, we used this analysis as 
an opportunity to evaluate the value of our ordinal 
reuse measure and assess its effect on defect density. 

Table 1 show the error and fault densities (errors and 
hrrlts per thousand lines of code) observed in each of the 
four categories of class origin. Apparently, fewer defects 
were found in reused code. For example, error density 
\\-as found to be only 0.125 in the code reused verbatim, 
1.50 in the slightly modified code, 4.89 in the extensively 
modified code, and 6.1 1 in the newly developed code. 



However, these differences should be assessed sta- differences. Therefore, the Wilcoxon T test takes 
tistically; the significance of these trends should be into account both the direction and the magni- 
calculated. To perform this statistical analysis, defect tude of differences between scores, or defect den- 
densities were computed for each project and each sities, to determine whether the null hypothesis is 
reuse category; the results were combined to derive reasonable. Thus, by using this test, we can obtain 
defect densities for each project's subset of classes a statistical comparison of any project characteris- 

tic, such as defect density, across class reuse cate- 
gories. Such a test does not assume all projects are 
comparable, does not require more than five 
observations per reuse category, and is robust to 
outliers, or extreme differences in scores between 
pairs. All these properties are important in our 
study. mm- I -  Once it has been determined that there is a sig- 
nificant difference between reuse categories, our ~~~~~~ goal is to quantify to the best extent possible the 

m m m m m  impact of reuse on defect density. To do this, we 
perform a linear least-squares regression between 

belonging to each reuse category. When comparing 
reuse categories, we are in fact comparing sets of 
defect density values, each corresponding to a given 
project. Each observation in each reuse category 
therefore matches one obsen~ation in each of the 
other reuse categories, since they correspond to the 
same system and have been developed by an identical 
team. In addition, classes across reuse categories have 
similar complexity and comparable functionalities. 
Conceptually, it is almost like looking at the charac- 
teristics of identical sets of classes developed with dif- 

reuse rate and defect density. It might be argued 
that the number of data points we are working 
with is too small to allow such an analysis. Howev- 
er, there is common agreement that the number 
of independent observations per explanatory vari- 
able could be as low as five [14]. 

Another analysis strategy would have been to 
work at the class level by, say, comparing defect den- 
sities of classes across reuse categories,-but this strat- 
egy presented problems: 

Some of the projects included a large percentage 
of all reused classes. Therefore, it would have 

ferent reuse rates. 
Considering that eight systems were developed for Table 1. ErrOr/fslUlt densities and rework in each 

the study, e i ~ h t  independent class origin category for all projects 
observaGonsare avAlable at 
the system level. The data set 
is rather small; consequently, 
we adopted a data analysis 
strategy following several 
steps: 92 16.015 

All Classes 393 
First, we used a nonpara- 1 
metric test (Wilcoxon 
matched-pairs signed rank test or Wilcoxon T test 
[12]) to determine whether significant differences 
could be observed between reused, modified, and 
newly developed classes. The rationale underlying 
this test is straightforward. We are comparing a set 
of pairs of scores (in this case, defect densities). 
Suppose the score for the first member of the pair 
is DDl, and the score for the second member of 
the pair is DD2. For each pair, we calculate the 
difference between the scores as DD2 - DDl. The 
null hypothesis we wish to test is that there is no 
difference between pairs of scores for the popula- 
tion from which the sample of pairs is drawn; that 
is, that there is no difference with respect to 
defect density between reuse categories. If this is 
true, we would expect similar numbers of negative 
and positive differences and similar magnitudes of 

been difficult to determine whether the observed 
trends could be attributed to skill differences 
between teams or to reuse. 
Our defect density and productivity measures can 
be considered suitable at the system level but are 
too rough at the class level. 

E first looked at fault densities. Fig- 
ure 1 shows the distribution and 
mean of project fault densities 
across reuse categories. Each dia- 
mond schematically represents the 
mean for each class reuse category. 

The line across each diamond represents the cate- 
gory mean. The height of each diamond is propor- 
tional to the 95% confidence interval for each 
category, and its width is proportional to the cate- 



Figure 1. Distribution and mean of project fault Figure 2. Distribution and mean of project error 
densities across reuse categories density across reuse categories 

gory sample size. Recall that we want to know 
whether reuse reduces defect-proneness; in other 
words, the null hypothesis is: Reused and nonreused 
classes are, on average, of "similar defect-prone- 
ness." However, to gain confidence in the results, we 
have to check that the internal structure of the 
classes (in each reuse category) did not play a role 
in the outcome. We ran an analysis using various 
code metrics (e.g., cyclomatic complexity, nesting 
level, and function calls) and determined that the 
distributions across reuse categories were not statis- 
tically different. (These measures were extracted 

17.5 

Table 2. Levels of significance (fault density 
per reuse category) 

I S -  

12.5 

I Verbatim I 0.46 1 0.01 2 1 I11:2 
Sli ht 0.012 0.012 

a 
- 

using the Amadeus tool [2] .) 
Table 2 shows the paired statistical comparisons of 

fault densities between reuse categories. We assumed 
significance at the 0.05 a-level; that is, if the pvalue is 
greater than 0.05, we assume there is no observable 
difference. Recall that pvalues are estimates of the 
probabilities that differences between reuse cate- 
gories (in this case, in terms of project fault densities) 
are due to chance. According to these results, there is 
no support for the fact that there is an observable dif- 
ference between verbatim reuse and slightly modified 
code, or between extensively modified and new code. 
This means that from the perspective of fault density, 
extensively modified code does not bring much bene- 
fit and that slightly modified code is nearly as good as 
code reused verbatim. 

We used the same approach to obtain a statistical 

Densiry 
7.5 

2.5 

0 - 

New I Exr I Slight I Verbatim 
Reuse Categories 

comparison of class error density per class category. 
Error density is more complicated to compute with 
respect to reuse categories, as one error may trigger 
changes in several classes from different categories. 
We calculated the error weight per class; then, for 
each class category, we computed the sum of the 
classes' error weights for each project and divided it 
by the sum of the sizes of those classes. 

This assumption is not so strong, since (1) in gen- 
eral, each error generates only one fault, and (2) when 
an error generates many faults, in most cases all class 
es affected belonged to the same reuse category. 

12.5 - 

Table 3. Levels of significance (error density 
per reuse category) 

10.0 - 

1 Ext. 

Error 
Density 

2.5 - 

0.0 - 

New I Exr I Slight Verbatim 
Reuse Categories 

Verbatim 
Slight 

Therefore, all errors were considered with equal 
weight. The distributions are shown in Figure 2, and 
the Wilcoxon T-test results are shown in Table 3. 

Again there is no observable difference between 
verbatim-reused and slightly modified classes (even 
though the significance improved compared to fault 
analysis results, it is still greater than 0.05) or between 
extensively modified and newly created classes. This 
lack of difference means that from the perspective of 
error density, extensively modified code does not 
bring much benefit and slightly modified code is as 
good as code reused verbatim. These results confirm 
the results we obtained using Eault density as a quali- 
ty measure. 

We also wanted to verify the hypothesis that the 
higher the project reuse rate, the lower the number 
of project errors. For the sake of simplification, only 

0.08 0.012 
0.0 i 36 

0.012 
0.025 



Table 4. Overview of the projects' data 

verbatim-reused and slightly modified classes were 
considered "reused classes" for computing the reuse 
rate per project. This approximation was to some 
extent justified by the results discussed earlier show- 
ing extremely different trends for slightly and exten- 
sively modified classes. We see this analysis as 
complementary to the earlier analysis, since the 
determination of the relationship between reuse rate 
and error density allows us to quantify the impact of 
reuse. However, the drawbacks of this new analysis 
are that all projects were assumed to be comparable 
and that the results could easily have been biased by 
outliers. Table 4 provides an overview of the projects' 
data, including number of lines of code delivered at 
the end of the implementation phase, reuse rate per 
project, error density (including and excluding ver- 

should be expected to be around 7, and each addi- 
tional 10 percentage points in the reuse rate decrease 
this density by nearly 1 (the estimate is 0.S6) within 
the range covered by the data set (we limit ourselves 
to interpolation). No outlier seems to be the cause of 
a spurious correlation; therefore, this result should 
be meaningful (see Figure 3a). 

Figures 3b and 3c show the relationships between 
reuserate and, respectively, error density &thout ver- 
batim reused classes (R2= 0.54 and pvalue = 0.01) 
and number of errors (R2= 0.66 and pvalue = 0.01). 
In both cases, a significant negative relationship can 
be observed, confirming our interpretation of the 
relationship identified in Figure 3a. In other words, 
we obtained consistent results using three different " 
measures of error density as a dependent variable. iFi 30 2. 4 

Errors 
25 

20 

15 7 

10 
-20.00 0.00 20.00 40.00 60.00 80.00 

Reuse Ratio 

10.00 

Density Errors 0~z1-I- 
2.50 

0.00 
-20.00 0.00 20.00 40.00 60.00 80.00 

Reuse Ratio 

Figure 3a. Linear relationship between error density and reuse rate 
Figure 3b. Linear relationship between error density without verbatim reuse code and reuse rate 
Figure 3c. Linear relationship between a project's number of errors and its reuse rate 

Ve*aum) 

7.  

2.00 
-20.00 0.00 20.00 40.00 60.00 80.00 

Reuse Ratio 

batim reuse), and rework hours. 
The average rate of reuse is approximately 31%, 

kith a maximum of 64%. Based on Figure 3a, there 
appears to be a strong linear relationship between 
reuse rate and project error density when verbatim 
reuse is included in system size. This relationship is 
statistically significant (pvalue = 0.0091 when per- 
forming an F-test) and shows a high coefficient of 
determination (R2= 0.755). The estimated intercept 
and slope are 7.02 and -0.086, respectively. That 
means that when there is no reuse, error density 

Since these measures are based on very different 
assumptions, we are pretty confident in saying that 
reuse has a strong and positive impact on en-or- 
proneness. 

These results support the assumption that reuse 
in 00 software development yields a lower defect 
density. For example, the participants in Project 8 
decided to implement everything from scratch; 
reuse did not have an impact on error density in 
their case. All the participants in the other projects 
performed better, and their error densities appear 



check whether the total amount of reuse per pro- 
ject is related to a reduction in the project rework 
effort. 

70 

60 

40 
Rework 

30 

20 

10 

0 -  

Reuse vs. Rework 
We are interested in seeing whether the effort need- 
ed to repair reused classes is lower than the effort 
needed to repair classes created from scratch or 
extensively modified. We looked at three different 
measures to answer this question: 

- . :e . 
- 

1 - Mean - - - 4 -*- - - - - - - - - - - - 
- eo 

New I Exr Slight Verbatim 

1. Total amount of rework in each class reuse category 
2. Rework normalized by the size of the classes 

belonging to each reuse category 
3. Rework no~malized by the number of faults 

detected in the class of each reuse category 

Reuse Categories 

reuse category. I I Allowing us to look at rework without considering 

Distributions and means are shown in Figures 4, 5, 
and 6. 

These metrics allowed us to look at rework from 
Figure 4. Distribution and mean of project rework per various perspectives: 
reuse category 

Capturing the total cost of rework, expected to be 

. . 
ReworW 
LOCS 

0.0 10 

0.005 

0.000 - 

New Ext Slight Verbatim 
Reuse Categories 

Figure 5. Distribution and mean of proiect rework 

0.015 5 
the rela&e amount of code in each reuse catego- 
ry, which gives us a more accurate insight into the 
relative cost of debugging and perfecting code in 
each reuse category. 
Allowing us to look at the expected difficulty of 
repairing a single fault across the various reuse cat- 
egories, which gives us a more accurate insight 
into the modifiability of classes independent of 
their fault-proneness. 

somewhat associated with the size of the classes 
and the number of faults, or changes, in each 

Before any thorough statistical analysis, a look at the 
distributions seems to indicate measures 1 and 2 are 
significantly different across reuse categories. To test 
the significance of this difference, we ran a Wilcoxon 
T test [12]. Instead of using defect density per reuse 
category as scores, we used total amount of rework - .  

density per reuse category 
r 

to decrease linearly with the reuse rate. This is I 3.5 ( 1 
strong evidence that reuse helped improve 
quality across the covered reuse rate range, 
that is, 0% to 64%. 

In [16], rework is identified as a major cost 
factor in software development. Rework on 
the average accounts for more than 50% of 
the effort for large projects [16]. Reuse of 
previously developed, reviewed, and tested 
classes could result in easy-to-maintain classes 
and consequently should decrease the rework 
effort. Here, we first compare rework effort 
on reused and newly created classes. We then 

Figure 6. Distribution and mean of project rework I 

- 

- 

. - 

New I Ext. I Slight I Verbatim 
Reuse Categories 

difficulty per reuse category I 



per reuse category. The results for the first metric are 
shown in Table 5. 

Based on Table 5, we can conclude that reuse 
reduces the amount of rework, even when the code is 
extensively modified. Again there is no obsenable dif- 
ference between the verbatim-reused and slightly modi- 
fied classes. These results show that from the perspective 
of total rework, extensively modified code might still 
bring benefits and, once again, slightly. modiied code is 
nearly as good as code reused verbatim. 

Table 5. Rework per reuse category 

Verbatim 0.138 0.01 8 0.012 
Slight 0.025 0.0 17 
Ext. 0.05 

As for defect density and rework, we used the 
Mrllcoxon T test to analyze the variations of the sec- 
ond metric, that is, rework normalized by the size of 
the classes belonging to each reuse category 
(referred to as rework density) across reuse cate- 
gories. Results are presented in Table 6. 

Based on Table 6, we conclude that reuse reduces 
rework density except when the code is extensively 
modiied. There is no observable difference between 
the verbatim-reused and 

o complement these results, we would like to 
venfjl whether larger project reuse rate is asso- 
ciated with lower project total rework effort. 
Even though the number of data points avail- 
able is small, we can observe a strong linear 
relationship between rework and project reuse 

rates that is statistically significant (p = 0.015 on F-test), 
with a coefficient of determination R~ of 0.65. The esti- 
mated intercept and slope are 88.52 and -0.748, respec- 
tively. That means that, where there is no reuse, rework 

Table 6. ReWOrWSLOC per reuse category 

1 Verbatim 1 0.144 1 0.043 1 0.043 1 
I Slinht I 1 0.028 1 0.042 1 
I Ext. ( 0.16 1 
effort should be expected to be around 88 person- 
hours for each project and that for each additional 10 
percentage points in reuse rate (within the reuse rate 
intend covered by our data set) rework effort mill 
decrease by nearly 7 -3 person-hours. These results are, 
of course, specific to the system requirements imple- 
mented in the study, but they could be generalized as 

Table 7, Overview of the projects' data collected 
after the errors have been fixed 

slightly modified classes. 
These results show that 
from the perspective of 
rework density, reuse 
brings benefits and 
slightly modified code is 
nearly as good as code 
reused verbatim. 

Some projects had no 
faults in their verbatim 

5 8:173 3:273 40.04 159 51.4 30.82 
6 8,216 3.099 37.71 264 31.12 12.38 
7 9,736 4,206 43.2 1 40 69.54 16.89 

or slightly reused class- * 5,255 0 0 264 19.9 19.20 

es. The number of data 
points in these categories thus became too small for follo~vs: Each additional 10 percentage points in reuse 
applying a Wilcoxon T test to the third metric. In rate, within the reuse rate intend covered by our data 
such cases, we could look only at the difference set, decreases rework by nearly 8.5%. Again, no outlier 
between new and extensively modified classes. No seems to be causing any spurious correlation (see Fig- 
significant difference could be observed in this case. ure 5). 
As a last attempt to look at change difficulty (the To better capture the concept of rework, it would 
third metric), we performed an analysis at the class be better to look at rework normalized by the size of 
level, where rework effort per class was normalized the changes that occurred during the repair phase. 
by the number of faults detected and corrected in Unfortunately, we could not capture this information 
these classes. No significant differences in distribu- accurately with the data collection procedures we had 
tion could be observed across reuse categories. If in place. As a rough approximation, we looked at 
these results were confirmed by further studies, it rework normalized by the number of faults. However, 
would mean that differences in rework effort across no significant differences were observed between 
reuse categories would be mainly due to differences reuse categories. This result was confirmed when we 
in fault-proneness and not to differences in ease of attempted to investigate rework normalized by the 
modification. number of faults at the class level. 

To conclude, rework seems to be lower in high-reuse In conclusion, the results support the assumption 
categories, but there is no statistically significant evi- that reuse in 00 software development results in 
dence that faults are easier to detect and correct. lower rework effort. 



Software Product Reuse and Software Productivity 
Reuse has been advocated as a means of reducing 
development cost. For example, in [9], reuse of class- 
es is identified as one of the most attractive strategies 
for improving productivity. As productivity is often 
considered an exponential function of software size, a 
reduction in the amount of sofnvare to be created 
could provide a dramatic savings in development 
costs [8]. The question now is, to what extent does 
reuse improve productivity-despite change and inte- 
gration costs? 

Table 7 shows, for each project analyzed: 

Number of lines of code delivered at the end of 
the lifecycle 

Number of lines of code reused (verbatim reused 
and slightly modified classes) 

Reuse rate 
Effort 
Productivity, including verbatim reused code 
Productivity, excluding verbatim reused code 

Note that the data in the reuse rate and SLOC deliv- 
ered column are diierent from the data in Table 4. 
This difference stems from the fact that Table 8 pre- 
sents the results at the end of the lifecycle, that is, 
after the errors have been fixed, whereas Table 4 pre- 
sents the data collected at the end of the implemen- 
tation phase. 

ASED on data in Figure 8a, we can conclude 
that there is also a strong linear relationship 
( R ~  = 0.666), which is statistically significant 
(pvalue = 0.013 ON an F-test) between pro- 
ductitity (including verbatim reuse) and 
reuse rate. The estimated intercept and 

slope are 14.04 and 1.1 1, respectively. When there is 
no reuse, productivity should be expected to be 
around 14 SLOC per hour and each additional 10 
percentage points in the reuse rate should increase 
productivity by 11 SLOC per hour. Figures 8b and 8c 
show the relationships between reuse rate and, 
respective1 productivity without verbatim reused 

2? classes (R - 0.45 and pvalue= 0.067) and effort ( R ~  
= 0.38 and pvalue = 0.099). In Figure 8b, a weaker 
positive relationship (significant at the a = 0.1 level) 
can be observed, confirming our interpretation that 

productivity has improved. Figure 8c shows a weak 
negative trend (expected to be negative because the 
dependent variable is effort), also supporting our 
claim about productivity improvement. However, the 
latter figure is graphically and statistically not as clear 
as the other two figures, due to the third observation, 
which is clearly an outlier. 

To explain outliers on these scatterplots, we per- 
formed some qualitative analysis of the process used, 
the teams involved, and the design strategies adopted 
in each project. For example, the team in Project 3 
had no previous experience with respect to GUIs, and 

Figure 7. Linear relationship between rework and 
reuse rate 

1 00 

80 

Rework 

60 

40 

20 

learning the basics was perceived as a significant 
effort. Similarly, Project 6 appears to have had lower 
productivity than expected in Figures 8a, 8b, and 8c 
when considering reuse rate. Lower productivity was 
explained by the particularly sophisticated GUI this 
group designed. In the context of the requirements 
we provided to the students, the GUI could be con- 
sidered gold-plating. 

8 0 3  

- 

- 

- 

*\ 

07 

r I I I I 

Conclusion 
This article offers significant results showing the 
strong impact of reuse on product productivity and, 

-20.00 0.00 20.00 40.00 60.00 80.00 
Reuse Ratio 

100.00 

preduccinry :Pi 
20.00 

0.00 
-10.00 0.00 10.00 20.0030.0040.00 50.00 

Reuse b r i o  

45.00 

Productiviy 
(No Verbatim 30.00 
Reused Cede) 

z.00 

20.00 

15.00 
-10.00 0.00 lO.00 2000030.w40.00 50.00 

Reuse Ratio 

400 mm:Fi 200 

I50 

100 
-10.00 0.00 10.00 20.0030.0040.00 50.00 

Reuse Ratio 

Figure 8a. Linear relationship between productivity and reuse rate 
Figure 8b. Linear relationship between productivity (without verbatim reuse code) and reuse rate 
Figure 8c. Linear relationship between development effort and reuse rate 



especially, on product quality, or defect density 
and rework density, in the context of 00 systems. 
In addition, these results were obtained in a com- 

'Iron- mon and representative 00 development en\ '  
ment using standard 00 technology. Such results 
can be used as rough estimates by managers and as 
a baseline of comparison in future reuse studies 
for the purpose of evaluating reuse processes and 
technologies. 

This study can and must be replicated in indus- 
try and academia. In industry, replicating this 
study can, for example, help managers decide 
whether it is worth investing in particular 00 
technologies to improve software quality and pro- 
ductivity. In academia, replicating this study can 
help test 00 methods or compare the advantages 
of such methods against those of traditional devel- 
opment methods. In an): case, replication is neces- 
sary to confirm the results we obtained and refine 
the models we built. 

Future work includes refinement of the informa- 
tion collected during the repair phase with regard 
to the size and complexity of the changes. This 
would allow us to better estimate the impact of reuse 
on rework. However, it is likely to require better 
automation of the change data and therefore the 
design of tools for monitoring the changes to code 
and design documents. In addition, the way we mea- 
sure reuse and size needs to be refined to obtain 
more accurate measurement of what is actually used 
by the system as opposed to what is inherited. Thus, 
we should be able to measure productivity and 
defect density more precisely. 

We also intend, in future replications of this experi- 
ment, to assess independently the impact of horizontal 
(non-domain-specific) and vertical (domain-specific) 
software reuse on software quality and productivity. We 
will compare the advantages and drawbacks of using 
these two types of software libraries. Finally, it would be 
interesting to refine our comparison of the internal 
class characteristics across reuse categories by using 
more specific 00 memcs [I]. Mle need to better char- 
acterize the impact of reuse on system size, complexity, 
coupling, and cohesion. 

Acknowledgments 
We want to thank Gianluigi Caldiera for helping us 
teach the OMT method; Khaled El Emam, Jyrki Kon- 
tio, Carolyn Seaman, and Barbara Swain for their sug- 
gestions, which helped improve both the content and 
the form of this article; and the students of the Uni- 
versity of Maryland for participating in this study. 

This work was supported, in part, by NASA Grant 
NSG5123, NSF Grant 01-5-24845, Fraunhofer 
Gesellschaft, UMIACS, and M7estinghouse Corp. 

References 
1. Abreu, F.B., and Carapuca. R. Candidate mettics f i r  object-vri- 

ented sofnvare within a taxonomy framework. J. %st. Sojrurrrv 
26, 1 (1994). 87-96. 

2. Amadeus Software Research. Inc. Getting Started nit11 Amadms. 
Amadeus Measurement System, Irvine, Calif.. 1994. 

3. Agresti, M'.M'., and McGarn, F. The hlinnotvbrook workshop 
on software reuse: A sltmnlar\. report. In Sof,rcrc~re Rrccsc: E n ~ c ~ g  
ilzg Terlrnolup. M'. Tracz. Ed.. IEEE Press, 1987. 

4. Basili, V. \'ie\ving maintenance as reuse-oriented software 
development. IEIE Su/lrei(~r,p 7, 1 (Jan. 1990). 19-23. 

5. Basili. V., and M7eiss, D.M. A me tho do lo^ for collecting valid 
software encrineering ctata. I E E  'lions. So/fu~c~w E71,r 110, 6 
(Nor. 1984)if28-738. 

6. Basili. \'., and Rombach. H.D. Support for comprehensi\,e 
reuse. IEEE Software Engineering Journal (Sept. 1991 ). 
30.3-316. 

7. Basili, \'., and Rombach, H.D. The TAME project: Towards 
itnprovementuriented software environn~ents. IfiXE Trrrns. on 
Softrc~oreEn~ J. 14, 6 (June 1988). 7.58-773. 

8. Boehm, B.W. SoJzerntr Enginvm'ng Ero~ioinirs. Prentice-Hall. 
Englewood Cliffs. IiJ.. 1981. 

9. Boehm, B.M7., and Papaccio. P.N. Understanding and control- 
ling software costs. I E L  Trnns. So/crecrre Eng. 14, 10 (Oct. 
1988), 1462-1476. 

10. Briand, L., Mo~asca. S., and Basili, \'. Properybased sofnvare 
engineering measurement. I D 3  Tmns. Soflzonrv Eng. 22, 1 
(Jan. 1996). GS-86. 

11. Brooks. F.P. No silver bullet: Essence and accidents of sofnvare 
engineering. Coinj~utrr 20.1 (Apr. 1987). 

12. Devore, J. ProbnbiIifi crnd Stntistirs for E~igi~lming ond Srirnrvs. 
Brooks Cole Publishing Co. 1991. 

13. Fenton, N.E. Sojrocrlr ~llrtrirs: 9 Rigorous ,4j~/~ronrl1. Chapman 8- 
Hall, London. 1991. 

14. Ferguson, G., and Takane. S. Strrtistirnl rincr~ssis in P~c l lo log  
nnd Educcrtion. McGra~v-Hill, Sew York. 1989. 

15. Heller, C;., Valett, J.. and IVild, M. Data Collection Procedure 
for the Sofncare Engineering Laborator) (SEL) Database. SEL 
Series, SEL-92-002. N.GA/GSFC. Greenbelt, Md., 1992. 

16. Jones, T.C. Aopnm?ning Ilmfltdir~itj. McGrawv-Hill, New Ibrk, 
1986. 

17. Judd, C.M., Smith. E.R., and Kidder, L.H. RPsenrrl, Akrthods in 
SorialRrkziions. Harcourt B~ace  Jovano\ich College Publishers. 
1991. 

18. k t e g e r ,  C.IV. S v f m r e  reuse. ACAl Cotnptct. Szrn~. 24.2 (1992), 
131-183. 

19. Rombach, H.D. Software reuse: A key to the maintenance 
problem. hlj: Sof,tc~ow Tvrlinol. J. 33. 1 Uan./Feb. 1991 ). 8G-92. 

20. Rttmbaugh, J.. Blaha. M.. Premerlani, W., Eddy. F.. and 
Lorensen, W. Objert-Orin~ted dlwlcdi~lg and Design. Prentice- 
Hall, Englmvood Cliffs. KJ.. 1991. 

21. Thomas, W., Delis. A.. and Basili. \'. An evaluation of .Ada 
source code reuse. In Proreedings of /he Ado-E.urop(, Intr17irrtionnl 
Conjiirnrr (Zandvoort. The Netherlands. June 1992). 

22. I 'o~tng, D.A. Object-Oriv,i/ed Prog-rn?nt~ring zcdlli C++ crnd 
OSF/MOTF. Prentice-Hall, Englewood Cliffs, N.J.. 1992. 

VICTOR R BASILI is a professor in the Universin of Manland's 
Institute for .4d\-anced Conlputer Studies and Computer Science 
Deparnnent. He can be reached at basi1iQcs.un1d.edu. 

LIONEL C. BRZAND is head of the qttnlin and process engineer- 
ing deparvnent at the Fraunhofer-lnstiturette for Esperimental Soft- 
ware Engineering in Germany. He can be reached at 
briand@iese.fhg.de. 

W A L C ~ O  L. MELO is Lead Researcher in the Software Engi- 
neering Group in the Centre de  Rescherche Infom~atique de Mon- 
trial in Canada. He can be reached at \vmelo@crim.ca. 

Petmission to iwakr digital 'hard cop) oI'p:irt or all of tliis \vork liar prrsoli- 
al or classroom 1t.w is gwtltrd \vithout f'rr prt~vidrd that copies alp 11ot matlr 
or distrihutrd for profit or commrrcial ;td\aiitagr. tlie cop\nglit nolice. tlir 
title of the puhlic:ttioii ittid its datr apprar. aitd ~iotice is giv,!-*n that copying 
is by permission of A(:\l. Inc. To C I ) ~ :  ,!-~thrt-.\.ise. to rc-piiblisli. to post oil 
wmrrs. or to redistribute to lists requires prior sprrific permission aiid/or a 
sre. 





SECTION %ADA TECHNOLOGY 

The technical papers included in this section were originally prepared as indicated below. 

"Using Applet Magic (tm) to Implement an Orbit Propagator: New Life for Ada 
Objects," M. Stark, Proceedings of the 14th Annual Washington Ada Symposium 
(WAdaS97), June 1997 

"The Generalized Support Software (GSS) Domain Engineering Process: An Object- 
Oriented Implementation and Reuse Success at Goddard Space Flight Center," S. 
Condon, R. Hendrick, M. Stark, W. Steger, Addendum to the Proceedings of the 
Conference on Object-Oriented Programming Systems, Languages, and Applications 
(OOPSLA 96), San Jose, California, U.S.A., October 1996 





Using AppletMagic(tm) to Implement an Orbit 1kf 
Propagator: New Life for Ada Objects 

Michael Stark 
Flight Dynamics Division/ Code 551 

Goddard Space Flight Center 
Greenbelt, MD 20771 

michael.e.stark@ gsfc.nasa.gov 
Phone: 301-286-5048 

Fax: 301-286-0245 

Introduction 
This paper will discuss the use of the Intermetrics AppletMagic tool to build an applet to display a 
satellite ground track on a world map. This applet is the result of a prototype project that was 
developed by the Goddard Space Flight Center's Flight Dynamics Division (FDD), starting in June 
of 1996. Both Version 1 and Version 2 of this applet can be accessed via the URL 
http://fdd.gsfc.nasa.gov/Java.html. This paper covers Version 1, as Version 2 did not make 
radical changes to the Ada part of the applet. 

This paper will briefly describe the design of the applet, discuss the issues that arose during 
development, and will conclude with lessons learned and future plans for the FDD's use of Ada 
and Java. The purpose of this paper is to show examples of a successful project using 
AppletMagic, and to highlight some of the pitfalls that occurred along the way. It is hoped that this 
discussion will be useful both to users of AppletMagic and to organizations such as Intennetrics 
that develop new technology. 

The Orbit Applet 
Figure 1 shows the design of the Orbit Propagator applet. 

/ World 

\ Map 

<~nal~tica? 
Figure 1. Applet Design Model , 



This applet is built from the following components: 

Package Analytical-Model is reused from the Generalized Support Software (GSS) library class 
of the same name [I]. It implements the GSS class Analytical Model with the abstract data type 
Analytical-Model-Instance. This package was modified to simplify the design, by adding 
parameters (such as Earth radius) to the package that in GSS are retrieved via dependencies on 
other objects. The operation' Propagate is used to compute the satellite's position and velocity at a 
requested time. Selectors are then used to access these data. 

Package World-Map is responsible for controlling the propagation of the orbit and for computing 
longitude and latitude. This package is implemented as an abstract state machine, instead of 
exporting a private type it exports subprograms and simple numeric types and stores state data as 
package body variables. 

For each point to be plotted package updates the current (simulated) clock by adding the user input 
step size to the simulated time, propagates the orbit to that time, then computes the longitude and 
latitude. The longitude and latitude is computed by converting the position vector (x,y,z) to 
spherical coordinates (right ascension, declination, height), then converting right ascension to 
longitude by accounting for the Earth's rotation (latitude and declination mean the same thing in 
this case). The latitude and longitude can then be selected by any client of the World-Map 
package. 

Graphics code is written in Java as an applet which can be started from a Web browser. This code 
retrieves the latitude and longitude from the World-Map package, and then plots a point at the 
appropriate location over a Mercator projection map of the Earth. 

The total size of the system is shown in the table below. The system also references a utility 
library of approximately 35,000 lines of code (carriage returns), but uses only a small proportion 
of these utilities. 

The size of each of these components is measured in camage returns. Listing of World-Map, 
main-ada and driver-java are contained in the appendix to this paper. A full set of Ada source code 
will be available at the FDD Java Web site. 

The approach to developing the applet was a three step approach 

1) Develop the Ada code and test an application that uses an Ada test driver. 
2) Replace the Ada test driver with a Java test driver to test the interface. 
3) Deliver the compiled code for integration with the graphics portion of the applet. 

The integration of the Ada components with the applet did not involve the use of AppletMagic, and 
the interaction of the graphics code with the propagator code is closely modeled by the Java test 
driver. Thus we will use the Java test driver to show how the code compiled by AppletMagic was 
used within the applet. 



The Development Process 
This project was developed with one part-time Ada developer (the author), with a second developer 
to help with the initial porting of our utilities to AppletMagic, and one Java developer who was 
responsible for the graphics. The team initially had little experience with either Ada 95 or Java. We 
started our work with Version 1.3 of AppletMagic under Solaris on a Sun Ultra machine, and are 
currently using Version 2.0.1. 

The main issues encountered were that the AppletMagic documentation contains more information 
about Ada systems using Java libraries than on Java code calling Ada, and that the compiler used 
was a beta version. The parts below will discuss these issues in chronological order. The section 
on lessons learned will draw conclusions from the results of this project. 

Getting Started 
The approach taken to the world map application was to initially develop and test using our existing 
Ada 83 development environment (VADS under HPIUX 9.05), then to rebuild and test using 
AppletMagic. The development under VADS involved simplifying the Analytical-Model package 
to remove dependencies, developing the World-Map package, and writing the test driver Main. 
Having done this, we were ready to start with AppletMagic. 

The first step was to recompile the system, using a compilation order generated by the VADS 
compiler and substituting invocations of AppletMagic's "adqiava" command for the invocations of 
VADS. We found that AppletMagic produced clear messages and well formatted listings, so the 
initial compilation went smoothly. We encountered only minor problems getting the AppletMagic 
version of Main running. 

The first was the simple fact that Version 1.3 of AppletMagic did not implement Text-10. This 
problem was circumvented by importing java.io.Printstream and using the printlno function. 
Intermetrics added the Text-I0 package to a later release of AppletMagic. This was requested by 
several users, because Java's print functions lack the formatting capabilities of the Ada-Text-I0 
package or of C's printf() function. 

In addition to Text-10, there were some predefined functions that were not yet implemented. The 
most notable of these were "mod" and "**", which are heavily used in our mathematically oriented 
domain. 

The second issue was that the VADS compiler (at least at optimization level 0) generated a 
compilation order that compiled generic package instantiations before the generic package body. 
This does not cause any problems within VADS, but would not compile with AppletMagic. As 
we were more interested in producing a running application and applet than in investigating the 
cause of the problem, we simply changed the order and pressed on. 

Once these issues were resolved, all the Ada code was compiled and executed, and the results were 
identical to the VADS compilation of the same code.. We were then ready to go on and write a Java 
test driver, which would be used by the graphics developer as an example of how to use the Ada 
code. 

Java Calling Ada 
To test the ability to call Ada code from Java, we replaced the Ada test driver Main with the Java 
class Driver. To determine what calls Driver would make to World-Map, we needed to execute the 
Java disassembler via the "javap World-Map" command. This command provides Java source 
code for the interface to the Ada package World-Map. The results of javap are usually redirected 
to a file that is used to document the interface. 



The only difficulty encountered was in converting Java strings to Ada strings. We initially found 
the problem by examining the output of javap. The operations with string arguments had an extra 
parameter that (presumably) contained array size information, and returned a byte[] array rather 
than the expected char [I array. When we examined the problem further, we found that 
AppletMagic provides the operation Interfaces.java."+", which converts an Ada string to a Java 
string (represented by the Ada type java-lang-String-Ptr), but does not provide the inverse 
operation. This allows a call of the Java operation (on class Graphics) 

g-drawstring ("Ada rules!"); 

to be implemented as 

drawstring (g, +"Ada rules"); 

in Ada packages. 

Thus we looked at the string representations in more detail. Ada strings are the familiar array of 8- 
bit characters, but Java implements strings in class String, which is accessed by reference, rather 
than declared as an array. The Java strings also contain 16-bit Unicode characters, rather than the 
usual 8-bit character. 

These difficulties were overcome by using pragma Convention (Java, subprogruin_nurne ) to 
eliminate the array size information, and by using type Wide-String instead of String for the 
subprogram argument. These modifications to package World-Map were the first use of features 
that are new in Ada 95. The type Wide-String in Ada directly maps to type char[] in Java, so to 
call the Ada function, a Java string S would be converted to Wide-String by passing the argument 
S.toCharArray() to the Ada subprogram. 

The use of pragma Convention is briefly discussed in the applet writer's guide [Z], but was not 
discussed in the context of passing array parameters between Ada and Java. Since this information 
applies to pmsirzg arzy array type, not just strings, it probably deserves to be highlighted in its own 
applet writer's guide section. 

This approach corrected the interface. The only remaining problem was to convert Wide-String 
parameters to and from type String, so that our existing utility library could be used. The source 
code for these functions, which were implemented in the package body of World-Map, is shown 
below: 
-- Hidden functions to handle strings of 16-bit characters 
-- these function allow reuse of 8-bit character string utilities 

function To-Wide-String ( S: in String) return Wide-String is 
W : Wide-String(l..S1length); 
J : Positive := S'first; 
Pos : Natural; 

begin 
for I in W'range loop 

Pos := Character'pos (S(J) ) ;  

W(1) := Wide-Charactersval(Pos); 
J := J+1; 

end loop; 
return W; 



end To9ide-String; 

- - 
function To-String (W : in Wide-String ) return String is 

S : String (l..W1length); 
J : Positive := W'first; 
Pos : Natural; - 

begin 
for I in S'range loop 

Pos := Wide-Character'pos (W(J) ) ;  

S(1) := Characterlval(Pos); 
J :=  J+1; 

end loop; 
return S; 

end To-String; 

The conversion function To-String worked well, but To-Wide-String raised the Java exception 
"java.lang.IndexOutOfRangeException77 when the boldfaced line was executed. The conversion to 
Wide-String was intended for use in the Current-Time-Of selector function, which was used in 
testing, but not in the full scale applet. The testing work around was to write a second time 
selector that returns type String, and modifying the Ada test driver to use that function. The Java 
test driver does not write time data as part of its output. This was another case of a problem that 
was not pursued to resolution, since it did not stop the development of the applet. 

Once the issues related to string parameters were resolved, the application produced the same 
results with the Java test driver as with the Ada test driver. The next steps were to integrate the 
Ada packages with the Java graphics code, and to prototype the possible interactions of Java 
classes with Ada tagged types. We will first address the implementation of classes in Ada 95 and 
Java. 

implementing Classes in Ada 95 
The World-Map package described above met the goal of producing applet code with minimal 
effort. However, we also needed to investigate the interoperability of Ada 95 and Java code. To 
do this, we needed to demonstrate the following: 

1) Objects can be allocated in Java code from classes implemented in Ada 95 
2) Objects can be allocated in Ada 95 from classes implemented in Java 
3) Classes implemented in Ada 95 can be extended in Java 
4) Classes implemented in Java can be extended in Ada 95. 

The fourth objective was met during the prototyping of the tirst, by developing Ada classes as 
explicit extensions of java.lang.Object. The result of the prototyping was that once the first 
objective was met the second and third were straightforward to verify. 

The first step of our protoyping was to rewrite World-Map to meet Intermetric's convention for 
classes. The new version of the World-Map package is shown below in outline form: 

package World-Map is 
type World-Map-Obj is tagged private; 





The use of pragma Export is probably obvious to experienced Ada 95 programmers, but not all 
AppletMagic users will be experienced Ada 95 programmers. An example such as the one above 
would be a useful addition to the applet writer's guide. The use of the convention 
Java-Constructor is already well documented, but more in the context of extending Java classes 
than in making Ada code callable by Java. 

Once the Export pragmas were added, we were able to allocate an object within a new version of 
the Java test class driver-java and produce the same results as the abstract state machine 
implementation. We tested both a version that defined type World-Map-Obj directly and one that 
defined it as an extension of java.lang.Object, which we tested with both an Ada and a Java test 
driver. 

As stated above, the extension of java.lang.Object met our fourth prototyping objective, to show 
that a Java class could be extended in Ada 95. We will not actually implement classes this way, so 
that our code can be used outside the Java context. All Java classes are extensions of class 
java.lang.Object in any case, and the byte code generated from AppletMagic does this whether or 
not this is explicitly done in the Ada source. 

After implementing the World-Map class, we developed a Java subclass WorldMapDeg that 
extends WorldMap so that all angles would be expressed in degrees rather than radians. The Java 
source code follows: 

public class WorldMapDeg extends World-Map { 

private final double RTD = 57.295; 
private final double DTR = 1.0 / RTD; 

/ /  setup functions -- convert values to radians for processing 

public void Set-Inclination (double i) { 
super.Set-Inclination (DTR*i); 

3; 

/ /  A few similar modifiers removed for compactness 

/ /  selectors -- convert to degrees for output 

public double Longitude-Of ( )  { 

return RTD * super-Longitude-Of(); 
3 ;  

public double Latitude-Of 0 { 

return RTD * super.Latitude-Of(); 
3; 

3; / /  class WorldMapDeg 

We then modified the test driver to allocate an object of class WorldMapDeg and to express all 
angles in degrees. Again, we obtained the same results as before. 

The iinal test was to create an interface to a Java class and allocate an object in Ada. W e  had no 
real doubts that this could be done, because Intermetrics had already done that with the Java API 
packages such as java.awt. Nonetheless, it was useful to verify this for ourselves, and especially 
useful to learn the process needed to make the Java code visible to the Ada compiler. 



The class we wrote was a simple class to write latitude and longitude as debug output, as shown 
below: 

class MapData { 
/ /  instance variable 
private boolean debugFlag; 
/ /  constructor 
public MapData ( )  {debugFlag = false;} 

/ /  member functions 
public void initialize ( )  {System.out.println ("Initialized!"); } 
public void finalize ( )  {System.out.println ("Finalized! " 1 ; )  
public void debugon ( )  {debugFlag = true;} 
public void debugoff 0 {debugFlag = false;) 
public void write (String time, double longitude, double latitude) { 

if (debugFlag) { 
System.out.println (time + " " + longitude + " " + latitude); 

1 
1 / /  write 

) / /  MapData 

The sequence of UNIX commands for entering this into the Ada library is 

% j avac MapData . j ava 
%java2ada MapData-class > MapData-ada 
%adareg MapData-ada 

The file MapData-ada provides the Ada package specification that corresponds to the Java class, 
and accesses the Java code using the Import pragma. The class WorldMap was then successfully 
modified to contain a reference to a MapData object in the tagged record defining its state, and to 
call the constructor for MapData. 

The javac command invokes the Java compiler. The command java2ada is provided by 
AppletMagic to create Ada interfaces to Java code. The command adareg is used in the place of 
adajava when an interface to an existing class file is being entered into the Ada library. In this 
case, all the pieces of the command sequence needed to enter class MapData into the Ada library are 
documented. However, and end-to-end example like the one above would make the process 
clearer. 

The additional work described in this section was not delivered as part of the applet, but was 
instrumental in convincing us that Ada 95 and Java would interact well. The only minor issue that 
remains is that record components defined in the tagged record, which is defined in the private part 
of the Ada package specification, map to public instance variables in the Java class. Since the Ada 
type should only be accessible in the package body, or in child library units, it would be more 
appropriate to produce protected instance variables. However, this is an issue that can be 
addressed by coding standards that discourage the direct use of such public variables in the Java 
code. 

Verifier Problems 
After the Ada code was compiled and tested as an application, the byte code files were delivered for 
integration with the graphics code. The applet was smoothly integrated and run under Sun's 



Appletviewer, and with minor corrections produced the correct ground check. When the applet 
was first run from Netscape, however, it refused to run due to verifier errors. 

Both the java command that runs applications and Sun's Appletviewer allowed code to be executed 
whether or not it passed byte-code verifkation. Intermetrics suggested running the Java command 

%javap -verify -v -verify-verbose <classname> 

on each class to determine if it would pass verification. We started by manually running this 
command for each class, but quickly decided to write a script that would test all the class files in a 
directory and all its subdirectories. This script is also included in the appendix to this paper. 
When we ran this script, we ran into three main errors. 

First, the utilities package Standard-Types includes a type Various that is declared as an array of 
bytes, and uses Unchecked-Conversion to convert to and from standard scalar types such as 
Integer. This type was intended to contain spacecraft telemetry, and was made a byte array rather 
than a variant record because the data was passed to and from a user interface implemented in C, 
and the UI developers were too understaffed to design an interface that would handle Ada variant 
records. Since the applet was not producing or using telemetly, the Unchecked-Conversion 
instantiations were removed from the body of Standard-Types and the conversion functions were 
revised to return constant values. 

Second, the code fragment 

when Numeric-Error I Constraint-Error => 

failed verification wherever it occurred. Removing Numeric-Error from this line solved the 
problem. However, Intermetrics fixed the compiler error before we needed to change every 
occurrence of this clause. 

Finally, many of the utility functions contained uninitialized local variables, many of which caused 
verifier errors. Executing the verification script and redirecting the output to a file gave us a list of 
classes that failed verification. The only drawback of this script is that the Java verifier halts after 
the first failure, rather than scanning the whole class tile. This forced several iterations for some 
files, so the corrections were both straightforward and tedious. If one is using AppletMagic to 
generate Java byte-codes, the style guideline of initializing local variables at the point of declaration 
should be strictly enforced. 

After these problems, the orbit propagator applet was runnable from Netscape on the Sun or on a 
Macintosh, but not on a PC with Windows 95. In addition, the applet also encountered verifier 
errors on all our platforms when Internet Explorer was used as the browser. However, the error 
message from the verifier indicated that the failure was in the AppletMagic class 
interfaces,java.Ada-Exceptions. When Intermetrics made the corrections, the applet ran under all 
browsers except Internet Explorer on Windows machines. This problem still has not been 
resolved. The lesson here is that all Java virtual machine implementations are not created equal. 
We found it disturbing that the different verifiers were inconsistent, but the solution to this problem 
is beyond the control of both Goddard and Intermetrics. 

Lessons Learned 
1)  Establish a good relationship bemeel?. user 0n.d ve17dor. The pro-ject described in this paper 
would not have been successful without the timely answers to e-mail questions and response to 
bug reports provided by Intermetrics. While this seems to be an obvious point, we will 
nonetheless state it, since it was so critical to our success. 



2) Adu 83 was easily inodified to use Java. This implies that existing Ada code need not be 
replaced should an organization want to transition to Java, saving the organization money and 
freeing resources to do the interesting user interface and distributed system development in Java. 

3) Docu~nentution should not ussume expertise iiz A h  95 and object-oriented programming. As 
stated above, there is a great potential for use of AppletMagic with Ada 83. Also, there are still 
organizations using Ada that are just beginning to transition to Ada 95. Our organization has done 
some prototyping using Ada 95, but has not used it for full-scale development. Learning Ada 95 
features was part of the process of learning how to use AppletMagic 

4) Upgrade documentation to show how to use Ada code form Java, as well as Java from Ada. 
The FDD is probably not the only organization that would design a Java user interface to interact 
with Ada application code. It would also be useful to have step-by-step instructions in some parts 
of the applet writer's guide, such as importing Java code into an Ada library. It is easier for the 
new user to follow step by step instructions than to gather information from several different parts 
of the documentation. 

5) Provide morefieqz.~ent interim reletlses of a betu product. Bug fixes need to be made available 
to users as fast as they can be produced. The Internet user tends to be a very impatient person. 

6 )  When experimnerzti~?.g with new technology, start small. We built a small applet and got it 
running for demonstration purposes. Once we had the basic version running, we were able to 
create several prototypes through a series of modifications that allowed a step-by-step verification 
of assumptions and proof of several important concepts for a low price. In the past, our 
organization has developed massive prototypes, which tend to take on too many new ideas at once 
and to take too long to produce tangible results. Concepts need to be proven on a small scale first. 

7 )  Don't try to use Java style.for Adu code, or vice versu. It is tempting to have a single 
programming style, but keeping the style language specific has the advantage of making it obvious 
when a call is being made to code in a different language. For example, the Java test driver would 
call World-Map-Initialize () to initialize the world map package, rather than worldMap.Initialize(). 
This would be a visual cue that the Java code is calling Ada. This is a minor point, but we have 
concluded that this is a reasonable approach, so we are documenting it here. 

Future Directions 
The success of the first version of the orbit propagator applet led to an expansion of the FDD's use 
of Java. This included upgrading the applet to read real satellite data from the Flight Dynamics 
Product Center (A server containing files with satellite position information in them) and propagate 
the orbit from the last saved position and velocity of the actual satellite. As stated in the 
introduction to this paper, this new version is available from the World Wide Web. 

The second project that has started is the implementation of a larger system in Java. Two versions 
of a Real-Time Attitude Determination System (RTADS) are being developed for Java. The first is 
to be built as  a new system, with scaled back specifications. The second is to take an existing 
RTADS and to rebuild it using AppletMagic. These two systems will share the same user 
interface, which is being implemented in Java. Thus there will be some adaptation needed to fit the 
Ada code into a different user interface. However, the bulk of the RTADS code should be 
recompilable without modification. Both of these projects are scheduled to finish in September of 
1997. 



Appendix: Source Files 
This appendix contains the source code for the Ada package World-Map that is included in the 
orbit propagator applet, the Ada and Java test drivers used to test the package before integrating the 
Ada code with the Java graphics code, and the shell script "iix" that runs the verifier on all the 
compiled class files. The specification and body of World-Map have been shortened for 
presentation purposes. The full source code can be found on the F'DD Java Web page at 
http://fdd.gsfc.nasa.gov/Java.html. 

World Map 
Packuge specification: 

with Real-Types; use Real-Types; 
package World-Map is 

-- types for time input 
subtype Year is Integer range 1901..2099; 
subtype Month is Integer range 1..12; 
subtype Day is Integer range 1. - 3 1  ; 
subtype Hour is Integer range 0..23; 
subtype Minute is Integer range 0..59; 
subtype Seconds is Real range 0.0..60.0; 

-- parameter setting operations 
-- time string in format yyyyrnmdd.hhmmssm 
procedure Set-Start-Time (To : in Wide-String); 
pragma Convention (Java, Set-Start-Time); - -****  
procedure Set-End-Time (To : in Wide-String); 
pragma Convention (Java, Set-End-Time); - -****  
procedure Set-Stepsize (To : in Real); -- seconds 

-- set parameters for orbit (some are removed to shorten example) 
procedure Set-Semimajor-Axis (To : in Real 1; -- kilometers 
procedure Set-Eccentricity (To : in Real ) ;  

procedure Set-Inclination (To : in Real ) ;  -- radians 
procedure Set-Right-Ascension (To : in Real ) ;  -- radians 
procedure Set-Argument-of-Periapsis 

(To : in Real ) ;  -- radians 
procedure Set-Mean-Anomaly (To : in Real ) ;  -- radians 

-- modifiers 
procedure Initialize; 
procedure Propagate; 
-- selectors (some are removed to shorten example 
function Longitude-Of return Real; 
function Latitude-Of return Real; 

end World-Map; 

Puckage Body: 

with Math-Constants; use Math-Constants; 
with Analytical-Model; use Analytical-Model; 
with Time-Utilities; use Time-Utilities; 
with Time-10; use Time-10; 
with Real-Utilities; use Real-Utilities; 



with Linear-3D-Algebra; use Linear-3D-Algebra; 
with Utility-Exceptions; use Utility-Exceptions; 
package body World-Map is 

Orbit : Analytical-Model-Instance; 
Start-Time : Time-Utilities-Time; 
Current-Time 

: Time-Utilities-Time; 
End-Time : Time-Utilities-Time; 
Increment : Time-Utilities-Elapsed-Time; 
V : Vector3; 
R : Real; 
Longitude : Real; 
Latitude : Real; 
GHA : Real; 

-- World map functions 
procedure Set-Start-Time (To : in Wide-String) is 
begin 
Start-Time := Time-Of (To-String(To) ) ;  

end Set-Start-Time; 

procedure Set-End-Time (To : in Wide-String) is 
begin 
End-Time := Time-Of (To-String(To) ) ;  

end Set-End-Time; 

procedure Set-Stepsize (To : in Real) is 
begin 
Increment := To ; 

end Set-Stepsize ; 

procedure Set-Semimajor-Axis (To : in Real) is 
beg in 
Set (Orbit, Initial-Semimajor-Axis, To) ; 

end Set-Semimajor-Axis ; 

-- some procedure bodies removed to shorten example 
procedure Set-Mean-Anomaly (To : in Real) is 
begin 
Set (Orbit, Initial-Mean-Anomaly, To) ; 

end set-~ean-~nomaly ; 

function GHA-Of (Current-Time : Time_Utilities.TIME) return Real is 

Sec-since-Ohrs-UTC : Elapsed-Time := UTC-Seconds-of-Day-of-Time 
(Current-Time) ; 

GHA : Real ; 
begin 
GHA := (Pi/43200.0) * Sec-since-Ohrs-UTC ; 
return GHA ; 

end GHA-Of ; 



procedure Propagate (To-Time : in Time) is 
AD : RA-DEC ; 

begin 
Propagate (Orbit, To-Time) ; 

GH A := GHA-Of (Current-Time) ; 
V := Position-in-GCI-Of (Orbit, Current-Time); 
AD := Cartesian-to-Ra-Dec (V) ; 
R := AD.R ; 

Longitude := AD-Right-Ascension - GHA ; 
while Longitude < -Pi loop 
Longitude := Longitude + Two-Pi; 

end loop; 
Latitude := AD-Declination ; 

except ion 
when Argument-Error => raise Is-Zero-Vector; 

end Propagate; 

procedure Initialize is 
begin 
Initialize (Orbit) ; 
Current-Time := Start-Time ; 

Propagate (To-Time => Current-Time) ; 
end Initialize; 

procedure Propagate is 
begin 
Current-Time := Current-Time + Increment ; 
Propagate (To-Time => Current-Time) ; 

end Propagate ; 

function Longitude-Of return Real is 
begin 
return Longitude ; 

end Longitude-Of; 

function Latitude-Of return Real is 
begin 
return Latitude; 

end Latitude-Of; 

end World-Map; 

javap com1nu17.d ouput: 

Compiled from world-map-.ada 
public final class World-Map extends java.lang.Object { 

static void <clinit>O; 
public static void Set-Start-Time(int,int,intlint,intldouble); 
public static void Set-Start-Time(char [I); 
public static void Set-End-Time(int,int,int,int,int,double) ; 
public static void Set-End-Time(char [I); 
public static void Set-Stepsize(doub1e); 



public static void Set-J2-Flag(boo1ean); 
public static void Set-Initial-Epoch(int,int,int,int,int,double); 
public static void Set-Initial-Epoch(char [I); 
public static void Set-Semimajor-Axis(doub1e) ; 
public static void Set-Eccentricity(doub1e); 
public static void Set-Inclination(doub1e); 
public static void Set-Right-Ascension(doub1e); 
public static v o i d ~ ~ e t ~ ~ r ~ u m e n t ~ o f ~ ~ e r i a ~ s i s ( d o u b 1 e )  ; 

public static void Set-Mean-Anomaly(doub1e); 
public static void Initialize(); 
public static void Propagate(); 
public static double Longitude-Of(); 
public static double Latitude-Of(); 
public static byte Current-Time-String(int [])[I; 
public static char Current-Time-Of0 [ I ;  
public static boolean End-Time-Reached(); 

1 

driver. ja va 
This file contains the Java test code for package World-Map: 

/ /  test driver for world map application -- M. Stark 
/ / This application generates 3 hours worth of orbit data at a 
/ / 60 second interval. The approach here is the starting point 
/ / for developing an applet to generate world map graphics. 
import World-Map; 
class driver { 

public static void main (String args[]) { 
/ /  variables used in computations 

double RTD = 57.295; 
double DTR = 1.0 / RTD; 
double latitude, longitude; 

/ /  strings for times 
String epoch = "19950502.0"; 
String to = "19950502.0900"; 
String tf = "19950502.120000"; 

/ /  start executable code 
/ /  set up epoch elements for orbit, 
/ /  angles input in degrees by user, converted to radians before calls 

World-Map-Set-Initial-Epoch (epoch.toCharArray0 ) ;  

World-Map-Set-Semimajor-Axis (7000.0); / /  kilometers 
World-Map.Set-Eccentricity (0.0); 
World-Map- Set-Inclination (DTR * 28.5) ; 
World-Map-Set-Right-Ascension (DTR * 0.0); 
World-Map.Set-Argument-of-Periapsis (DTR * 0.0); 
World-Map.Set-Mean-Anomaly (DTR * 0.0); 

/ /  set up world map propagation 
World-Map-Set-Start-Time (tO.toCharArray0 ) ;  

World-Map-Set-End-Time (tf.toCharArray0 ) ;  

World-Map-Set-Stepsize (60.0); / /  seconds 
World-Map-Set-J2-Flag (false) ; 



/ /  initialize and execute 
World-Map.Initialize(); 
longitude = World-Map-Longitude-Of(); 
latitude = World-Map.Latitude-Ofo; 
System.out.println (RTDflongitude + " " + RTD*latitude); 
while (!World-Map-End-Time-Reachedo ) 

{ 
World-Map-Propagate(); 
ttag = timeTag0; 

longitude = World-Map-Longitude-Of(); 
latitude = World-Map-Latitude-Ofo; 
System.out.print1n 

(ttag + RTD*longitude + " " + RTD*latitude); 
1 //loop 

? / /  class driver 

main.ada 
This file contains the Ada test driver: 

with World-Map; use World-Map; 
with Real-Types; 
use Real-Types; 
with Text-10; use Text-10; 
procedure Main is 
package Real-I0 is new Text-10-Float-IO(Rea1-Types.REAL); 
RTD : constant := 57.295; 
DTR : constant := 1.0 / RTD; 

begin 
-- set up initial conditions 
Set-Initial-Epoch (To => "19960502.0"); 
Set-Semimajor-Axis (To => 7000.0); 
Set-Eccentricity (To => 0.0); 
Set-Inclination (To => 28.5 * DTR); 
Set-Right-Ascension (To => 0.0); 
Set-Argument-Of-Periapsis (To => 0.0); 
Set-Mean-Anomaly (To => 0.0); 
Set-Start-Time (To => "19960502.0900"); 
Set-End-Time (To => "19960502.1200"); 
Set-Stepsize (To => 60.0); 
Set-J2-Flag (To => FALSE); 

-- initialize & execute 
Initialize; 
Text-10-Put-Line ("Initial time is = " & Current-Time-String); 
Text-10-New-Line; 
Text-IO.Put (Current-Time-String & " " 1 ;  
Real-IO.Put (RTD * Longitude-Of, Fore =>4, Aft=>4, Exp=>O); 
Text-IO.Put ( "  " 1 ;  
Real-IO.Put (RTD * Latitude-Of, Fore => 4, Aft=>4, Exp => 0); 
Text-IO.New-Line; 



while not End-Time-Reached loop 
Propagate; 
Text-10-Put (Current-Time-String & " " ) ;  

Real-10-Put (RTD * Longitude-Of, Fore =>4, Aft=>4, Exp=>O); 
Text-10-Put ( "  " ) ;  

Real-10-Put (RTD * Latitude-Of, Fore => 4, Aft=>4, Exp => 0); 
Text-IO.New-Line; 

end loop; 
end Main; 

script fix 
This script searches the current directory and all subdirectories for files with extension ".class" and 
uses the javap command to determine if the class will pass byte-code verification within an applet. 
# ! /bin/sh 

recurse ( )  { 
for FILE in $1; do 
if [ "$FILEM !=  "$1" 1; then 
if [ -d $FILE I; then 
recurse $FILE/"*" 

else 
OUTPUT='echo $FILE I grep ".class" I wc -1' 
if [ $OUTPUT !=  "0" ] ; then 
#PREFIX='echo $FILE I sed 's/~.*\///'' 
PREFIX='echo $FILE' 
PREFIX='echo $PREFIX I sed 's/\.class$//" 
PREFIX='echo $PREFIX I sed 's/\//./" 
#echo "Updating $FILE ... $PREFIXn 
javap -verify -v -verify-verbose $PREFIX 

f i 
f i 

f i 
done 

1 

recurse " * "  

1. Flight Dynamics Distributed Systems (FDDS) Generalized Support Software (GSS) 
Functional Specification, Revision 1, Update 4. Document 553-FDD-931046RlUD4, September 
1996. 

2. file appletwriters_guide.txt, documentation provided on line with AppletMagic, August 1996. 



/, -7 -. 
<, .yp? "-65 ,/' 

,4J < a  .*\ 7t2:*&& 
> ?< 

The Generalized Support Software (GSS) 5 

Domain Engineering Process: 
An Object-Oriented Implementation and Reuse Success 

at Goddard Space Flight Center 

Steven ~ o n d o n l ,  Robert ~endrickl,  Michael E. ~tark2, Warren steger3 

Abstract Introduction 
The Flight Dynamics Division (FDD) of NASA's 
Goddard Space Flight Center (GSFC) recently 
embarked on a far-reaching revision of its process 
for developing and maintaining satellite support 
sofiare. The new process relies on an object- 
oriented soJiware development method supported 
by a domain specific library of generalized 
components. This Generalized Support Sofiare 
(GSS) Domain Engineering Process is currently 
in use at the NASA GSFC SoJ2ware Engineering 
Laboratory (SEL). The key facets of the GSS 
process are (I)  an architecture for rapid 
deployment of FDD applications, (2) a reuse asset 
library for FDD classes, and (3) aparadigin shzjl 
@om developing soJ2ware to coniguring sojiware 
for mission support. This paper describes the GSS 
architecture andprocess, results ofielding the 
i r s t  applications, lessons learned, andhture 
directions 

The FDD began, about 3.5-4 years ago, to effect a 
shift from developing applications to configuring 
applications out of generalized, reusable assets, which 
include code components, specifications, tools, and 
standards. These efforts are an outgrowth of 20 years 
of software experimentation at the FDD that have 
been guided, studied, documented, and nurtured by the 
Software Engineering Laboratory (SEL). The SEL is 
a virtual organization which consists of FDD civil 
servants, CSC contractors supporting the FDD, and 
representatives from the Computer Science 
Department of the University of Maryland at College 
Park. 

The effort to move toward configuring applications 
resulted in the Generalized Support Software (GSS) 
Domain Engineering Process. This has involved 
creating an architecture for designing and developing 
the reusable assets and for configuring applications 
from them, as well as evolving a process for the team 
members to follow in doing this work. 

This experience report shares the FDD's motivations 

1 Computer Sciences Corporation, 10 1 10 Aerospace and goals On this how the GSS 

Rd., Lanham-Seabrook, MD 20706; Domain Engineering Process operates today, points 

scondon@csc.com, rhendri@cscmail.csc.com out some of the benefits of the process, provides some 
NASA Goddad Space Flight Center, Greenbelt, MD lessons learned, and leaves You with an idea of how 

20771; michael.e.stark@gsfc.nasa.gov the GSS process is evolving. 

3 Formerly with Computer Sciences Corporation, now 
with Bell Atlantic; warren.l.steger@bell-atl.com The FDD and SEL 

Over the past decade, the FDD has usually consisted 
of about 100 civil servants supported by 300-400 CSC 
and subcontractor personnel. 

The mission of the FDD is to build, deploy, and 
maintain space ground systems for NASA science 
missions, with emphasis on earth orbiting satellites. 



The particular domain of the FDD systems is 
spacecraft flight dynamics. Flight dynamics 
applications are essentially scientific data processing 
systems: some are institutional (support multiple 
missions) and others are mission-specific (we need to 
build a new one for each spacecraft). 

The GSS was developedfirst to support the attitude 
determination subdomain (attitude refers to a 
spacecraft's orientation in space). These applications 
process real-time and non-real-time sensor 
measurements from telemetry data for determining 
spacecraft attitude. This report focuses on this GSS 
experience. (More recently the GSS has been 
broadened to provide interactive tools that help 
analysts plan mission profiles and on-orbit maneuvers. 
Even more recently the GSS has begun expanding to 
provide embedded applications that perform onboard 
autonomous navigation using GPS signals.) 

Approximately 40% of FDD personnel are analysts, 
trained in physics and mathematics, who write 
requirements for all FDD software. Another 40% of 
FDD personnel make up the project organization 
which develops, tests, delivers, and maintains 
software systems for the FDD. The SEL interface with 
the project organization and is composed of 15-20 
government, CSC, and University of Maryland 
personnel. The SEL receives software metrics and 
experience data fiom the project organization, stores 
these in its database, analyzes portions of the data, and 
packages the results as study reports, estimation 
models, best practices, and instructional courses, 
which serve to benefit the project organization. The 
SEL also plays a large role in deciding which new 
software practices to test out in the FDD. The SEL 
has been in existence at the FDD for over 20 years. 

Reuse History 

In the mid- 1980s, we began exploring object-oriented 
( 0 0 )  design and Ada with the goal of increasing reuse 
levels and cutting down cost and cycle time. We 
learned a great deal about using 00 and Ada generics 
for one particular type of application, a simulation test 
tool that we began developing on an Ada-friendly 
platform-the DEC VAX. 

The bulk of our mission-specific applications, the 
AGSSs, however, were still FORTRAN mainframe. 
We were unable to transfer our Ada practices to the 
mainframe because we could not find adequate Ada 
tools for the mainframe environment. In lieu of this, 
we tried to apply some domain engineering and 00 
concepts to this environment. We had some success 
with this approach, but the results were not truly 
"generalized" and the systems grew with each new 
mission and became cumbersome to maintain. 
Nonetheless, these were all valuable experiences on 
which we were able to build. 

Motivation for GSS 
Despite our prior achievements in reuse (and the cost 
reductions that came with them), in the early 1990s 
the FDD was continuing to feel increasing pressure to 
do things "better, faster, and cheaper." 

At the same time, advances in technology were 
driving FDD customers away from mainframe 
solutions. The FDD decided to move all of its flight 
dynamics systems (both institutional and mission- 
specific-approximately 6 million lines of code) to a 
distributed workstation environment. 

Because COTS solutions were generally not available 
in this specialized domain, we hit on the approach of 
building our own library of COTS-like objects that 
would be generalized and reusable across the entire 
flight dynamics domain. 

When the FDD began work on the GSS process, we We also saw the move to the workstations as an 
had a fairly solid foundation of experience in reuse. opportunity to eliminate much of the duplication of 
Our efforts were focused largely on the class of . functionality that had built up in 30 years' worth of 
mission-specific applications, where reuse would have the legacy systems. These forces provided the 
the most impact. motivation and goals for the GSS process. 

A little over 10 years ago, the FDD was building these 
systems in a FORTRAN mainframe environment, GSS Architecture Hierarchy 
achieving a modest level of reuse of very low level Examples of GSS classes are: 
utilities. three-axis stabilized attitude model 



@ sun-pointing coordinate system model 
@ V-slit sun sensor model 

A GSS class is implemented as multiple Ada83 
generics. Thus it is not the same as the class construct 
in C++. Similar GSS classes are grouped into 
categories, along with rules for using member classes 
for mission support. A category defines the minimum 
functional interface for each of its classes, making its 
classes plugable and swapable. Several categories are 
grouped into a subdomain, which is a group that 
specifies the functionality in a specific high-level area 
of the overall problem domain. 

Component ' Application 
Development : Deployment 

. - 
I 
I 

Figure 1: GSS Process Overview 

GSS Overview 
Figure 1 shows an overall model of the GSS 
component development and application deployment 
process. 

Central to the model is the asset library. It contains 
not only the generalized software components, but 
also their specifications, as well as tools that are used 
at various points in the process-a code generator for 
producing the generalized components and various 
tools for automating the application configuration 
process. It also contains the standards that the teams 
follow for writing the generalized specifications and 
for implementing the generalized components. 

On the left side of the dashed line in Figure 1, we have 
producers of assets (the domain analysts and 
component engineers). On the right we have the 

consumers of assets (mission analysts and application 
configurers) plus the testers. 

The GSS has evolved and continues to operate 
through a series of overlapping phases. Each of the 
five teams shown in Figure 1 is primarily responsible 
for the activities of one such phase. These phases are: 

Domain Engineering 
Component Engineering 
Application Definition 

@ Application Configuration 
Application Testing 

The first two of these phases have a startup portion, 
an initial portion, and a sustaining portion. These two 
phases are responsible for stocking the reuse asset 
library. The other three phases (making up 
application deployment) are repeated once for each 
application that is configured from the library assets. 

Domain Engineering Phase 
The GSS process begins with the domain engineering 
phase. In domain engineering, the main goals of the 
startup stage are to create a high-level model of the 
domain and to generate standards for documenting the 
architecture and the specifications. 

This is done by defining the boundaries of the 
domain, in terms of a superset of requirements that 
encompasses all of the applications one intends to 
build from the generalized components, anticipating, 
where possible, requirements for future applications. 

The engineers then define, at least partially, several of 
the subdomains. This often takes several iterations of 
looking at different ways to group the generalized 
functionality, sometimes going back to redefine the 
domain boundaries. In the process, the overall 
architecture is defined and standards for specifying the 
architecture components (categories and classes) are 
evolved. 

Core subdomains are used across all applications in 
the domain. Application subdomains are used by a 
given application area. 

Once the domain has been partitioned into 
subdomains and specification standards have been 
developed, the domain engineers "flesh out" the 
specifications for a particular class of applications 
(e-g., telemetry simulators). They define the 



categories and classes in both core and application 
subdomains needed to implement the application. 

This is not strictly a top-down process and often 
involves considerable refinement of the subdomain 
and category boundaries. As each successive 
application type is worked, however, the amount of 
refinement begins to decrease. 

Once all applications have been tackled, the sustaining 
domain analysis phase supports the continued 
refinement of the architecture. It also supports the 
addition of new functionality as new applications 
require development of new generalized components 
or further generalization of existing components (e.g., 
in our domain, when a spacecraft with a new type of 
sensor needs applications built). 

Component Engineering Phase 
After the domain engineering phase is well underway, 
the component engineering phase can begin. As in 
domain engineering, the preliminary stages of the 
component engineering phase focus on developing 
standards to be followed in implementing the library 
assets (classes and categories). 

This involves creating a design for implementing the 
assets as specified by the domain engineers, along 
with a software architecture to support the 
configuration of the assets into applications. (Recall 
that classes are implemented with multiple generic 
packages in Ada.) 

The standard model for interfacing with a GUI is also 
defined during this phase, along with specific coding 
standards that the developers will follow during 
implementation. 

Although much of the "design" of the library assets 
and applications is embodied in the classifications and 
specifications produced by the domain engineers, their 
work can be thought of more as creating a logical 
design, whereas the design work of the component 
engineers can be thought of as creating the physical 

' 

design of how assets and applications are 
implemented in terms of language units, data 
interfaces, and GUI interfaces. 

The definition of rigorous specification and 
implementation standards makes it possible to use 

code generation technology to create much of the 
structural code when implementing the assets. 

As the domain engineers are refining their partitioning 
of the domain by specifying assets for the first target 
application, the component engineers begin 
implementing the assets and populating the library. 
Going through this process for the initial application 
helps the component engineers refine the physical 
design. 

The code generator mentioned earlier is also refined 
and validated during this phase. On GSS, the code 
generator produces approximately 75% of the code 
required to implement a class. The component 
engineers translate the specifications into a code 
generator input language, generate the structural code, 
and then implement the detailed algorithms from the 
equations in the functional specifications. Classes and 
categories are inspected and unit tested, at least 
initially (more on this in lessons learned). 

Once a critical mass of components has been created, 
the component engineers prototype an application (or 
a subset of an application) to validate the design. This 
allows further refinement of the architecture before 
full-scale production of assets gets underway. 

Once the library is populated with assets for all target 
applications, the sustaining component engineering 
phase begins. This is the counterpart to sustaining 
domain engineering-implementing specification 
changes, error corrections, new requirements, etc. 

Application Definition Phase 
The next three phases are repeated once for each 
application that is configured from GSS assets. First 
among these is the application definition phase. The 
first step in this phase, defining system operations 
concepts and requirements, is the same as in 
traditional software engineering. 

Once requirements are defined, however, the mission 
analysts then determine what types of applications 
they need to meet them. For example, if they need 
attitude determination, do they need a real-time 
system, a non-real-time system, or both? 

Once an application type has been chosen, the set of 
objects required to build the application for the 
spacecraft's particular configuration is identified. 



Spacecraft-unique default parameter values are then 
specified for all of the identified objects, as well as 
any objects required by tracing dependencies. 

Finally, the contents and layout of user interface 
displays and reports are defined. 

One other consideration in the application definition 
phase is whether the application requires any specific 
functionality that is not available from the library 
assets. If so, the domain engineers determine whether 
that functionality should be implemented as a new, 
generalized library asset, or whether unique code 
should be built for use on this application only. 

Application Configuration Phase 

against low-level specifications. Each application 
required about 1200 test items. Testers used a 
debugger tool to examine specific algorithms and 
verify intermediate values. The testing proved to be 
very tedious, very expensive, and-because the code 
contained so few errors-very wasteful. 

After these two applications were tested , the SEL led 
a workshop to develop alternative testing approaches. 
From this effort came the GSS "black box" testing 
approach. Now applications are tested against the 
user's requirements (about 200 test items per 
application). Initial feedback reveals that the testers 
are much happier with this approach and the cost is 
greatly diminished. We are continuing to study this 
testing process. 

We now come to the payoff in the GSS process, the 
application configuration phase. The speed, Results 
efficiency, and repeatability of this phase is one of the 

To date, we have used the GSS assets to configure most important measures of the success of the GSS 
applications for two missions-5 applications for the Domain Engineering Process. 
first mission and 2 applications for the second 

These are the basic steps in the configuration process. mission. We'll use these applications to illustrate the 

Build object table results we're seeing. 

Generate "glueware" 
Configure driver 
Create database of parameter default values for 
initializing the application 
Create database of display formats used by GUI 

Although we began doing these steps manually for the 
first few configurations, it quickly became clear that 
we could develop tools to automate many of them. 

In addition to the steps listed above, any required 
mission-specific functionality is developed during the 
configuration phase. 

Application Testing Phase 
The last phase is the application testing phase. The 
main activities are developing the acceptance test 
plan, conducting the acceptance test, and evaluating 
the test results. We found that testing GSS-based 
applications required some changes in how we carried 
out these activities. 

Our testers first tried a "white box" approach, similar 
to what they had used for testing structured 
FORTRAN systems. Using this approach, the first 
two GSS applications for the first mission were tested 

With GSS we are reusing the same generalized classes 
across multiple applications supporting the sanie 
mission. For the first GSS mission more than half of 
the classes in each of the five applications came from 
the core subdomain, with the rest drawn primarily 
from the various application subdomains. 

The second mission to use GSS components required 
two attitude applications, each of which required a 
very small amount of functionality not already 
available in the library. We were able to meet the 
mission requirements with systems that, when 
considered in total, consisted of 98% reused code. 

Increased reuse usually suggests reduced production 
costs. An average AGSS produced during the era of 
low code reuse (i-e., prior to 1985) cost about 41,000 
hours to develop and test. During the era from 1985 
to, 1993-when AGSSs were still coded in 
FORTRAN, but a code reuse library was actively 
maintained and utilized for AGSSs-the average cost 
per AGSS was reduced about 65%, to 14,000 hours. 
With the first GSS-based AGSS, this new cost has 
been reduced about 65% again, to 4600 hours. For the 
second GSS-based AGSS the results were even better: 



cost was only about 1500 hours, a 90% reduction from effective and efficient for finding the remaining 
the FORTRAN reuse era. errors.) 

In order to achieve these cost reductions in the 2nd With the benefit of hindsight, we wish we had done 
and 3rd eras, it was necessary to invest development the following: 
and testing hours in creating the reuse libraries. The 
FORTRAN reuse library, created for AGSSs required 
95,000 hours, about twice the cost of an AGSS in the 
I st era. The Ada reuse library, created for telemetry 
simulators (at about the same time), required 15,000 
hours. The GSS library, which supports both AGSSs 
and simulators, required 40,000 hours, about 
3 times the cost of an AGSS in the 2nd era. 

In addition, we know that the GSS library required 
36,000 hours from domain analysts, to define and 
write the GSS functional specifications; these are 
shown as a white bar. Because of limitations in the 
data collection methods in earlier times, we do not 
know how many specifications hours went into the 
earlier FORTRAN or Ada reuse libraries. 

Lessons Learned 
The following actions proved very beneficial to us. 

1. Planning for iterations during the startup 
subphases of domain engineering and component 
engineering until convergence on a workable 
design. 

2. Prototyping the design concepts along the way. 
3. Planning extra schedule in the early builds of 

component development for tweaking the 
concepts, refining the code generator, etc. 

4. Freezing changes until we got to the point where 
we could begin to build something, in order to 
avoid spinning our wheels with continual rework. 

5. Scheduling a separate build to go back and bring 
all the assets up to the latest version of the design 
and standards. 

6. Setting rigorous specification and implementation 
standards and developing a code generator to cut 
the costs of asset production considerably. 

7. Automating many of the configuration steps. 
8. Dropping unit testing in favor of unit inspections. 

(Standalone unit testing of generalized classes is 
very expensive. We found inspections to be more 
efficient at finding errors in generalized classes. 
Once we started using the classes in applications, 
we found testing the classes in context to be 

The FDD decided to use a home-grown GUT, which 
was under development in parallel with the GSS. 
Consequently, so we didn't have anything to get in 
front of the users early on. In our environment, end 
users are computer literates who are exposed to slick 
GUIs on various COTS products. Look and feel is 
very important to them. Our end users have been very 
slow to warm up to this GUI. 

We didn't do a very good job of "selling" the 
technology to the mission analysts whom we expected 
to perform application configuration. The fact that we 
were using terms like classes, subdomains, and 
behavior models didn't help-it was a foreign 
language to them. 

We noted above that we automated the configuration 
process. This was more of an afterthought after 
finding out how painful it was to do manually the first 
time around. If we had it to do again, we would have 
planned and developed configuration tools earlier. 
Ideally, we would create GUI-based tools that would 
allow the application definition and configuration 
phases to be combined, while at the same time 
bridging the gap between our object terminology and 
the functional way of thinking to which our mission 
analysts are accustomed. This would have helped 
with the "selling." 

Another group to whom objects and classes were 
foreign words was our independent application testers. 
Working with them early on to establish more of a 
"black box" testing philosophy and to leverage the 
reuse of previously validated assets would have saved 
us a lot of heartache. 

Future Directions 
Our immediate plans are to continue populating the 
library to expand the use of the assets into other 
application domains. The move into the domain of 
mission and maneuver planning is well under way. 
For this we are developing classes in C*. We are 
also beginning to expand into the orbit & navigation 
domain. 



As discussed under lessons learned, we would like to 
create a GUI-based interface so that users can create 
applications by dragging and dropping icons in a more 
intuitive and automated fashion. 





STANDARD BIBLIOGRAPHY OF SEL LITERATURE 

The technical papers, memorandums, and documents listed in this bibliography are organized 
into two groups. The first group is composed of documents issued by the Software Engineering 
Laboratory (SEL) during its research and development activities. The second group includes 
materials that were published elsewhere but pertain to SEL activities. The Annotated 
Bibliography of Software Engineering Laboratory Literature contains an abstract for each 
document and is available via the SEL Products Page at http://fdd.gsfc.nasa.gov/selprods.html. 

SEL-ORIGINATED DOCUMENTS 

SEL-76-00 1, Proceedings From the First Summer Software Engineering Workshop, August 1976 

SEL-77-002, Proceedings From the Second Summer Software Engineering Workshop, 
September 1977 

SEL-78-005, Proceedings From the Third Summer SoJiware Engineering Workshop, September 
1978 

SEL-78-006, GSFC Software Engineering Research Requirements Analysis Study, P. A. Scheffer 
and C. E. Velez, November 1978 

SEL-78-007, Applicability of the Rayleigh Curve to the SEL Environment, T. E. Mapp, 
December 1978 

SEL-78-302, FORTRAN Static Source Code Analyzer Program (SAP) User S Guide (Revision 3), 
W .  J. Decker, W. A. Taylor, et al., July 1986 

SEL-79-002, The SoJiware Engineering Laboratory: Relationship Equations, K. Freburger and 
V. R. Basili, May 1979 

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Program Design Language (PDL) in 
the Goddard Space Flight Center (GSFC) Code 580 S o ~ a r e  Design Environment, 
C. E. Goorevich, A. L. Green, and W. J. Decker, September 1979 

SEL-79-005, Proceedings From the Fourth Summer SoJiware Engineering Workshop, November 
1979 

SEL-80-002, Multi-Level Expression Design Language-Requirement Level (MEDL-R) System 
Evaluation, W .  J .  Decker and C. E. Goorevich, May 1980 

SEL-80-005, A Study of the Musa Reliability Model, A. M. Miller, November 1980 

SEL-80-006, Proceedings From the Fzjfh Annual SoJiware Engineering Workshop, November 
1980 

SEL-80-007, An Appraisal of Selected Cost/Resource Estimation Models for Software Systems, 
J .  F .  Cook and F. E. McGany, December 1980 



SEL-80-008, Tutorial on Models and Metrics for Software Management and Engineering, 
V .  R. Basili, 1980 

SEL-81-011, Evaluating Software Development by Analysis of Change Data, D. M. Weiss, 
November 198 1 

SEL-81-012, The Rayleigh Curve as a Model for Eflort Distribution Over the Life of Medium 
Scale Software Systems, G. 0. Picasso, December 198 1 

SEL-8 1-0 13, Proceedings of the Sixth Annual Software Engineering Workshop, December 198 1 

SEL-8 1-01 4, Automated Collection of Software Engineering Data in the SoJiiYare Engineering 
Laboratory (SEL), A. L. Green, W .  J .  Decker, and F. E. McGany, September 1981 

SEL-81-101, Guide to Data Collection, V .  E. Church, D. N. Card, F .  E. McGarry, et al., August 
1982 

S EL-8 1 - 1 1 0, Evaluation of an Independent Verification and Validation (IV& V )  Methodology for 
Flight Dynamics, G. Page, F .  E. McGany, and D. N.  Card, June 1985 

SEL-8 1-305, Recommended Approach to Software Development, L. Landis, S .  Waligora, F .  E. 
McGarry, et al., June 1992 

SEL-81-305SP1, Ada Developers' Supplement to the Recommended Approach, R. Kester and 
L. Landis, November 1993 

SEL-82-001, Evaluation of Management Measures of SofhYare Development, G. Page, 
D. N .  Card, and F .  E. McGarry, September 1982, vols. 1 and 2 

SEL-82-004, Collected Software Engineering Papers: Volume I ,  July 1982 

SEL-82-007, Proceedings of the Seventh Annual Software Engineering Workshop, December 
1982 

SEL-82-008, Evaluating Software Development by Analysis of Changes: The Data From the 
Software Engineering Laboratory, V .  R. Basili and D. M. Weiss, December 1982 

SEL-82-102, FORTRAN Static Source Code Analyzer Program (SAP) System Description 
(Revision I), W .  A. Taylor and W .  J .  Decker, April 1985 

SEL-82-105, Glossary of SofhYare Engineering Laboratory Terms, T .  A. Babst, M .  G. Rohleder, 
and F.  E. McGarry, October 1983 

SEL-82- 1306, Annotated Bibliography of Software Engineering Laboratory Literature, D. 
Kistler, J .  Bristow, and D. Smith, November 1994 

SEL-83-001, An Approach to SofhYare Cost Estimation, F .  E. McGarry, G. Page, D. N. Card, et 
al., February 1984 

SEL-83-002, Measures and Metrics for Software Development, D. N. Card, F.  E. McGarry, 
G. Page, et al., March 1984 



SEL-83-003, Collected SofhYare Engineering Papers: Volume 11, November 1983 

SEL-83-007, Proceedings of the Eighth Annual Software Engineering Workshop, November 
1983 

SEL-83-106, Monitoring Software Development Through Dynamic Variables (Revision I), 
C. W .  Doerflinger, November 1989 

SEL-84-003, Investigation of Specification Measures for the Sofiare Engineering Laboratory 
(SEL), W .  W .  Agresti, V .  E. Church, and F.  E. McGarry, December 1984 

SEL-84-004, Proceedings of the Ninth Annual Software Engineering Workshop, November 1984 

SEL-84-101, Manager's Handbook for SofhYare Development (Revision I), L. Landis, 
F .  E. McGarry, S .  Waligora, et al., November 1990 

SEL-85-001, A Comparison of Software Verzjication Techniques, D. N. Card, R. W .  Selby, Jr., 
F .  E. McGarry, et al., April 1985 

SEL-85-002, Ada Training Evaluation and Recommendations From the Gamma Ray 
Observatory Ada Development Team, R. Murphy and M. Stark, October 1985 

SEL-85-003, Collected Software Engineering Papers: Volume 111, November 1985 

SEL-85-004, Evaluations of Software Technologies: Testing, CLEANROOM, and Metrics, 
R. W .  Selby, Jr., and V .  R. Basili, May 1985 

SEL-85-005, Software Verzjication and Testing, D. N. Card, E. Edwards, F.  McGarry, and 
C. Antle, December 1985 

SEL-85-006, Proceedings of the Tenth Annual Software Engineering Workshop, December 1985 

SEL-86-001, Programmer S Handbook for Flight Dynamics Software Development, R. Wood 
and E. Edwards, March 1986 

SEL-86-002, General Object-Oriented Software Development, E. Seidewitz and M .  Stark, 
August 1986 

SEL-86-003, Flight Dynamics System Software Development Environment (FDS/SDE) Tutorial, 
J .  Buell and P. Myers, July 1986 

SEL-86-004, Collected Software Engineering Papers: Volume IV, November 1986 

SEL-86-005, Measuring Sof iare Design, D. N. Card et al., November 1986 

SEL-86-006, Proceedings of the Eleventh Annual SofhYare Engineering Workshop, December 
1986 

SEL-87-001, Product Assurance Policies and Procedures for Flight Dynamics Software 
Development, S .  Perry et al., March 1987 

SEL-87-002, ~ d a @  Style Guide (Version l . l ) ,  E. Seidewitz et al., May 1987 



SEL-87-003, Guidelines for Applying the Composite SpeciJication Model (CSM), W .  W .  Agresti, 
June 1987 

SEL-87-004, Assessing the ~ d a @  Design Process and Its Implications: A Case Study, 
S .  Godfrey, C .  Brophy, et al., July 1987 

SEL-87-009, Collected SofhYare Engineering Papers: Volume V, November 1987 

SEL-87-010, Proceedings of the TwelJh Annual Software Engineering Workshop, December 
1987 

SEL-88-001, System Testing of a Production Ada Project: The GRODY Study, J .  Seigle, L. 
Esker, and Y .  Shi, November 1 988 

SEL-88-002, Collected Software Engineering Papers: Volume VI, November 1988 

SEL-88-003, Evolution of Ada Technology in the Flight Dynamics Area: Design Phase Analysis, 
K. Quimby and L. Esker, December 1988 

SEL-88-004, Proceedings of the Thirteenth Annual Software Engineering Workshop, November 
1988 

SEL-88-005, Proceedings of the First NASA Ada User's Symposium, December 1988 

SEL-89-002, Implementation of a Production Ada Project: The GRODY Study, S .  Godfiey and 
C. Brophy, September 1989 

SEL-89-004, Evolution of Ada Technology in the Flight Dynamics Area: 
Implementation/Testing Phase Analysis, K. Quimby, L. Esker, L. Smith, M. Stark, and F. 
McGarry, November 1989 

SEL-89-005, Lessons Learned in the Transition to Ada From FORTRAN at NASA/Goddard, 
C.  Brophy, November 1989 

SEL-89-006, Collected Software Engineering Papers: Volume VII, November 1989 

SEL-89-007, Proceedings of the Fourteenth Annual SofhYare Engineering Workshop, November 
1989 

SEL-89-008, Proceedings of the Second NASA Ada Users ' Symposium, November 1989 

SEL-89-103, Software Management Environment (SME) Concepts and Architecture (Revision I) ,  
R. Hendrick, D. Kistler, and J .  Valett, September 1992 

SEL-8 9-3 0 1 ,  SofhYare Engineering Laborary (SEL) Database Organization and User 's Guide 
(Revision 3), L. Momsiewicz, February 1995 ' 

SEL-90-001, Database Access Manager for the SofhYare Engineering Laboratory (DAMSEL) 
User's Guide, M. Buhler, K. Pumphrey, and D. Spiegel, March 1990 

SEL-90-002, The Cleanroom Case Study in the SoJiware Engineering Laboratory: Project 
Description and Early Analysis, S .  Green et al., March 1990 



SEL-90-003, A Study of the Portability of an Ada System in the Software Engineering 
Laboratory (SEL), L. 0. Jun and S .  R. Valett, June 1990 

SEL-90-004, Gamma Ray Observatory Dynamics Simulator in Ada (GRODY) Experiment 
Summary, T .  McDermott and M. Stark, September 1990 

SEL-90-005, Collected Software Engineering Papers: Volume VIII, November 1990 

SEL-90-006, Proceedings of the Fifteenth Annual Software Engineering Workshop, November 
1990 

SEL-9 1-00 1 ,  Software Engineering Laboratory (SEL) Relationships, Models, and Management 
Rules, W .  Decker, R. Hendrick, and J .  Valett, February 1991 

SEL-91-003, Software Engineering Laboratory (SEL) Ada Performance Study Report, 
E. W .  Booth and M. E. Stark, July 1991 

SEL-91-004, Software Engineering Laboratory (SEL) Cleanroom Process Model, S. Green, 
. November 1991 

SEL-9 1-005, Collected SoJiware Engineering Papers: Volume LX, November 199 1 

SEL-91-006, Proceedings of the Sixteenth Annual Software Engineering Workshop, December 
1991 

SEL-9 1 - 102, Software Engineering Laboratory (SEL) Data and Information Policy (Revision l), 
F .  McGarry, August 199 1 

SEL-92-001, Software Management Environment (SME) Installation Guide, D. Kistler and 
K. Jeletic, January 1992 

SEL-92-002, Data Collection Procedures for the Software Engineering Laboratory (SEL) 
Database, G. Heller, J .  Valett, and M. Wild, March 1992 

SEL-92-003, Collected SoJiware Engineering Papers: Volume X, November 1992 

SEL-92-004, Proceedings of the Seventeenth Annual Software Engineering Workshop, December 
1992 

SEL-93-00 1 ,  Collected SoJiware Engineering Papers: Volume XI, November 1993 

SEL-93-002, Cost and Schedule Estimation Study Report, S. Condon, M. Regardie, M. Stark, et 
al., November 1993 

SEL-93-003, Proceedings of the Eighteenth Annual SoJiware Engineering Workshop, December 
1993 

SEL-94-00 1 ,  SoJiware Management Environment (SME) Components and Algorithms, 
R. Hendrick, D. Kistler, and J .  Valett, February 1994 

SEL-94-003, C Style Guide, J .  Doland and J .  Valett, August 1994 

SEL-94-004, Collected Software Engineering Papers: Volume XII, November 1994 



SEL-94-005, An Overview of the SofhYare Engineering Laboratory, F. McGarry, G. Page, V. R. 
Basili, et al., December 1994 

SEL-94-006, Proceedings of the Nineteenth Annual Software Engineering Workshop, December 
1994 

SEL-94-102, SofhYare Measurement Guidebook (Revision I), M. Bassman, F. McGarry, 
R. Pajerski, June 1995 

SEL-95-001, Impact of Ada in the Flight Dynamics Division a t  Goddard Space Flight Center, 
S. Waligora, J. Bailey, M. Stark, March 1995 

SEL-95-003, Collected Software Engineering Papers: Volume XIII, November 1995 

SEL-95-004, Proceedings of the Twentieth Annual SofhYare Engineering Workshop, December 
1995 

SEL-96-001, Collected Software Engineering Papers: Volume XIV, October 1996 

SEL-97-002, Collected Software Engineering Papers: Volume XV, October 1997 

SEL-RELATED LITERATURE 

10Abd-El-Hafiz, S. K., V. R. Basili, and G. Caldiera, "Towards Automated Support for 
Extraction of Reusable Components," Proceedings of the IEEE Conference on Software 
Maintenance-1 991 (CSM 91), October 199 1 

15Abd-El-Hafiz, S. K., V. R. Basili, "A Knowledge-Based Approach to the Analysis of 
Loops," IEEE Transactions on Software Engineering, May 1996 

4Agresti, W. W., V. E. Church, D. N. Card, and P. L. Lo, "Designing With Ada for Satellite 
Simulation: A Case Study," Proceedings of the First International Symposium on Ada for the 
NASA Space Station, June 1986 

2~gresti ,  W. W., F. E. McGarry, D. N. Card, et al., "Measuring Software Technology," Program 
Transformation and Programming Environments. New York: Springer-Verlag, 1 984 

IBailey, J. W., and V. R. Basili, "A Meta-Model for Software Development Resource 
Expenditures," Proceedings of the FiJith International Conference on Soware  Engineering. 
New York: IEEE Computer Society Press, 198 1 

SBailey, J. W., and V. R. Basili, "Software Reclamation: Improving Post-Development 
Reusability," Proceedings of the Eighth Annual 'National Conference on Ada Technology, March 
1990 

'()Bailey, J. W., and V. R. Basili, "The Software-Cycle Model for Re-Engineering and Reuse," 
Proceedings of the ACM Tri-Ada 91 Conference, October 1991 



IBasili, V. R., "Models and Metrics for Software Management and Engineering," ASME 
Advances in Computer Technology, January 1980, vol. 1 

Basili, V. R., Tutorial on Models and Metrics for Software Management and Engineering. New 
York: IEEE Computer Society Press, 1980 (also designated SEL-80-008) 

3Basili, V. R., "Quantitative Evaluation of Software Methodology," Proceedings of the First 
Pan-PaciJic Computer Conference, September 1985 

7Basili, V. R., Maintenance = Reuse-Oriented SoJiware Development, University of Maryland, 
Technical Report TR-2244, May 1989 

7Basili, V. R., Software Development: A Paradigm for the Future, University of Maryland, 
Technical Report TR-2263, June 1989 

SBasili, V. R., "Viewing Maintenance of Reuse-Oriented Software Development," IEEE 
Software, January 1990 

13Basili, V. R., "The Experience Factory and Its Relationship to Other Quality Approaches," 
Advances in Computers, vol. 41, Academic Press, Incorporated, 1995 

IBasili, V. R., and J. Beane, "Can the Parr Curve Help With Manpower Distribution and 
Resource Estimation Problems?," Journal of Systems and Software, February 198 1, vol. 2, no. 1 

13Basili, V. R., L. Briand, and W. L. Melo, A Validation of Object-Oriented Design Metrics, 
University of Maryland, Computer Science Technical Report, CS-TR-3443, UMIACS-TR-95-40, 
April 1995 

13Basili, V. R., and G. Caldiera, The Experience Factory Strategy and Practice, University of 
Maryland, Computer Science Technical Report, CS-TR-3483, UMIACS-TR-95-67, May 1995 

gBasili, V. R., G. Caldiera, and G. Cantone, "A Reference Architecture for the Component 
Factory," ACM Transactions on Sojhvare Engineering and Methodology, January 1992 

loBasili, V. R., G. Caldiera, F. McGarry, et al., "The Software Engineering Laboratory-An 
Operational Software Experience Factory," Proceedings of the Fourteenth International 
Conference on Sojhvare Engineering (ICSE 92), May 1992 

IBasili, V. R., and K. Freburger, "Programming Measurement and Estimation in the Software 
Engineering Laboratory," Journal of Systems and Sojhvare, February 198 1, vol. 2, no. 1 

12Basili, V. R., and S. Green, "Software Process Evolution at the SEL," IEEE Sojhvare, July 
1994, pp. 58-66 

3Basili, V. R., and N. M. Panlilio-Yap,  i in ding' Relationships Between Effort and Other 
Variables in the SEL," Proceedings of the International Computer Sojhvare and Applications 
Conference, October 1985 

4Basili, V. R., and D. Patnaik, A Study on Fault Prediction and Reliability Assessment in the SEL 
Environment, University of Maryland, Technical Report TR- 1699, August 1986 



ZBasili, V. R., and B. T. Perricone, "Software Errors and Complexity: An Empirical 
Investigation," Communications of the ACM, January 1984, vol. 27, no. 1 

*Basili, V. R., and T. Phillips, "Evaluating and Comparing Software Metrics in the Software 
Engineering Laboratory," Proceedings of the ACM SIGMETRICS Symposium/Workshop: 
Quality Metrics, March 198 1 

3Basili, V. R., and C. L. Ramsey, "ARROWSMITH-P-A Prototype Expert System for Software 
Engineering Management," Proceedings of the IEEE/MITRE Expert Systems in Government 
Symposium, October 1985 

Basili, V. R., and J. Rarnsey, Structural Coverage of Functional Testing, University of Maryland, 
Technical Report TR- 1442, September 1 984 

Basili, V. R., and R. Reiter, "Evaluating Automatable Measures for Software Development," 
Proceedings of the Workshop on Quantitative SofhYare Models for Reliability, Complexity, and 
Cost. New York: IEEE Computer Society Press, 1979 

SBasili, V. R., and H. D. Rombach, "Tailoring the Software Process to Project Goals and 
Environments," Proceedings of the 9th International Conference on Software Engineering, 
March 1987 

SBasili, V. R., and H. D. Rombach, "TAME: Tailoring an Ada Measurement Environment," 
Proceedings of the Joint Ada Conference, March 1987 

SBasili, V. R., and H. D. Rombach, "TAME: Integrating Measurement Into Software 
Environments," University of Maryland, Technical Report TR- 1764, June 1987 

6Basili, V. R., and H. D. Rombach, "The TAME Project: Towards Improvement-Oriented 
Software Environments," IEEE Transactions on Software Engineering, June 1988 

7Basili, V. R., and H. D. Rombach, Towards A Comprehensive Framework for Reuse: A Reuse- 
Enabling Software Evolution Environment, University of Maryland, Technical Report TR-2158, 
December 1 988 

SBasili, V. R., and H. D. Rombach, Towards A Comprehensive Framework for Reuse: Model- 
Based Reuse Characterization Schemes, University of Maryland, Technical Report TR-2446, 
April 1990 

gBasili, V. R., and H. D. Rombach, "Support for Comprehensive Reuse," SofhYare Engineering 
Journal, September 199 1 

3Basili, V. R., and R. W. Selby, Jr., "Calculation and Use of an Environment's Characteristic 
Software Metric Set," Proceedings of the Eighth International Conference on SoJiware 
Engineering. New York: IEEE Computer Society Press, 1985 

Basili, V. R., and R. W. Selby, "Comparing the Effectiveness of Software Testing Strategies," 
IEEE Transactions on SofhYare Engineering, December 1987 



3Basili, V. R., and R. W. Selby, Jr., "Four Applications of a Software Data Collection and 
Analysis Methodology," Proceedings of the NATO Advanced Study Institute, August 1985 

5Basili, V. R., and R. Selby, "Comparing the Effectiveness of Software Testing Strategies," IEEE 
Transactions on Software Engineering, December 1987 

gBasili, V. R., and R. W. Selby, "Paradigms for Experimentation and Empirical Studies in 
Software Engineering," Reliability Engineering and System Safety, January 1991 

dBasili, V. R., R. W. Selby, Jr., and D. H. Hutchens, "Experimentation in Software Engineering," 
IEEE Transactions on Software Engineering, July 1986 

2Basili, V. R., R. W. Selby, and T. Phillips, "Metric Analysis and Data Validation Across 
FORTRAN Projects," IEEE Transactions on SofhYare Engineering, November 1983 

2Basili, V. R., and D. M. Weiss, A Methodology for Collecting Valid Software Engineering 
Data, University of Maryland, Technical Report TR- 123 5, December 1982 

3Basili, V. R., and D. M. Weiss, "A Methodology for Collecting Valid Software Engineering 
Data," IEEE Transactions on SofhYare Engineering, November 1984 

IBasili, V. R., and M. V. Zelkowitz, "The Software Engineering Laboratory: Objectives," 
Proceedings of the Fifteenth Annual Conference on Computer Personnel Research, August 1977 

Basili, V. R., and M. V. Zelkowitz, "Designing a Software Measurement Experiment," 
Proceedings of the Software Life Cycle Management Workshop, September 1977 

IBasili, V. R., and M. V. Zelkowitz, "Operation of the Software Engineering Laboratory," 
Proceedings of the Second Software Life Cycle Management Workshop, August 1978 

IBasili, V. R., and M. V. Zelkowitz, "Measuring Software Development Characteristics in the 
Local Environment," Computers and Structures, August 1978, vol. 10 

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale Software Development," 
Proceedings of the Third International Conference on Software Engineering. New York: IEEE 
Computer Society Press, 1978 

13Basili, V. R., M. Zelkowitz, F. McGarry, G. Page, S. Waligora, and R. Pajerski, "SEL's 
Software Process-Improvement Program," IEEE Software, vol. 12, no. 6, November 1995, pp. 
83-87 

14Basili, V. R., S. Green, 0. Laitenberger, F. Shull, S. Sorumgard, and M. Zelkowitz, "The 
Empirical Investigation of Perspective-Based Reading," University of Maryland, Computer 
Science Technical Report, CS-TR-3585, UMIACS-TR-95-127, December 1995 

14Basili, V. R., "Evolving and Packaging Reading Technologies," Proceedings of the Third 
International Conference on Achieving Quality in SofhYare, Florence, Italy, January 1996 



14Basili, V. R., "The Role of Experimentation in Software Engineering: Past, Current, and 
Future," Proceedings of the Eighteenth Annual Conference on SoJiware Engineering (ICSE-181, 
March 1996 

14Basili, V. R., G. Calavaro, G. Iazeolla, "Simulation Modeling of Software Development 
Processes," 7th European Simulation Symposium (ESS '95), October 1995 

15Basili, V. R., L. C. Briand and W. L. Melo, "A Validation of Object-Oriented Design 
Metrics as Quality Indicators," IEEE Transactions on SoJtware Engineering, October 
1996 

l5Basili, V. R., S. E. Condon, K. El Emam, R. B. Hendrick and W. L. Melo, "Characterizing 
and Modeling the Cost of Rework in a Library of Reusable Software Components," 
International Conference on Software Engineering (ICSE- 19), May 1997 

15Basili, V. R., L. C. Briand, and W. L. Melo, "How Reuse Influences Productivity in 
Object-Oriented Systems, " Communications of the ACM, October 1996 

12Bassman, M. J., F. McGarry, and R. Pajerski, SoJiware Measurement Guidebook, NASA-GB- 
00 1-94, Software Engineering Program, July 1994 

9Booth, E. W., and M. E. Stark, "Designing Configurable Software: COMPASS Implementation 
Concepts," Proceedings of Tri-Ada 1991, October 199 1 

IOBooth, E. W., and M. E. Stark, "Software Engineering Laboratory Ada Performance 
Study-Results and Implications," Proceedings of the Fourth Annual NASA Ada User's 
Symposium, April 1992 

IOBriand, L. C., and V. R. Basili, "A Classification Procedure for the Effective Management of 
Changes During the Maintenance Process," Proceedings of the 1992 IEEE Conference on 
Software Maintenance (CSM 92), November 1992 

IOBriand, L. C., V. R. Basili, and C. J. Hetmanski, "Providing an Empirical Basis for Optimizing 
the Verification and Testing Phases of Software Development," Proceedings of the Third IEEE 
International Symposium on Sofiare Reliability Engineering (ISSRE 92), October 1992 

IlBriand, L. C., V. R. Basili, and C. J. Hetmanski, Developing Interpretable Models with 
Optimized Set Reduction for Identzhing High Risk Sofiare Components, University of 
Maryland, Technical Report TR-3048, March 1993 

12Briand, L. C., V. R. Basili, Y. Kim, and D. R. Squier, "A Change Analysis Process to 
Characterize S o h a r e  Maintenance Projects," Proceedings of the International Conference on 
Software Maintenance, Victoria, British Columbia, Canada, September 19-23,1994, pp. 38-49 

gBriand, L. C., V. R. Basili, and W. M. Thomas, A Pattern Recognition Approach for Software 
Engineering Data Analysis, University of Maryland, Technical Report TR-2672, May 1991 



13Briand, L., W. Melo, C. Seaman, and V. R. Basili, "Characterizing and Assessing a Large- 
Scale Software Maintenance Organization," Proceedings of the 17th International Conference on 
Software Engineering, Seattle, Washington, U.S.A., April 23-30,1995 

IBriand, L. C., S. Morasca, and V. R. Basili, "Measuring and Assessing Maintainability at the 
End of High Level Design," Proceedings of the 1993 IEEE Conference on SofhYare Maintenance 
(CSM 93), November 1 993 

12Briand, L., S. Morasca, and V. R. Basili, Defining and Validating High-Level Design Metrics, 
University of Maryland, Computer Science Technical Report, CS-TR-3301, UMIACS-TR-94-75, 
June 1994 

13Briand, L., S. Morasca, and V. R. Basili, Property-based Software Engineering Measurement, 
University of Maryland, Computer Science Technical Report, CS-TR-3368, UMIACS-TR-94- 
1 19, November 1994 

13Briand, L., S. Morasca, and V. R. Basili, Goal-Driven Definition of Product Metrics Based on 
Properties, University of Maryland, Computer Science Technical Report, CS-TR-3346, 
UMIACS-TR-94- 106, December 1994 

IlBriand, L. C., W. M. Thomas, and C. J. Hetmanski, "Modeling and Managing Risk Early in 
Software Development," Proceedings of the Fifteenth International Conference on Software 
Engineering (ICSE 93), May 1993 

14Briand, L., Y. Kim, W. Melo, C. B. Seaman, V. R. Basili, "Qualitative Analysis for 
Maintenance Process Assessment," University of Maryland, Computer Science Technical Report, 
CS-TR-3 592, UMIACS-TR-96-7, January 1996 

14Briand, L., V. R. Basili, S. Condon, Y. Kim, W. Melo and J. D. Valett, "Understanding and 
Predicting the Process of Software Maintenance Releases," Proceedings of the Eighteenth 
Annual Conference on Software Engineering (ICSE-18), March 1996 

15~riand, L., S. Morasca, and V. R. Basili, "Property-Based Software Engineering 
Measurement," IEEE Transactions on Software Engineering, January 1996 

15Briand, L., S. Morasca, and V. R. Basili, Response to: Comments on "Property-Based 
Software Engineering Measurement: Refining the Additivity Properties", IEEE 
Transactions on Software Engineering, March 1997 

SBrophy, C. E., W. W. Agresti, and V. R. Basili, "Lessons Learned in Use of Ada-Oriented 
Design Methods," Proceedings of the Joint Ada Conference, March 1987 

6Brophy, C. E., S. Godfiey, W. W. Agresti, k d  V. R. Basili, "Lessons Learned in the 
Implementation Phase of a Large Ada Project," Proceedings of the Washington Ada Technical 
Conference, March 1988 

2Card, D. N., "Early Estimation of Resource Expenditures and Program Size," Computer 
Sciences Corporation, Technical Memorandum, June 1 982 



2Card, D. N., "Comparison of Regression Modeling Techniques for Resource Estimation," 
Computer Sciences Corporation, Technical Memorandum, November 1982 

3Card, D. N., "A Software Technology Evaluation Program," Annais do XVIII Congress0 
Nacional de Informatica, October 1985 

SCard, D. N., and W. W. Agresti, "Resolving the Software Science Anomaly," Journal of 
Systems and Software, 1 987 

6Card, D. N., and W. W. Agresti, "Measuring Software Design Complexity," Journal of Systems 
and Software, June 1988 

4Card, D. N., V. E. Church, and W. W. Agresti, "An Empirical Study of Software Design 
Practices," IEEE Transactions on SofhYare Engineering, February 1986 

Card, D. N., V. E. Church, W. W. Agresti, and Q. L. Jordan, "A Software Engineering View of 
Flight Dynamics Analysis System," Parts I and 11, Computer Sciences Corporation, Technical 
Memorandum, February 1984 

Card, D. N., Q. L. Jordan, and V. E. Church, "Characteristics of FORTRAN Modules," 
Computer Sciences Corporation, Technical Memorandum, June 1984 

SCard, D. N., F. E. McGarry, and G. T. Page, "Evaluating Software Engineering Technologies," 
IEEE Transactions on Software Engineering, July 1987 

3Card, D. N., G. T. Page, and F. E. McGarry, "Criteria for Sokware Modularization," 
Proceedings of the Eighth International Conference on Software Engineering. New York: IEEE 
Computer Society Press, 1985 

lChen, E., and M. V. Zelkowitz, "Use of Cluster Analysis To Evaluate Software Engineering 
Methodologies," Proceedings of the Fifth International Conference on Software Engineering. 
New York: IEEE Computer Society Press, 198 1 

4Church, V. E., D. N. Card, W. W. Agresti, and Q. L. Jordan, "An Approach for Assessing 
Software Prototypes," ACM SoJtware Engineering Notes, July 1986 

15Condon, S., R. Hendrick, M. E. Stark, W. Steger, "The Generalized Support Software 
(GSS) Domain Engineering Process: An Object-Oriented Implementation and Reuse 
Success at Goddard Space Flight Center," Addendum to the Proceedings of the 
Conference on Object-Oriented Programming Systems, Languages, and Applications 
(OOPSLA 96), San Jose, California, U.S.A., October 1996 

15Devanbu, P., S. Karstu, W. L. Melo and W. Thomas, "Analytical and Empirical Evaluation 
of Software Reuse Metrics," Proceedings of the 18th International Conference on 
SoJtware Engineering (ICSE-18), March 1996 

2Doerflinger, C. W., and V. R. Basili, "Monitoring Software Development Through Dynamic 
Variables," Proceedings of the Seventh International Computer SoJtware and Applications 
Conference. New York: IEEE Computer Society Press, 1983 



Doubleday, D., ASAP: An Ada Static Source Code Analyzer Program, University of Maryland, 
Technical Report TR- 1895, August 1987 (NOTE: 100 pages long) 

6Godfrey, S., and C. Brophy, "Experiences in the Implementation of a Large Ada Project," 
Proceedings of the 1988 Washington Ada Symposium, June 1988 

SJeffery, D. R., and V. R. Basili, Characterizing Resource Data: A Model for Logical 
Association of SoJiware Data, University of Maryland, Technical Report TR-1848, May 1987 

GJeffery, D. R., and V. R. Basili, "Validating the TAME Resource Data Model," Proceedings of 
the Tenth International Conference on Software Engineering, April 1988 

15Konti0, J., G. Caldiera and V. R. Basili, "Defining Factors, Goals and Criteria for 
Reusable Component Evaluation, " CASCON '96 Conference, November 1996 

ISKontio, J., H. Englund and V. R. Basili, ExperiencesJi.om an Exploratory Case Stu& with 
a Software Risk Management Method, Computer Science Technical Report, CS-TR-3705, 
UMIACS-TR-96-75, August 1996 

'SLanubile, F., "Why Software Reliability Predictions Fail," IEEE Software, July 1996 

IlLi, N. R., and M. V. Zelkowitz, "An Information Model for Use in Software Management 
Estimation and Prediction," Proceedings of the Second International Conference on Information 
Knowledge Management, November 1993 

SMark, L., and H. D. Rombach, A Meta Information Base for Software Engineering, University 
of Maryland, Technical Report TR-1765, July 1987 

GMark, L., and H. D. Rombach, "Generating Customized Software Engineering Information 
Bases From Software Process and Product Specifications," Proceedings of the 22nd Annual 
Hawaii International Conference on System Sciences, January 1989 

SMcGarry, F. E., and W. W. Agresti, "Measuring Ada for Software Development in the Software 
Engineering Laboratory (SEL)," Proceedings of the 21st Annual Hawaii International 
Conference on System Sciences, January 1988 

7McGarry, F., L. Esker, and K. Quimby, "Evolution of Ada Technology in a Production Software 
Environment," Proceedings of the Sixth Washington Ada Symposium (WADAS), June 1989 

13McGarry, F., R. Pajerski, G. Page, et al., Software Process Improvement in the NASA Sojhvare 
Engineering Laboratory, Carnegie-Mellon University, Software Engineering Institute, Technical 
Report CMUISEI-94-TR-22, ESC-TR-94-022, December 1994 

3McGarry, F. E., J. Valett, and D. Hall, "Measuring the Impact of Computer Resource Quality on 
the Software Development Process and Product," Proceedings of the Hawaiian International 
Conference on System Sciences, January 1985 



15Morasca, S., L. C. Briand, V. R. Basili, E. J. Weyuker and M. V. Zelkowitz, Comments on 
"Towards a Framework for Software Measurement Validation," IEEE Transactions on 
Software Engineering, March 1997 

3Page, G., F. E. McGarry, and D. N. Card, "A Practical Experience With Independent 
Verification and Validation," Proceedings of the Eighth International Computer Sojiware and 
Applications Conference, November 1984 

12Porter, A. A., L. G. Votta, Jr., and V. R. Basili, Comparing Detection Methods for Sojiware 
Requirements Inspections: A Replicated Experiment, University of Maryland, Technical Report 
TR-3327, July 1994 

5Ramsey, C. L., and V. R. Basili, "An Evaluation of Expert Systems for Software Engineering 
Management," IEEE Transactions on Software Engineering, June 1989 

3Rarnsey, J., and V. R. Basili, "Analyzing the Test Process Using Structural Coverage," 
Proceedings of the Eighth International Conference on Sojiware Engineering. New York: IEEE 
Computer Society Press, 1985 

SRombach, H. D., "A Controlled Experiment on the Impact of Software Structure on 
Maintainability," IEEE Transactions on Sojiware Engineering, March 1987 

XRombach, H. D., "Design Measurement: Some Lessons Learned," IEEE Software, March 1990 

gRombach, H. D., "Software Reuse: A Key to the Maintenance Problem," Butterworth Journal 
of Information and SoJiware Technology, JanuaryIFebruary 199 1 

6Rombach, H. D., and V. R. Basili, "Quantitative Assessment of Maintenance: An Industrial 
Case Study," Proceedings From the Conference on SofhYare Maintenance, September 1987 

bRombach, H. D., and L. Mark, "Software Process and Product Specifications: A Basis for 
Generating Customized SE Information Bases," Proceedings of the 22nd Annual Hawaii 
International Conference on System Sciences, January 1989 

7Rombach, H. D., and B. T. Ulery, Establishing a Measurement Based Maintenance 
Improvement Program: Lessons Learned in the SEL, University of Maryland, Technical Report 
TR-2252, May 1989 

IORombach, H. D., B. T. Ulery, and J. D. Valett, "Toward Full Life Cycle Control: Adding 
Maintenance Measurement to the SEL," Journal of Systems and Sojiware, May 1992 

14Seaman, C. B., V. R. Basili, "Communication and Organization in Sojiware Development: An 
Empirical Study,'' University of Maryland, Computer Science Technical Report, CS-TR-3619, 
UMIACS-TR-96-23, April 1996 

15Seaman, C. By V. R. Basili, "An Empirical Study of Communication in Code Inspection," 
Proceedings of 19th International Conference on S o f ~ a r e  Engineering (ICSE-19), May 
1997, pp. 96-1 06 



GSeidewitz, E., "Object-Oriented Programming in Smalltalk and Ada," Proceedings of the 1987 
Conference on Object-Oriented Programming Systems, Languages, and Applications, October 
1987 

SSeidewitz, E., "General Object-Oriented Software Development: Background and Experience," 
Proceedings of the 21st Hawaii International Conference on System Sciences, January 1988 

GSeidewitz, E., "General Object-Oriented Software Development with Ada: A Life Cycle 
Approach," Proceedings of the CASE Technology Conference, April 1988 

gseidewitz, E., "Object-Oriented Programming Through Type Extension in Ada 9X," Ada 
Letters, MarcWApril 1991 

IOSeidewitz, E., "Object-Oriented Programming With Mixins in Ada," Ada Letters, MarcWApril 
1992 

12Seidewitz, E., "Genericity versus Inheritance Reconsidered: Self-Reference Using Generics," 
Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and 
Applications, October 1994 

4Seidewitz, E., and M. Stark, "Towards a General Object-Oriented Software Development 
Methodology," Proceedings of the First International Symposium on Ada for the NASA Space 
Station, June 1986 

gseidewitz, E., and M. Stark, "An Object-Oriented Approach to Parameterized Software in Ada," 
Proceedings of the Eighth Washington Ada Symposium, June 199 1 

SStark, M., "On Designing Parametrized Systems Using Ada," Proceedings of the Seventh 
Washington Ada Symposium, June 1990 

IlStark, M., "Impacts of Object-Oriented Technologies: Seven Years of SEL Studies," 
Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and 
Applications, September 1993 

7Stark, M. E. and E. W. Booth, "Using Ada to Maximize Verbatim Software Reuse," 
Proceedings of TRI-Ada 1989, October 1989 

SStark, M., and E. Seidewitz, "Towards a General Object-Oriented Ada Lifecycle," Proceedings 
of the Joint Ada Conference, March 1987 

13Stark, M., and E. Seidewitz, "Generalized Support Soha re :  Domain Analysis and Implemen- 
tation," Addendum to the Proceedings OOPSLA '94, Ninth Annual Conference, Portland, 
Oregon, U.S.A., October 1994, pp. 8-13 

15Stark, M., "Using Applet Magic (tm) to Implement an Orbit Propagator: New Life for 
Ada Objects," Proceedings of the 14th Annual Washington Ada Symposium pAdaS97), 
June 1997 



IoStraub, P. A., and M. V. Zelkowitz, "On the Nature of Bias and Defects in the Software 
Specification Process," Proceedings of the Sixteenth International Computer Software and 
Applications Conference (COMPSAC 92), September 1992 

*Straub, P. A., and M. V. Zelkowitz, "PUC: A Functional Specification Language for Ada," 
Proceedings of the Tenth International Conference of the Chilean Computer Science Society, 
July 1990 

7Sunazuka, T., and V. R. Basili, Integrating Automated Support for a SoJtware Management 
Cycle Into the TAME System, University of Maryland, Technical Report TR-2289, July 1989 

l3Thomas, W. M., A. Delis, and V. R. Basili, An Analysis of Errors in a Reuse-Oriented 
Development Environment, University of Maryland, Computer Science Technical Report, 
CS-TR-3424, UMIACS-TR-95-24, February 1995 

l0Tian, J., A. Porter, and M. V. Zelkowitz, "An Improved Classification Tree Analysis of High 
Cost Modules Based Upon an Axiomatic Definition of Complexity," Proceedings of the Third 
IEEE International Symposium on Software Reliability Engineering (ISSRE 92), October 1992 

Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL Software Development Data, 
Data and Analysis Center for Software, Special Publication, May 198 1 

IOValett, J. D., "Automated Support for Experience-Based S o h a r e  Management," Proceedings 
of the Second Irvine Software Symposium (ISS -92), March 1992 

SValett, J. D., and F. E. McGarry, "A Summary of Software Measurement Experiences in the 
Software Engineering Laboratory," Proceedings of the 21st Annual Hawaii International 
Conference on System Sciences, January 1988 

14Waligora, S., J. Bailey, and Mike Stark, "The Impact of Ada and Object-Oriented Design in 
NASA Goddard's Flight Dynamics Division," July 1996 

3Weiss, D. M., and V. R. Basili, "Evaluating Software Development by Analysis of Changes: 
Some Data From the Software Engineering Laboratory," IEEE Transactions on SoNare 
Engineering, February 1 985 

5Wu, L., V. R. Basili, and K. Reed, "A Structure Coverage Tool for Ada Software Systems," 
Proceedings of the Joint Ada Conference, March 1987 

lzelkowitz, M. V., "Resource Estimation for Medium-Scale Software Projects," Proceedings of 
the TwelJth Conference on the Interface of Statistics and Computer Science. New York: IEEE 
Computer Society Press, 1979 

2Zelkowitz, M. V., "Data Collection and Evaluation for Experimental Computer Science 
Research," Empirical Foundations for Computer and Information Science (Proceedings), 
November 1982 

6Zelkowitz, M. V., "The Effectiveness of Software Prototyping: A Case Study," Proceedings of 
the 26th Annual Technical Symposium of the Washington, D.C., Chapter of the ACM, June 1987 



6Zelkowitz, M. V., "Resource Utilization During Software Development," Journal of Systems 
and SofhYare, 1988 

SZelkowitz, M. V., "Evolution Towards Specifications Environment: Experiences With Syntax 
Editors," Information and Software Technology, April 1990 

14Zelkowitz, M. V., "Software Engineering Technology Infusion Within NASA," IEEE 
Transactions On Engineering Management, vol. 43, no. 3, August 1996 



NOTES: 

]This article also appears in SEL-82-004, Collected Sojhvare Engineering Papers: Volume I, 
July 1982. 

2This article also appears in SEL-83-003, Collected Software Engineering Papers: Volume 11, 
November 1983. 

3This article also appears in SEL-85-003, Collected Software Engineering Papers: Volume 111, 
November 1985. 

4This article also appears in SEL-86-004, Collected Sojhvare Engineering Papers: Volume IV, 
November 1986. 

5This article also appears in SEL-87-009, Collected Software Engineering Papers: Volume V, 
November 1 987. 

6This article also appears in SEL-88-002, Collected Software Engineering Papers: Volume VI, 
November 1988. 

7This article also appears in SEL-89-006, Collected Software Engineering Papers: Volume VII, 
November 1 989. 

8This article also appears in SEL-90-005, Collected Software Engineering Papers: Volume VIII, 
November 1990. 

9This article also appears in SEL-91-005, Collected Software Engineering Papers: Volume LX, 
November 199 1 .  

lOThis article also appears in SEL-92-003, Collected Software Engineering Papers: Volume X, 
November 1992. 

1 lThis article also appears in SEL-93-001, Collected SofhYare Engineering Papers: Volume XI, 
November 1993. 

12This article also appears in SEL-94-004, Collected Sojhvare Engineering Papers: Volume XII, 
November 1994. 

13This article also appears in SEL-95-003, Collected Software Engineering Papers: Volume 
XIII, November 1 995. 

14This article also appears in SEL-96-001, Collected SoNare Engineering Papers: Volume 
Xn/: October 1996. 

15This article also appears in SEL-97-002, Collected SofhYare Engineering Papers: Volume XV, 
October 1997. 



REPORT DOCUMENTATION PAGE I Form Approved 
OMB NO. 0704-0188 I 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for r, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments rec 
~0 l l e~ t i 0n  of information. includino suaaestions for reducino this burden. to Washinoton Headouartars Snrvicas nirantnmte a - - - - - - - - - , - - - . - - . - 
Dav~s H~ghway, Sulte 1204, Arltniton;tA 22202-4302, an2 to the Offlce of ~anagemen t i i d  Budget, Paperwork Reduct~on 

1. AGENCY USE ONLY (Leave blank) I 2. REPORT DATE 1 3. REPORT TYPE Ah I October 1997 I Technical n 
4. TITLE AND SUBTITLE 

Software Engineering Laboratory Series 
Collected Software Engineering Papers: Volume XV 

Flight Dynamics Systems Branch 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS (ES) 

Goddard Space Flight Center 
Greenbelt, Maryland 2077 1 

9. SPONSORING I MONITORING AGENCY NAME(S) AND ADDRESS (ES) 

National Aeronautics and Space Administration 
Washington, DC 20546-0001 

iewing instructions, searching existing data sources, 
'ding this burden estimate or any other aspect of this 
Information Operations and Reports, 1215 Jefferson 
roiect (0704-0188). Washington, DC 20503. 

DATES COVERED 
emorandum 
5. FUNDING NUMBERS 

Code 551 

8. PEFORMING ORGANIZATION 
REPORT NUMBER 

10. SPONSORING I MONITORING 
AGENCY REPORT NUMBER 

TM-1998-208614 

I 

11. SUPPLEMENTARY NOTES 1 

12a. DISTRIBUTION I AVAILABILITY STATEMENT 

Unclassified-Unlimited 
Subject Category: 82 
Report available from the NASA Center for Aerospace Information, 
7 121 Standard Drive, Hanover, MD 21076- 1320. (301) 621-0390. 

13. ABSTRACT (Maximum 200 words) 

The Software Engineering Laboratory (SEL) is an organization sponsored by NASAIGSFC and created to 
investigate the effectiveness of software engineering technologies when applied to the development of applica- 
tion software. 

The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory 
Series, a continuing series of reports that includes this document. 

14. SUBJECT TERMS 1 15. NUMBER OF PAGES I 

I Software Engineering Laboratory, 
Application software,~Documentation 

214 
16. PRICE CODE 

20. LIMITATION OF ABSTRACT 

UL 

NSN 7540-01 -280-5500 Standard Form 298 (Rev. 2-89) 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 
Unclassified 

17. SECURITY CLASSIFICATION 
OF REPORT 

Unclassified 

18. SECURITY CLASSlFlCATlON 
OF THIS PAGE 

Unclassified 




