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THE KRIGIFIER: A PROCEDUREFOR GENERATING PSEUDORANDOM
NONLINEAR OBJECTIVE FUNCTIONS FOR COMPUTATIONAL

EXPERIMENTATION

._,IlCItAEI,\_,. ']_R()SSEI I

Abstract. Comprehensive COlnl)utational (,xperiment s to assess the performance of algorit hms for numer-

ical ol)timization require (among other thing.,,) a practical t)roce(lure for generating pseudorandon_ nonlinear

objective flmctions. We propose a procedure that is based on tile convenient tiction that objective functions

are realizations of stochastic i)rocesses. This reporl details the calculations necessary to implemenl our pro-

cedure for the case of certain stationary (_aussian l)rocesses and l)resents a specific implementation in the

statistical programming language S-PL!_S.

Key words, kriging, stochastic l)ro('ess, nonlinear l>rogramming, mmmrical optimizalion. COlnl>utational

exl)eriments

Subject Classification. Applied and Numerical Mathematics

1. Introduction. It is widely accepted that the performance of algorithms for Xmlnerical Ol)limization

should be esl.ablished ]it fact as well as in tlleory. Factual evidence inch,des line anecdotal exl)eriences of

users, but it should also include (as do olher empirical sciences) the results of carefully designed experimenls.

Inforlunately, it is n<)l at all ch'ar how to design meaningful coml)ulalional exl)erin|ents for mmwri<'a]

Ol)timizalion. This rep<)rt attempts to address that concern.

Individuals who study numerical opt, imization often recommend specific algorithms for specific applica-

tions. Tyl)ically, such recommendations are base<l partly Olt theory, t)artly on knowledge that ttne recom-

mended algorithm has I)erformed well on other, related apl)lications. The latter rationale iml)licMy assumes

that tile relevant population of al)plicat ions has been sufficiently well sampled t,o warrant making predict ions

about the new application in question. Is this usually the case?

(lomputational experiments designed to assess the perforn|anee of algorithms for lmmerical optimization

have traditionally used a small number of canonical test problems. }.lost of these problems were created

or <tiscovered because they exhibit some special sor! of pathology. Thus. the fundanwntal premise of most

computational experinwnts for numerical o[)timizat.ion is the following: the performance of an algorithm ill

t.yl)ical situations can t)e iul_'rred from its performance in certain patlnological situations. Sadly. this I)remise

seems dut)ious at, t)est.

Consider, for exmnl)le, the simplex algorithnl(S) for linear programming. In theory, the computational

<'onq)lexity of these algorithms is exponential; in practice, they invariably perform as if their complexity was

]>olynomial. This discrel)an<'y I)elween worst-case and average-case performance ha<l led some researchers

t.o initiate theoretical studies of _a'l_<'tc<l siml)lex performance on some simf)le l)Ol)ulalions of randomly

generated linear programs. Although realistic distributions of linear programs undoubtedly render theoretical

investigations intractable, one might still study empirical simplex ]>erformance on such ])opulalions.
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As difficult as it may t)e to randomly generate plausil)le linear progranls, it seems far more (liflicull to

ra.domly generate plausible nonlinear programs. This reporl addresses one facet of the prot)leln of genera(,iug

random nonlinear programs, viz. the problem of generating random nonlinear objective functions.

2. Basic Concepts. Originally (levelope<l t)y geostatisticians, kriging is a l)rocedure for Ol)limally

in)erpolating a finite numlwr of observed values of a realization of a specified stochastic proce,,,s. (In case the

s)ochastic process is an unspecified member of a specified l)arametric family of stochastic processes, kriging is

preceded t)y estimatiou of the unspecified parameters.) The fuuction f obtained I)y kriging values ,ql ..... !/,

observed al locations xl ..... x,, is the expected value of the process, conditional on the process behaving

as ol)served at xl ..... x.. Thus, f can I)e regarded as a smoothed realization of the process and. c_l_ ris

tmr(tbis, the degree of smoothing depends on how many values were ot)served: as more and nlore values are

kriged, j/ looks more and more like an actual realization.

As described in [1], Ihe design and analysis of computer experimelltS is predicated on the ticliou l ha! the

out pul |'tom an expensive deterministic computer simulation resembles a realization of a stochastic process.

We emphasize (ha( this narrative is entirely fictional, convenient because it suggests plausil)le designs and

aualyses: nevertheless, siuHtlations of complex physical phenomena often produce apl)roximation, rounding,

and truncation errors that contaminate the idealized outpul. Such determinislic noise can indeed resemble a

realization of a stochastic process, so that it seems perfectly reasonable to synthesize inexpensive functions

that al)l)roximate expensive simulation outputs by generating realizations of a stochastic process aud adding

each realization lo a prescribed trend.

('oncep(ually. the krigifier comprises the following steps:

1. The user sl)ecifies an underlying trend, e.g. a quadratic function.

2. The user specifies a stochastic l)rocess, e.g. a stationary (;aussian process.

3. A finite number of l)oints, xl .... , x,, are chosen at which the stochastic process will I)e observed.

These points can be sl)eeified t)y the user or randomly generated by the krigifier.

L The krigifier generales 91,..., yn, the values of the slochastic process at xl ..... .r,,.

5. The krigifier interpolates !11..... Y, to obtain a noise lerm.

6. The trend and noise terms are added to produce an objective function.

The next section describes each of these steps.

3. Computational Details. This section describes precisely how the krigifier generates a pseudoran(lom

nonlinear objective function: an implementatiou in the statistical progranlming language S-PLI !S is provided

in the following sectiou.

1. Trend. A fuuclion trend(x) is specified by the user. This might be a constant, e.g. trend(x) = 0, but

it seems more sensil)le to iuduce some underlying structure appropriate for nonlinear optimization, perhal)s

I)y sl)e('il_'ng a convex (luadratic function.



2. Stochastic Process. A slochastic 1)rocess is Sl)(Wifie(I I)3' lhe user. The process should I)e one from

which it is reasonably easy to generale a realizatiou. \Ve have exl)erimellle(I with slalionary (;aussia,

l)ro('esses with covariance ftmctious of the form

c(.,. t) = _%(.,, t), (1)

where 0.2 is the coustant variance or the l)rocess at any l)oinl (the process is honloschedastic) and the

correlaliou fimctiou is of the form

,-(.,.t)= _,(11._- rll) ('2)

(the process is iso!ropic). Specifically. we have experimented with

0(I,) = exp(-0,") (3)

for o = 2 and () = 1. The former choice results in Slllooth ((-'_") iuterl)olations that seem better suited

to generating "nice" ol)jective functions: 111(' latler choice results ill jagged inlerl)olatious that seem better

suited to sinmlatiug numerical noise.

3. Selected Sites. 'I"11(' user must specify n, the uumber of sites at which the stochaslic process will be

observed. The locatiousof(he sites call t)e chosen IU all3' ttlethod whatsoever, h|our exl)eriluent_, we have

sl)ecified a reetaugle and drawu a'l .... ,.r,, from a uniform distribution ou the rectangle.

4. Observed Values. Assume thai tile sl)e('ilie(I slochasti(" process is of the fornl descril)e(I above. (;iven

.v 1..... .1"_,_,let

H = [,.(.,,_..,._)]

be the n x t_ matrix of interl)oin! correlations. We need to generate !! = (!11 ..... y,,)_ t)y sampling fr(ml an

n-variale normal distribution with covariance malt'ix 0.:'_H. To do so, we exploit tile fact that

Theorem 1 If z _ N(O.I). th_u :t: _ N(O,:tA').

First. we generate _l stan(lard univariate normal random variates, zl ..... z,. Next, assuming that R is

positive selllidefinite, let H = I:DI r' I)e its singular value de('Olnl)osition. Theu, let ling : = (:1 ..... z,,)'.

Theoreul 1 fells us to set

.q = o'I'DI/2lr'z.

5. Interpolation. We interpolate I)y krigiug. Assuming thai l/ is invertible, define c t)y the square systenl

of linear e(lualions h'v = .q. The infbrmation needed to defi,e the interl)olating fimction is contai,ed in

xi ..... x,,, t'. an(l the correlation function r(...).

(_iveu .r. let

Then the interpolating function is

noise(a') = v'r(a').



6. Additive Noise. The l)roposed pseudorandom objeclive function is

.f(.,') = trend(.,.) + ,oise(.,').

4. An Implementation in S-PLUS. ]'his section exhibils S-I)LI!S functions that iwrform tile calcula-

tions detailed in Section 3. The function krigify, exhil)ited ill Figure I. produces the information neede<l 1(,

<lefine the noise lerm in the pseu<loraudom objective function f. The function f .rand, exhit)iled in Figure 2,

evaluaies f, which is constructed by adding the noise to a user-specitied (luadrati<' Irend.

function(a,b,n,alpha,theta,sigma2)

{

[a,b] is a p-dimensional rectangle;

# n is the number of sites to be selected;

# alpha, theta, sigma2 are parameters of an isotropic

# stationary Gaussian process.

#

tol <- le-007

p <- length(a)

X <- matrix(runif(n*p,min=a,max=b), byrow=T, nrow=n, ncol=p)

R <- matrix(O, nrow=n, ncol=n)

for (i in 2:n) {

for (j in 1:i) {

R[i,j] <- exp(-theta * (vecnorm(X[i,J-X[j,J))-alpha)

}

}

R <-

Rsvd

d <-

k <-

d <-

y <-

R + t(R) + diag(n)

<- svd(R)

RsvdSd[RsvdSd >= tol]

length(RsvdSd) - length(d)

c(I/sqrt(d), rep(O,times=k))

matrix(rnorm(n,sd=sqrt(sigma2)), ncol=l)

v <- RsvdSu _*_ diag(d) _*_ t(RsvdSu) _*_ y

return(list(X=X, v=v))

Figure l: The S-PLliS function krigify.

To use krigify, it is necessary to sl)eci _, a l>-dinlensional rectangle [., b], 1he number n of sites to I)e

selected front [a. b], and the paramelers (o. 0, 02) of a stationary Gaussian process with an isotropic <'ovariance

function of the form specified I)y equations (1). (2), and (3). The sites a'l .... , x. are drawn from a uniform

(list ribuli<>n on [,t. hi.

Once tile oulput from krigify has been saved, e.g. by the S-PLIeS command

> noise <- krigify(a,b,n,alpha,theta,sigraa2)



lheuil can I)e supplied to file i)seu(lorandonl ol).iective fulwlion ,f whenever a function value is re(luested.

This is accomplished t)y the S-PIA!S function f. rand, exhil)ited in Figure 2. The flmction f.rand ha_ two

arguments, the x al which a fimclion value f(,r) is requesled and a lisl of auxiliary 1)aralneter values that

specify f. aud it returns f(x).

function(x,aux)

x is a p-dim vector at which f is to be evaluated;

aux is a list:

aux$betaO is a scalar,

aux$betal is a pxl matrix,

aux$beta2 is a pxp matrix, and

aux$xO is a p-dim vector that specify the quadratic trend;

auxSalpha & auxStheta specify the correlation function;

aux$X is an nxp matrix and

aux$v is an nxl matrix outputted from krigify.

n <- nrow(X)

r <- matrix(nrow=n, ncol=l)

for (i in l:n) {

r[i,l] <- exp(-auxStheta * (vecnorm(X[i,l]-x))-aux$alpha)

}

x <- matrix(x-aux$xO, nrow=length(x), ncol=l)

q <- auxSbetaO + t(auxSbetal) _*Z x + t(x) _*Z auxSbeta2 Z*Z x

return(q + t(auxSv) Z*Z r)

Figure "2: The S-I'LI+S ftnwtiotJ f.rand.

To ilhtst.rate th(, use of krigify and f. rand, Figure 3 exhil)its S-PL[S c()(h' for generating a i)s(+ud()ran-

dora ot).]eclive function f on [0, 1] :_, evaluating f on a grid, and disl)laying the resulting fttnctiotl values iu a

l)ersl)ective plot.

5. Conclusions. We invite the rea(ler to exi)erimenl wilh the krigifier an(t discover l)arameter settings

useful ffot' his or her apl)licatiolts. In our view, no amount of discussioll can substitute for personal experience.

Nevertheless, tit(' krigifier (loes exhil)it ('ertaitt (:hara('teristics that deserve menlion.

1. Suppose t ha! trcn(l(.r) is constant so thai J'(.r) = c+ noise(x). By ('onstrucliotJ. noise(.r,) : Yi and

noise(x) teu(ls to internte(liate values of!/ for.r _ {Xl ..... x,,}. Hence. the global minimizer of f in

[(z, b] will either equal or l)e near the glot)al minimizer of f in the finite set {xt ...... r,, }. Because it

is generally quite (lifti(mlt to ('OllS|rtlct functions with tnultiple local minimizers an(l know tit(, location

of the global minimizer, the krigifi(+r would appear to I)e esl)ecially useful for constructing glol)a]

optimization test fu.ctions.



> a <- c(O,O)

> b <- c(i,1)

> noise <- krigify(a,b,200,1,50,100)

> betal <- matrix(O,nrow=2,ncol=l)

> beta2 <- lO0.diag(2)

> xO <- c(0.3,0.4)

> aux <- list(betaO=50, betal=betal, beta2=beta2, xO=xO,

alpha=l, theta=50, X=noiseSX, v=noiseSv)

> x <- y <- (0:50)/50

> z <- matrix(nrow=51,ncol=51)

> for (i in 1:51) {

+ for (j in 1:51) {

+ z[i,j] <-f.rand(c(x[i],y[3]), aux)

+ }

+ }

> persp(x,y,z)

Figure 3: [Tsing krigify and f.rand.

">. Our own expe,'ience with tile krigifier suggesls that it is easier to construel functions with multiple

local minimizers in Iow-dinwnsional spaces than it is ill high-dimensional spaces. To provide a heuristic

explanation of this I,henomenon. suppose thai {a'l ..... x,} C [t_,b] C R _ form a rectangular grid. A

local minimizer will I)e induced at the grid point ,r if each of the random variates assigned to the 2t>

grid points adjacent to a' exceeds the random variate assigned to x. Obviously, file probability of this

o<'curring decreases as p increases. ]b the extent thai realizations of stochastic processes are indeed

plausible models of objective functions, this insighl suggests that functions of many variables may be

b ._s likely io have multiple local minimizers than fimetions of few variables, an amusing reversal of the

curse of <limensionalily.
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