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ABSTRACT

Recent observational studies have shown that satellite retrievals of cloud optical depth based on plane-parallel

model theory suffer from systematic biases that depend on viewing geometry, even when observations are

restricted to overcast marine stratus layers, arguably the closest to plane parallel in nature. At moderate to low

sun elevations, the plane parallel model significantly overestimates the reflectance dependence on view angle

in the forward-scattering direction but shows a similar dependence in the backscattering direction. Theoretical

simulations are performed that show that the likely cause for this discrepancy is because the plane-parallel model

assumption does not account for subpixel-scale variations in clond-top height (i.e., "cloud bumps"). Monte

Carlo simulations, comparing 1D mode[ radiances to radiances from overcast cloud fields with 1) cloud-top

height variations but constant cloud volume extinction. 2) flat tops but horizontal variations in cloud volume

extinction, and 3) variations in both cloud-lop height and cloud extinction are performed over a _4 km× 4

km domain Iroughly the size of an individual GAC AVHRR pixell. The comparisons show that when cloud-

top height variations are included, departures from 1D theory are remarkably similar (qualitatively) to those

obtained observatiomdly. In contrast, when clouds are assumed flat and only cloud extinction is variable, re-

flectance differences arc much smaller and do not show any view-angle dependence. When both cloud-top height

and cloud extinction variations are included, however, large increases in cloud extinction variability can enhance

reflectance differences. The reason 3D 1D reflectance differences arc more sensitive to cloud-top height w*riations

in the forward-scattering direction (at moderate to low sun elevations) is because photons leaving the cloud

field in that direction experience fewer scattering events (lov,,-order scattering) and are restricted to the topmost

portions of the cloud. While reflectance deviations from I D theory are much larger for bumpy clouds than [k_r
flat clouds with variable cloud extraction, differences m cloud albedo are comparable for these two cases.

1. Introduction

Inhomogeneities in cloud properties can have a sig-
nificant influence on satellite-measured radiances and

flux estimates, particularly in the visible part of the spec-
trum. Cloud inhomogeneities can occur because of vari-
ations in cloud liquid water path [e.g., variability at
scales smaller than or comparable to individual cloud
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elements (within-cloud variability), sharp discontinui-
ties due to clear-sky breaks (broken clouds)], or because

of variations in cloud geometry (e.g., nonflat cloud tops,
cloud sides). The degree to which satellite measure-
ments are influenced by cloud inhomogeneities depends
on the spatial resolution of the instrument, the sun-
earth-satellite viewing geometry, and whether the ob-
servations are analyzed at the local pixel scale or over
larger regions by averaging pixel-level values. Given
that the standard approach used in cloud remote sensing
applications and climate models relies on the plane-
parallel model approximation, which assumes that
clouds are one-dimensional and therefore horizontally
homogeneous, it is paramount that any biases or un-
certainties due to cloud inhomogeneity be identified.

There is much evidence that variations in marine stra-

tus cloud liquid water have a strong radiative effect.
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Coakley (1991) showed that, on average, visible reflec-
tivities from broken marine stratocumulus are _15%-

20% lower than those from uniform layered clouds taken
from the same layers. Cahalan et al. (1994) showed that

within-cloud variations in stratocumulus cloud liquid
water can cause albedos to be lower than plane-parallel
values by _ 15% over mesoscale regions. Cahalan et al.
(1994) note, however, that the bias is significantly re-
duced when the independent pixel approximation (IPA)
is used; IPA estimates the mesoscale-average albedo

over a region by accounting for its optical depth prob-
ability density in 1D model calculations (thus ignoring
horizontal radiative transport). Model simulations by
Marshak et al. (1995) show that the IPA is applicable
only for pixels larger than _200 m (corresponding to

the "radiative smoothing" scale) because neglect of
horizontal photon transport at smaller scales leads to
significant instantaneous errors in albedo.

Based on these studies, one might therefore expect
biases in cloud retrievals to be small when the IPA

method is applied over extensive marine stratus and

satellite pixel size is larger than the radiative smoothing
scale. A recent study by Loeb and Coakley (1998 here-
after LC98) shows that this is not the case. LC98 used

one month of global area coverage (GAC) Advanced
Very High Resolution Radiometer (AVHRR) visible
measurements [pixel size _4 km × 4 km] to examine
the consistency of plane-parallel model retrievals of

cloud optical depth from overcast stratiform layers off
the coasts of California, Angola, and Peru. They showed
that cloud optical depth distributions inferred at the pixei
level from plane-parallel theory suffer from a systematic
view angle-dependent bias in the forward-scattering di-
rection at moderate to low sun elevations and a strong

solar zenith angle-dependent bias at all view angles,
particularly at low sun elevations. The latter conclusion

was also observed in Loeb and Davies (1996) using
coarser-resolution Earth Radiation Budget Experiment
(ERBE) scanner measurements over the tropical oceans.

Given that LC98 restricted the analysis to uniform
overcast stratus layers, thereby constraining the com-
parisons to cloud systems that arguably are the closest

to plane parallel in nature, it is not immediately clear
why systematic biases in cloud optical depth retrievals
were observed. Based on previous theoretical studies
(e.g., Davies 1978; Welch and Wielicki 1984; Barker
1994; Loeb et al. 1997) and on preliminary Monte Carlo
simulations, LC98 proposed that one reason may be
because the IPA assumes that clouds are flat at subpixel

scales. A glance out the window of an aircraft clearly
shows that even overcast marine stratus layers can have
highly irregular cloud tops (or "bumpiness"). However,
marine stratus also have large variations in cloud liquid
water (or cloud extinction) (Cahalan and Snider 1989;

Barker 1992; Davis et al. 1997). Since the IPA is es-

sentially a plane-parallel calculation at the pixel scale,
subpixel-scale variability in cloud liquid water may also

be important, possibly introducing a "subpixel" plane-
parallel model reflectance bias (Cahalan et al. 1994).

Unfortunately, these effects are difficult to examine
observationally. The present study therefore adopts a
theoretical approach to investigate how spatial varia-
tions in cloud-top height and cloud extinction affect
reflectances and albedos from overcast layers over a
domain size comparable to an individual GAC AVHRR
pixel [_4 km × 4 km]. Monte Carlo simulations com-
paring ID model reflectances with those from overcast
3D cloud fields having 1) cloud-top height variations
but constant cloud volume extinction, 2) fiat tops but
horizontal variations in cloud volume extinction, and 3)
variations in both cloud-top height and cloud extinction
are considered.

2. Methodology

a. Monte Carlo simulations

Monte Carlo simulations are performed using the
model of Vfirnai (1996). The model assumes periodic
boundary conditions, so that photons leaving one side
of a cloud field boundary come back at the opposite
side. In each simulation, 10 ' photons are used. The an-
gular bin interval is 0.1 for the cosine of the observer
zenith angle and 30 ° for the relative azimuth, which
gives a reflectance uncertainty of _<1%. Simulations are
performed at solar zenith angles (0o) of 30 °, 65 °, and
80 ° for domain cloud optical depths (7,l) of 5 and 10,
and each cloud field is treated as a single realization.
The cloud phase function is defined at a wavelength of
0.865 /zm and is calculated based on Mie theory using
the Sc,_,p cloud drop size distribution of Welch et al.
(1980). In all cases, a single scattering albedo (to,) of
1.0 is assumed. Atmospheric effects above or below the
cloud fields and reflection by the underlying surface
(assumed to be ocean) are not considered. Reflectance
is defined as

_'l(/.t, /z,,, _b)
R(_, _z,,, 4_) - (1)

/xoF

where I is the pixel radiance (W m 2 sr _ gm _), F the
solar irradiance (W m 2/zm _),/x the cosine of observer
zenith angle, p_,, the cosine of solar zenith angle, and ,;b
is the azimuth angle relative to solar plane (¢5 = 0°
corresponds to forward scattering).

b. Cloud fields

1) VARIABLE CLOUD-TOP HEIGHT AND CONSTANT

CLOUD EXTINCTION

A stochastic cloud model (Barker and Davies 1992a;

Vfirnai 1996) is used to generate cloud fields with cloud-
top height variations. The cloud fields are characterized
by continuous power spectra with a structure repre-
sented by the slope of the wavenumber spectrum of
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TABLE I. Scaling exponents (s kand s 2) and scale break wavenumber

(/%,) used in Eq. (2) to generate the stochastic cloud fields considered
in this study. The scale break of k_, = 6]L km _ corresponds to a

length scale of _728 m. Herc L is the domain size (=4.4 kin).

Cloud lield s, kb, L s,

STOCHA 1 6 1.6

STOCHB 1 6 3.6

STOCHC 1 6 6.0

cloud thickness. The ensemble averaged one-dimen-
sional spectra scale according to the following:

{kk"k<kb,
(S,) _ ' (2)

'-_, k -> k,,,

where (S_) is the averaged ID power spectrum, k is the
wavenumber (km _), k,_ is the wavenumber at the scale
break, and st and s, are the scaling exponents for large
(k < k,,) and small (k -> kh,) spatial scales, respectively.
Small values of s, produce cloud fields with many small-
scale variations (s2 = 0 corresponds to white noise),
while larger values produce smoother fields. Such scale
breaks have been observed in lidar measurements of

cloud-top height above marine stratocumulus (Boers et
al. 1988). The measurements show a k _n behavior at
scales smaller than _ 1 km and k ' at larger scales. Scale
breaks have also been observed in Landsat reflectivities

by Cahalan and Snider (1989) between _200 and 400
m and in AVHRR observations (both in the visible and
infrared) by Barker and Davies (1992b) and Oreopoulos
(1996) between _5 and 7 km. The Landsat scale break

is believed to be due to horizontal photon transport or
radiative smoothing (Marshak et al. 1995; Davis et al.
1997), while the cause for the AVHRR scale break is

unclear at the present time. Here, the scale break is fixed
at k,, = 6/L km _, where L corresponds to the domain
size. Cloud fields are defined over a 128 × 128 hori-

zontal grid with gridpoint spacing of 34.4 m, corre-
sponding to a domain size of _4.4 km x 4.4 km. Con-
sequently, kb, = 1.373 km _, and the length scale where
the scale break occurs is _0.728 km [which is close to
the ! km scale-break observed by Boers et al. (1988)].
In simulations where cloud extinction (/3) variability is
not accounted for, a value of/3 = 30 km _ is assumed.

To examine a range of cloud-top structures, three very
different scalings are considered (Table 1). These cor-
respond to clouds whose tops range from being highly
erratic at small scales (-<728 m) (STOCHA) to fairly
smooth (STOCHC). At larger scales (>728 m), the same
scaling (s, = 1) is assumed in all cases. While the sto-
chastic model provides information on the horizontal
spatial variability in cloud-top height, there is no in-
formation on the actual vertical extent of the cloud

bumps. To examine a range of possibilities, cloud-top
heights are specified such that the domain standard de-
viation lies between _ 10 and 100 m. This range is con-
sistent with recent Lidar In-Space Technology Experi-
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FIG. 1. Cloud-top height maxima, minima, and standard deviations

for region; of extensive stratus measured by the LITE for a portion
of an orbil on 14 September 1994. (a), (b) Measurements off the coast

of Califor fia (36.3°N, 132.4°W to 34.5°N, 130.5°W); (c), (d) mea-

surements from the equatorial Pacific Ocean (2.3°N, 108.2°W to
1.7°S, 10_ .0°W}.

ment (LITE) (Winker et al. 1996) measurements from
extensive stratus layers, as illustrated in Fig. 1. The
LITE cloud-top height maxima (Z,,,._), minima (Z.,.),
and stavdard deviations in Fig. 1 were obtained at 1-s
interval,' along the orbital path from ten 290-m reso-
lution st bsamples 740 m apart (the range resolution of
the LIT]_ measurements is 15 m). As shown, cloud-top
height s andard deviations range from _-10 to _ 100 m
(standar t deviations greater that 200 m are due to clear-
sky bre_:ks in cloud field), and differences between the

maximun and minimum heights (Z,.... - Zm,,) typically
range fr)m _30 to _250 m. Similar results were ob-
served 1:y Boers et al. (1988) using high-resolution air-
craft lid _r measurements over marine stratocumulus.

Table 2 provides a summary of the geometric char-
acteristi,:s of the cloud fields for _-,j = 10. For each
stochast c cloud model in Table 1, four cloud fields with

cloud-top height standard deviations (o"z) between _ 10
and _1,)0 m are defined. Note that since cloud-base

height r_mains constant (i.e., at Z = 0 m), cloud-top
height aad cloud thickness at each grid point are iden-
tical. Fi2.ure 2 shows an example of three cloud fields
corresponding to the STOCHA, STOCHB, and
STOCHC scalings (Table 1) with errs of 42.9, 44.6, and
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TABt.E 2. Geometric characteristics of the stochastic cloud fields

considered in this study for % = 10. Here Z,,,. and Z ...... are the

minimum and maximum cloud-top heights {m). respectively: W is
the domain average horizontal width of the ckmd bumps along Z; H

is the domain average vertical extent of the cloud bumps relative to
Z; and A_ is the mean cloud bump aspect ratio determined from the

aspect ratio of individual cloud bumps. Individual cloud bump aspect

ratios are defined as the ratio of the vertical extent of a cloud bump
above Z to its a horizontal width along Z. Also. _r is the cloud-top

height standard deviation over the domain (m); _r.,_ = domain cloud

optical depth standard deviation, assuming a constant cloud thickness
of 333.3 m.

Cloud

field Z ..... Z ...... Vg 17t ,_.1_ ¢r. _rT,j

STOCHA a 300.5 366.5 91.t 8.2 0.16 8.6 0.26

b 267.7 400.0 91,1 16.4 0.32 17.2 0.52

c 169.2 499.2 91.1 40.9 0.80 42.9 1.29

d 5.0 665.0 91.1 81.9 1.60 85.7 2.57

STOCHB a 300.5 372.5 272.3 8.1 0.04 8,9 0.27

b 267.7 411.7 272.3 16.2 0.08 17.8 0.53

c 169.2 529.2 272.3 40.5 0.20 44.6 1.34

d 5.1 725.1 272.3 81.1 0.41 89.1 2.67

STOCHC a 300.5 373.5 504.5 10.6 0.02 9.6 0.29

b 267.7 413.7 504.5 21.3 0.05 19.2 0.58

c 169.2 534.2 504.5 53.2 0.12 47.9 1.44

d 5.0 735.0 504.5 106.4 0.24 95.8 2.87

(a)

47.9 m, respectively, and a domain average cloud-top
height (Z) of 333.3 m. Horizontal cross sections of
cloud-top height through the center of each cloud field
in Table 2 are provided in Figs. 3a-c. As shown, all
cloud fields share the same spatial variability at large
scales but have a very different structure at smaller
scales (i.e., at scales --<728 m).

While it is unlikely that these cloud fields represent
the complete range of variability observed in nature,
they do serve as a convenient starting point for studying
the role of cloud-top geometry at subpixel scales and
arguably are a significant improvement over the simpler
cloud geometries used in earlier Monte Carlo studies
(e.g., cubes, cylinders, etc.).

2) FLAT TOPS AND VARIABLE CLOUD EXTINCTION

To examine how variations in cloud volume extinc-

tion affect reflectance, simulations involving flat clouds
possessing horizontal variations in /3 are performed.
Such cloud fields have frequently been used to study
the influence of cloud liquid water variations over me-
soscale regions. The main difficulty in specifying these
cloud fields is in establishing what constitutes "realis-
tic" /3 variations. Since biases increase with 13 vari-
ability, it is crucial that reasonable /3 fields be used.
Cahalan et al. (1994) and Marshak et al. (1995) rely on
a two-parameter multiplicative fractal bounded cascade
model and specify model parameters using liquid water
path (LWP) measurements from marine stratocumulus
during the First ISCCP (International Satellite Cloud
Climatology Project) Regional Experiment (FIRE) (Ca-
halan and Snider 1989). Unfortunately, their "fractal

(b)

(c)
FIG. 2. Schematic illustrating 3D structure for (a) STOCHA (_r/ =

43 m), (b) STOCHB (_r,, = 45 mi, (c) STOCHC I_rz = 48 mt cloud
fields.

parameter," which determines the degree of variability

in the /3 held, is inferred from 18 days of LWP distri-
butions and thus likely overestimates the variability in
/3 over a typical overcast _4 km × 4 km region. An

alternate method of inferring /3 fields is from satellite
retrievals of cloud optical depth (Barker and Liu 1995;
Chambers et al. 1997). The main advantage is the avail-
ability of observations compared to in situ measure-

ments, but the disadvantage is that cloud thickness needs
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FK;. 3, Horizontal cross sections of cloud-top height across the center of (a) ;TOCHA, (b) STOCHB, and (c) STOCHC cloud fields
defined in Table 2.

to be estimated and cloud optical depths may suffer from
large instantaneous errors (Marshak et al. 1995).

Despite these limitations, variable/3 fields in the pres-
ent study are inferred using Landsat observations from
overcast marine stratus layers off the coast of California.
The variable /3 fields are defined over _4 km x 4 km
subregions derived from Landsat cloud optical depth
retrievals (at 28-m resolution) generously provided by
the authors in Barker et al. (1996) for three 58 km x
58 km Landsat images (scenes A9, A10, and All in
their Table 1). In order to maximize the influence of the
/3 fields on reflectance, only the most variable _(4 kmF

T,_BtJ= 3. Cloud extinction and cloud optic_,l depth statistics for flat

clouds with variable extinction. Here 13...... = minimum volume ex-

tinction coefficient Ikm '), 13.,.. = maximum volume extinction co-

efficient (kin '). crt_ - volume extinction coefficient standard devi-

ation (kin t), (r.a = domain cloud optical depth standard deviation,

assuming a constant cloud thickness of 333.3 m.

Cloud field 13...... 13.... (r. rr.

LSATA9 0.69 59.9 11.2 3.74

LSATA 10 2.82 141,7 16.3 5.44

LSATA 11 8.66 74.5 9.9 3.30

subregions from each image, as determined from the
maximum cloud optical depth standard deviation-to-
mean r_ tio, are considered. After renormalizing cloud

optical depths from each subregion so that the mean
domain optical depth is equal to ra, pixel-level/3's are
determi led assuming a constant cloud thickness (e.g.,
Z = 333.3 m for % = 10; 2 = 166.7 m for ra = 5).

Means and standard deviations in/3 and ra correspond-
ing to these cloud fields are provided in Table 3. Com-
pared t_ the stochastic cloud fields possessing only
cloud-t(p height variations (Table 2), the /3 fields are

much rr ore variable; o'_,,values for the variable/3 fields
(Table .") are typically three times larger than stochastic
cloud fi.qd values (at least for orz < 50 m).

3) V \RIABLE CLOUD-TOP HEIGHT AND VARIABLE

C10UD EXTINCTION

In real clouds, both cloud-top height and cloud ex-
tinction may vary. Minnis et al. (1992) used surface-
based ceilometer and acoustic sounder measurements

along ,aith satellite-derived cloud optical depth retriev-
als [from the Geostationary Operational Environment
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TABLE 4. Cloud-top height, extinction, and optical depth statistics

for cloud fields with both variable cloud-top height and variable cloud

extinction. The domain cloud optical depth IT,s) is 10 in all cases.

Cloud field 2 (r e 13 tri_ (r,,

STOCHA_V I 330.3 44.5 29.7 4.0 2.6

STOCHA_V2 330.3 44.5 28.6 10.7 4.9

STOCHB_V 1 330.0 46.3 29.7 4.2 2.7

STOCHB_V2 330,0 46.3 28.7 I 1.2 5.1

STOCHC_V 1 329,5 50,2 29.7 4.5 2.9

STOCHC_V2 329.5 50.2 28.8 12. I 5.6

Satellite (GOES)] during FIRE to show that geometric
cloud thickness is reasonably well correlated with the
square root of cloud optical thickness. Chambers et al.
(1997) subsequently used this relationship to generate
cloud fields possessing 2D variations in cloud extinction
and cloud thickness. Here, a similar approach is adopted
for one set of cloud fields. To examine how drastic

changes in the /3 field affect reflectances, a second set
of cloud fields is considered that has the same cloud-

top height variability as the first set but a much more
variable 13 field.

Starting with cloud optical depths for the most bumpy
of the STOCHA, STOCHB, and STOCHC cloud fields

(d cases in Table 2), cloud-top heights are redefined as
follows:

z; = Kx/_,_, (3)

where % is the cloud optical depth at grid point (i, j),
and K is a constant. Here, K is set to 105.4082 m for

all cloud fields with % = 10 to ensure that 2_j _ 333
m. Next, two very different methods of determining
cloud volume extinction coefficients at each grid point
(/3_j) are used. The first is given by

T

/3_ = _;-, (4)

where the subscripts ij were dropped for convenience.
A summary of the cloud fields defined by Eqs. (3) and
(4) is provided in Table 4 (STOCHA_V 1, STOCHB_V 1;

STOCHC_V 1), and a cross section through one of these
cases (STOCHB) is shown in Fig. 4.

In order to examine how drastic changes in cloud
extinction affect cloud reflectances, a second set of

cloud fields is constructed that uses the same Z,_ as
inferred from Eq. (3) but a much more variable/3 field.
Specifically, cloud extinction is rescaled using the fol-
lowing expression:

/3: = e/3_z', (5)

where e is a constant that ensures that the new domain

cloud optical depth (=(/32Z')) is the same as that for
cloud fields defined by Eqs. (3) and (4) (e.g., for % =
10, e = 10.75). Figure 4 shows horizontal cross sections
for cloud fields with cloud-top heights and extinction
coefficients inferred from Eqs. (3) and (5)
("STOCHB_V2") for % = 10. The main difference
between the V I and V2 cloud fields is that in the latter

/3 (and therefore optical depth) is enhanced in the peaks
of the height field and reduced in the valleys. As shown
in Table 4, cloud fields with/3 inferred from Eq. (5) are
much more variable. Note that the/3 field defined in Eq.
(5) is introduced simply to examine the influence of
large changes in cloud extinction when cloud bumps are
present and is not necessarily representative of/3 vari-
ability in real clouds.

3. Results

a. Reflectance differences

Figures 5a,b show bidirectional reftectances for the
STOCHC variable cloud-top height field with o-z = 48
m (Fig. 2c) and the plane-parallel model for % = 10
at 0. = 65 °. While the overall characteristics in reflec-
tance are quite similar for these two cases, the plane-
parallel model values are noticeably larger in the for-
ward-scattering direction, by as much as _ 15% (relative
difference). Differences are much smaller (_<5%) in the
backscattering direction. Figures 6a-c show relative re-
flectance differences between 3D and 1D model cal-

_.20
0)

c'-,
_15

o
"0
= 5

o
0

0 i r .... i ' r ,

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Horizontal Distance (km)

-- Vl ....... V2

FIe;. 4. Cloud optical depth horizontal cross sections for cloud fields with variations in both

cloud-top height and cloud extinction. Here V I corresponds to cloud-top height and cloud ex-

tinction fields l'rom Eqs. (3) and (4): V2 corresponds to cloud lields interred from Eqs, (3) and
(5).
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Fie;. 5. Bidirectional reflectance for rj = 10 and O,, = 65 ° from

(a) STOCHC (tr/ 48 m) and (b) the plane-parallel model. Here #

increases with radial distance from the center of the circle and d,

changes azimuthally (,:h = 0 ° is on the right and _ - 180 ° is on the

[eft as indicated).

culations {=(R,D -- R_D)/[0.5(R3D + R.t,)] × 100%}
for all of the variable cloud-top height fields in Table
2 [section 2b(l)], in the back- (q_ = 150°-170 °) and
forward- (,;b = 10o-30 °) scattering directions at the same
r_ and 0,, as in Fig. 5. As shown, relative reflectance
differences systematically increase (in magnitude) with
decreasing/x in the forward-scattering direction, reach-
ing _-30% at the most oblique view angles (Fig. 6c).

In the backscattering direction, reflectances exceed
plane-parallel values (i.e., positive relative differences),
but the magnitude of the difference is much smaller.

Interestingly, relative differences in Figs. 6a-c are high-
ly sensitive to the spatial characteristics of the cloud
bumps. For example, the largest deviations from ID
theory il_ the forward-scattering direction occur for the
relatively smooth STOCHC cloud fields; in fact, relative
differences for o"z _ 48 m (Fig. 6c) are larger (in mag-
nitude) than even those for the highly variable STOCHA
case with o-z _ 86 m (Fig. 6a). The STOCHA clouds

are extremely bumpy (Figs. 2a and 3a) and have much
larger wdues of AR (Table 2). Here AR is the mean
cloud bump aspect ratio determined from the aspect ratio
of individual cloud bumps (cloud bumps are defined as
continuous areas where cloud-top height exceeds the
domain average Z). Reflectance differences and AR val-
ues for the STOCHB cloud fields generally lie between
those for STOCHA and STOCHC. Thus, reflectance

differences do not necessarily increase with o'z but also
depend on the horizontal extent of the cloud bumps.
This relationship is examined further in section 3c.

RelatiVe reflectance differences for the flat clouds

with variable cloud extinction [described in Table 3:
section 2b(2)] are shown in Fig. 6d. In this case, re-
flectance differences are much smaller in magnitude

(<5%) and do not show any systematic dependence on
/x. This occurs in spite of the much greater variability
in cloud optical depth for these clouds (Table 3). Be-
cause of the nature of the plane-parallel model bias (Ca-
halan et al. 1994), relative differences in Fig. 6d are
always negative.

Figures 7a-c show relative reflectance differences for
the variable cloud-top height fields when 0_, = 30 °.
Overall, relative differences are < 10% and have a much

weaker j, dependence than those at 0n = 65 °. For the
variable 8 cloud fields (Fig. 7d), reflectance differences
at 0_ = 30° are roughly double those at Oo = 65 ° , but
magnitu, les remain _<10%. Figures 8a_l show results
for 1-,t = 5 (i.e., 2 = 166.7 m) at 0_, = 65 °. In this case,

relative differences are very similar to those in Fig. 6
for r,_ = 10. Thus, deviations from 1D theory increase
with solar zenith angle for the variable cloud-top height

fields but show little sensitivity to changes in cloud
optical depth.

Relati ze reflectance differences for the cloud fields

possessil _gvariations in both cloud-top height and cloud
extinctioa [Table 4; section 2b(3)] are shown in Figs.
9a-c for r,j = 10 and 0, = 65 °. As mentioned earlier,
the only physical difference between each pair (e.g.,
STOCHA-VI and STOCHA-V2) is in the 2D distri-
bution o! cloud extinction; for the "V2" cloud fields,

cloud ex:inction is enhanced in the peaks of the height
field and reduced in the valleys, resulting in much larger
o'_. Wh¢n cloud extinction variability is enhanced in
this mar ner, relative reflectance differences increase.

For the STOCHA_V2 case (Fig. 9a), only a small change
occurs ('-----3%absolute change in relative reflectance dif-
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ference), whereas Figs. 9b and 9c show significantly
larger deviations from 1D for the STOCHB_V2 and
STOCHC_V2 cloud fields. Thus, large increases in
cloud extinction variability in clouds with bumps can
have a noticeable influence on cloud reflectance.

Reflectances from the cloud fields with bumpy tops
deviate from 1D theory in a manner that is remarkably
similar (qualitatively) to observed reflectances in LC98
(Figs. 9 and 10 in LC98). In that study, 1D reflectances
increased much more rapidly with view angle than the
observations in the forward-scattering direction, with
relative differences reaching _20% at the most oblique
view angles. In the backscattering direction, observed
reflectances were much closer to 1D values at all view

angles; relative differences were _< 10%. Larger differ-
ences were also observed at low sun elevations. The
remarkable similarities between the LC98 results and

those in the present study suggests that cloud-top height
inhomogeneities likely play a far greater role than cloud
liquid water (or cloud extinction) variability in explain-
ing the observed discrepancies in LC98.

b. Photon order of scattering and cloud penetration
dep th

To better understand the reason for the distinct an-

gular pattern in the reflectance differences shown above
and observed from satellite measurements (LC98), it is

useful to examine distributions of the photon order of
scattering and cloud penetration depth for photons ex-
iting in different viewing geometries from 3D and ID
clouds. The order of scattering is defined as the number

of scattering interactions a photon undergoes prior to
leaving the cloud in a given direction. If a change in
cloud-top structure affects the order of photon scattering
distributon, it will also influence reflectance.

Figurts 10a and 10b show the average number of

photon :.catterings as a function of /z and O'z for the
STOCHA and STOCHC cloud fields, respectively, in
the forward- and backscattering directions (for _'a = 10
and 0o = 65°). Also provided are the average number

of photon scatterings for the plane-parallel model (1D).
On average, photons exiting the cloud field in the nadir
directiot undergo _2.5 times more scattering interac-
tions th:n those exiting at oblique /.t in the forward-

scatterin g direction. The order of photon scattering also
decreases with view angle in the backscattering direc-
tion but not as rapidly. Figures 1 la-d show the corre-
sponding; frequency distributions for photons exiting in
the nadi" direction (Figs. l la,b) and in the /.t = 0.3-

0.4, _ := 0o-60 ° direction (Figs. llc,d). At nadir, the
peaks it the photon scattering distributions typically
occur b,_tween _8 and 10 scattering events, and the

distribut,ons fall off relatively slowly at higher values.
In contr_tst, photon scattering distributions at/x = 0.3-
0.4 are ]nuch narrower and peak after only _2-3 scat-
tering e_ ents. As illustrated in Fig. 12, which shows the

average maximum depth within the cloud reached by
photons prior to exiting (relative to 2 = 333.3 m), pho-

tons leaving obliquely also tend to remain closer to the
topmost portions of the cloud; that is, they generally
remain above Z, or stay within =25 m of that level,

while photons exiting in the nadir direction typically pen-
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etrate _3-4 times deeper (i.e., _75-100 m below Z).
Consequently, the reason 3D-1D reflectance differences
are more sensitive to cloud-top height variations in the
forward-scattering direction (at moderate to low sun el-
evations) is because as the view angle increases, the
order of photon scattering decreases (i.e., photons ex-
perience fewer scattering events), and the scattering is
restricted primarily to the topmost portions of the cloud.
Thus, even small changes in cloud-top geometry have
a direct effect on reflectances in that direction. At other

viewing geometries (e.g., nadir view, backscattering di-
rection), the order of photon scattering is larger and
photons penetrate deeper into the cloud, thereby reduc-
ing the sensitivity to cloud-top geometry.

c. Cloud-top geometr 3,

To further examine the relationship between reflec-
tance deviations from 1D theory and cloud-top geom-
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etry in the forward-scattering direction, relative reflec-
tance differences in Figs. 6a-c were directly compared
with the corresponding cloud properties summarized in
Table 2. Remarkably, relative differences were found to
depend linearly on the product of the average horizontal
and vertical extent of the cloud bumps. To illustrate,
Fig. 13 shows relative differences between reflectances

from the variable cloud-top height fields and the plane-
parallel model_at 0. = 65°plotted against (r,,)(%)cos("),
where % = /3H, % = _W, and cos® is the cosine of
the scattering angle (®). Included are all # and & for
which cos® -> 0% and all of the cloud fields in Table
2 are considered. As shown, relative reflectance differ-

ences increase (in magnitude) with (r.,)(%) cos®, with
a correlation coefficient (r) of 0.846. Note that the cos®
factor accentuates the relative differences at small /z,
where they are largest.

Relative reflectance differences in the forward-scat-

tering direction are larger for cloud fields with hori-
zontally extensive cloud bumps because at low sun el-
evations photons must travel through longer horizontal
pathlengths, and therefore experience more scattering
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events, in order to get through the_e bumps. An increase
in the order of scattering means that photons have a
greater likelihood of being redirected or scattered into
other viewing directions, so the number of photons ex-

iting obliquely into the forward direction decreases. To
illustrate, Figs. 14a-d shows frequency distributions for

the number of photon scatterings at very low sun (0o
= 80°), for photons exiting the cloud field in the nadir
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direction (Figs. 14a,b), and in the /_ = 0.3-0.4, _b =
00-60 ° direction (Figs. 14c,d), for the STOCHA and
STOCHC cloud fields. As shown, there is sharp decrease
in the number of photons exiting at /l = 0.3-0.4 as o"z
increases and a corresponding increase at nadir. These
changes are most pronounced for the STOCHC case
(Figs. 14b,d) because of the large horizontal extent of
cloud bumps for this case. The increase in the number
of photons exiting at nadir is consistent with what is
observed in satellite measurements of reflectances

(LC98; Loeb and Davies 1996) and in other 3D simu-
lations (Loeb et al. 1997).

d. Effect on cloud albedo

To examine how inhomogeneities in cloud-top struc-
ture and cloud extinction affect cloud albedo at --_4 km

x 4 km scales, Figs. 15a-c show albedos for each of
the cloud fields described in sections 2b(l) and 2b(2)
for "r,_= 10 at 0o = 30 ° (Fig. 15a), 65 ° (Fig. 15b), and
80 ° (Fig. 15c). The dashed lines represent the corre-

sponding plane-parallel model albedos. For the variable
cloud-top height fields, departures from 1D albedos in-
crease with 0,, while the opposite is true for the flat
clouds with only /3 variations. The latter result is con-

sistent _ ith previous studies (Cahalan et al. 1994; Oeo-

poulous 1996; Barker et al. 1996). Interestingly, devi-
ations fiom plane-parallel model albedos are compa-
rable for these two types of cloud inhomogeneity. While
deviations tend to be larger for the variable/3 fields at
high suv (reaching --7% for the LSATA10 case at 0,,
= 30 °) (Fig. 15a), differences are typically <4% for all
cloud fields at 0o = 65 ° and 0o = 80 ° (Figs. 15b,c).
Given that reflectance deviations in section 3a were far

greater for the bumpy cloud fields (Figs. 6a-d), this
result is somewhat surprising. The reason for the dif-
ferent &:havior is because reflectance deviations from

1D theory for the variable /3 case are always negative
(i.e., reflectances are always lower than 1D model val-

ues), regardless of viewing geometry (Figs. 6-8). Con-
sequently, when these negative reflectance errors are
integrated over all viewing geometries to give the over-
all albedo error, their cumulative effect can be appre-
ciable. In contrast, reflectance differences for the vari-
able cloud-top height fields are negative in the forward-
scattering direction, but positive both at nadir (especial-
ly at k w sun) and in the backscattering direction
(althoug:! the magnitude is smaller than in the forward
directiov). Consequently, errors cancel and the albedo
bias is reduced for these cloud fields.

4. Summary and conclusions

Recent comparisons between observed reflectances
and plat e-parallel model calculations have shown that
1D theo-y fails to adequately represent the angular de-
pendence in observed visible reflectance under certain
conditioas, even for extensive marine stratus layers
(Loeb aad Davies 1996; Loeb and Davies 1997; Loeb
and Coakley 1998). Consequently, when 1D models are
used to refer cloud optical depths directly from satellite
observations, the retrievals exhibit systematic shifts

with changes in viewing geometry.
In the present study, Monte Carlo simulations com-

paring I D model reflectances with those from overcast
3D clou:l fields were performed in order to show that
the mair reason for the observed biases is likely because
the plane-parallel model assumption does not account
for subl,ixel-scale variations in cloud-top height (i.e.,
cloud bt mps). When cloud bumps are included in Monte
Carlo si nulations, 3D reflectances deviate from I D val-

ues witl_ a view angle dependence that is remarkably
similar t _ that obtained observationally. Specifically, 3D
reflectal ces are smaller than 1D values in the forward-

scatterir g direction (by as much as _30% at moderate
to low _,un and oblique view angles) but are similar in
the backscattering direction. In contrast, when plane-
parallel model reflectances are compared with those
from fla clouds with large horizontal variations in cloud

extinctb.n, no systematic view angle dependence in the
differenze is obtained, and relative differences remain

_<5%-1 )%. Consequently, cloud-top height inhomo-
geneitie_ likely play a far greater role than cloud liquid
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water (or cloud extinction) variability in explaining the
systematic view angle dependent biases in satellite re-
trievals of cloud optical depth.

Reflectance deviations from 1D theory for clouds pos-
sessing both cloud-top height and cloud extinction vari-
ations are, however, found to be sensitive to large
changes in cloud extinction. When cloud extinction is
substantially increased in the cloud bumps (and de-
creased in the valleys between bumps), reflectance dif-
ferences show a noticeable increase.

The reason reflectances for 3D clouds with bumpy
tops deviate so much from ID theory with changes in
view angle in the forward-scattering direction is because
the order of scattering is lower (particularly at oblique
view angles), and photons generally remain close to the
topmost portions of the cloud. As a result, 3D-1D rel-
ative reflectance differences are quite sensitive to

changes in cloud-top geometry; in fact, they increase
linearly (in magnitude) with increases in both the hor-
izontal and vertical extent of the cloud bumps. At other

viewing geometries (e.g., nadir view, backscattering di-
rection), the order of photon scattering is larger and
photons penetrate deeper into the cloud, thereby reduc-
ing the sensitivity to cloud-top geometry. While reflec-
tance deviations from I D theory are much larger for
cloud fields with bumpy tops than flat clouds with vari-
able cloud extinction, deviations in cloud albedo are

shown to be comparable for these two cases.
These results, together with those presented in Loeb

and Davies (19961 and Loeb and Coakley (1998), dem-
onstrate that the common practice of using plane-par-
allel theory to retrieve cloud optical depth, even for
clouds that are arguably plane parallel in appearance, is
flawed and leads to significant biases. Since the biases
tend to be less pronounced in the backscattering direc-
tion at solar zenith angles _<60 °, it is recommended that
application of I D theory be restricted to those angles.
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