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RELAXATION FROM STEADY STATES FAR FROM EQUILIBRIUM AND THE

PERSISTENCE OF ANOMALOUS SHOCK BEHAVIOR IN WEAKLY IONIZED GASES

ROBERT RUBINSTEIN* AND AARON H. AUSLENDERt

Abstract. The decay of anomalous effects on shock waves in weakly ionized gases following plasma

generator extinction has been measured in the anticipation that the decay time must correlate well with

the relaxation time of the mechanism responsible for the anomalous effects. When the relaxation times

cannot be measured directly, they are inferred theoretically, usually assuming that the initial state is nearly

in thermal equilibrium. In this paper, it is demonstrated that relaxation from any steady state far from

equilibrium, including the state of a weakly ionized gas, can proceed much more slowly than arguments

based on relaxation from near equilibrium states might suggest. This result justifies a more careful analysis

of the relaxation times in weakly ionized gases and suggests that although the experimental measurements of

relaxation times did not lead to an unambiguous conclusion, this approach to understanding the anomalous

effects may warrant further investigation.
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1. Introduction. Renewed attention has recently been given to experimental reports of anomalous

behavior of shock waves in weakly ionized gases [1]. In an attempt [2] to isolate the mechanism responsible

for these effects, shocks were measured in a decaying plasma following extinction of the plasma generator.

It was argued that the measured relaxation time of the anomalous effects must correlate well with the the

relaxation time of their unknown cause; this measurement might therefore suggest the mechanism responsible

for the anomalous effects, or perhaps even identify it unambiguously.

Relaxation times cannot always be measured directly; in such cases, they are inferred theoretically,

usually by assuming relaxation from a near-equilibrium state. But since a two-temperature weakly ionized

gas in maintained in a steady state by energizing the electrons against the energy sink provided by heat

conduction [3], such a weakly ionized gas is really in a steady state far from equilibrium. By analyzing

representative examples, the present work shows that systems which are initially far from equilibrium relax

to equilibrium much more slowly than systems which are initially near equilibrium.

Retarded relaxation is demonstrated analytically for two systems: the Kats-Kontorovich steady state

[4], a steady state maintained by sources and sinks of particles and energy in a gas of particles interacting

through a power-law potential, and a nonequilibrium state of a gas of light particles diffusing in a gas of

heavy particles [5]. In particular, relaxation of the Kats-Kontorovich steady state following extinction of the

sources and sinks is shown to be algebraic in time instead of exponential: the relaxation rate is computed

theoretically to be 1/t where t is time.

The existence of non-exponential relaxation in systems far from equilibrium suggests that relaxation

times in weakly ionized gases should not be computed based on relaxation from a near-equilibrium state.
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This result justifies a more careful analysis of the relaxation times in weakly ionized gases and suggests that

although the experimental measurements of relaxation times did not lead to an unambiguous conclusion,

this approach to understanding the anomalous effects may warrant further investigation.

2. Steady solutions of the kinetic equations. The H-theorem of statistical mechanics [5] demon-

strates that the Maxwell-Boltzmann distribution is the unique long-time limit of the distribution function of

any isolated many particle system. If the system is near but not in thermal equilibrium, then the Chapman-

Enskog expansion shows [6] that the Boltzmann equation

(2.1) Of
= a(f, f)

can be approximated by the BGK equation

(2.2) Ofc9---[:- -o9 { f - f eq } .

In Eq. (2.1), f = f(r, p, t) is the single-particle distribution function and a(f, f) is the Boltzmann collision

operator [5]. In Eq. (2.2), lea denotes the Maxwell-Boltzmann distribution function; this equation states

that a near-equilibrium distribution function relaxes exponentially to a Maxwellian, where the relaxation

time w-1 is given s for a hard-sphere gas by

5_ - P_ V_
(2.3) w _ _-] ,f=-f,, 4m

In Eq. (2.3), p is the mass density of the gas, m is the mass of a gas particle, d is the particle diameter, and

T is the temperature; units in which the Boltzmann constant k = 1 are assumed.

Analogous exponential relaxation is directly evident in the Fokker-Planck equation 5 for a gas of light

particles diffusing in a gas of heavy particles,

Of 10(p%)
Ot p_ Op

(2.4) s=-B _ + .

In Eq. (2.4), m and p are the mass and momentum of a light particle and T is the temperature of the

gas of heavy particles. In this problem, the Maxwellian distribution is recovered by setting the flux s = 0;

relaxation to this state from a nearby state occurs over a time of order w -1 with

B
(2.5) w ,._ roT"

Although the H-theorem determines the long-time limit of the Boltzmann equation, it does not dictate

the time required to reach this limit. We will consider initial states from which relaxation to equilibrium is

particularly slow. Both the Boltzmann equation [4] and Fokker-Planck equation admit solutions representing

non-Maxwellian steady states far from equilibrium: these are solutions of the steady forms of Eqs. (2.1) and

(2.4) which prove to be singular at zero or infinite momentum. Thus, the non-Maxwellian solutions of Eq.

(2.1) are not integrable over all momenta: it will be shown that the integral representing the total number

of particles diverges at infinite momentum. Although this divergence might seem to be of merely formal

interest, it is actually another significant consequence of the H-theorem, which rules out any steady solution

of Eq. (2.1) other than the Maxwellian. Similar singularities will be shown to exist for the non-Maxwellian

solution of the Fokker-Planck equation Eq. (2.4).



It followsthatthesedistributionsonlyexistinafiniteregionofmomentumspace.If theyareextendedto
bezerooutsidethisregion,theresultisasolutionoftheinhomogeneous steady Boltzmann or Fokker-Planck

equation

(2.6) n(f,f)=-S

(2.7)
10(p2s)

p2 c3p

(3.2)

and E is the kinetic energy

where f, fl are pre-collision and f', f_ are post-collision distribution functions,

f = f(r,p,t)

fl = f(r, pl,t)

f' = f(r,p',t)

y; = f(r, p_, t)

p2

(3.3) E(p) = _m"

The conservation laws of particle mechanics imply that for any distribution function f,

dp f_(f , f) = 0

f pdp f_(f,f) = 0

(3.4) f E(p)dp f_(y, f) = o.

For non-equilibrium f, non-zero fluxes in momentum space

Jm(P') = - fp>_v, dp f_(f, f)

(3.5) J_(P') = - fv>_p' dp E(p)f_(f, f)

where the source term S is a sum of delta functions.

Since the source S in Eqs. (2.6) and (2.7) vanishes except over a finite number of spheres in momentum

space, the far from equilibrium distributions satisfy homogeneous equations everywhere else. From this

viewpoint, the slow relaxation of these states is immediately suggested by the observation that initially,

Of�Or = 0 except where the source is non-zero. Relaxation of the non-equilibrium distribution requires that

the effects of removing the source diffuse over all of momentum space; this process can be very slow.

3. The Kats-Kontorovich steady state. The collision integral is given in terms of the transition

probability U(p_, p', Pl, P), where p_, p' are post-collision and Pl, P are pre-collision momenta, by

d2 [ ' ' ' E'f_(f, f) = _-_ dPld p dpl_(E 1 + - E1 - E) ×
J

(3.1) _5(p_ + p' - Pl - p)U(p_,pl, pl,p){ftf_ _ f fl}



are possible, where Jm is a particle flux, and Je is an energy flux. Thus, if

(3.6)

then the corresponding fluxes are

,_(Po) = AoS(p - Po) + BoS'(p - Po),

and

satisfies the equations

f dp S=0

pdp S = 0

(3.10) / E(p)dp ,_ = O.

In view of Eqs. (2.6) and (3.4), Eq. (3.10) implies that the source term S does not alter the total mass,

momentum, or energy of the system; a steady state with S as a source term is therefore possible. The fluxes

are

4rr / 0 ifp<po(3.8) Je = _m Aop_ - 4Bop_ if p > Po.
%

It follows that the source distribution

(3.9) s = _{_(p -po)+ _vo_ (p-po) - 1_(p-pl) - _'(p-pl)}

(3.11) Je --- 0.

0 if p < Po
J,,n = J if po < p <_pl

0 if p > Pl

Similarly,

(3.12) -J' 1 1 , _13_t(p __pl) }= S--_ {_(P -- PO)+ _ (P-- PO)-- _(P --"_) --

satisfies Eq. (3.10) and yields fluxes

(3.13) Jm ------0.

0 if p < Po
Jr = J' ifpo <_P<Pl

0 if p >_ Pl

An alternative formulation [7] is to consider the Boltzmann equation with external forcing

ol
(3.14) F • -a-:-- = _(f, f).

op

(3.7) Jm=47r_ 0 ifp<po

t Aopg - 2Bop3o if p > Po.



At any discontinuity of the distribution function f, a delta function singularity occurs. The singular source

distribution S could therefore be replaced by an appropriately chosen external force; however, we will not

pursue this formulation further.

Kats et al. [4] show that if U is homogeneous of degree #,

(3.15) U(Ap], Ap', Apl, Ap) = A_U(p_, p', Pl, P)

then the collision integral Eq. (3.1) vanishes 4 for the power-law distribution

(3.16) f(p) = Cml/2d-lp_./2 [ j i1/2 p-7/2-_,/2

corresponding to a steady state with constant mass flux J = Jr,,. In Eq. (3.16), p, is defined by the

requirement that

(3.17) V(p_, p', Pl, P) = (P)_U0(p',, p', Pl, P)

with U0 homogeneous of degree zero. They also demonstrate that the distribution Eq. (3.16) is local, in

the sense that the collision integral converges when evaluated on this distribution taken over all momenta,

provided

(3.18) -3 <, < -1

and the power law exponent is in the range

7 #
(3.19) -3 < -_ - _ < -2.

It follows from Eq. (3.19) that the integrals representing the total number of particles and the total

energy

Y = f dpf(p)

E = f E(p)dpf(p)(3.20)

both diverge at large momentum; therefore, the steady state distribution function Eq. (3.16) cannot exist

for all momenta. The distribution function must be cut off at some finite value p = Pl. If a low momentum

cutoff p -- p0 is assumed as well, so that Eq. (3.16) applies only when P0 _< P _< Pl, then this trucated

distribution with fluxes of the form Eq. (3.11) is the solution of the inhomogeneous Boltzmann equation

with a source of the form Eq. (3.9).

4. Relaxation of the Kats-Kontorovieh steady state. We will investigate the relaxation of the

steady state Eq. (3.16) to thermal equilibrium following removal of the sources and sinks. It will be

convenient to work with an infinite power-law distribution in which the number of particles is infinite. For

the Kats-Kontorovich distribution cut off at momentum Pl, the limiting Maxwellian distribution satisfies the

inequality

fo _< C;F3@2(4.1)

where C is a constant. The mass density and temperature scale in terms of the limiting momentum pl as

p "_ N "_ pl (_+1)/2

(4.2) T "-_E "_ pl (_-3)/_



therefore

(4.3) f0 ~

It follows that in the limit Pl --* oo, the limiting Maxwellian distribution vanishes pointwise, although its

integral over all momenta becomes infinite. The infinite region of integration makes this combination of

limits possible.

Thc initial relaxation rate of the Kats-Kontorovich distribution is

5_ d 11/2..(i._.t_l)12,r_la/2

(4.4) w- 5f -- m -i_/_° _" _'*

where the functional derivative is evaluated at the Kats-Kontorovich distribution. The absolute value of

the flux is written as Jo to indicate that this is its initial value; the particle flux will become momentum

dependent and will decay with time as the distribution relaxes to equilibrium.

Eq. (4.4) suggests that we seek a similarity solution of the time-dependent Boltzmann equation Eq.

(2.1) of the form

(4.5) f(p, t) -=- Cmll2d-ljll2v-712-"12d)(d-_-('+l)/2n-1_/2tj 1/2_
-- T,,ml/2r t,* ).

Introduec the substitution

d____n(l_+ l ) /2 _-_ta/2 tj1/2
(4.6) q---- rnl/2_

in the collision integral. The result is the equation

= q6/(_+1)f(qlq,ql)6/(_+l)-ldoldo, doldqldq,dql X

g[(q_)4/O'+l)e', + (q')4/Cg+l)e' - (ql)4/Cg+l)e, - (q)a/(_'+l)e] x

(_[(q_)2/("-t-1)O_ -_ (qJ')2/(p+l)ot-- (ql)2/("4-1)O1 -- (q)2/("+l)o X

U[(q_)2/o'+l)o'_, (q')2/("+1)o', (q_)2/("+l)ot, (q)2/("+1)o] x

[(ql)-(v+_')/l_+_')¢(ql )(q')-(7+_')/o+_') ¢(q')

(4.7) -- (ql) --(7+#)/(1+m) _(ql ) (q) --(7+t_)/(i+ra)(_(q)]

where locality property has been assumed in order to integrate over all momenta. Locality of the relaxating

distribution will be demonstrated later for a restricted set of exponents/a.

If we write Eq. (4.7) simply as

(4.8) ¢(q) j ' ' ,= K(ql, q ,q, q)[¢(q_)¢(q') - ¢(q,)¢(q)]dq_dq'dq,

then power counting shows that

(4.9) K(Aq_, Aq', Aql, Aq) = AaK(q_, q', ql, q)

where

(4.10) = -a.

This homogeneity immediately implies that the integral equation Eq. (4.8) admits a solution

(4.11) ¢(q) = Cq -_.



The relaxing distribution function has therefore the asymptotic form

C 4.-
(4.12) f = Tp- -

and the flux decays according to the power law

(4.13) J _ t -2.

The conclusion that the distribution function relaxes algebraically with timc is in sharp contrast to the

exponential relaxation of a near-equlibrium distribution.

These calculations all require the convergence of the relevant collision integrals. Therefore, both the

original Kats-Kontorovich distribution and the relaxing distribution Eq. (4.12) must be local. The results of

Ref. 4 show that both distributions are local provided -3 < # < -2; for the distributions with -2 < # < -1,

the relaxing distribution is nonlocal, and the calculation leading to Eq. (4.12) is incomplete.

5. Constant flux solution of the Fokker-Planck equation. The Fokker-Planck equation for a gas

of light particles diffusing in a gas of heavy particles is given by Eq. (2.4). The thermal equilibrium solution

is found by setting the flux s _- 0, leading to the Maxwell-Boltzmann distribution

p2
(5.1) f_q = aexp(- 2--_)

A steady state far from equilibrium is defined by Eq. (2.4) by making the flux s non-zero; the corresponding

distribution flmction is

(5.2)
p2 fp p_

f(p) = poreexp(- 2--_) ]o dp exp(_) + AAq

where A is any constant.

For large momentum, this distribution function has the asymptotic expansion

(roT) 3(roT) 2

(5.3) f(p) ,-, p-----_--+ p----y---+.-.

Evaluating Eqs. (3.20) at large momentum,

N ,,_ logp p --, oc

(5.4) E_p2 p__,_.

Also, the second part of Eq. (2.4) implies that the flux s is singular when p = 0. Therefore, like the Kats-

Kontorovich steady state, the far from equilibrium distribution described by Eq. (5.2) only exists in a finite

region P0 _< p _<Pl and must be maintained by suitable sources and sinks.

If the sources and sinks are removed, the distribution relaxes to Maxwellian. The relaxation time is

simply the time required for the effect of shutting down the sources at Po, Pl to diffuse over all of momentum

space. Since the equation is linear, this time can be estimated immediately as (Pl - Po)2/B instead of T/B

as predicted by Eq. (2.5) for relaxation of a near-equilibrium distribution. Thus, the time required for the

noncquilibrium distribution to relax to equilibrium depends on the momentum range of the distribution

and is generally much larger than the time to relax a near-equilibrium distribution. Note also that, as in

the Kats-Kontorovich distribution, the large momentum tail contains considerable energy in view of the

divergence in Eq. (5.4).



In comparingtheresultsof Sects. 4 and 5, it is apparent that the requirement of relaxation of the effects

of source extinction is common to both problems, but relaxation from the Kats-Kontorovich steady state

is further impeded by the slow decay of the flux J. In the Fokker-Planck equation, the relaxation rate is

always proportional to B/T. It is indcpendent of the distribution function of the light particles because the

derivation of the equation assumes that the distribution function of the heavy particles is not altered by the

light particles.

6. Application to shocks in weakly ionized gases. Any explanation of the reported anomalous

properties of shock waves in weakly ionized gases must be advanced with caution in view of the current

unsettled status of the supporting experimental observations. At least some of these observations can be

explained as consequences of temperature inhomogeneities in the experiments [8], [9]; from this viewpoint,

the reported anomalies do not reveal any unexpected or remarkable consequences of the statistical mechanics

of the weakly ionized gases. Further experimental progress [9] will be required to resolvc these questions.

If the reports of anomalous behavior are accepted tentatively, then the present results suggest that

although the measurements reported by Klimov et al. [2] did not lead as anticipated to the cause of the

anomalous effects, the approach based on relaxation times might have failed because some of the relaxation

times were computed assuming relaxation from a near-equilibrium state. Further investigation of the re-

laxation mechanisms in a weakly ionized gas should account for the fact that the initial state is far from

thermal equilibrium.
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