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Preface

This chronology is an updated version of NASA RP- 1320, Orhital Debris altd Near-Earth Environmental

Management: A Chronology, December 1993. It provides an overview of the development, growing aware-

ness, and management of orbital debris issues from 1961 to February 1, 1998. The chronology is, of course,

not exhaustive. Every effort has been made, however, to at least touch upon all the important aspects of the

history of orbital debris.

The expository sections (e.g., hltroductt'on - a Primer on the Proh[em) cover specific aspects of orbital debris

research, awareness building, and management which cannot be treated adequately in the chronology entries.

They also provide overviews of complex event sequences which are difficult to track through the entries
alone.

Included are entries describing important events in space history and space technology development which

may not be directly related to orbital debris. One purpose for including these entries is to provide context for

the orbital debris events. Another is to depict how human space activities have become increasingly complex,

costly, and international in the past 4 decades. And at the same time, they have become increasingly vital to

human civilization and increasingly vulnerable to the growing population of orbital debris.

This document was compiled through research using the Scientific and Technical Information Center at

NASA's Johnson Space Center (JSC) in Houston, Texas. In addition, David S. F. Portree conducted approxi-

nlately 45 hours of interviews with key players in the history of orbital debris. Joseph P. Loftus, Jr., is co-

author, yet was interviewed in the same manner as the other key players. To adequately attribute his informa-

tion and interpretations, his interviews are included in the citations.

The chronology makes no attempt to list all of the more than 150 known satellite breakups occurring in the

period it covers. Only significant or illustrative breakup events are included. Other breakups are listed in

Appendix 2. The number of satellites (artificial objects - operational spacecraft are a subset) in Earth orbit

and the number of launches that reached Earth orbit or beyond are given with the heading for each year in

order to suggest the growing magnitude of humanity's impact on the near-Earth environment. These numbers

were derived by the NASA Orbital Debris Program at NASA JSC from the USSPACECOM catalog.
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The Chronology

Introduction - A Primer on the Problem

Human space activities are largely concentrated in three Earth orbit altitude regions. These

regions are Low Earth orbit (LEO), semi-synchronous orbit, and geosynchronous Earth orbit

(GEO). Each offers particular advantages. LEO, 200-2000 km high, has the advantage of rela-

tive ease of access for the large masses required for piloted spacecraft. Close proximity to

Earth makes LEO attractive for automated high-resolution-imaging spacecraft and high-signal-

strength communications. LEO imaging spacecraft often use sun-synchronous orbits that

ensure lighting conditions on Earth's surface are the same on each recurring orbit. Semi-

synchronous orbits from 10,000 to 20,000 km high are important for navigation (the Global

Positioning System constellation resides here), as well as communications. GEO - also called

the Geostationary Arc - is 36,000 km high. The satellite telecommunications industry uses the

Geostationary Arc, as do weather satellites. In GEO and LEO, human activities have become an

important feature of the environment - at least in their effect on other human activities (this is

best known for LEO - see fig. 1).

As a general rule, the higher above Earth's atmosphere a satellite orbits, the longer it will persist in
orbit. At GEO altitude, atmospheric drag is unimportant. A GEO satellite is likely to orbit for

millions of years. LEO is continually cleansed by atmospheric drag. Nevertheless, many LEO

objects orbit for years, and most will orbit for centuries. The oldest artificial space object is the U.S.

Vanguard 1 satellite. The 3968-by-650-km orbit it reached on March 17, 1958, ensured its longevity.

The first satellite, the Soviet Union's Sputnik 1, decayed from its low orbit on January 1, 1958, less
than 3 months after launch.

Of the approximately 25,000 orbiting artificial objects catalogued in the past 4 decades, about 8500

remain aloft. The Earth-orbital regions humans most use are so large that 8500 orbiting objects

would constitute only the beginning of a crowding problem, if the numbers stopped there. But

objects put into space seldom remain as they were on the ground. They shed lens caps, booster

upper stages, nuts, bolts, paint chips, and bits of foil. Upper stages left in sun-synchronous orbits

are subjected to continuous solar heating - this may induce overpressure and hasten corrosion,

leading to structural failure in the stage propellant tank followed by a debris-producing rupture. In

addition, solid rocket motors spray out billions of tiny aluminum particles: Space Shuttle orbiters

dump waste water, which forms clouds of snowflakes: and spent upper stages and anti-satellite

(ASAT) weapons explode. Most artificial space objects are too small to be detected from the

ground using conventional satellite tracking techniques. The smallest of the more than 8500

objects in the USSPACECOM (formerly NORAD) catalog are about 10 cm across. There are esti-

mated to be about 20 untrackable 1-cm objects and nearly 10,000 untrackable l-ram objects for

every trackable object. Artificial objects as small as 1 micron could number 100 trillion (fig. 2).

All of these objects have the potential to collide with other objects. The average speed of collision

in LEO is about 10 km/second. At that speed, a 1-cm object massing a few grams packs the kinetic

energy ofa 250-kg object moving at 100 kin/hour. In GEO speeds are slower and the volume of

space is larger, but objects stay in orbit and pose a hazard longer.

When collisions occur more pieces are produced. When a paint chip the size of a grain of salt blasts

a 3-mm pit in a Space Shuttle orbiter - not an uncommon occurrence - tiny fragments spray free

and add to the orbital debris population. When a t000-kg satellite is broken up by collision with a

10-cm object, millions of pieces will be produced. Many will be capable of causing new breakups.



Rate that a Catalogued Object is Expected to Pass
within 100 Yards of an Orbiting Spacecraft
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Figure I.

In 1998 there were more than 8500 catalogued objects in Earth orbit. Finite probabilities exist that catalogued

objects will pass near to or collide with a spacecraft. This chart shows how probabilities vary according to the
altitude at which the spacecraft orbits. In certain orbital altitude regions - 700-1 !00 km and 14(X)-16(X) km -

there is an elevated risk of collision between a spacecraft and a catalogued object. However, the real risk

comes not from catalogued objects, but from uncatalogued objects, which are vastly more numerous (see fig.
2).



Number of Objects in Low Earth Orbit
as Estimated from Various Measurements
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Figure 2.

The precise number of human-made objects in space is unknown. The present (I 998) USSPACECOM

catalog lists about 8500 objects. Use of detection methods more sensitive than those employed to create the

catalog has produced dramatically higher estimates of the number of objects in Earth orbit. The smallest

objects (paint chips, splinters of glass, and aluminum particles sprayed out by solid rocket motors) likely

number 100 trillion. This chart is based on measurements which sample the environment and shows estimates

of the number of objects in orbit of a given size and larger.



1961 End of year launches reaching Earth orbit or beyond (since 1957) 78
End of year satellites (objects in orbit) 380 )

April 12

June 28

June 29

July

October 21

The Soviet Union launches Vostok 1. Its occupant, Yuri Gagarin, is the first

human in space. His flight lasts about 90 minutes. Vostok 1 is a small target

for artificial space objects, which, of course, are few at this time. It is approxi-

mately 4 m long and has a mass of 4725 kg.

Three-and-a-half years after the first artificial satellite, Sputnik 1, reaches

orbit, the First Aerospace Control Squadron of the U.S. Air Force uses diverse

radar and optical instruments to catalog 115 Earth-orbiting satellites. The
instruments include NORAD's Baker-Nunn Schmidt cameras and the

NAVSPASUR (Naval Space Surveillance System) radars headquartered at

Dahlgren, Virginia.

Two hours after separating from the U.S. Transit 4-A satellite, its Able Star

upper stage becomes the first known artificial object to break up unintention-

ally in space. The cause of the explosion is unknown. The event produces at

least 294 trackable pieces, more than tripling the number of known satellites

of Earth. Writing in 1966, satellite watcher Desmond King-Hele called this

the first of the "real population explosions" in space. He said, "these bits and

pieces.., are a real curse.., especially since most of the fragments will

remain in orbit for a hundred years or more. By then the scrap metal may

have cost more to track than the rocket cost to construct." Of the pieces

produced, about 200 were still being tracked in orbit in 1998, more than 30

years after the breakup that created them.

Desmond King-Hele, Observing Earth Satellites,
St. Mzu'tin's Press, New York, 1966.

Project Moonwatch observers in Sacramento, California, observe 54 frag-

ments of the Transit 4-A upper stage. Project Moonwatch was organized in

1957 by Fred Whipple of the Smithsonian Astrophysical Observatory (SAO).

During its 18 years of operation (1957-1975), teams of amateur astronomers

around the world track satellites optically and report their observations to the

SAO. Some observers log thousands of satellite sightings.

Thornton L. Page, Andrew E. Potter, and Donald J. Kessler, "The History of
Orbital Debris," 1990 (unpublished draft paper).

The U.S. Air Force launches the Midas 4 satellite on what is primarily a

military surveillance mission. The satellite also deploys a spinning 35-kg

canister into orbit at 3220 km in support of Project West Ford. The canister

holds 350 million hair-like copper dipole antennas, the West Ford Needles.

They are meant to scatter along Midas 4's orbit, forming an 8 km wide, 40-kin

deep belt around the Earth. The dipole belt will serve as a passive radio

reflector for military communications. Information about the experiment

released before launch raised protests from optical and radio astronomers.

The Space Science Board of the National Academy of Sciences countered by

describing how, in June 1960, it concluded that releasing the dipoles would

"not harm any branch of science." A statement of U.S. government policy on



1961-1963

Project West Ford by Dr. Jerome B. Wiesner, Special Assistant to the Presi-

dent for Science and Technology, reinforced the Board view. The Board

invites optical and radio astronomers to help study the effects of the dipole

release. It maintains that the belt will be nearly undetectable, even to as-

tronomers seeking it, and short-lived. These assertions are not tested, how-

ever, because the dipoles do not leave their canister.

"Project West Ford," Spaceflight, January 1962,pp. 24-25: Patrick Moore,
"'Communications on the Moon," St_ac_flight,July 1963,p. 122:h_teravia
Space Directory 1992-93. Andrew Wilson,editor, p. 205.

1962
End of year launches reaching Earth orbit or beyond (since 1957) 150
End of year satellites (objects in orbit) 437

February 20

October 24

John Glenn becomes the first American in LEO. His Mercury capsule, Friend-

ship 7, orbits Earth three times. Like Vostok, its Soviet counterpart, it pre-

sents a small target to space objects. Friendship 7 is about 3 m long and 2 m in
diameter. Three more orbital flights follow in the Mercury program. The last

and longest is Gordon Cooper's 22-orbit flight of May 15-16, 1963. It lasts 34
hours, 20 minutes.

The Soviet Union launches Sputnik 29. On October 29 its

SL-6 booster upper stage explodes, producing 24 trackable debris pieces.
None remain in orbit.

1963
End of year launches reaching Earth orbit or beyond (since 1957) 205
End of year satellites (objects in orbit) 685

February 11

February 14

Ernest W. Peterkin, Operational Research Branch, U.S. Naval Research

Laboratory, publishes the first of two memoranda on satellite collisions.

Titled "Some Characteristics of the Artificial Earth Satellite Population," it

predicts that the catalogued population will grow by 318 objects per year.

This approximates the actual annual growth rate for catalogued objects up to

the mid-1980s, uncorrected for the effects of solar activity.

Orbital Debris Monitor, Vol. 4, No. 3, July 1, 1991.

Peterkin's second memorandum is called "Implications of Artificial Satellite

Population Growth for Long Range Naval Planning." He describes several

ways in which a large satellite population could interfere with future naval

operations. It might clutter space, making surveillance of surface targets

difficult; interfere with future ASAT operations by creating a confusingly

large number of targets; create decoy cover for fleet-launched ballistic mis-

siles; and overload missile early warning systems.

Ibid.



1963-1965

May 9

1964

The U.S. Air Force launches Midas 6. In spite of protests from astronomers,

part of its mission is to support a repeat of the Project West Ford experiment.

This time the plan is to release about 400 million dipoles into orbit. The

experiment is only a partial success, because the dipoles do not scatter prop-

erly. It produces approximately 150 trackable debris pieces, presumably
clumps of dipoles. Of the trackable clumps, about 65 remained aloft on

January 1, 1998. Project West Ford is not repeated, in part because of the

success of the active communications relay satellite Telstar 1, launched on
July 10, 1962.

PatrickMoore,"Communications on the Moon," Sl_aceflight,July 1963. p. 122:
lnteravia Space Directory 1992-93. Andrew Wilson, editor, p. 205.

End of year satellites (objects in orbit) )End of year launches reaching Earth orbit or beyond (since 1957) 292
825

April 21

August 19

October 28

1965

The U.S. launches the Transit 5BN3 navigation satellite. The spacecraft is

powered by the SNAP (Systems for Nuclear Auxiliary Power) 9 nuclear
generator. It scatters radioactive materials over the Indian Ocean after its

Scout launch vehicle fails. This is the worst space accident involving release

of radioactive material until the uncontrolled reentry of the Cosmos 954
spacecraft in 1978.

lnteraria Space Directol3, 1992-93, Andrew Wilson, editor, pp. 191-192.

Syncom 3 is the first successful satellite in GEO. It orbits Earth in approxi-

mately 24 hours, so from the ground it appears to remain almost stationary

above the equatorial Pacific Ocean. The satellite acts as an antenna atop a

tower reaching a tenth of the way to the Moon, relaying television from the

Tokyo Olympics to half the Earth. The USSPACECOM catalog contains no

current elements for this satellite. It probably remains in GEO, adrift. In the

3 decades since Syncom 3, hundreds of satellites have taken up residence in

the economically valuable GEO region.

Arthur C. Clarke, TirePromise of Space, PyramidBooks, 1968,p. 126.

Cosmos 50 is a reconnaissance satellite designed to return exposed film to the
Soviet Union. After its recovery system fails, the Soviets command it to self-

destruct so it will not land outside their national territory. None of the

approximately 100 debris pieces produced remain in orbit.

End of year satellites (objects in orbit) )End of year launches reaching Earth orbit or beyond (since 1957) 404
1626

March 18 The Soviet Union launches Voskhod 2, a modified version of the Vostok

spacecraft. Voskhod 2 carries a deployable airlock. Alexei Leonov exits the

spacecraft through this airlock to become the first person to conduct an

extravehicular activity (EVA). Pavel Belyayev observes the 23-minute
spacewalk from inside Voskhod 2.



March 23

June28

October15

November 26

1965-1966

Virgil Grissom and John Young enter space aboard the Gemini 3 spacecraft.

Their flight, a test of basic Gemini systems, lasts nearly 5 hours. Gemini is

the first manned spacecraft capable of extensive maneuvers, rendezvous and

docking, and extended duration flights (up to 2 weeks). Each Gemini capsule

is approximately 6 m long and 3 m in diameter.

Early Bird (Intelsat 1) triples trans-Atlantic telephone capacity by providing

240 telephone circuits. Early Bird is a drum 70 cm in diameter which weighs

68 kg at launch. The satellite is launched into a GEO slot at 325 deg east, over

the Atlantic Ocean. The first commercial communications satellite, Early Bird

is operated by the Intelsat Organization, a not-for-profit international corpo-

ration formed by 124 countries and signatories on August 20, 1964. The

satellite operates for more than 3 years.

A U.S. Titan 3C transtage breaks up at an altitude of 739 km shortly after

attaining orbit. This remains the worst known orbital debris event until 1986,

with nearly 475 trackable debris pieces added to the near-Earth environment.

About 50 trackable pieces remained in orbit on January l, 1998. This is the

only time a Titan transtage was left in LEO where its breakup could be

confirmed by ground radars. About 30 have been left in GEO. At least one

of those is believed to have broken up. However, USSPACECOM tracking

limitations prevent confirmation.

Nole, Donald J. Kessler 1o David S. F. Portree, August 2, 1993.

France becomes the third country (after the Soviet Union and the U.S.) to

launch a satellite. Its A-1 (Asterix) satellite is launched into a 1758-km-by-

528-km orbit at a 34-deg inclination by a Diamant launch vehicle.

1966
End of year launches reaching Earth orbit or beyond (since 1957) 522
End of year satellites (objects in orbit) 1695

March

March 16

R. E. Dalton and J. N. Thflges of TRW Systems, Florida Operations, publish

Gemini GT-8 Orbital Collision Hazard Evaluation, in which they state that "the

logical admissibility of a collision between the spacecraft of the GT-8 mission

and other orbiting objects is recognized to exist." They assume data supplied

by NORAD for February 1-6, 1966, includes all Earth-orbiting satellites.

Approach within 15 m is considered a collision. They determine that the

probability is very small that the Gemini 8 capsule will be struck by orbital

debris during the planned mission. A 313-km-by-145-km elliptical orbit
yields a collision probability of 1.7 x 10 9: a 242-km circular orbit yields a

collision probability of 2.1 x 10-9: and a 268-km circular orbit yields a collision

probability of 2.3 xl0 9.

R. E. Dalton and J. N. Thilges, Gemini GT-8 Orbital Collision Hazard

Evaluation, TRW Sys_elns, Florida Operalions, March 1966.

Gemini 8 becomes the first spacecraft to dock with another vehicle in LEO.

Shortly after they dock their spacecraft with the Augmented Target Docking

Adapter (ATDA), Gemini 8 mission commander Neff Armstrong and pilot

David Scott experience the first on-orbit emergency. A jammed maneuvering



1966-1967

May 7

May 9

July 20

thruster forces them to undock from the ATDA and make an emergency

reentry.

U.S. President Lyndon B. Johnson calls for an international treaty to regulate

space exploration. He calls for the treaty to cover astronaut rescue and return

to country of origin in the event of emergency landing, and liability for

damage caused by space objects.

David S. F. Portree, Thirty Years Together: A Chronology of U.S.-Soviet Space

Cooperation (NASA CR 185707), February 1993, p. 7.

The U.S. Ambassador to the U.N. presents the U.N. Committee on the Peace-

ful Uses of Outer Space (COPUOS) with a draft of the Treaty on Principles

Governing the Exploration and Use of Outer Space (the Outer Space Treaty).

The draft version contains the stipulation that countries which cause damage

through their space activities should be liable to make compensation for that
damage.

IbM.

A camera wielded by astronaut Michael Collins becomes an uncatalogued

piece of orbital debris. He loses it while performing a spacewalk during the

Gemini 10 mission. Before reentry, Collins and mission commander John

Young open the hatches and discard unneeded equipment into orbit. None

of this debris remains in orbit today; in fact, it probably reentered in a few

days or weeks.

Michael Ccdlins, Carl3"ing the Fire: An Astronaut's Journeys. Giroux, Farrar,

and Straus, 1974, pp. 235-236: James Grirnwood. Barton Hacker, and Peter

Vorzimmer, Pr_)iect Gemini: A Chronology (NASA SP 4002). Washington,

NASA Scientific and Technical Information Division, 1969, p. 251.

1967
End of year launches reaching Earth orbit or beyond (since 1957) 649
End of year satellites (objects in orbit) 1806 )

January 27

April 10

The U.N. opens the Outer Space Treaty to signature. The U.S., the Soviet

Union, and more than 60 other nations sign. The final version of the treaty

largely avoids the divisive issue of liability for damage caused by space
activities.

David S. F. Portree, Thirty Years Together." A Chronology of U.S.-Soviet Space

Cmqwration (NASA CR 185707), Febrmtry 1993, p. 8.

A NASA Manned Spacecraft Center (MSC) Flight Analysis Branch Internal

Note espouses the prevailing view of the amount of orbital debris circling

Earth, when it states that "the number of untrackable fragments which result

from explosions of satellites in orbit and whose radar cross section areas are

too small to be tracked by NORAD, constitutes an insignificant increase in

the total number of objects in earth orbit and hence can be neglected in the

calculation of collision probability." They calculate the probability of colli-

sion for an Apollo spacecraft to be only 3.68 x 104 for a 12-day mission and
11.16 x 10 4 for a 1-year stay in Earth orbit.



April 23-24

October10

1967-1968

"Collision Probability of Apollo Spacecraft with Objects in Earth Orbit" (MSC

IN 67-FM-44), April 10, 1967.

The Soviet Union launches Soyuz 1 with cosmonaut Vladimir Komarov

aboard. Its mission is to dock with Soyuz 2. A cosmonaut from Soyuz 2 will

then transfer by EVA to Soyuz 1 and return to the Soviet Union with

Komarov. The mission is a rehearsal for several parts of the Soviet manned

lunar landing mission plan. Soyuz 1 has power and guidance problems

immediately after orbital insertion. The Soyuz 2 launch is postponed. Dur-

ing reentry the parachute system malfunctions and Komarov is killed.

The Outer Space Treaty comes into force.

1968
End of year launches reaching Earth orbit or beyond (since 1957) 768
End of year satellites (objects in orbit) 2011 )

October 11-22

October 20

November 1

December 21-27

December 27

Apollo 7 is the first flight of the U.S. Apollo Command and Service Module

(CSM) spacecraft. Walter Cunningham, Donn Eisele, and Walter Schirra

simulate docking and test the Apollo spacecraft systems in anticipation of

lunar missions. The Apollo spacecraft is about 4 m in diameter and 10 m

long.

Cosmos 249 is the first Soviet ASAT weapon. It is designed to maneuver

close to a target in orbit and explode, pelting it with fragments. Cosmos 248

is the target. After reaching a 2135-km-by-538-km orbit at a 62.3 deg inclina-

tion, Cosmos 249 explodes, creating about 110 trackable pieces of debris. Of

these, about half remained in orbit on January 1, 1998.

Nicholas L. Johnson, "Artificial Satellite Breakups (Part 2): Soviet Anti-

Satellite Programme," Journal _the British lntelT_lanetacv Socie(v, Vol. 36,

1983, pp. 357-362: hlteravia Space Directo O' 1992-93, Andrew Wilson, editor.

p. 188.

The Cosmos 252 ASAT achieves a 2134-km-by-538-km orbit at a 62.3-deg

inclination. It explodes when it passes near the Cosmos 248 target satellite.

The intentional fragmentation produces 140 trackable debris pieces, of which

about 50 remained in orbit on January 1, 1998.

Ibid.

The Apollo 8 spacecraft carries astronauts Frank Borman, William Anders,

and James Lovell out of LEO. They complete 10 orbits of the Moon. This the
first of nine times humans leave LEO.

The Soviet Union launches Cosmos 198 is the first of two Radar Ocean Recon-

naissance Satellite (RORSAT) test vehicles. The satellite's dummy nuclear

reactor separates and boosts to 948-km-by-889-km storage orbit on December

29. Cosmos 198 is the first of 33 RORSATs launched up to March 1988.

Jos Heyman, O_acecraft Tables, UlfiVelt. Inc., San Diego. 1992, p. 115.

"'Analysis of the Fragmentation Situation in the Neightu_rhood of Russian



1968-1970

1969

Satellites with Nuclear Power Sources," A. I. Nzarenko, N. P. Morozov, E. I.

Grinberg, N. L. Johnson, Z. N. Khutorovsky, and V. S. Yurasov, Space Forum.

Vo[. 1, Nos. 1-4, 1996, pp. [25-134.

End of year launches reaching Earth orbit or beyond (since 1957) 878
2390End of year satellites (objects in orbit)

July 16-24

September 18

On Apollo 11 Nell Armstrong and Edwin Aldrin land their Lunar Module

(LM) Eagle on the Sea of Tranquility. Michael Collins remains in lunar orbit
aboard CSM Columbia.

Intelsat 3-FI, launched this date, is the first satellite of the Intelsat 3 series.

The eight satellites in the series each have 1200 telephone circuits and four

TV channels. Whenever possible, at end-of-life they are boosted above GEO.

1970
End of year launches reaching Earth orbit or beyond (since 1957) 992
End of year satellites (objects in orbit) 2938 )

10

February 11

April 24

August

October 3

October 20

The Institute of Space and Aeronautical Science (ISAS) launches Osumi, the

first satellite launched by Japan, atop a Lambda 4S-5 rocket. The test satellite

transmits for 17 hours from a 5150-km-by-340-km orbit at a 31-deg inclina-
tion.

The Peoples' Republic of China launches its first satellite. A Long March 1

rocket places China 1 into a 2386-km-by-441-km orbit at a 68.4-deg inclina-
tion.

Skynet 1B, a British military communications satellite, is launched on a U.S.

Delta rocket. It is targeted for GEO, but its apogee kick motor fails. The

failure may have created a long-lived debris cloud. It may periodically pass
through GEO (no sensors exist to permit certainty). No orbital elements are

maintained for Skynet lB.

Nicholas L. Johnson, "The Crowded Sky: The Danger of Collisions in

Geostalionary Orbil," Spaceflight, Vol. 24. No. 12, December 1982, pp. 446-
449.

Cosmos 367, launched this date, is the first RORSAT with a functioning

nuclear reactor. The reactor successfully boosts into storage orbit after the

satellite malfunctions a few hours after launch. Twenty-nine RORSAT reac-

tors were in storage orbit in 1998.

"Analysis of the Fragmentation Situation in Ihe Neighborhood of Russian

Salellites with Nuclear Power Sources," A. 1. Nzarenko, N. P. Morozov, E. I.

Grinberg, N. L. Johnson, Z. N. Khulorovsky, and V. S. Yurasov, Space Forum,

Vol. 1, Nos. 1-4, 1996, pp. 125-134.

In an MSC Internal Note titled "Collision Probabilities of Future Manned

Missions with Objects in Earth Orbit," Michael E. Donahoo of the Flight

Analysis Branch updates the April 10, 1967 calculations and applies them to



October20-30

1970-1971

Skylab, a space station, and a large space base. Donahoo's calculations
assume that the uncatalogued debris population is insignificant. He calcu-

lates the probability that a Skylab will be hit by orbital debris during an 8-
month mission to be 2.27 x 10 4. The probability for a space station is 1.083 x

10 2. It is 1.179 x 10 2 for the large space base. He states that the large colli-

sion probabilities are "not surprising when the increased mission durations

and larger vehicle sizes are considered."

Michael E. Donahoo, "Collision Probability of Future Manned Missions with

Objects in Earth Orbif" {MSC IN 70-FM-1681. October 20, 1970.

The Soviet Union's Cosmos 373 is launched on October 20 to serve as an

ASAT target. The Cosmos 374 ASAT is launched on October 23. It explodes
into more than 100 trackable pieces after two-and-a-half orbits, 4 hours after

launch. Cosmos 375 intercepts Cosmos 373 on October 30 and explodes into

more than 40 trackable pieces. Of the pieces produced in the two explosions,

more than 40 percent remained in orbit on January 1, 1998.

Report on Orbital Debris, IG (Space), February, 1989: Nicholas L. Johnson,

"Artificial Satellite Breakups (Part 2"_: Soviet Anti-Satellite Programme,"

Journal of the British Interl_laneta13' Socie(v, Vol. 36, 1983: lnleravia Space

Directm3' 1992-93, Andrew Wilson, editor, p. 188.

1112 )1971
End of year launches reaching Earth orbit or beyond (since 1957)
End of year satellites (objects in orbit) 3208

Space Stations and Liability Issues, 19 70-1973

By 1970, NASA had well-advanced plans for large space stations. The Agency forecast the 1970s

and 1980s to be decades of rapidly developing space activity. Large spacecraft for the Moon and
Mars would be built and serviced in LEO. Some researchers became concerned that stray satellites

might threaten planned large spacecraft and orbital facilities.

At the same time, concern increased over the possibility that objects falling from space could cause

harm on Earth. After 5 years of stalemate, U.S. and Soviet negotiators made progress on the U.N.-

sponsored Convention on International Liability for Damage Caused by Space Objects. The Liabil-

ity Convention, as it was called, was both a vehicle for and a product of detente between the U.S.

and the Soviet Union, just as was the more famous Apollo-Soyuz linkup of July 1975. Before enter-

ing into an agreement, however, U.S. negotiators wanted an estimate of the probability that their

space activity would actually cause damage on Earth for which they would be held responsible.
For this reason NASA launched studies of uncontrolled reentries. Some of these studies would

have implications for later research into orbital debris collision hazards.

February 25 The Cosmos 397 ASAT assumes a 2203-km-by-572-km orbit at a 65.3-deg

inclination and explodes near its Cosmos 394 target, producing about 120

trackable debris fragments. More than 50 remained in orbit on January 1,
1998.

Ibid.

March 31 NORAD civilian analyst John R. Gabbard publishes NORAD Analysis
Memorandum 71-8, "Systematic Discontinuities in the Location of Satellite

11



12

1971

April 19

May 25

June 29-July 3

July 23

October

Explosion Fragments." The document is the first to describe techniques for

analyzing artificial and natural satellite breakups. It lays the groundwork for

the Gabbard diagram, a widely-used graphical tool for orbital debris research

(fig. 3).

Nicholas L. Johnson and Darren McKnight, Artificial Space Debri,_, revised
edition, Orbit Books. 1991.

The Soviet Union launches Salyut 1, the first space station, into a 210-km-by-

200-km orbit at a 51.6-deg inclination. Salyut 1 is nearly 16 m long and

weighs 19,000 kg. The Soyuz 11 crew ofGeorgi Dobrovolski, Vladislav

Volkov, and Victor Patseyev spend three weeks aboard the station (June 6-30,

1971), the longest period humans have spent in space up to this time. During

reentry Soyuz 11 loses cabin pressurization and the crew perishes. No

further crews are sent to Salyut 1. It is commanded to reenter in October
1971.

James McCarter, Aero-Astrodynamics Laboratory, NASA Marshall Space

Flight Center (MSFC), writes a memorandum on "Space Station Satellite

Collision Avoidance." He assumes a space station in a 450-500-km, 55-deg

orbit. He also assumes that the NORAD catalog of space objects is a com-

plete inventory of Earth-orbiting satellites. He determines that the space

station could avoid collisions by using small rockets to change altitude by 3-4

km. This would be practical because it would expend only 9-40 kg of fuel

each time. NORAD monitoring combined with a dedicated debris avoidance

radar and computer on the station would provide collision warnings.

McCarter calculates the collision probability to be only about 2-3 percent over

10 years.

Memorandum, S&E-AERO-MMD/Mission Design Section, NASA MSFC,
May 25, 1971.

Negotiations on the Convention on International Liability for Damage

Caused by Space Objects (the Liability Convention) are held in Geneva,

Switzerland under auspices of the U.N. COPUOS.

David S. F. Porlree, Thirty Years Together: A Chronology of U.S.-Soviet Space
Cooperation (NASA CR 185707), February 1993, p. 14.

Morton Shaw, NASA Headquarters Safety Office, asserts in a memorandum

that there must be debris in orbit too small for NORAD to detect, He states

that the probability of a space station collision with orbital debris could be up

to 8 percent for a 10-year period. Shaw outlines a plan to form a working

group to create a NASA orbital debris program. MSFC receives primary

responsibility for research. MSFC researchers continue to develop computer

programs for calculating collision probabilities, but fail to include an

uncatalogued debris population in their calculations.

Interview, David S. F. Portree with Donald J. Kessler, May 11, 1993: Thornton
L. Page, Andrew E. Potter, and Donald J. Kessler, "'The History of Orbital
Debris," 1990 (unpublished draft paper).

The U.K. becomes the sixth nation to launch a satellite on its own launch

vehicle. The Prospero test satellite rides a Black Arrow rocket to LEO.
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Figure 3.

The Gabbard diagram plots perigee and apogee altitudes for pieces produced in on-orbit breakups

as a function of orbital period. The orbits of pieces thrown in the direction of motion of the satellite

increase in apogee and period. They are plotted by the two arms on the right side of the "X'-

shaped Gabbard plot. The top arm on the right side plots apogees (in this case above the satellite's

original altitude), while the bottom arm shows perigees (at or near the satellite's original altitude).

Pieces thrown against the orbital motion decrease in altitude and orbital period. They are plotted

on the left side of the "X." Again, the top arm displays apogees (this time at or near the satellite's

original orbital altitude) and the bottom arm perigees. Pieces thrown at right angles to the

sateilite's orbital path cluster at the center of the "X" because their orbital periods and altitudes are

not changed substantially by the breakup. If no other force acted on the pieces, they would all

continue to pass through the altitude at which the breakup occurred. However, atmospheric drag

causes apogees to decrease over time. This effect is most noticeable on the left side of the "X,"

among the pieces with the lowest perigees. The left side of the Gabbard plot appears to sag over

time as pieces succumb to atmospheric drag and decay from orbit.
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1971-1972

December 1

December 3

D. E. Besette, NASA Headquarters, writes a memorandum that says collision

avoidance is impractical for Skylab. He maintains that this is not necessary in

any case, as the probability of a debris collision with the Orbital Workshop is

only 0.01 percent.

Ibid.

Cosmos 462 enters an 1800-km-by-229-km orbit at a 65-deg inclination, then

explodes near Cosmos 459. Improvements in superpower relations mean this

is the last Soviet ASAT test until 1976. The test produces 29 trackable debris

fragments, none of which remained in orbit by 1982.

Report on Orbital Debris, IG (Space). February 1989: Nicholas L. Johnson,
"'Artificial Satellite Breakups (Part 2): Sovim Anti-Satellite Programme,"
Journal of the British hm'q_lanetary Socieo', Vol. 36, 1983. pp. 357-362:
lnwravia Space Directo O"1992-93, Andrew Wilson, edilor, pp. 188.

1972
End of year launches reaching Earth orbit or beyond (since 1957) 1218

End of year satellites (objects in orbit) 3241 )
January 12

June 8

June 15

J. E. McGolrick, NASA Headquarters Space Sciences Office, circulates a

memorandum summarizing the January 4 meeting of a task group on orbital

debris criteria for future NASA missions. The meeting concerned uncon-

trolled reentry of space objects rather than collisions with orbital debris.

McGolrick states that early in the meeting a NASA policy of creating no

uncontrolled orbital debris was proposed: however, after discussion, the

group decided that such a policy would "seriously impact science and appli-

cations spacecraft weights and costs."

Memorandum for lhe Record from SV/Advanced Programs and Technology
Program Manager, January 12, 1972.

James McCarter publishes calculations which state that a space station with a

radius of 50 m has an 8 percent probability of colliding with orbital debris if

operating at 700-1000-km altitude, and a 1.5 percent probability at 440-500

kin. He assumes the NORAD catalog is complete.

James McCarter, Probabilio' qfSatellite Collision (NASA TMX-64671 ), June
8. 1972.

Dr. Homer Newell, NASA Associate Administrator, and other NASA officials

are briefed on orbital debris reentry hazards by members of a headquarters

group assigned to study the problem. According to the transparencies used

in the briefing, existing space tracking systems and early warning radars are

unable to track objects throughout every orbit and are limited to northern

hemisphere coverage. Available tracking systems can detect objects down to

the size of a tennis ball, which includes 75-95 percent of all artificial objects in

space. At the 6-cm wavelength the systems can detect objects down to the

size of a walnut, but "the inventory of such objects is very limited." The

14



1972

officials hear that most U.S. space objects pose little uncontrolled reentry

hazard, though "the Skylab hazard will be somewhat higher."

Memorandum with enclosure, PA/Senior Technical Officer William A.
Fleming to FM3/Robcrt McAdams. July 5, 1972.

Laws for Orbital Debris: The U.N. Space Treaties of 1967 and 1972

The framers of the U.N.-sponsored space treaties of 1967 and 1972 were not aware of the hazards to

space operations of orbital debris. Nevertheless, space law experts generally agree that, in the

absence of international treaties dedicated to regulating orbital debris, these international agree-

ments remain the most pertinent to the orbital debris problem.

On July 13, 1988, S. Neil Hosenball, former NASA General Counsel and U.N. Delegate, told the U.S.

House Subcommittee on Space Science and Applications that Articles VI, VII, and IX of the 1967

Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space

(the Outer Space Treaty) can be applied to the orbital debris problem. Article VI says that state

parties to the treaty bear international responsibility for their national space activities, whether

sponsored by government or by private organizations. Article VII establishes the principle that a

state party to the treaty which launches or procures the launch of an object into space is internation-

ally liable for damage caused by that object to another state party of the treaty. Article IX states that

state parties to the treaty should be guided by the principles of cooperation and mutual assistance.

Hosenball maintained that the phrase "potentially harmful interference" can be applied to orbital

debris. If a state party has cause to believe that the activities of another state party will interfere

with the peaceful use and exploration of space, it may request consultation. At the same time,

states planning activities which could cause interference should provide opportunity for consulta-

tion before proceeding,

According to Hosenball, the 1972 Convention on International Liability for Damage Caused by

Space Objects (the Liability Convention) elaborates on Article VII of the 1967 treaty. Space objects

are formally defined as including component parts of spacecraft, their launch vehicles, and compo-

nent parts of their launch vehicles. Hosenball testified that this is important for the orbital debris

issue because most orbital debris consists of pieces of launch vehicles.

Or#ital Space Debris. Hearing Before the Subcommittee mt Space Science and
Applications. Committee on Science. Space, atul Technology, House of
Rt7_resentatives, July 13. 1988.

August 13 NASA launches the Explorer 46 satellite into a 815-km-by-490-km orbit. It

carries experimental Whipple Bumper meteoroid shields (fig. 4) with con-

denser-type impact detectors. The satellite operates between 1972-75, but

data analysis is postponed until 1980-81 by funding cuts.

Interview, David S. F. Portree with Donald J. Kessler, June 1, 1993: Donald H.
Humes, David R. Brooks, Jose M. Alvarez, and T. Dale Bess, "'Manmade

Orbital Debris Studies at NASA Langley," in Orbital Debris (NASA CP 2360k
Donald J. Kessler and Shin-Yi Su, editors, 1985.

September 1 The Liability Convention, first proposed in 1966, goes into effect.

December 7-19 Apollo 17 is humankind's last flight out of LEO. Eugene Cernan and

Harrison Schmitt land the LM Challenger at Taurus-Littrow while Ronald

Evans conducts research aboard the CSM America in lunar orbit.

15
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The Whipple Bumper is a surprisingly effective, simple means of protecting a spacecraft from meteoroid or

orbital debris impact. The energy of a panicle is concentrated at its point of impact with the aluminum

bumper. The bumper breaks up and partially vaporizes the panicle, dispersing its energy over a broader area.

This reduces the chance that damage will occur to the aluminum backplate (the spacecraft hull). The design is
named for astronomer Fred Whipple, who first proposed it in 1947.
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1973 End of year launches reaching Earth orbit or beyond (since 1957) 1327
End of year satellites (objects in orbit) 3527

Meteoroids

Early space scientists overestimated the threat from meteoroids. In 1946, Fred Whipple, an astrono-

mer at the Harvard Observatory, predicted that one moonship in 25 would be destroyed by them.
In 1947 he proposed a meteoroid shield design comprising an aluminum plate suspended in front
of a backplate. It became known as the Whipple Bumper. In the late 1950s, meteoroid detectors on

the Sputnik 3 and Explorer 3 satellites returned signals which were interpreted as indicating a
meteoroid flux much higher than expected. Some space scientists invoked an Earth-orbiting dust

cloud to explain this.

The Earth-orbiting dust cloud theory was countered by researchers at NASA centers and elsewhere.
William Kinard, Donald Humes, and Joe Alvarez were members of a Langley Research Center
(LaRC) team which studied data from the Explorer 16 and Explorer 23 meteoroid detector satellites.

MSFC researchers studied data from the Pegasus satellites. Both teams found a low meteoroid flux.

Researchers at the MSC in Houston also studied meteoroids. Burton G. Cour-Palais, Subsystem
Manager for Apollo spacecraft meteoroid protection, studied returned surfaces from the Mercury

and Gemini spacecraft. He sponsored Herbert Zook's examination of all the Gemini windows in
1965-66. Zook found only one crater which might have been caused by a meteoroid impact.

Donald J. Kessler recalculated the average meteoroid velocity, arriving at a value about half the 30
kin/second previously used. By 1970, as an adjunct to his meteoroid studies, Kessler began to
consider whether colliding satellites might be a source of debris pieces, just as colliding asteroids

were a source of meteoroids. But cuts in meteoroid research funding stopped Kessler's work before
it could begin.

The analytic (theoretical) meteoroid flux and velocity models developed by 1969 became the NASA

standards for spacecraft design. The meteoroid model was used as a "ground truth" reference
because it was supported by significant empirical data from both ground observation and detectors
in space. (The first semi-empirical model for orbital debris was ORDEM 96, which was based on

data from the ground-based radar observations and study of spacecraft surfaces that had been
returned to Earth.) It became clear that spacecraft for short Earth-orbital sorties or 2-week lunar
voyages required little shielding beyond their basic structures. The Skylab Orbital Workshop and

Salyut space stations would be in space for month, however, so it was judged prudent to equip
them with Whipple Bumper shields. Skylab's shield deployed prematurely during ascent and was

torn away by atmospheric drag. Nevertheless, the three Skylab crews recorded no pressure hull
penetrations before the station was abandoned in 1974. Remaining meteoroid fears quickly evapo-

rated, and with them money within NASA for meteoroid research.

During the year LaRC conducts research into the meteoroid environment in near-Earth and

interplanetary space. The study team comprises David Brooks, T. Dale Bess,

Gary Gibson, Joe Alvarez, and Don Humes, and is supervised by William

Kinard. The team becomes aware of the hazard posed by orbital debris after a

year of work. They spend the next 2 years assessing the problem.

Ibid.

April 3 The Soviet Union launches the Salyut space station into a 248-km-by-207-km

orbit. Salyut 2 is a military research station. No crews are launched to Salyut

2 because on April 14 it loses stability and tumbles, then breaks up. None of

the 25 trackable pieces produced remain in orbit.
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1973-1974

May 14

November 16-

February 8, 1974

December 29

The U.S. launches the Skylab Orbital Workshop (the unmanned launch of the

Orbital Workshop is officially designated Skylab 1). Skylab measures about

30 m long and 7 m wide. It carries the S149 Particle Collection experiment,

which is brought back to Earth by Skylab astronauts after exposure to space.

Its Principal Investigator is C. L. Hemenway of the Dudley Observatory in

Albany, New York. Hemenway theorizes that the solar exosphere produces

titanium particles after he finds one embedded in the experiment. Although

not realized at the time, the particle was probably a paint chip.

Rohmd W. Newkirk, Ivan D. Ertel, and Courtney G. Brooks, Skylab: A

Chronology, NASA Scientific and Technical lnlormation Office, 1977, p. 386:
Interview, David S. F. Porlree with Donald J. Kesslcr, June 23, 1993.

The Skylab 4 crew of Gerald Carr, Edward Gibson, and William Pogue, the

third manned Skylab launch, sets a new world spaceflight endurance record

by living for 84 days aboard the Skylab Orbital Workshop. They are the last
crew to live aboard Skylab.

The NOAA 3 satellite was launched on November 6, 1973 into a 1525-km-by-
1522-km orbit at a 102-deg inclination. NOAA 3, also known as ITOS-F, is
one in a series of more than 30 NOAA/GOES weather satellites launched

since 1960. The NOAA satellites replaced the earlier TIROS series. GOES

satellites operate in GEO. The NOAA satellites operate in near-polar sun-

synchronous orbits. More than 120 nations receive their images. On March
28, 1983, NASA launched NOAA 8 with the first U.S. COSPAS/SARSAT

international rescue system transponder. It joined two similar transponders
launched on Soviet spacecraft in June 1982 and March 1983. The most recent

successful NOAA satellite, NOAA 12, weighed 1416 kg when launched on

May 14, 1991 (NOAA 13, launched in August 1993, failed after 12 days in
orbit). NOAA 1 weighed only 306 kg when launched on December 11, 1970.

About $420 million was budgeted for NOAA satellites in FY 1989-FY 1991

alone. On this date the second stage of NOAA 3's Delta launch vehicle

explodes, producing nearly 200 trackable debris pieces. Of these, about 180

trackable pieces remained in orbit on January 1, 1998.

Report on Orbital Debris, IG (Space), February 1989: lnteravia Space

Directory 1992-1993, Andrew Wilson. cdilor, pp. 487-491.

1974 End of year satellites (objects in orbit)

End of year launches reaching Earth orbit or beyond (since 1957) 1433
3593

18

During the year Burton Cour-Palais, of the Environmental Effects Office at NASA Johnson

Space Center (JSC - formerly the Manned Spacecraft Center) examines the

windows from the Skylab 3 and 4 Apollo CSMs. The spacecraft spent 60 and

84 days, respectively, docked to the Skylab Orbital Workshop. Cour-Palais

finds numerous hypervelocity (speeds greater than 6 kin/second) impact

pits, presumably caused by meteoroids. He is not permitted to use Scanning
Electron Microscope (SEM) analysis to identify the impactors because this

would require cutting up the windows. The pits later prove to be partly the
products of orbital debris strikes.



July 30

September 30

Interview, David S. F. Portree with Herbert Zook, June 16, 1993: interview,

David S. F. Portree with Donald J. Kessler, June 23, 1993.

1974-1975

The Long Duration Exposure Facility (LDEF) project is approved. LDEF is

envisioned as a reusable, bus-sized passive satellite fitted with static experi-

ment trays. Its purpose is to let researchers learn more about the long-term

effects of the space environment on a wide range of materials. LaRC is to
build LDEF.

Orbital Debris Monitor, Vol, 4. No. 3, July 1. 1991: Eric Lerner, "Bringing

Back a Long Look at Space," Aero_wace America, August 1991, pp. 28-31.

Brooks, Gibson, and Bess present a paper called "Predicting the Probability

that Earth-Orbiting Spacecraft will Collide with Man-Made Objects in Space,"

at the 251h International Astronautical Congress in Amsterdam. The paper

analyzes collision probability, with special attention given to extrapolating

the size of the population of small, untrackable pieces created in explosions.

Brooks estimates the population of mm-size debris at only 2.5 times the

catalogued population (less than the meteoroid population). A computer

program error gives collision probabilities lower than those calculated by

other researchers for the catalogued population. The team determines that

16.8 percent of orbiting objects are payloads: 10.1 percent are rocket bodies;

17.3 percent are payload debris; and 55.8 percent are pieces produced by

explosions.

Donald J. Kessler, "A Partial History o1 Orbital Debris: A Personal View (Part

1L'" Orbital Debris Monitor, Vol. 6. No. 3, July 1, 1993: Donald H. Humes,

David R, Brooks, Jose M. Alvarez, and T. Dale Bess, "'Manmade Orbital

Debris Studies at NASA Langley," in Orhital Debris (NASA CP 2360), Donald

J. Kessler and Shin-Yi Su, editors. 1985.

 1975
End of year launches reaching Earth orbit or beyond (since 1957) 1558
End of year satellites (objects in orbit) 4220

During the year

May 22

July 12

The Institute for Astronomy (INASAN) of the Soviet Academy of Science

begins positional observations of GEO satellites.

Lydia Rykhlova. "Optical Observations in the Oeosynchronous Orbits: Data

Reduction" (not dated), Loftus Orbital Debris Files.

Landsat 1 was launched atop a Delta rocket on July 23, 1972. By March 30,

1973, when the satellite's tape recorder failed, the satellite had photographed

North America 10 times and all of Earth's major landmasses at least once.

The satellite returned more than 300,000 images and proved the potential of

Earth observation using remote sensing. It was commanded off on January 6,

1978. To 1993 approximately $1 billion was invested in the Landsat series of

satellites. Landsat l's spent Delta second stage was left in a 910-km-by-635-

km orbit at a 98.3-deg inclination after satellite separation. On this date the

upper stage explodes, producing more than 225 trackable pieces. Of these,

about 50 remained in orbit on January 1, 1998.

PAGEOS (Passive Geodetic Earth-Orbiting Satellite), a 30.48-m aluminized

balloon, was launched on June 23, 1966. Initially it served as a target for
19



1975

July 15-26

August 20

December

geodesy, and was used for optical tracking experiments as late as 1972. On

this date it breaks up into 11 pieces. A second breakup event was detected by

Desmond King-Hele in 1976. NAVSPASUR confirmed 44 additional pieces.
In addition, 19 unofficial pieces (one of which is believed to have broken into

about 250 pieces) are associated with PAGEOS. The initial breakup may have

been caused by a collision with a clump of dipoles produced in 1963 by the

second Project West Ford experiment - they orbit at about the same altitude

as PAGEOS. Later breakups could have been caused by the effects of space

conditions on the materials making up the pieces. PAGEOS pieces are

notoriously hard to track. According to the NASA Goddard Space Flight

Center (GSFC) Satellite Situation Report, only a few trackable pieces of

PAGEOS remained in orbit on January 1, 1998.

Interview, David S. F. Portree with Donald J. Kessler, June 23, 1993: Linda

Neuman Ezell, The NASA Historical Data Book, Volume II (SP-40I 2 I, NASA,

Washington. D.C., 1988, p. 298: Orbital Space Debris, Hearing before the

Subcommittee on Space Science and Applications, Committee on Science,

Space. and Technology. House of Representatives, July 13, 1988, p. 51: David

J. Nauer. Histoo' of On-Orbit Satelliw Fragmentations, 7th edition. July 1993,

pp. 42-43: Satellite Situation Report, Project Operations Branch, GSFC.
December 31, 1992.

The U.S. and the Soviet Union conduct the Apollo-Soyuz Test Project (ASTP)

rendezvous and docking mission in LEO.

The NOAA 4 satellite was launched on November 15, 1974. On this date the

second stage of its Delta launch vehicle explodes after 10 months in a 1461-

km-by- 1440-kin, 101.5-deg orbit. Most of the approximately 150 trackable

debris pieces produced remained in orbit on January 1, 1998.

Bess publishes a NASA Technical Note in which he details his contribution to

the September 1974 LaRC orbital debris team paper. Bess used a light-gas

gun to fire 1-gm steel and aluminum pellets at simulated spacecraft struc-

tures. This was the first attempt to calculate the mass distribution of orbital

debris pieces produced in explosions and hypervelocity collisions. His data

and analysis led the LaRC team to conclude that high-intensity explosions

produce many small pieces. Low-intensity explosions produce fewer pieces

overall. They tend to be larger than those produced in high-intensity explo-

sions. Bess found that collisions produce a continuous distribution of large

and small fragments. The results closely follow the curve of the sizes of

fragments produced in asteroid collisions. Bess's work shows that these

calculations apply to spacecraft structures as well. They follow a power law,

which states that for every order of magnitude decrease in the diameter of

the fragments, the number of fragments produced increases by 2.5 orders of
magnitude.

T. Dale Bess, Mass Distribution of Orbiting Man-Made Space Debris (NASA

TN D-8108), December 1975: Donald H. Humes, David E. Brooks, Jose M.

Alvarez, and T. Dale Bess, "'Manmade Orbital Debris Studies at NASA

Langley,'" Orbital Debris (NASA CP 2360), Donald J. Kessler and Shin-Yi Su,
editors, 1985.
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976
End of year launches reaching Earth orbit or beyond (since 1957) 1686

End of year satellites (objects in orbit) 4715 )
Space Solar Power Energizes Orbital Debris Research at JSC

JSC Director Christopher Kraft believed that developing space solar power would be NASA's next

big project after the Apollo lunar program. He wanted to build dozens of giant satellites in space to

collect solar energy and beam it to Earth. This, he felt, would be a way NASA could contribute to

solving the energy problem. At the same time, it would permit NASA to develop the skills needed

for lunar base and Mars exploration projects of the future.

Launching the millions of tons of construction materials required for each Solar Power Satellite

(SPS) and beaming energy through the atmosphere would, however, have unknown environmental

consequences. The Environmental Effects Office (EEO) at JSC had been established to study the

effects of frequent Space Shuttle flights on the environment. In early 1976 Andrew Potter, EEO

Chief, asked Donald Kessler, an aerospace technologist in EEO, to investigate the environmental

effects of building large SPSs in orbit.

Kessler reasoned that an SPS breakup caused by a collision would harm the space environment by

creating a huge number of new space objects, each capable of precipitating another collisional

breakup. He calculated the probabilities that collisions would occur and found that catalogued

space objects were already numerous enough to pose a threat to large space platforms and stations.

If the debris population continued to grow, it would soon threaten all space vehicles.

Donald J. Kessler, "'A Partial History of Orbital Debris: A Personal View tParl
11,"Orbital Debris Monitor, Vol. 6, No. 3, July 1, 1993: interview, David S. F.
Portree with Donald J. Kessler. May 11, lt)93: Donald J. Kessler, "'Space
Debris - Environmental Assessment Needed" (JSC 11539), July 1976.

February9 On January 22, 1975, Landsat 2 was launched atop a Delta rocket. On this

date the Delta's spent second stage undergoes the first of two explosions.

The second explosion occurs on June 19, 1976. A total of more than 200

trackable pieces are created, less than 20 percent of which remained in orbit

on January 1. 1998. The spent Delta second stage described a 918-km-by-745-

km orbit at a 97.8-deg inclination before the first explosion.

July Donald Kessler warns that fragmentation by impact between debris pieces

will exponentially increase the debris population. Runaway debris genera-

tion could begin as early as the year 2000. The starting condition for his

estimate is the orbital population in the NORAD catalog. Based on data from

meteoroid impact experiments conducted in the late 1960s by McDonnell

Aircraft Company to support Mars expedition planning, he assumes that

each collision will produce 100 pieces. Kessler concludes that the probability

of debris collision for a space station with a radius of 50 m over 10 years

could be 100 percent by the year 2010.

Donald J. Kessler, "Space Debris - Environmental Assessment Needed" (JSC
115391, July 1976: Thornton L. Page, Andrew E. Potter, and Donald J. Kessler,
"The History of Orbital Debris," 1990 {unpublished draft paper).

July 31-August 1 Preston Landry, a civilian analyst at NORAD, conducts the Unknown Satel-

lite Track Experiment at the request of the LaRC orbital debris team. It lasts

about 12 hours. The experiment uses the Perimeter Acquisition Radar Char-
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1976

October 26

November

December 24

December 27

acterization System (PARCS) radar in North Dakota. PARCS is a phased

array of 6144 north-facing sensors which can track many objects simulta-

neously in a 65-deg wide sector to 4000 km north of the radar site. During

the experiment, the radar detects 8445 objects, 17.7 percent of which are not
listed in the NORAD catalogue. Of the objects detected below 400 km, 90

percent are previously undetected. The explanation reached for the larger
number of small, previously unknown objects in lower orbits is that un-

known objects too small to be detected at higher altitudes rain down to lower

altitudes, where they can be detected. This is one of the most important
findings of the 1976 PARCS test. However, the breakup of the Soviet Cosmos

844 satellite only a few days before the test may have inflated the number of

objects at low altitudes beyond its usual level.

Donald J. Kessler, "NORAD's PARCSSmall Satellite Tests (1976 and 1978),'"
Orbital Debris (NASA CP 23601, Donald J. Kessler and Shin-Yi Su, editors.
1985, p. 39-44.

The Soviet Union launches the Ekran 1 television relay satellite into GEO at
99 deg east. It is the first Direct Broadcast Satellite (DBS). Ekran satellites

weigh 1970 kg and keep station to within about 0.5 deg of their GEO slot.

David Brooks publishes NASA TMX-73978, A Comparison of Spacecraft Pen-

etration Hazards Due to Meteoroids and Manmade Earth-Orbiting Objects. He

applies the findings of the September 1974 Brooks, Bess, and Gibson paper to
calculate the probability of penetrations by orbital debris and natural meteor-

oids for double-walled spacecraft, such as the Skylab Orbital Workshop. He

shows that the Whipple Bumper is adequate for meteoroid protection, but
not for orbital debris protection. Brooks also determines that while orbital

debris pieces are generally larger and slower than meteoroids, spacecraft in

high-inclination orbits risk collisions with orbital debris at speeds up to 15

km/second. He asserts that debris cleanup and avoidance are too expensive,
so spacecraft walls must be strengthened to contend with the hazard.

Donald H. Humes, David E. Bn×_ks,Jose M. Alvarez, and T. Dale Bess,
"Mamnade Orbital Debris Studies at NASA Langley," OrbitalDebris INASA
CP 2360L Donald J. Kessler and Shin-Yi Su, editors, 1985:Thornton L. Page,
Andrew E. Potter. and Donald J. Kessler, "'TheHistory of Orbital Debris," 1990
(unpublished draft paperl.

The Delta upper stage which placed the NOAA 5 satellite into orbit on July
29, 1976 explodes, producing 159 trackable debris pieces. Of these, 153

remain in orbit on January 1, 1998.

The Cosmos 886 ASAT explodes, producing 72 trackable pieces of debris. Of
these, 55 remain in orbit on December 31, 1992.

Nicholas L. Johnson. "'ArtificialSatellite Breakups (Part2): Soviet Anti-
Satellite Programm.e,'"Journal of the BritL_klnterplanetaO'Socieo,, Vol. 36,
1983,pp. 257-262.: lnteravia Space Directory 1992-93, AndrewWilson, editor,
p. 188.

22



1977
End of year launches reaching Earth orbit or beyond (since 1957) 1810

End of year satellites (objects in orbit) 5202 )
February l7

June

June 30

July

At the request of Joseph P. Loflus, Jr., Chief, Technical Planning Office at JSC,

Donald Kessler submits a memorandum proposing that optical sensors

(telescopes) be used to detect LEO orbital debris. Kessler's proposal is

modified to become the second PARCS radar test.

Donald J. Kessler, '% Partial tlislory of Orbilal Debris: A Personal View IParI

1 )," Orbital Debri,s Monitor, Vol, 6, No. 3, July I. 1993.

Donald Kessler and Burton Cour-Palais predict that the hazard posed by

orbital debris will soon exceed the hazard from meteoroids. They state that

the collision rate between objects in 150-4000-kin orbits was 0.013 per year in

1976. They note that the number of objects NORAD tracks has increased by

320-510 objects per year since 1966, and predict that the collision rate will

increase rapidly.

Burton Cour-Palais and Donald J. Kessler. "Space Debris - Environmental

Update I'" (JSC 12949), June 1977: Thornton L. Page. Andrew E. Poller, and

Donald J. Kessler, "The History of Orbital Debris," 1990 (unpublished draft

paper).

In a formal briefing on SPS environmental impact, Donald Kessler describes

to Christopher Kraft the hazard posed by orbital debris. According to Joseph

Loftus, "in general [Kraftl had a 'show-me' kind of attitude" because of his

mission operations background. Kraft is skeptical of Kessler's orbital debris

conclusions because they are largely theoretical.

Inlerview, David S. F. Portree with Donald J. Kessler, June 7, 1993: inlerview.

David S. F. Portree ,,vilh Joseph P. Loflus, Jr., August 25. 1993.

The JSC SPS Systems Definition effort publishes a report titled Solar Power

Satellite: Concept Evaluation. Section VII, entitled "Environmental Factors,"

reports that predictions of collision frequency contain a large measure of

uncertainty. This is because the number of orbiting objects below the level of

NORAD radar detectability down to about I mm and the number of "ejected

'daughter' products" are not known. It gives the uncertainty in collision

frequency for the year 2000 as about four orders of magnitude. According to

the report, "this uncertainty implies the need to be very careful to minimize

the rate at which new objects are added to orbit (especially small, numerous

objects) and a possible need for removing debris ('space cleanup') at some

later date." To reduce uncertainty, the report calls for improvement of space

debris models and the small object database. It also calls for structural

designs which minimize the effects of damage, identification of crew safety

design requirements, and consideration of "trade-offs among constraints on

the generation of additional space debris and requirements for debris re-
moval."

Solar Power Satellite: C¢mcept Evaluation, Vol. 1, July 1977, pp. VII-4;

interview, David S. F. Portree with Donald J. KessLer, June 1, 1993.
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1977

July 14

September 25-
October 1

September 29

December 21

A Delta rocket lifts off from Cape Canaveral, launching the first Japanese

GMS (Himawari 1) weather satellite toward a slot in GEO at 140 deg east

longitude. Soon after payload separation the second stage explodes in a
2025-km-by-53-km orbit at a 29-deg inclination. The low-inclination orbit is

unusual for an exploding Delta second stage - previous Delta explosions

took place in high-inclination, sun-synchronous orbits. The explosion pro-
duces nearly 170 trackable pieces, of which 45 percent remained in orbit on

January 1, 1998.

lnteravia Spclcc Directory 1992-93. Andrew Wilson. editor, p. 48(}: R,7_ort on

Orbital Dehri,_. IG ISpace). February 1989.

Lubos Perek, a Czech astronomer and Chief, Outer Space Affairs Division,

General Secretariat of the U.N., presents "Physics, Uses and Regulation of the
Geostationary Orbit, or, ex facto sequitur lex," at the 28th International

Astronautical Federation congress in Prague, Czechoslovakia. Perek de-

scribes aspects of the GEO environment arising from solar radiation pressure,

the ellipticity of the equator, and Earth's oblateness, then lays out how they
create problems for satellites in GEO. The paper is among the first to address
GEO orbital debris.

Lubos Perek, "Physics. Uses. and Regulation of the Geostationa_' Orbit, or, ex

facto sequitur lex'" OAF Paper SL-77-44), presented at the 28th International

Astronautical Federation Congress, Prague, Czechoshwakia. September 25-
October 1, 1977.

The Soviet Union launches Salyut 6, the fifth Soviet space station to host a

crew, into a 51.6-deg, 256-km-by-214-km orbit. Salyut 6 is generally similar

to Salyut 1. However, it has a rear docking port. Automated Progress supply
ships call at the rear port, delivering supplies for the crew and fuel to main-

tain the station's orbit. Salyut 6 can thus remain operational much longer

than the earlier Salyuts. Cosmonauts live aboard Salyut 6 for a total of 676

days up to 1982. Salyut 6 is visited in April 1981 by the Cosmos 1267 expan-

sion module, which nearly doubles its 13.5-m length. It receives the first

international spaceship crew (Alexei Gubarev and Vladimir Remek, a Czech,

the first non-Soviet/non-American in space). The Soyuz 35 crew of Leonid

Popov and Valeri Ryumin spends a record 185 days on the station.

ASAT weapon Cosmos 970 explodes in a 1139-km-by-946-km orbit at a 65.8-

deg inclination. Of the 70 trackable pieces produced, all but four remained in

orbit on January 1, 1998.

Nicholas L. Johnson, "Artificial Satellite Breakups, (Part 2): Soviet Anti-

Satellite Program,"Journal of the British lnterplanetaJ 3' Society, Vol. 36, 1983,

pp. 356-363: hm'ravia Space Directory 1992-93, Andrew Wilson, editor, p.
188.
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1978
End of year launches reaching Earth orbit or beyond (since 1957) 1934

End of year satellites (objects in orbit) 5170* )

During the year

January 24

*Tile decline since 1977 was caused by

record-high levels of solar activity during tile 1978-1980 solar

maximum period.

John Gabbard tells Donald Kessler how to identify breakup fragments in the

NORAD catalog. Using a limited list, Kessler draws a "4 percent random

sample" of about 100 objects, then tracks the origin of each object. He notices

that a large fraction originate with Delta second stages launched since 1972.

(Many were left in sun-synchronous orbits.) Kessler informs Loftus, who in

turn informs the Expendable Launch Vehicle (ELV) Office at NASA Head-

quarters. A series of informal discussions commence between the ELV

Office, JSC, and the Delta Program Office at GSFC. The ELV Office contracts

with Battelle Institute, Columbus, Ohio, to study the orbital debris issue.

Donald Edgecombe, who has experience with the related issue of uncon-

trolled reentry of space objects, organizes the Battelle effort.

Interview, David S. F. Ponree with DonaM J. Kessler, May 11, 1993.

Cosmos 954, a Soviet nuclear-powered RORSAT ocean surveillance satellite,

undergoes uncontrolled reentry over northern Canada.

Heightened Awareness: The Skylab and Cosmos 954 Reentries

The Soviet Union launched Cosmos 954 on September 18, 1977. The satellite carried a nuclear reactor to

provide adequate electricity for its powerful ground-pointing radar. Cosmos 954, like other RORSATs,

operated in a low orbit, with a limited lifetime before decay. It had to be periodically reboosted to

maintain orbit. Normally, when its reboost fuel supply was nearly depleted, such a satellite launched

its reactor into a high storage orbit with a lifetime of 300-1000 years (the nuclear fuel in the reactor has a

half-life of 70,000 years, however, meaning that the storage orbit foists contending with the radioactives

on a future generation). The main body then reentered harmlessly. Cosmos 954 malfunctioned, how-

ever, and reentered with its reactor still attached on January 24, 1978. The Soviets announced that the

reactor contained about 30 kg of enriched uranium. Cosmos 954 broke apart over the Great Slave Lake,

in northwestern Canada, and peppered a region 800 km long with radioactive debris. Cleanup cost $14

million. The 1972 Liability Convention came into play. Canada claimed $6 million and the Soviets

eventually paid $3 million. The Soviets redesigned the reactor boost system and resumed launching

RORSATs in April 1980.

The uncontrolled reent[y increased awareness at the U.S. Cabinet level of potentially dangerous space

objects. The U.S. Secretary of State, Zbigniew Brzezinski, raised the issue in a public speech. He de

clared that "no one [in any U.S. government agency] shall increase the hazard in space without consult-

ing me."

By this time the 80,000-kg Skylab Orbital Workshop had been in orbit for almost 6 years. As earl), as

1976, the National Oceanic and Atmospheric Administration (NOAA) predicted that Skylab would

decay from orbit earlier than the March 1983 date forecast by NASA. By 1977, the 11-year sunspot cycle

was already climbing toward the most intense solar maximum period before 1989-91. As is normal

during active Sun periods, increased solar heating expanded Earth's upper atmosphere. But the 1978-80

solar maximum expanded the upper atmosphere to an unusual degree, hastening Skylab's decay.
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1978

Less than a month after the Cosmos 954 reentry, NASA announced that Skylab would decay below

278 km by October 1979. As Skylab fell, worldwide concern grew. The space agency took pains to

regain partial control over Skylab. However, the chances that pieces of Skylab would hit a person
or cause property damage were extremely small. On July 11, 1979, Skylab reentered over the

Atlantic Ocean. The crew of an aircraft flying at 8500 m over the Indian Ocean saw Skylab appear

as a blue fireball in the starry predawn sky. After 45 seconds, the fireball turned red-orange and

broke into five large pieces. Early-risers throughout southwestern Australia saw flaming pieces in

the sky. Sonic booms awoke sleepers in Perth and Kalgoorlie, the largest cities in Skylab's path.

Skytab rained debris in a footprint more than 1000 km long and nearly 200 km wide. Some 500

major debris pieces, with a total weight of about 20,000 kg, were found in the Outback.

Together, the Cosmos 954 and Skylab reentries increased awareness that orbiting objects could pose
hazards, that the products of human space activities did not vanish into infinite blackness when

their usefulness ended. The reentries helped create a climate in which orbital debris research and

awareness-building efforts could continue to develop.

W. David Compton and Charles D. Benson, Living and Working in Space: A
History of Sl_:vlab,NASA Scientific and Technical hffomaationBranch,
Washington, D. C., 1983: Donald J. Kessler,"A Partial History of Orbital
Debris: A PersonalView (Part 1),"Orbital Debris Monitor, Vol. 6, No. 3, July
1, 1993:interview, David S. F. Portreewith Donald J. Kessler, May 11, 1993:
CraigCovaull, "Skylab Tumble Timing Linkedto Control,"Aviation Week &
Space Teclmoh)gy.July 16, 1979.pp. 22-23: "Cosmos Reentry Spurs Nuclear
Waste Debate," Aviation Week & Space Technology, January 30, 1978,p. 33.

February 7 The U.S. Senate Subcommittee on Science, Technology, and Space takes
testimony from Dr. William M. Brown of the Hudson Institute, NASA Ad-

ministrator Dr. Robert A. Frosch, and others on the future in space. Brown

describes as "chilling" some of the conclusions on orbital debris reached by

Donald Kessler and Burton Cour-Palais in their paper for the Journal of

Geophysical Research. He requested an advance copy in late 1977. In a letter to

Kessler acknowledging use of the paper in his testimony, Brown reflects the

contemporary international political climate by stating that "Russian killer
satellites [Cosmos ASATs] are killing the future of space." At this time few

people suspected that the major source of orbital debris was exploding U.S.
Delta second stages.

Interview, DavidS. F. Portree with DonaldJ. Kessler, June 1, 1993:letter,
William M. Brown, Hudson Institute. to Donald J. Kessler, April 3, 1978.

March 14 The Delta second stage which placed Geodynamics Experimental Ocean

Satellite (GEOS) 3 in orbit on April 9, 1975 breaks up in an 847-km-by-807-km

orbit at an inclination of 115 deg, producing only four trackable pieces. Three

remained in orbit on January 1, 1998.

June l Donald Kessler and Burton Cour-Palais publish "Collision Frequency of

Artificial Satellites: The Creation of a Debris Belt" in the Journal of Geophysical
Research 0GR). The article is based on their June 1977 JSC document. It

proves to be a seminal work on the orbital debris problem. They predict that

collisional breakup will become a new source of orbital debris, "possibly
before the year 2000," and that the debris flux will continue to increase over

time once collisional breakup begins, even if no new payloads are placed in
Earth orbit.

Donald J. Kesslerand BurtonG. Cour-Palais. '_CollisionFrequency of Artificial



June23

August 21-23

December 19

Satellites: The Creation of a Debris Belt," Journal _Geophysical Research,

Vol. 83, No. A6, pp. 2637-2646.

1978-1979

The Soviet Ekran 2 DBS undergoes a nickel-hydrogen battery explosion in

GEO. The Soviets photograph the breakup. No other space power detects

the explosion.

"Russia Seeks Joint Space Tesl to Build Joint Military Cooperation," Aviatirm

Week & Space Techm)loq, y March 9, 1992, pp. 18-19: interview, David S. F.

Portree with Donald J. Kessler, August 3. 1993.

In six 84-minute sessions, the PARCS detects 5586 known objects, 437 un-

known objects, and 379 uncorrelated (not tracked well enough to determine

their status) objects. Including the uncorrelateds is the only major departure

from the 1976 PARCS experiment. The percentage of unknowns nearly

doubles directly over the radar site, where sensitivity is highest. 80 percent of

the objects detected below 300 km are unknown. Only 32 percent above 2000

km are unknown. Many unknowns are found at inclinations of 62 deg-64

deg, 84 deg-88 deg, and 103 deg-106 deg. The second group may be associ-

ated with the second Project West Ford experiment in 1963. No recent debris-

producing events compromise the results, as may have happened in 1976.

This adds credibility to the idea that previously unknown small debris found

in low orbits originates at higher altitudes.

Donald J. Kessler, "NORAD's PARCS Small Satellite Tests ( 1976 and 1978),'"

Orbital Debris (NASA CP 2360). Donakl J, Kessler and Shin-Yi Su, edilors,

1985. pp. 39-44.

Donald Kessler again briefs Kraft on orbital debris. The PARCS experiments

provided concrete data on the uncatalogued orbital debris population, so

Kraft is willing to accept that a problem exists. He sanctions further research.

Interview, David S. F. Porlree wilh Donald J. Kessler, June 1, 1993.

1979
End of year launches reaching Earth orbit or beyond (since 1957) 2040

End of year satellites (objects in orbit) 5035* )

February 6-8

*The decline since 1978 was caused by

record-high levels of solar activity during the 1978-1980 solar

maximum period.

Christopher Kraft presents a paper at the 15th American Institute of Astro-

nautics and Aeronautics (AIAA) Annual Meeting and Technical Display in

Washington, D.C. Titled "The Solar Power Satellite Concept - The Past
Decade and the Next Decade," it touches on the hazards of meteoroids and

orbital debris. He asserts that experience gained from past space activities

shows that protection can be provided at reasonable cost. Kraft adds that a

"'space cleanup' of past man-made orbital debris may become desirable

during the SPS construction phase, and meticulous housekeeping during

construction will become imperative.'"

Christopher C. Kraft, Jr., "The Solar Power Satellite Concept - The Past

Decade and the Nexl Decade." AIAA 79-0534, February 1979.
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1979

March 9

March 26

July 11

September 16-22

Burton Cour-Palais telephones Donald Kessler to tell him "our work has hit

pay dirt" at NASA Headquarters. Cour-Palais tells Kessler that Philip
Culbertson, Deputy Associate Administrator (Technology) in the NASA

Headquarters Office of Space Transportation Systems, raised the orbital

debris issue during negotiations with the Soviets on the second Strategic
Arms Limitation Treaty (SALT 2).

Kessler Phone Logs. 1978-1982

Joseph Loflus again arranges for Donald Kessler to brief Christopher Kraft
and his senior managers. When asked if orbital debris research should

continue at JSC, Kraft says, "we would be crazy not to continue.., go do it...
forthwith." According to Kessler, this was "the directive that allowed the

orbital debris program to be developed."

Donald J. Kessler, "A Partial History of Orbital Debris: A Personal View (Part
1).'"Orbital Debris Monitor, Vol. 6, No. 3, July I, 1993.

The U.S. Skylab Orbital Workshop reenters, raining debris on Australia.

Lubos Perek presents "Outer Space Activities versus Outer Space" at the 22nd

Colloquium on the Law of Outer Space in Munich, West Germany. Perek's

paper presents an overview of the orbital debris issue as understood at this

time. Perek depicts an optimistic future in which the U.S. Space Shuttle,

Soviet Progress automated space station supply ships, and the European

Ariane rocket provide easy access to space. He maintains that easy access to

space will cater to large space structures, such as solar power satellites and

space habitats. Perek states, however, that "there is... one aspect which is

rarely mentioned in this connection.., how will the individual projects and

missions relate to each other?" He notes that at present the only acknowl-
edged relationship between satellites is their common use of the radio fre-

quency spectrum for communications. Perek asserts that collision is another

way space objects will relate to each other, though because space is perceived
to be large relative to the number of intact satellites in Earth orbit (about 1000

at this time), the risk of collision is usually discounted. Perek points out that

relative velocity and cross sectional area are also factors that affect collision

probability. Perek asserts that "satellite cross section will assume its impor-

tance at a more distant future. Since the collision probability is proportional

to the area of the satellite, the picture will be entirely different for solar

power stations with an area of several square kilometers than it is for present

day satellites." Perek also points out that the 1000 satellites in orbit are

attended by about "3500 debris large enough to be tracked by radar and an

unknown number of small debris, nuts and bolts, and fragments weighing a
fraction of a gram, which escape tracking and detection." He asserts that

"the small debris are not without danger." Perek cites Donald Kessler and

Burton Cour-Palais's 1978 paper in the Journal of Geophysical Research and

David Brooks' November 1976 NASA report when describing the small

debris environment and future runaway debris generation. Perek then states

that "preventing all collisions is impossible. Minimizing their effects is and

will be expensive, but it is a bargain price compared to the repair of dam-

age." Specifically, he calls for
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• reducing the amount of debris produced during launch and operations

• deorbiting inactive satellites

• placing inactive satellites into disposal orbits

• "using non-intersecting orbits in specific areas of outer space."

Perek goes on to suggest that "the spirit of the Rule of Good Seamanship"
could be a basis for future space traffic regulation. Finally, Perek states that
"the operators of space objects discharge larger responsibilities than the
many operators of vehicles on roads, in the seas, and in the air," so it is
appropriate for "the international community to adopt regulatory or recom-
mendatory measures wherever and to whatever degree is found necessary."

Lt, bos Perek. "Outer Space Activities versus Outer Space," in Proceeding._ of

the 22rid Colloquium on tile Law q/Outer Space, Munich, West Germany,

AIAA, 1980, pp. 283-286: interview, David S. F. Portree with Joseph P. Loftus,

Jr., August 25, 1993.

September 24 Christopher Kraft writes to John F. Yardley, NASA Associate Administrator

for Space Transportation Systems, to explain his request that orbital debris be

discussed at a NASA Management Council meeting. Kraft originally asked

to brief the Council at its September meeting, but Yardley struck the briefing

from the agenda. According to Joseph Loftus, Yardley did this because

"orbital debris was an unpleasant subject and he didn't want to talk about it."

In addition, Yardley was fully occupied with moving the Space Shuttle

toward flight. Kraft tells him that his motive in putting the matter on the

agenda "was to introduce you to the implications of the growing population

of man-made objects in space. This situation is one we will have to face some

time in the future." Kraft summarizes JSC's findings by stating that "the

man-made population is very real and detectable," and that while "this

population is the subject of continuous measurement.., there may be a

significant gap in measurements of smaller objects." He admits that, "the

present population does not.., warrant any immediate changes to our cur-

rent mission planning; however, it is increasing and could become self-

propagating." Kraft concludes by saying that "corrective measures are

evident and should be considered." These include "policy control measures

and operational practices _o curtail unnecessary population growth: the

establishment of an environmentally acceptable population flux model: and

the management of programs to operate within the limits of the flux model.'"

In connection with this last point, he states that "we have brought the unusu-

ally large debris contribution of the Delta second stage to the attention of the

Expendable Launch Vehicles Program Office." Joseph Loftus drafted the
letter for Kraft.

Lelter, Christopher Kraft, JSC, to John F. Yardley, NASA Headquarters,

September 24. 1979: note. Joseph P. Lof_us, Jr. to David S. F. Portree. August

2, 1993: interview, David S. F. Portree with Joseph P. Loftus. Jr.. August 25.
1993.

October The NASA Headquarters Advanced Programs Office, a part of the Office of

Space Transportation Operations, provides the JSC orbital debris team with
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1979

October 22-23

Late November

$70,000 to fund its activities. This is the first funding at JSC specifically for

research into the orbital debris problem.

Donald J. Kessler, "'A Partial History of Orbital Debris: A Personal View (Part

2)," Orbital Debri,s Monitor. Vol. 6, No. 4, October 1. 1993.

JSC researchers and engineers discuss space nuclear power systems with U.S.

Department of Energy {DOE) contractors. The contractors tell NASA that

nine U.S. nuclear power sources orbit Earth, with others planned. One is a

reactor. The others are radioisotope thermal generators (RTGs). Six of the

seven LEO satellites are in high-inclination orbits, increasing the risk that

they will collide with other objects and break up. Only three of the satellites

can be recovered by the Space Shuttle, and then only by using Orbital Ma-

neuvering System (OMS) kits to augment the Shuttle's baseline rendezvous

capability. The nuclear reactor cannot be reached even using three OMS kits

in series. The meeting produces a summary which states that the previous

estimate of the lifetime of nuclear devices in orbit - 150 years or longer - "is

now questionable safety criteria because of collision." The radioactive pieces

from fragmented nuclear devices can be expected to decay from orbit before

radioactive decay can render them harmless. The summary notes that JSC is

developing a program to define the severity of the orbital debris problem in

general and develop control techniques. It reports that no GEO satellite

recovery capability is planned for the Shuttle, and that Shuttle enhancements

{such as OMS kits) are just beginning to be studied. However, "NASA is in

the preliminary phase of defining a system concept [a space tugl that could

provide a variety of services including deployment, inspection, retrieval,

support, and Earth return." The DOE requests that NASA include the

nuclear-powered satellites in its collision studies. It also asks the space

agency to determine Shuttle requirements for rendezvous with and servicing
of nuclear-powered satellites in LEO and GEO. The DOE states that it will

determine a disposal method for nuclear-powered satellites. Possibilities

listed are controlled reentry, return by Shuttle to Earth, and insertion by
unspecified means into solar orbit at 0.82 astronomical units (inside Earth's
orbit).

Memorandum with Attachment, EW4/Reuben Taylor to EW4/Chief, Systems

Design Office, October 25, 1979.

The Snapshot satellite carries SNAP 10-A, the only U.S. space nuclear reactor

launched to date. On this date Snapshot undergoes what orbital debris

researchers term "an anomalous event." The parent body sheds pieces but

remains largely intact. Six more anomalous events occur in the next 6 years,

releasing nearly 50 trackable pieces. Release of radioactives is possible but

not confirmed. A collision with another space object has not been ruled out
as the cause of the initial event, though an unknown internal malfunction is

perhaps more likely. SNAP 10-A shut down prematurely in May 1965, 43

days after launch. The main body of the satellite remains in a 1316-km-by-

1268-km orbit at a 90.3-deg inclination. Expected orbital lifetime is more than

3000 years (assuming it avoids a more complete breakup).

Nicholas L. Johnson and Darren McKnight, Artificial Space Debris, revised

edition, Orbit Books. 1991: David J. Nauer, Histoo' of On-Orbit Satelliw

Fragmentations. 7th edition, Teledyne Brown Engineering, July 1993. p. 266:

Joseph A. Sholtis, Jr., et al, "'U.S. Space Nuclear Safety: Pasl, Present, and



December 24

1979-1980

Future," presented at the Tenth Symposium on Space Nuclear Power and

Propulsion, Albuquerque. New Mexico. January 10-14, 1993.

The European Space Agency (ESA) launches its first satellite, the CAT test

vehicle, atop an Ariane 1 rocket. The flight is designated V1. The third stage
is left in a 21,510-km-by-178-km orbit at a 17.8-deg inclination. The Ariane

V1 third stage apparently exploded in orbit on March 1, 1980. However, the

Goddard Satellite Situation Report for December 31, 1992, lists only two cata-

logued objects associated with V1, both of which decayed by 1990. Low

perigee means most of the debris produced decays rapidly. Detection and

tracking of debris from this event was difficult because of the low inclination

and high apogee of the orbit.

Space Log 1957-1991, TRW. 1992, p. 182: David J. Nauer, History of On-Orbit

Satelliw Fragmentations, 7th edition, Teledyne Brown Engineering, July 1993,

p. 138: Satellite Situation R_7_ort. Project Operations Branch, GSFC, Vol. 32,

No. 4, December 31, 1992, p. 253.

End of year launches reaching Earth orbit or beyond (since 1957) 2145 )1980 End of year satellites (objects in orbit) 5011"

Beginning this

year

During the year

January l4

*The decline since 1979 was caused by

record-high levels of solar activity during the 1978-1980 solar
maximum period.

During the first half of the 1980s, Donald Kessler, Joseph Loflus, and Burton
Cour-Palais present tutorial briefings on orbital debris to the Department of

State, U.S. Air Force Space Division, Department of Transportation (DOT),

NORAD, NASA centers, and other government organizations and agencies.

Most of the briefings were organized by Loftus.

Interview, David S. F. Portree with Joseph P. Loflus, Jr.. Augusl 25, 1993.

This year Herbert Zook, Uel Clanton, and Richard Schultz, all of the Geology

Branch, Planetary and Earth Sciences Division, JSC, analyze impact pits in the

Skylab 4 Apollo CSM windows. Zook and Schultz count and measure the

pits. Clanton then uses SEM analysis to determine that half of the pits (pre-

dominantly the smallest) are lined with aluminum expelled from solid rocket

motors. They conclude that, in their size range (smaller than 30 microns),

aluminum particles already outnumber meteoroids in near-Earth space.

Interview, David S. F. Portree with Herbert Zook, June 16. 1993: Donald J.

Kessler, "'A Partial History of Orbital Debris: A Personal View (Part 2),"

Orbital Debris Monitor, Vol. 6, No. 4, October 1, 1993.

David H. Suddeth, Space Technology Division, GSFC, contacts Donald

Kessler at JSC for information on orbital debris to aid him in preparing a

proposal for a GEO satellite reboosting program. Suddeth calls the proposed

program "Death with Dignity." It calls for GEO satellites to be boosted to

graveyard orbits above GEO at the end of their useful lives. Suddeth later
briefs NASA Headquarters Chief Engineer Walter C. Williams on the pro-

posal. At the JSC orbital debris workshop in July 1982 he describes GEO
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satellite problems. Suddeth states that "NASA is considering establishing a

policy for the limitation of the physical crowding of the geostationary orbit.

This paper was requested by the Director, Communication and Data Systems

Division, Code TS, NASA HQ." In "Recommendations for Action," Suddeth

calls for NASA policy to state that

• The GEO insertion burn should be accomplished using a motor which

remains attached to the spacecraft after the burn.

• No objects should be released from spacecraft in GEO.

• Fuel should be retained to boost GEO spacecraft to non-synchronous

graveyard orbits.

Spacecraft should be disposed of into higher (westward drifting) grave-

yard orbits, if possible, "to avoid communication interruption and imped-

ing later arrivals."

• Governmental policy should require that all GEO users "desynchronize"

GEO satellites before they exhaust their fuel.

• "NASA and the U.S. should strive to establish a world-wide policy for

removal, binding on all users of the geosynchronous orbit."

"Ultimately, NASA should plan and carry out a procedure for clearing

dead spacecraft and debris from the geosynchronous orbit."

David H. Suddeth, "'Debris in the Geostationary Ring - the Endless Shooting
Gallery - the Necessity for a Disposal Policy," Orbital Debris (NASA CP
2360), Donald J. Kessler and Shin-Yi Su, editors, 1985: interview, David S. F.

Portree with Joseph P. Loftus, Jr., September 9, 1993.

March 31 The Ad Hoc Working Group on Space Debris and Geostationary Crowding

meets at NASA Headquarters. Its members include representatives from

NASA Headquarters, GSFC, and JSC. The meeting aims "to establish com-

munication among those concerned with some aspect of debris and its conse-

quences: to define, in broad terms, a base of common information as to the

scope and significance of the debris problem: and to determine what steps, if

any, could or should be taken to provide within NASA a coherent framework

for pursuing further coordinated activity with respect to space debris and

geostationary crowding."

Maxta Cehelsky, "Issues Paper: Space Debris." Meeting Summary Prepared for
Deputy Administrator Alan Lovelace "'atthe request of Mr. Culbertson," June
2. 1980.

32

April 18 The Soviets launch Cosmos 1174 in pursuit of the Cosmos 1171 target satel-

lite. The ASAT satellite explodes 60 km from the target, so the test is consid-

ered a failure. Of the more than 40 trackable debris pieces produced, less

than 10 remained in orbit on January 1, 1998. About 6 percent of the debris

tracked in 1983 originated in Soviet ASAT explosions.

Gautam Badhwar and Phillip Anz-Meador, "Mass Estimates in the Breakups of
Soviet Satellites," Journal ()]the British Interplanetary Sacieo'. Vol. 43, No. 9,



April 29

June

July 18

November 23

September 1990, pp. 403-410: Nicholas L. Johnson, "'Artificial Satellite

Breakups (Part 2): Soviet Anti-Satellite Programme," Journal r(the British

lnterldaneta_3' Socieo', Vol. 36, 1983, pp, 356-363: Satellite Situation R_7_ort,

Project Operations Branch, GSFC, December 31, 1992.

1980-1981

The Soviet Union launches Cosmos 1176, the first RORSAT nuclear-powered
ocean surveillance satellite launched since Cosmos 954 scattered radioactive

debris across northwestern Canada in January 1978. The U.S. State Depart-

ment issues a "Statement of Regret" chiding the Soviets for resuming

RORSAT operations.

lnteracia Space Directmv 1992-93, Andrew Wilson, editor, p. 192.

The AIAA Technical Committee on Space Systems begins a formal review of

the orbital debris problem in preparation for writing an AIAA position paper

on the subject.

India launches its first satellite, Rohini 1B, atop an SLV-3 launch vehicle. The

40-kg test satellite describes a 745-km-by-295-km orbit at a 44.7-deg inclina-

tion. It decays from orbit on May 20, 1981.

Three fuses blow on the Solar Maximum Mission (Solar Max) satellite, which

was launched in February 1980. Four of its six telescopes lose pointing

ability. Solar Max has a modular design to permit routine servicing by Space
Shuttle astronauts, so NASA schedules a Shuttle mission to repair the satel-
lite. The usefulness of its Gamma Ray Spectrometer is reduced by anomalous

gamma ray emissions. In 1988 these are revealed to have been traced to
Soviet RORSAT nuclear reactors.

Nicholas L. Johnson, The Soviet Year in Space 1989, pp. 83-84.

1981
End of year launches reaching Earth orbit or beyond (since 1957) 2268
End of year satellites (objects in orbit) 5451 )

During the year

January 27

Cutbacks in NASA meteoroid research funding in the mid-1970s forced
Donald Humes at LaRC to postpone analysis of Explorer 46 meteoroid data

until 1980-81. Donald Kessler reviews Humes' paper on the Explorer 46 data.
Using raw data included in the paper, Kessler detects directionality in the
impacts on Explorer 46. He believes this indicates a population of small

Earth-orbiting debris objects. The impacts show a correlation with solid
rocket motor firings in orbit. This is difficult to explain, as the aluminum

oxide particles produced by solid rocket motors are believed to be too small
to trigger the Explorer 46 detectors.

Interview, David S. F. Porlree with Donald J. Kessler, June 1, 1993.

The Delta second stage which placed the Landsat 3 and Oscar 8 satellites in
near-polar, 98.9-deg inclination orbits on March 5, 1978, explodes into more

than 200 trackable pieces while over Antarctica. About 140 trackable pieces
remained in orbit on January 1, 1998. The JSC orbital debris team writes a
memorandum on the breakup to NASA Headquarters, which is subsequently

passed on to McDonnell Douglas Space Systems Company, the maker of the
Delta rocket.
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1981

March

April 5

April 12

May

May 6

Ibid: Nicholas L. Johnson, "Preliminary Analysis of The Fragmentation of the

Spot 1 Ariane Third Stage," Orbital Debrisj)'om Upper-Stage Breaklq_, Joseph

P. Loftus, Jr., editor, 1989, pp. 41-106.

Joseph Mahon, Director of the ELV Office in the Office of Space Transporta-

tion Operations at NASA Headquarters, issues a directive to the Delta Pro-

gram Office at GSFC calling for an investigation into Delta breakups.

Ibid.

On this date, pieces from Delta second stage explosions make up about 27

percent of the 3904 tracked objects with orbital periods under 225 minutes.

Nicholas L. Johnson, "The Crowded Sky: The Danger of Collisions in

Geostationary Orbit," Journal of the British lnterl_lam, tal 3" Society, Vol. 24,

No. 12, December 1982,

pp. 446-449.

NASA launches Columbia on the first Space Shuttle mission, STS-1. When

the Shuttle was designed in the 1970s, orbital debris was not a recognized

hazard. In the latter half of the 1980s cost per flight was estimated at $200-
400 million. Orbiter replacement cost was estimated at $1-2 billion. Each

orbiter is 37 m long and 24 m wide across its delta wings. Crew complement

is variable, depending on mission requirements; STS-1 carried 2 crew, and

flights prior to the Challenger accident carried as many as 8 crew. In its April

1990 report, the U.S. Government Accounting Office (GAO) stated that an

unnamed NASA orbital debris expert had estimated that most of the orbiter

surfaces will not be penetrated by debris particles 0.4 cm or smaller, while

the triple-paned windows require a hit from at least a 1.5-cm object before
loss of cabin pressure will occur.

Space Program Space Debris: A Potential Threat to Space Station and Shuttle,

GAO, April 199(I.

The NORAD/ADCOM Directorate of Analysis publishes TM 81-5, "The

Explosion of Satellite 10704 and Other Delta Second Stage Breakups."

Nimbus 7 was launched with the Cameo (Chemically Active Material Into

Orbit) experiment on a Delta rocket on October 24, 1978. Nimbus 7, the

primary payload, is the first satellite equipped to monitor the atmosphere for

natural and artificial pollutants. It carries a Total Ozone Mapping Spectrom-
eter (TOMS) instrument which in 1987 discovers the human-made ozone hole

over Antarctica. The Cameo experiment studies Earth's auroral belts. Cameo

remains attached to the spent Delta second stage. On this date two trackable

pieces detach from the Delta stage-Cameo combination at an altitude of 900

km. Though expected to remain in orbit for years, they decay from orbit

within 2 weeks. This high susceptibility to atmospheric drag implies a very
large area-to-mass ratio.

John Gabbard, "'Hislo_' of Satellite Breakups in Space," Orbital Debris (NASA
CP 2360), Donald J. Kessler and Shin-Yi Su, editors, 1985, pp. 30-39: Satellite

Situation Report, Project Operations Branch, GSFC, December 31, 1992: letter,

Nicholas k. Johnson to Joseph P. Loftus, Jr., JSC, August 17, 1993.
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May 29 GSFC notifies McDonnell Douglas Space Systems Company that Delta

rockets are exploding in orbit, and asks it to find out why.

1981

July The AIAA Technical Committee on Space Systems produces the first major

position paper on the orbital debris problem. It states that "there is... no

strong national or international concern for space debris management," even

though "space debris control needs to be dealt with.., as a common problem

shared by all space users." In its conclusions and recommendations, the

document calls the orbital debris problem "real but not severe," though
"action to resolve it is imperative," and "no obvious, simplistic resolution is
evident." It goes on to say that "continuation of present.., practices and
procedures ensures that the probability of collision.., will eventually reach

unacceptable levels, perhaps within a decade," and that "coordinated action
should be taken immediately if the future use of space is not to be severely
restricted." Specifically, the position paper calls for

• development of bumpers to shield spacecraft from small debris impact,

and evasive capability for avoiding large debris

• immediate action in education, space vehicle design, and operational

procedures and practices

• national and international space policies and treaties.

The AIAA position paper concludes by stating that, "corrective action must

begin now to forestall the development of a serious problem in the future."

"'Space Debris: An AIAA Posilhm Paper," AIAA Technical Commiuee on

Space Systems. Jtdy 1981.

July 24 Cosmos 1275, a Tsikada-class navigation satellite launched into a 1014-km-by-

961-km orbit on June 4, 1981, disintegrates into more than 300 trackable

debris pieces at an altitude of 977 km. Only 30 pieces had decayed from orbit

on January 1, 1998. The satellite, a 700-kg cylinder 1.3 m in diameter and 1.9

in long, operates within an altitude range populated by a large fraction of the

total mass of orbital debris, and at an inclination with a high probability of

collision. Intentional destruction is unlikely, as this would endanger the
remainder of the satellite constellation of which Cosmos 1275 was a member

(at least ten satellites for the Tsikada-class). [t is believed that Cosmos 1275

carried no pressurized propellant vessels which could explode. Eliminating

these explanations leads many analysts to conclude that the breakup was

caused by a collision with a piece of orbital debris. Darren McKnight, U.S.

Air Force Academy, stated in 1987 that it was impossible to be certain of the

cause of the Cosmos 1275 breakup because the Soviets were withholding

information. McKnight stated that, "one of the most easily implemented and

most useful countermeasure[s to the orbital debris problem] is open ex-

change of information on space systems." After the breakup of the Soviet

Union in 1991, Russian space officials were more forthcoming. They con-
firmed that collision is also a candidate for the cause of the Cosmos 1275

breakup.

Darren McKnight, "'Determining the Cause of a Satellite Fragmentation: A

Case Study of the Cosmos 1275 Breakup," Space Safi'O' and Rescue 1980-1987.
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1981-1982

August 22

September 17

October 6

Univelt, Inc., San Diego, pp. 145-163: "A Position Paper on Orbital Debris

Compiled by An Ad Hoc Expert Group of the International Astronautical

Academy," Commiuee on Safety, Rescue, and Quality. August 27. 1992.

The Cosmos 434 satellite was launched into a 261-km-by- 194-km orbit at a
51.6-deg inclination on August 12, 1971. After an unusual series of maneu-

vers it was left in an 11,804-km-by-186-km orbit. The satellite reenters over

Australia on this date. To dispel fears that it might carry radioactive materi-
als, the Soviets announce that Cosmos 434 is a "lunar cabin." The Soviet

Union used the same term to describe the U.S. Apollo Lunar Module. The

announcement helps confirm long-held suspicions that Cosmos 434 was a

relic of the failed Soviet manned lunar program.

Dennis Newkirk, Almmtac q/Soriet Manned Space Flight, Gulf Publishing

Company. 1990, p. 105.

A piece of the NOAA 4 Delta second stage which exploded in August 1975

undergoes a secondary breakup, perhaps through collision. Another expla-

nation is that the piece was a small pressure vessel which exploded. It breaks

into six pieces too small to catalog.

John Gabbard, "'History of Satellite Breakups in Space," Orbital Debri,s

(NASA CP 2360), Donald J. Kessler and Shin-Yi Su. editors, 1985, pp. 30-39.

NASA signs a Memorandum of Agreement formalizing NORAD/ADCOM's

commitment to provide collision avoidance support for Shuttle missions.

The agreement was in effect informally before the STS-1 launch in April 1981.

Interview, David S. F. Pnrtree with Michael Collins and J. Steven Stich, August

31, 1993: interview, David S. F. Portree with Joseph P. Loflus, Jr., August 25,
1993.

1982 End of year satellites (objects in orbit) )End of year launches reaching Earth orbit or beyond (since 1957) 2389
5593

36

During the year

January

April

INASAN begins photometric observations of selected Earth-orbiting objects.

Lydia Rykhlova, "'Optical Observations in the Geostationary Orbits: Data

Reduction" (not dated), Loftus Orbital Debris Files.

Jeanne Lee Crews establishes the Orbital Debris Impact Laboratory at JSC. Its

first project is to study the hypervelocity impact characteristics of composite
materials.

Memorandum, Eric Christiansen to David S. F. Portree, "Historical Data on the

NASA JSC Hype_'elocity Impact Test Facility IHIT-F)," July 2, 1993: Jeanne

Lee Crews and Eric Christiansen, ""The NASA JSC Hypervelocity hnpacl Test

Facility (HIT-F),'" A1AA 92-1640. presented at the A1AA Spacc Programs and

Technologies confcrcncc, March 24-27, 1992.

McDonnell-Douglas Space Systems Company publishes MDC-HO047, Investi-

gation of Delta Second Stage On-Orbit Explosions. The company's investigative
team concludes that Delta second stage explosions are caused when residual

hypergolic propellants mix accidentally. Delta upper stages have a single



1982

propellant tank divided by a bulkhead which separates the fuel from the

oxidizer (fig. 5). Those in high-inclination, sun-synchronous orbits are

especially prone to breakup because they undergo periods of prolonged solar

heating, which can overpressurize the propellant tank and eventually rupture

the separating bulkhead. Deltas in other orbits explode because the second

stage undergoes thermal stresses as it passes in and out of sunlight many

times each day. These stresses can crack the bulkhead. The policy of restart-

ing Delta second stages after payload separation to vent oxidizer was estab-

lished informally in August 1981, when the cause of the explosions was first

understood. It is formalized by NASA this year. In 1985 Joseph Loftus briefs

the National Space Development Agency of Japan (NASDA) on the Delta

problem. NASDA subsequently adopts similar venting policies for its Delta-

derived H-1 rockets.

Nicholas L. Johnson and Darren McKnight, Artificial &race Debris, revised

edition, Orbit Books, 1991.

April 19 The Soviet Union launches the Salyut 7 space station, a near-twin of the

Salyut 6 station it replaces. It features improvements to its cosmonaut living

facilities, strengthened docking rings, and more efficient solar arrays. In

addition, Salyut 7 has transparent plastic covers mounted over several of its

portholes to protect them from meteoroids and orbital debris. Of the crews

living on Salyut 7, Soyuz T-10B cosmonauts Leonid Kizim, Vladimir

Solovyev, and Oleg Atkov spend the most time aloft - a world-record 237

days.

Dennis Newkirk. The Ahna,ac of Soviet Manned Space Flight, Gull" Press

Company, 199(I, pp. 228-23(1, 255.

June 18 The Soviet Union launches Cosmos 1379 against the Cosmos 1375 target

satellite. Intercept occurs at an altitude of 1005 km after two orbits, but

Cosmos 1379 fails to explode. The test is part of a 7-hour strategic exercise
which also includes six missile launches. It simulates a Soviet nuclear assault

on the U.S. and western Europe. After this test, the Soviets impose a morato

rium on ASAT tests and urge the U.S. to do the same. U.S. Secretary of

Defense Frank Carlucci told the U.S. Congress in 1989 that the Soviet ASAT

system was maintained in "a constant state of readiness" in spite of the
moratorium.

Nicholas L. Johnson. The Soviet Year in Space 1988, Teledyne Brown

Engineering, 1989, p. 84: Nicholas L. Johnson, The Soviet Year in Space 1990,

Teledyne Brown Engineering, 1991, p. 96: Douglas Hart, The Eno'clopedia of

Soviet Spucecraft, Exeter Books. 1987, p. 5(I-51.

July 2 On mission STS-4 Space Shuttle orbiter Columbia passes within l0 km of the

Soviet upper stage which placed the Intercosmos 14 science satellite into

orbit. At the time of the conjunction, Columbia is in a 28.5-deg orbit at 324

km, a record altitude for the Shuttle program. The Intercosmos 14 upper

stage reached a 1707-km-by-345-km orbit at a 74-deg inclination on Decem-

ber 11. 1975. Within a few months of the conjunction with Columbia the

upper stage reenters Earth's atmosphere.

Letter, Nicholas L. Johnson to Joseph P. Loftus, Jr., August 17. 1993:

Jane's Spaceflight Directory 1988-89. Reginald Turnill. editor. Jane's

Inlk_rmalion Group, p. 163: Interavia Space Directory 1992-93. Andrew

Wilson, editor, p. 169.
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Figure 5.

In this cutaway of the second stage of the Delta launch vehicle, the stippled area is a wall dividing

the common propellant tank into oxidizer and fuel sections. The oxidizer and fuel are hypergolic -

that is, they ignite on contact. A rupture in the separating wall, possibly caused by corrosion or

thermal stresses (repeated expansion and contraction), permits them to mix and ignite, producing

an explosion which destroys the stage. Stages left in sun-synchronous orbits seem to be particularly

prone to rupture. This may be related to the solar heating pattern they experience, which is differ-

ent from that experienced by spacecraft at other orbital inclinations. Often hundreds of catalogued

pieces result. Chinese Long March 4 upper stages and Soviet/Russian Block DM upper stage

ullage motors are of similar design and use hypergolics. They have also undergone on-orbit explo-
sions. Ariane upper stages also have a common propellant tank divided by a wall, but do not use

hypergolics. They are thought to break apart because of overpressurization of the propellant tank,
possibly through solar heating. Venting the oxidizer remaining in the stage after it reaches its

intended orbit can prevent inadvertent explosions.



July 27-29

1982

JSC conducts the first major conference dedicated to the orbital debris prob-

lem. More than 100 participants representing NASA Jet Propulsion Labora-

tory UPL), GSFC, MSFC, and JSC, the Department of Defense (DoD), Battelle

Institute, Lockheed Sunnyvale, ESA, the National Science Foundation,
NORAD, Comsat, the Max Planck Institut in West Germany, and more than

40 other organizations present 37 papers on definition of the debris environ-

ment, spacecraft shielding requirements, and space object management

(including disposal methods and policy considerations). The workshop
recommends that

The LEO debris environment should be better defined, and sensors should

be orbited to gather data in LEO and GEO. One significant result of the

conference is, however, a shift in emphasis away from using expensive

flight experiments for data gathering, to using less expensive, usually

existing, ground-based sensors.

• The costs and effectiveness of orbital debris control methods should be

analyzed in detail.

New operational procedures should include reducing the number of

unplanned explosions; using reentry trajectories for planned explosions:

using "anti-litter design and operational habits:" and using solar and lunar

perturbations to reenter GEO objects.

The workshop showed its participants "for the first time that there was a

community of interest" in the orbital debris problem.

Interview, David S. F. Portree with Andrew E. Potter, May 14, 1993: Donald J.

Kessler, "Summary of Workshop Activities," Orbital Debris (NASA CP 2360),

Donald J. Kessler and Shin-Yi Su, edilors. 1985.

Interlude: Orbital Debris and Popular Culture

Space exploration excites much public interest and enthusiasm. It is thus not surprising that orbital

debris, like many other space issues, has established itself in popular culture.

Non-technical popular science articles inhabit the marches between technical articles and popular
culture entertainment. For the orbital debris researcher they are important public education ven-
ues. In 1978 space writer Leonard David published in Future magazine the article "Space Junk: It's

Time to Invent Orbital Baggies," a non-technical piece inspired by the Kessler and Cour_Palais
technical article in the Journal of Geophysical Research. It was the first popular piece to describe the

large uncatalogued debris population. In 1980 Burton Cour-Palais, Donald Kessler, NORAD
Civilian Analyst Preston Landry, and Reuben Taylor, a JSC engineer planning on-orbit satellite

servicing, collaborated to produce "Collision Avoidance in Space" for IEEE Spectrum. In 1982
Kessler published "Junk in Space" in Natural History magazine. Jim Shefter, writing for Popular
Science, approached NORAD for an interview in 1981. Resistance from some then in authority at

NORAD (justified later on the grounds that Popular Science is not a refereed technical publication)
was overruled by the NORAD public affairs office. Shefter's July 1982 article, "The Growing Peril

of Space Debris," won an important science writing award. It put the orbital debris problem on the
cover of the widely-circulated Popular Science magazine, helping to raise public awareness. This is,
of course, not a complete list of popular audience orbital debris publications - hundreds have been

published.

Among the earliest references to the orbital debris problem in popular culture entertainment is a
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1982

Donald Duck comic book published in 1963. The "lost-in-space Professor Hermit" fires rocket trash

cans into space so he will not litter his planet. Donald Duck and his nephews crash on his planet

after their spacecraft collides with one of the professor's garbage rockets. The message is that

scientists should not fire garbage into space without understanding the consequences. Much later

(1990), Pogo explored the world of orbital debris. "Alien robocoppers" arrive and see humanity's

spacejunk orbiting the Earth. Owl announces to Churchy the turtle that he plans to build a "space

junk junk" from materials gathered at ajunkyard and collect orbital debris for disposal in the Sun.

Unfortunately, Owl's Icarus II spaceship explodes. The orbital debris problem is left unsolved.

Science fiction literature is a natural venue for orbital debris speculation. In Homegoing (1989),

award-winning author/editor Frederik Pohl postulated a future Earth surrounded by "garbage
belts" of 90,000 trackable debris pieces. A character trained as an astronaut describes the final

attempt to orbit a spaceship with a crew. The craft was destroyed by debris strikes, and her col-

leagues killed. Previous generations "shot us out of space forever!" she exclaims. Pohl writes that

"the thing that keeps the human race trapped on the surface of the Earth is its own previous activi-

ties in space. Just as has happened often before in human history, the human race has been de-

feated by its own success."

Television has also touched on the orbital debris issue. In the short-lived late 1970s television series

Salvage 1, Andy Griffith starred as lone entrepreneur who saw potential profit in salvaging disused

space hardware. Orbital debris has not yet been a major source of inspiration for feature films.

However, at least one orbital debris researcher's office is graced by a quote from Star Trek V: The

Final Frontier. A Klingon warship appears near the drifting Pioneer 10 space probe (launched in

1972) and blasts it to pieces. On the bridge, the warship's captain, bored from a prolonged interstel-

lar peace, declares that, "shooting space garbage is no test of a warrior's mettle."

Jim Shefter, "The Growing Peril of Space Debris," Popular Science, July 1982,
pp. 48-51: Donald J. Kessler, "Junk in Space," Natural Histo£v, Vol. 91, No. 3,
March 1992, pp. 12-18: Walt Disney's DonaM Duck Beyond the Moon, Gold
Key, April 1963: "Pogo,'" Los Angeles Times Syndicate, March 6-11, April 16-
28, 1990: Leonard David, "Space Junk: It's Time to Invent Orbital Baggies,'"
Future. November 1978, pp. 68-69: interview. David S. F. Portree with Joseph
P. Loftus, Jr.. August 25, 1993: inter_,iew, David S. F. Portree with Donald J.
Kessler, June 1. 1993: Frederik Pohl, Homegoing, Ballantine, 1989: note,
Donald J. Kessler to David S. F. Portree September 14, 1993.

October The Massachusetts Institute of Technology Lincoln Laboratory (MIT-LL) uses

its Experimental Telescope System (ETS) outside Socorro, New Mexico, to

record the second-stage burn of a two-stage, solid-fueled Inertial Upper Stage
(IUS) in GEO. The ETS is the prototype for the DoD's Ground-based Electro-

Optical Space Surveillance (GEODSS) network. The IUS second-stage burn

circularizes and changes the plane of the orbit. The plume of aluminum

oxide particles, hundreds of kilometers across, is bright with reflected sun-

light. The JSC orbital debris team requests that MIT-LL record an IUS burn

scheduled for early 1983 to permit additional study of aluminum oxide

particle dispersion.

Donald J. Kessler, "'A Partial History of Orbilal Debris: A Personal View (Part
2).'" Orbital Debris Monitor, Vol. 6, No. 4, October 1, 1993.

November The JSC Orbital Debris Impact Laboratory conducts its first hypervelocity

impact test. It uses a 1.78-ram two-stage light-gas gun built inhouse using

plans provided by Donald Humes at LaRC.

Memorandum, Eric Christiansen to David S. F. Portree, "'Historical Data on the

NASA JSC Hypervelocity Impact Test Facility (HIT-F),'" July 2, 1993:
"Hypervelocity Impact Test Facility" brochure, 1991.



EndofyearlaunchesreachingEarthorbitorbeyond(since1957) 2516
1983 End of year satellites (objects in orbit) 5780

During the year

During the year

February7

April 5

Burton Cour-Palais and Donald Kessler discuss orbital debris with space

station planners at JSC and MSFC. Cour-Palais works closely with MSFC,

which is designing habitation modules. He asks Kessler to develop an orbital

debris reference environment for a space station.

Donald J. Kessler, "A Partial History of Orbital Debris: A Personal View (Part
2)," Orbital Debri,_ Monitor, Vol. 6, No. 4, October 1, 1993.

The joint U.S.-Dutch-British Infrared Astronomy Satellite (IRAS) images most

of the sky in infrared wavelengths, providing data for revolutionary discov-
eries about our universe. IRAS also detects orbital debris. Data showing

debris are discarded as noise. Donald Kessler and Andrew Potter obtain a

sample of the noise data and analyze it for signs of orbital debris. Analysis

proves to be much more difficult than expected and is abandoned. Analysis

of discarded data in the early 1990s by IRAS Space Research Groningen, in

the Netherlands, shows that many known orbital debris objects above 3000

km were detected. Two transtages in near-geosynchronous orbits and a

geodetic satellite 6000 km high are positively identified in the data. No

objects could be detected below" the satellite's 900-km orbital altitude or

above 300,000 km.

P. R. Wesselius, "Mid-term Review of IRAS Results on Orbital Debris," March
I. 1991: note, Andrew E. Potter lo David S. F. Portree, August 2, 1993.

The Cosmos 1402 RORSAT was launched on August 30, 1982. Normally

three pieces are produced when a RORSAT completes its mission. Two

pieces remain in LEO and decay quickly, while the third, the nuclear reactor

with an attached rocket, boosts to an 800-900-km storage orbit with an esti-

mated lifetime of 300-1000 years. Only two pieces were produced when

Cosmos 1402 made ready to send its reactor to storage orbit on December 28,

1982, signifying a separation malfunction which fouled the reactor boost

engine. On January 8 the Soviets confirm that Cosmos 1402 carries nuclear

fuel. They eject the fuel elements from the reactor vessel. This procedure

helps ensure that the fuel elements will burn up during reentry and not strike

the ground. On this date the fuel elements reenter over the South Atlantic.

No increase in atmospheric radioactivity is detected in the area. The Soviet

news agency TASS implies that the satellite performed normally and states

that "extraction of the fuel core.., from the reactor guaranteed its complete

incineration." RORSAT launches resume in 1984.

Nicholas L. Johnson, The Soviet Year in Space 1983, Teledyne Brown
Engineering, 1984, pp. 31-32: hm'ravia Space Directo13'/992-93. Andrew E.
Wilson, editor, pp. 191- 192.

Space Shuttle Challenger, on its maiden flight (STS-6), deploys the second

IUS and the first Tracking and Data Relay Satellite (TDRS). The TDRS series

comprises large GEO satellites {17.4 m wide fully deployed) essential to

NASA's plans for the Space Shuttle and major LEO facilities, such as the

Hubble Space Telescope. Overall cost of the TDRS system was nearly $3

billion by 1985. The IUS first stage performs flawlessly. The MIT-LL ETS
41



1983

June 18-24

July 27

August

October 18-19

records for JSC the second stage burn, which is designed to place TDRS-1 in

GEO. Cerro Tololo Inter-American Observatory in Chile also observes the

burn. The second stage motor fails, tumbling the satellite and injecting it into

a useless orbit (later it is stabilized and maneuvered to a useful GEO posi-
tion). Joseph Loftus arranges briefings at which NASA, DoD, and contractor

officials view the recordings of the normal (October 1982) and failed burns.

The size and intensity of the plumes make obvious the huge number of

aluminum oxide particles produced in solid rocket motor burns.

Donald J. Kessler, "'A Partial History' of Orbital Debris: A Personal View (Part

Two).'" Orbital Debris Monitor, Vol. 6, No. 4, Oclober 1, 1993: interview,

David S. F. Portree with Joseph P. Loftus, Jr., August 25, 1993.

On mission STS-7, Space Shuttle Challenger collides at 5 km/second with a

titanium-rich paint chip 0.2 mm across, producing a window pit 4 mm in

diameter. The crew notes the pit while still in space, and reports it to the

Mission Control Center (MCC) in Houston. Replacing the damaged window
costs over $50,000.

Space Program Space Debris: A Potential Threat to Space Station atul Shuttle,

GAO, April 1990.

While working aboard the Salyut 7 space station, cosmonauts Alexander

Alexandrov and Vladimir Lyakhov have their routine experimental program

interrupted by a loud noise. They evacuate to their Soyuz T-9 spaceship,

which is docked at the station's rear port. After they return to the station's

work compartment, they discover an impact pit 3 mm in diameter in one of

the viewports. It is not possible to confirm that this was formed by an orbital

debris impact. The Soviets suggest the pit was caused by a meteoroid from

the Delta Aquarid shower.

David S. F. Ponree, "Soyuz T-8. T-9, and T-IOA," Magill's Survey of Science:

Space E_ploration Series, 1988, pp. 1538.

Centre National d'Etudes Spatiales (CNES) "reorbits" the French-German

Symphonie GEO satellite, raising its orbital altitude to 80 km beyond GEO.

The U.S. Air Force Scientific Advisory Board (SAB) Ad Hoc Committee on

Potential Threat to U.S. Satellites by Space Debris meets at the Pentagon in

Washington, D.C. In 1984 the SAB publishes a report on the meeting. It
states that the smallest object detectable by NORAD radars at 500 km is 4 cm

in diameter. At GEO altitude no objects smaller than about 1 m are detect-

able. The report also comments on the national and international orbital

debris policy environments. It maintains that because the "U.S. space com-

munity is fragmented from an overall management perspective.., broad

common policies are difficult to implement. Hence, our immediate concern

[regarding developing orbital debris policies] should be domestic." It states
that the main reason for the lack of coordinated effort on orbital debris on the

U.S. national level is a lack of high-level direction. It says the national situa-

tion is "a microcosm of the international situation." The SAB report calls for
negotiations with the Soviets to set treaty limits on ASAT tests. It recom-
mends that
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1983-1984

• NASA and the U.S. Air Force refine their orbital debris environment

model by December 1984.

• Interaction between NASA and the ESA be used as a way of fostering

international cooperation on orbital debris.

• Spacecraft and launch vehicle manufacturers "undertake prudent mea-

sures to reduce future space debris by using techniques such as tethering

loose mechanisms, venting sgent propellant tanks, and other steps which

•.. do not cause significant hardship or cost impact to their designs•"

The report's recommendations conclude with a call for reappraisal of the

orbital debris problem after the recommended measures are implemented,

"perhaps in the January-March 1984 time frame."

Report of the U.S. Air Force Scientific Adviso 0' Board Ad Hoc Committee on

Potential Threat to U.S. Satellites Posed by Space Debris. December 1983

(draft copy).

During EVA outside Salyut 7, cosmonaut Alexander Alexandrov is repri-

manded by ground controllers for releasing pieces of trash to watch them

drift away. They fear that reflections from the glittering bits of junk will

confuse Salyut 7's orientation sensors.

David S. F. Ponree, "Soyuz T-8. T-9. and T-I O-A,'" Magill's Sum' O' of Science:

Space E_ploration Series, 1988, pp. 1539.

984
End of year launches reaching Earth orbit or beyond (since 1957) 2645
End of year satellites (objects in orbit) 5921 )

During the year

During the year

January

ESA moves GEOS 2 to a higher orbit, freeing its slot in GEO for future use.

K. Heftman, "Overview of European Activities on Orbital Debris." Orbital

Debris: Technical Issues and Future Directions (NASA CP 100771, Andrew' E.

Potter. editor, September 1992, pp. 1-7.

The 1984 Commercial Space Launch Act goes through Congress. Section 7

empowers the Secretary of Transportation to license U.S. launches. Section

6(b) (2) gives the DOT Iimited jurisdiction over foreign payloads Iaunched by

U.S. corporations, and over U.S. payloads not subject to regulation by the

Federal Communications Commission (FCC) or NOAA, so that they do not

"jeopardize the public health and safety, safety of property, or any national

security interest or foreign policy interest of the United States." These sec-

tions are later seen as broad enough to mandate DOT regulation of the

creation of some types of orbital debris.

Orbital Debris Mitigation Techniques: Technical. Ecommffc. and Legal

Aspects, AIAA Special Project Report SP-(II6-1992.

In his State of the Union address, President Ronald Reagan calls for NASA to

build a space station within a decade.
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1984

late January-

early February

April 6-13

May

The MIT-LL uses the ETS to record on videotape orbital debris environment

data for NASA. The space agency signed a contract with MIT-LL in late 1983.

The ETS is used in staring mode - that is, its telescopes point always toward

one place in the sky. Orbiting debris pieces pass through the fields of view of

the telescopes. After processing and analysis at JSC, the videotapes show

that about 4 fragments per hour were detected. The number expected, based

on the NORAD catalog, was only 1.3 fragments per hour. During 2 hours of

exceptional sky clarity, the ETS detects 8 objects per hour. Later ETS data,

combined with ground-based infrared telescope data and data on debris

albedo collected by Karl Henize in 1987-1990, makes clear that the initial ETS

tests detected pieces not much smaller than 10 cm. The tests show correctly

that there is an uncatalogued debris population potentially more important

to spacecraft operations than the catalogued population. They also make

clear that the optical orbital debris environment is not adequately under-

stood, leading to the JSC-USSPACECOM GEODSS agreement implemented
in 1988.

L. G. Taft, D. E. Beatty, A. J. Yakutis, and P. M. S. Randall, "'Low Altitude,
One Centimeter Space DebrisSearchat LincolnLaboratory's (M.I.T.)
Experimental Test System," Advances in Space Re,_earch,Vol. 5, 1985,pp. 35-
45: DonaldJ. Kessler, "A PartialHistory of Orbital Debris: A PersonalView
tPart 2)." OrbitalDebris Monitor. Vol. 6, No. 4, October 1, 1993.

NASA launches the LDEF inside the cargo bay of Space Shuttle Challenger

on the STS 41-C mission. Challenger deploys it into a 480-km-by-474-km

orbit at 28.5-deg inclination. After its cargo bay is cleared of the 11-ton, bus-

sized LDEF, Challenger retrieves the Solar Max satellite. Astronauts James

van Hoften and George Nelson perform the first on-orbit satellite repairs in

the Shuttle cargo bay. About 1.5 m z of thermal blankets and 1 m 2 of louvers

from Solar Max are removed and returned to Earth. JSC acquires "every

louver with a hole in it." The louvers are excellent debris capture cells,

though of course they were not built with that in mind. They are hollow and

resemble Whipple Bumpers. The outer surface broke up particles, and the
inner surface captured them in molten aluminum. The JSC orbital debris

team analyzes the captured particles in the facility which studied the Apollo

lunar samples. The Space Science Branch at JSC earlier suggested that a

Shuttle might retrieve a disused satellite for analysis, but retrieval of the
Solar Max material reduces the need for an old satellite. The idea surfaces

again in 1988-89, when NASA and the Strategic Defense Initiative Organiza-

tion (SDIO) become interested in studying the effects on hardware of long

exposure to space conditions. Both organizations plan to build space facili-
ties with lifetimes of decades.

Interview, David S. F. Portree with Andrew E. Potter, May 14. 1993: interview.
David S. F. Portree with Donald J. Kessler, June 1, 1993.

The PARCS radar observes debris produced by the December 20, 1983,

breakup of Cosmos 1405, spotting more than 130 fragments. Conventional

NORAD tracking had catalogued only 33.

Nicholas L. Johnson, "History and Conseqt,encesof On-Orbit Breakups,"
Advances in Space Research, Vol. 5, 1985, pp. 1I-19.
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June25-
July 7

July

1984-1985

The orbital debris workshop at the COSPAR (Committee For Space Research)

XXV meeting in Graz, Austria, is the first international workshop dedicated

entirely to orbital debris. About 20 researchers from the U.S., Britain, ESA.

Czechoslovakia, and West Germany present papers.

Space Debris, Aswroids, and Satellite Orbits, Donald J. Kessler, et ul, edilors,

Pergamon Press, 1985: inle_'iew. Davkl S. F. Portrec with Donald J. Kessler.

June 7, 1993.

JSC 20001, entitled "Orbital Debris Environment for Space Station," is pub-

lished. NASA uses this orbital debris reference environment model for space

station design until 1991.

1985
End of year launches reaching Earth orbit or beyond (since 1957) 2766
End of year satellites (objects in orbit) 6665 )

February

April 4

May 23

Early this month Soviet ground controllers lose radio contact with the 20-ton

Salyut 7 space station. It had been functioning normally with no crew
aboard.

The Governor of the State of Idaho, John V. Evans, signs a proclamation

making July 16, 1985, through July 24, 1986, U.S. Space Observation Year, and

July 16, 1985, Space Exploration Day. The proclamation states, in part, "we in

Idaho encourage those involved in the [space] Program... to consider Idaho

a place where the problems associated with space debris can be addressed."

Idaho's interest in space is attributed in the proclamation to its serving as a

training area for astronauts and a supplier of metals used in aerospace hard-
ware.

Proclamation, Office of lhe Governor, State of Idaho, Boise, April 4, 1985.

George Kovolos, University of Thessaloniki, Greece, logs the last in a series of

seven photographs of the young moon at 17:41:50 UT (Universal Time). One

photo captures a flash of light near the lunar terminator. Kovolos interprets

it as an energetic event on or near the lunar surface - possibly a meteoroid

impact, a volcanic eruption, or some kind of ionization phenomenon. In

1989, JSC's Paul Maley and Richard Rast independently discover that the

derelict U.S. military weather satellite DMSP F3 passed 0.25 deg east of the

flash location about 80 seconds before Kovolos logged his last photograph.

After John Seiradakis supplies better data on Kovolos' location at the time he

photographed the flash, Rast and Maley independently determine that DMSP

F3 passed just 2-3 arc minute from the flash location at 17:40:04 UT. Photom-

etry data supplied by USSPACECOM and MIT-LL confirm that sunlight

reflects unpredictably off the satellite's surfaces. Several times in the 1980s

astronomers mistook sunlight glinting off satellites for new astronomical

phenomena. According to Maley, the potential for harm to the science of

astronomy is not known, because very little research into satellite optical

phenomena has been conducted.

"Lunar Flash Revisited," Sky & Telescope, June 1990, p. 590; interview, David

S. F. Portree with Paul D. Maley, May 14, 1993.
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1985

June 6

July 29-

August 6

September 13

The Soviets launch the Soyuz T-13 rescue mission to prevent Salyut 7 from

undergoing an uncontrolled reentry. They also want to keep the station
available to Soviet cosmonauts until after the overdue launch of its successor.

Cosmonauts Vladimir Dzhanibekov and Viktor Savinykh perform a perilous

manual docking with the slowly tumbling station. They stabilize it, orient its

solar arrays toward the Sun, and recharge its batteries. Salyut 7's own orbit-

boosting engines were crippled by a line rupture in 1983, so an automated

Progress freighter serves as a tugboat to raise Salyut 7's orbit. It also delivers

replacement parts for repairs. On October 2, 1985 Cosmos 1686 docks with

Salyut 7. The 18-ton spacecraft can serve as a greenhouse, space tug, or

laboratory, the Soviets say.

Phillip Clark, The Soviet Maimed ,fpctce Program, Salamander Books. Ltd.,

1988, pp. 142-145.

On the STS 51-F mission, the Space Shuttle Challenger carries Spacelab 2, a

suite of astronomy instruments. On mission day two, astronaut Karl Henize

notices a small red object keeping station with the Shuttle about 3 m above

the payload bay. The object is apparently a bit of debris left in the payload

bay during prelaunch preparations. A few hours later the object drifts off to

become a short-lived, uncatalogued member of the population of 1-cm

debris. A few months later Henize, who worked with Fred Whipple on

satellite tracking from 1956 to 1959, left the astronaut corps to join the JSC
orbital debris team.

Interview. David S. F. Portree with Karl Henize. June 8. 1993.

A U.S. Air Force F-15 fighter plane launches a small kinetic-energy intercep-

tor at the Solwind (P-78) gamma ray solar physics satellite. USSPACECOM

catalogs 285 trackable pieces of debris from this Strategic Defense Initiative

(SDI) ASAT test, of which 8 remained in orbit on January 1, 1998.
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The Solwind ASAT Test (1985)

Members of the JSC orbital debris team learned of U.S. Air Force plans for the Solwind ASAT test in

July 1985. Shin-Yi Su, with Lockheed at JSC, modeled the effects of the test. He determined that

debris produced would still be in orbit in the 1990s. It would force NASA to enhance debris shield-

ing for its planned LEO space station.

Earlier the U.S. Air Force and NASA had worked together to develop a Scout-launched target

vehicle for ASAT experiments. NASA advised the U.S. Air Force on how to conduct the ASAT test

to avoid producing long-lived debris. However. congressional restrictions on ASAT tests inter-

vened. In order to get in an ASAT test before an expected Congressional ban took effect (as it did in

October 1985), the Secretary of Defense, Caspar Weinberger, determined to use the existing Solwind

astrophysics satellite as a target. Andrew Potter, John Stanley, and Donald Kessler worked with the

Department of Defense (DoD) to monitor the test's effects.

After Solwind broke up, the JSC team took two orbital debris telescopes and a reentry radar to

Alaska. It was the only U.S. territory from which Solwind pieces were observable. Potter took

JSC's Lenzar orbital debris telescope aloft in a Learjet and flew from Anchorage toward Nome.

Stanley set up a smaller telescope at Circle Hot Springs on the banks of the Yukon River, and a

reentry radar on the North Slope, near Barter Island.



1985

The JSC team assumed torn metal would be bright. Surprisingly, the Solwind pieces turned out to

appear so dark as to be almost undetectable. Only two pieces were seen. Kessler remembered how

fragments produced by firing a hypervelocity pellet at a scaled-down satellite in a laboratory were

dark with what appeared to be soot. The tests were conducted at the U.S. Air Force Arnold Engi-

neering Development Center (AEDC). Potter theorized that the unexpected Solwind darkening was
due to carbonization of organic compounds in the target satellite: that is, when the kinetic energy of

the projectile became heat energy on impact, the plastics inside Solwind vaporized and condensed

on the metal pieces as soot. JSC's Faith Vilas used U.S. Air Force infrared telescopes to show that

the pieces were warm with heat absorbed from the Sun. This added weight to the contention that

they were dark with soot and not reflective. The pieces decayed quickly from orbit, implying a

large area-to-mass ratio.

The Solwind test had three important results. It raised the possibility that the objects optical sys-

tems were detecting were large and dark, not small and bright as was generally assumed. This had

implications for the calibration of optical and radar orbital debris detection systems. The test also
created a baseline event for researchers seeking a characteristic signature of a hypervelocity colli-

sion in space. In addition, NASA protests raised DoD awareness of the orbital debris problem. This

contributed to more responsible conduct of DoD debris-producing activities, and prepared the way

for DoD orbital debris policies.

In the end, the Solwind ASAT test had few consequences for the planned U.S. space station. For

economic and political reasons unrelated to orbital debris, station completion was pushed beyond

the mid-1990s. More important was the record-high level of solar activity during the 1989-1991

solar maximum. This heated and expanded the atmosphere more than anticipated in 1985, acceler-

ating Solwind debris decay.

Interview,David S. F. Portree with JohnStanley, June21. 1993:interview,
David S. F. Portree with Donald J. Kessler, May 11, 1993: Donald J. Kessler,
"'A Partial Historyof Orbital Debris: A Personal View {Part 21,"Orbital Debris
Monitor, Vol. 6, No. 4. October 1, 1993:lnteraYia Space DirectolT 1992-93,
Andrew Wilson, edilor, p. 19g: inlerview, DavidS. F. Portree wilh Joseph P.
Loflus, Jr., August 25, 1993.

October 25 The Soviet Union places the first Luch/SDRN spacecraft in GEO at 95 deg

east. Each Luch weighs 2.2 tons and measures 16 m wide. The Luch/SDRN

satellites are roughly equivalent to those of the NASA TDRS series. Using

three transponders, they relay communications and telemetry from orbiting

Mir and Soyuz TM spacecraft to ground stations.

November The International Astronomical Union (IAU) holds its 19th General Assembly

in New Delhi, India. The IAU unanimously adopts a resolution which notes

"with grave concern the.., contamination of space that adversely affects

astronomical observations from the ground and from space." The resolution

"maintains that no group has the right to change the Earth's environment...

without full international study and agreement" and "urges that all national

representatives bring this concern to the notice of adhering organizations and

space agencies in their countries."
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During the year The Structures Working Group at NASA Headquarters develops Space
Station Freedom (SSF) program design requirements for orbital debris. The

group consults engineers at MSFC, who are designing the habitation mod-
ules, and takes into account the 1984 NASA orbital debris model.

January 28 On mission STS 51-L the Space Shuttle Challenger explodes, killing its crew

of seven and grounding the U.S. Space Shuttle fleet for nearly 3 years.

The Space Shuttle and Orbital Debris

The Challenger accident highlighted the dangers of space travel and led to reexamination of

NASA's space safety policies, including its policies on orbital debris. Shuttle planners first consid-
ered the implications of orbital debris for the Space Shuttle before STS-1 flew in April 1981.
NORAD agreed to provide the Mission Operations Directorate (MOD) at JSC with data on Shuttle

conjunctions with space objects. MOD deferred creating a Flight Rule on orbital debris avoidance,

however, in favor of making flight directors responsible for deciding orbital debris avoidance
actions on a case-by-case basis.

After the Challenger accident, MOD developed Shuttle Flight Rule 4-61, which stated that an

avoidance maneuver would be called for "if a predicted miss distance is less than 2 km radially
[below or above the of the orbiter's trackl, 5 km downtrack [ahead or behindJ, and 2 km out-of-

plane [to either side] and if the maneuver does not compromise either primary payload or mission
objectives.'" This 2-km-by-5-km-by-2-km area around the orbiter is called the maneuver box, or
collision avoidance box.

Implementation of Flight Rule 4-61 begins when the MCC Flight Dynamics Officer (FDO) provides
orbiter trajectory data to USSPACECOM. This is done several times each day during a mission and

before and after each orbiter burn. USSPACECOM then runs a Computation of Misses Between
Orbits (COMBO) analysis program using the data supplied by the FDO. Within 1 hour of the FDO

sending data to USSPACECOM, the COMBO analysis results reach the MCC. Objects within a 5-

km radial, 25-km downtrack, and 5-km out-of-plane alert box are flagged. USSPACECOM contin-

ues tracking any risk objects to refine the accuracy of the estimate of their locations. Updates are
sent to the MCC so the FDO can model the conjunction. If the conjunction falls inside the alert box
a maneuver is not called for, but if it falls "inside of the 2-kin radial, S-kin downtrack, 2-km out-of-

plane maneuver box, a maneuver will be considered per the flight rule."

MOD determined that because the chance of collision is small, "compromising either primary
payload or mission objectives cannot be justified. However, if there are no perturbations to...

mission objectives, it is best to maneuver for any conjunction with a greater than 1 in 100,000 chance
of collision." Flight Rule 4-61 goes on to state that "an acceptable risk of 1 in 100,000 is based on...

the level of risk taken by other space shuttle elements. The [2 km-by-5-km-by-2 km[ ellipsoid
stated in the rule guarantees this risk."

Prior to STS-26 in September 1988, it was predicted that an avoidance maneuver would be called for

once in every 10 Shuttle flights. This estimate has proven reliable - for example, twice in the 31

Shuttle flights after the Challenger accident (STS-26 through STS-57) objects intruded on the 2-km-
by-5-km-by-2-km maneuver box. MCC conducted three avoidance maneuvers and modified

operations slightly once to avoid debris. Only one of the maneuvers was prompted by an intrusion
into the maneuver box. No avoidance maneuver was carried out for the other maneuver box
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intrusion, as per the portion of Flight Rule 4-61 permitting the rule to be waived if collision avoid-

ance impinges on mission objectives.

Flight Rule 4-3, "Orbit Conjunctions and Conflicts," also relates to orbital debris. It states, in part,
that if COMBO analysis "predicts an on-orbit conjunction within 5 km in the radial and out-of-

plane directions and 15 km in the downtrack direction during the first 4 hours of a nominal mis-
sion, launch will be held until the next even minute to assure clearance."

"'NASA Johnson Space Center Flight Rules," Flight Rule 4-3, 1/20/89, p. 4-3

and Flight Rule 4-61, 4/16/92, p. 4-40: interview, David S. F. Portree with

Michael F. Collins, Chief, Trajectory Operations Branch, Flight Design

Dynamics Division, JSC MOD, and J. Steven Stich, Rendezvous Flight

Dynamics Officer, Trajectory Operations Branch, Flight Design Dynamics

Division. JSC MOD, August 17, 1993: J. Steven Stich, "STS Collision

Avoidance Procedures" (presentation materials), January 17, 1992, p. 8.

February 20 The Soviet Union launches the Mir space station base block. The Kvant

astrophysics module is added to its rear port in April 1987. The Kvant-2
module arrives at Mir in December 1989. The Kristall module is placed

opposite Kvant-2 in June 1990, creating a T-shaped space station complex
with a mass of about 80 tons. In early 1993 Mir was about 30 m wide across

its solar arrays. It revolves about Earth in a 51.6-deg orbit 300-400 km high.
Mir is almost always inhabited by two or three cosmonauts. Visiting Shuttle

crews have swelled its population to ten.

May 12-13 The U.S. Air Force SAB begins work on a report on the implications of orbital

debris for future U.S. Air Force space activities.

June Karl Henize and Faith Vilas take JSC's Lenzar telescope to Oregon to observe

Solwind debris. They detect fewer than 10 pieces.

Interview, David S. F. Portree with Karl Henize. June 8, 1993.

June 30-July 12 At the COSPAR XXVI conference in Toulouse, France, JSC researchers

present a paper in which they state that at least 30 percent of the material

captured from space by a Solar Max thermal blanket comprises micrometeor-
ites. The majority of the particles found are, however, orbital debris - mostly

paint chips and aluminum particles.

Franz J. M. Rietmeijer, et al, "The Main Electronics Box Themml Blanket of

the Solar Maximum Mission Satellite as an Inadvertent Capture Cell for Orbital

Debris and Micrometeorites." abstract in Scientific and Technical Papers

Presented or Published by ,ISC Authors in 1980 (NASA TM 1(X)457), July

1987, p. 113.

August Harlan Smith, Director of the University of Texas McDonald Observatory,

proposes "the ultimate ground-based optical detector of space debris." It
consists of two 8-m f/4.3 Cassegrain telescopes 100 m apart. Computers to

analyze the mountain of data collected by the telescopes would cost $12
million. Theoretically, the system could detect objects as small as 1 ram. It is

ultimately killed by its cost, which is estimated at $100 million.

Thornton L. Page, Andrew E. Potter, and Donald J. Kessler, "The History of

Orbital Debris," 1990 (unpublished draft paper).
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August

September 5

October 9

Researchers at the Space Telescope Science Institute publish a study of the

probability that satellites, including orbital debris, will collide with the

Hubble Space Telescope (HST). They conclude that a 5-ram object will strike

HST once in 17 years. A strike on the 40 percent of HST comprising solar

arrays will cause little damage. A strike elsewhere could destroy the mission

or pass unnoticed, depending on the criticality of the component struck. The

researchers note that HST's Fine Guidance Sensors had to be designed so

they would not track on satellites and lose guide star lock. They warn that

light trails from satellites will appear in many of the images from HST and

future orbiting instruments.

Michael Shara and Mark D. Johnston, "Artificial Earth Satelliles Crossing the
Fields of View of, and Colliding With, Orbiting Space Telescopes," Publica-
titres _'the Astronomical Socie O' _'the Pacific, Vol. 98, August 1986, pp. 814-
820.

SDIO conducts the Delta 180 test in orbit over Kwajalein Atoll in the Pacific.

An SDI satellite carrying an explosive is placed on a collision course with an

instrumented Delta second stage. They collide at 10,450 kin/hour, and both

vehicles are completely destroyed. Although several hundred pieces are

observed by ground radar, only 18 debris pieces are eventually catalogued.

The test is conducted at an altitude of 192 km to ensure rapid reentry of its

products. Half of the pieces reenter within an hour - most of the remainder

follow within a few days. One of the reasons Delta 180 is significant is that it

is the first U.S. debris-producing test in which orbital debris is taken into

account. Lt. Gen. James Abrahamson, head of the SDIO, was NASA Associ-

ate Administrator for Space Flight when the TDRS-1 IUS failed in 1983. He

was present at the briefings Joseph Loftus arranged at JSC at which tapes of

the first two IUS second stage burns were shown. In 1984 Abrahamson
became Director of the SDIO, where he heard NASA's concerns about the

1985 Solwind ASAT test. Abrahamson directed that the Delta 180 test be

conducted so as not to add to the amount of debris in orbit. Before the test

the Delta 180 experiment design team consulted with Donald Kessler on

orbital debris lifetimes. After the test Kessler joins Andrew Potter and Eu-

gene Stansbery, a radar expert at JSC, in a measurement campaign coordi-

nated by John Stanley. The campaign uses the Air Force Maui Optical Site

(AMOS), GEODSS, and other sensors. Nicholas Johnson, Advisory Scientist

at Teledyne Brown Engineering, testified in 1988 to the House of Representa

tives Subcommittee on Space Science and Applications that the test was "an

excellent example of responsible planning of a debris-generating experiment

in space."

lnteravia Space Directory 1992-93, Andrew Wilson, editor, p. 220: interview,
David S. F. Portree with John Stanley, June 21, 1993: Orbital Space Debris,
Hearing before the Subcommittee on Space Science and Applications, Commit-
tee on ScieHce, Space. and Teclmology, House _'Representatives, July 13,
1988, p. 81: note, Andrew E. Potter to David S. F. Portree, July 24, 1993,

Thomas W. Inman of MSFC publishes a paper titled "Analysis of Orbital

Debris Collision Probabilities for Space Station." He applies to SSF the

probabilistic approach to assessing potential orbital debris collision hazards

used by James McCarter in 1971-72. Inman starts with a catalogued popula-

tion of 6409 objects in August 1986. He assumes a 7.5 percent average annual

growth rate for the catalogued population. He states that the catalogued
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November 14

November 18
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debris population will number 16,311 by the year 2000 and 48,262 by 2015.

Inman updates McCarter's approach by assuming a large population of

uncatalogued objects smaller than 4 cm, but larger than 1 ram. Based on

models by Donald Kessler, Vladimir Chobotov, and others, Inman assumes
that the uncatalogued population is five times the size of the catalogued -

32,045 objects in 1986. Again using a 7.5 percent annual growth rate, this
yields an uncatalogued population of 81,555 in 2000 and 241,310 in 2015. The

space station selected for analysis is a large dual-keel design with four habit-

able modules. A collision occurs when an object intrudes on the 85-m radius

sphere enclosing the station. The collision probability is also computed for a

19-m radius sphere enclosing the four modules. The station is assumed to be

in a 28.5-deg inclination orbit 250-500 km high. Inman finds that for the 85-m

sphere the probability of a collision with a catalogued object is already

significant in 1986 - about 0.3 at an altitude of 500 kin. Uncatalogued objects

naturally increase the collision probability. The hazard to the habitable

modules is not significant, but "if present growth rates of orbital debris

continue, this can be expected to change," Inman states. He concludes by

calling for NASA to give high priority to hypervelocity impact testing.

Thomas Inman, "Analysis of Orbital Debris Collision Probabilities for Space

Station," Oclober 9, 1986.

On February 22, 1986, an ESA Ariane 1 launch vehicle carried the French

SPOT 1 commercial remote sensing satellite and Swedish Viking astrophysics

satellite into orbit. This was the 16th flight (V16) of an Ariane rocket. Its

third stage was left in a 835-km-by-829-km orbit at a 98.7-deg inclination

(sun-synchronous). On this date the third stage explodes over east Africa,

producing a debris cloud immediately detected by the U.S. FPS-79 radar in

Pirinclik, Turkey.

Nicholas L, Johnson, "'Preliminary Analysis of the Fragmentation of the Spot 1

Ariane Third Stage," Orbital Debris,fiom Upper-Stage Breakup, Joseph P.

Loftus, Jr., editor. 1989, pp. 41-106: interview, David S. F. Portree with Donald
J. Kessler, June 1, 1993.

The Ariane V16 third stage debris cloud passes over the U.S. for the first time

8 hours after breakup. It passes through the coverage of the FPS-85 missile

early warning radar at Eglin Air Force Base in Florida. The FPS-85 detects 44

debris pieces. They orbit at 550-1300-km altitude and have orbital periods of

98-107 minutes. Within hours Nicholas Johnson informs Donald Kessler of

the breakup. He passes word to Joseph Loftus, who informs NASA Head

quarters. At a meeting already scheduled for this date, NASA Administrator
James Fletcher informs ESA Director-General Reimar LOst of the Ariane

breakup.

Ibid.

Ninety-three trackable pieces are associated with the Ariane V 16 breakup.

Ibid.

Catalogued pieces associated with the Ariane V16 breakup number 274 by
this date.

IbM.
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During the year

During the year

January 5-16

February 4

mid-February

Darren McKnight, U.S. Air Force Academy, and Nicholas Johnson, Teledyne

Brown Engineering, publish Artificial Space Debris, the first book devoted to

orbital debris. A revised and updated edition is published in 1991.

Gamma ray astronomy instruments carried by the Japanese Ginga (Astro-3)

satellite, Solar Max, and instrumented balloons adrift in Earth's upper atmo-

sphere suffer from interference from anomalous gamma ray sources. In 1988
it is revealed that Soviet RORSAT reactors are the sources of the interference.

During its 9 years in orbit, Solar Max suffers interference from 18 RORSAT

reactors.

lnteravia Space Directol?' 1992-93, Andrew Wilson, editor, p. II 7.

Andrew Potter, Karl Henize, and Jerry Winkler use JSC's Lenzar telescope to

study the albedo of Ariane V16 debris swarm at the U.S. Naval Observatory's

Black Birch facility on the South Island of New Zealand. They look at debris

from the Landsat 1 and 3 Delta second stages and Cosmos 1275 satellite for

comparison. Faith Vilas and John Stanley use infrared sensors in Hawaii.

They find that the Ariane pieces are brighter than average, and that there are

significant albedo differences between debris swarms. There is no readily

apparent correlation between probable breakup cause and swarm albedo. In

general, most debris pieces are very dark, with an average reflectivity of

about 0.1 (much darker than the widely-accepted value of 0.5).

lbid: interview. David S. F. Portree with Karl Henize, June 8. 1993: Karl G.

Henize, et al. "Optical Properties of Orbital Debris" (AIAA 93-1062), pre-
sented at lhe 31st Aerospace Sciences Meeting & Exhibit, Reno, Nevada,
January 11-14, 1993.

The DoD issues its first official orbital debris policy. It states that the "DoD

will seek to minimize the impact of space debris on its military operations.

Design and operations of DoD space tests, experiments and systems will

strive to minimize or reduce accumulation of space debris consistent with

mission requirements." DoD Assistant Deputy Under Secretary for Policy

Philip Kunsberg told the House Subcommittee on Space Science and Applica-

tions in 1988 that "the DoD space policy.., broke new ground by expressly

addressing space debris as a factor in planning military space operations."

He continued, saying "this does not mean we will curtail or avoid space

activities that are necessary for our national security."

Orbital Space Debri,s. Hearing b_?ne the Subcommittee on Space Science and
Applications, Committee on Science. Space. and Technology. Hou,_eof
R_7_resentativcs, July 13, 1988, p. 24.

Four hundred and sixty-five trackable debris pieces are associated with the

November 13, 1986, Ariane V16 breakup. They form a 30-deg-wide ring

around the Earth inclined 98.7 deg to the equator, and range in altitude from

500-1400 km. The ring expands in width at 10 deg per month. By this time it

was abundantly clear that the Ariane V16 breakup was the worst known

orbital debris-producing event in history. Robert Culp, Director of the
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Colorado Center for Astrophysics Research, estimated the explosion pro-

duced "over 500 trackable debris pieces.., and an estimated 5000 pieces of

debris capable of destroying a spacecraft." In testimony to the U.S. House

Subcommittee on Space Science and Applications in 1988, Nicholas Johnson,

Advisory Scientist at Teledyne Brown Engineering, estimated that this single

explosion increased the debris population by 7 percent.

Ibid: Nicholas L, Johnson. "'Preliminary Analysis of the Fragmentation of the

Spot 1 Ariane Third Stage." Orbital Debrisfi'om Uplwr-Stage Breaktq_. Joseph

P. Loftus, Jr., editor, pp. 41-106.

The last trackable piece produced by the September 1986 Delta 180 experi-

ment decays from orbit.

ESA organizes its Space Debris Working Group. Dietrich Rex, Director of the

InstitOt for Raumflugtechnik und Reaktortechnik (IfRR) of the Technische

Universit_it Braunschweig (TUBS), is made chair.

In the wake of the Ariane V16 breakup, JSC holds the Upper Stage Breakup

Conference. NASA shares with ESA the operational procedures it developed

after it realized the hazard posed by unvented Delta second stages. NASA

and ESA begin holding regular orbital debris coordination meetings.

James Fletcher tells the NASA Headquarters Office of Space Flight (OSF) to

develop a strategy for dealing with orbital debris.

Karl Henize conducts the first of six annual 2-week orbital debris observing

sessions at the Rattlesnake Mountain Observatory of Battelle Pacific North-

west Laboratories. One purpose of the sessions is to determine a mean

albedo of orbital debris objects, which can be used to determine the sizes of

uncatalogued objects detected by the GEODSS telescopes.

Interview, David S. F. Portree with Karl Henize, June 8, 1993: note. Andrew E.

Potter to David S. F. Portree, August 3, 1993.

Darrell Branscombe, NASA Headquarters Shuttle Program Office, briefs

James Fletcher on a proposal to establish a coordinated NASA orbital debris

program. Donald Kessler and Andrew Potter laid groundwork by briefing

NASA Headquarters senior staff. A central issue is the need for a ground

radar which can sample the 1-cm debris environment. Fletcher agrees to the

orbital debris program proposal. He directs Robert Aller, Associate Adminis-

trator for Tracking and Data Acquisition, to have radar experts at JPL study

the cost and feasibility of the radar. It becomes known as the Debris Environ-
ment Characterization Radar (DECR).

Intep,'iew, David S. F. Portree with John Stanley, June 21. 1993: interview,
David S. F. Portree with Donald J. Kessler, June 7. 1993: note. Andrew E.

Potter to David S. F. Portrec, July 24, 1993.

Israel becomes the eighth country to launch its own satellite. The Offeq-I

satellite is placed into a 1150-km-by-250-km orbit at a 142.9-deg inclination

(retrograde). It decays from orbit on January 14, 1989.
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October 22

December

Joseph Loftus and Andrew Potter meet ESA representatives in Rolleboise,

France, to exchange information on orbital debris activities. This is the first

in what become regular semi-annual ESA-NASA orbital debris coordination

meetings. They are held alternately in the U.S. and Europe. The Rolleboise

meeting is held concurrently with a meeting of the AIAA Space Transporta-
tion Technical Committee, of which Loftus is chair.

The U.S. Air Force SAB releases Current and Potential Technology to Protect Air

Force Space Missions from Current and Future Debris, the first important report
on orbital debris from a military perspective. It is a follow-up of the 1983

study. According to the report, renewed attention to the orbital debris issue

is required because of SDI ASAT testing, SSF, and the projected large increase

in the number, weight, and type of spacecraft to be deployed as part of SDI.

In its conclusions, the report states that debris is already an important design

consideration for large, long-duration space vehicles, tt adds that future
traffic models range from constrained, which would double the mass in orbit

below 2000-kin altitude (estimated at 2 million kg in 1987), to the SDI traffic

model, which would multiply the mass by 15 times. The report contends that

debris management will require international cooperation and agreements,

but recommends that the U.S. proceed unilaterally until these agreements can
be put in place. The report also recommends that

The U.S. Air Force, NASA, and the Department of Commerce should join

forces to establish specifications and design practices to minimize produc-
tion of orbital debris.

The U.S. should take the lead in establishing an international commission

on orbital debris to encourage cooperation and exchange of data on the

debris environment, and to implement agreed-upon specifications and
design practices for future space systems. The U.S. should also foster

international cooperation in dealing with hazardous events and in provid-
ing satellite collision warnings.

• The U.S. should establish guidelines for ASAT and other space weapons

systems to minimize production of long-lived orbital debris.

Operational U.S. space tracking systems should be alerted to debris-

producing events, and should be tasked to provide special monitoring and
services when debris-producing events occur.

• New concepts and technology should be developed by 2000 to protect U.S.
Air Force space assets from debris.

As a general recommendation, the report calls for more attention to the

debris problem from all organizations which operate in space.

Report on Orbital Debris. U.S.Air Force Scientific Advisory Board,December
1987: Ross T. McNutl,OrbitingSpace Debris: Dangers. Measuremem. and
Mitigation, Phillips Laboralory.Directorate of Geophysics. Air Force Systems
Command. HanscomAFB. June 1, 1992.
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1987-1988

JPL proposes building the QUICKSAT orbital debris research satellite. It

would operate in sun-synchronous orbit 500 kin above Earth's terminator.

The satellite would image debris in stereo using two telescopic cameras. It

would keep the Sun behind it so debris pieces would be imaged fully lit.

Debris particles as small as 1 mm would be visible up to at least 6 km away.
The name QUICKSAT comes from the need to ready the spacecraft for a late

1989 launch, to take advantage of a surplus U.S. Air Force Atlas E rocket.

QUICKSAT is not approved, in part because it would cost $100 million, plus

$5 million annually for operations.

Thorn/on L. Page, Andrew E. Pouer, and Donald J. Kessler. "'Tile Hislory of

Orbilal Debris." 1990 (unpublished draft paper): interview, David S. F. Portree

with Donakl J. Kessler, June 7, 1993.

3095 )1988
End of year launches reaching Earth orbit or beyond (since 1957)

End of year satellites (objects in orbit) 7245*

*The decline since 1987 was caused by

record-high levels of solar activity during the 1988-1991 solar

maximum period.

During the year

During the year

February 11

Donald Kessler works with Jeff Anderson of MSFC to update the 1984 orbital

debris model. The update takes into account new data from Solar Max

analyses and telescopic measurements which indicate that debris is darker,

and thus larger, than in the 1984 model. It depicts a debris environment

approximately eight times more severe than that described in 1984.

John Stanley and his colleagues begin implementing an agreement with the

U.S. Air Force for optical monitoring of orbital debris using the GEODSS

telescopes on Diego Garcia and Maui. The GEODSS sites collect data in

vertical staring mode before dawn and after dusk each clear day at the two

sites through 1991, then at the Diego Garcia site alone.

Interview, David S. F. Porlree with John Stanley, June 21, 1993.

The orbital debris issue reaches the White House. President Reagan issues

the National Directive on Space Policy, which contains the first U.S. national

policy statement on orbital debris. The policy uses much the same language

as the February 4, 1987, DoD orbital debris policy. It states that "All space
sectors will seek to minimize the creation of space debris. Design and opera-

tions of space tests, experiments and systems will strive to minimize or
reduce accumulation of space debris consistent with mission requirements..

" At the insistence of the Office of Management and Budget, it adds the

caveat "...and cost effectiveness." In its implementation instructions, the

Directive calls for the National Security Council to establish the Interagency

Group (IG) (Space) to draw together many Federal agencies for consideration
of orbital debris issues. The 1989 final revision adds the statement, "The

United States government will encourage other spacefaring nations to adopt

policies and procedures aimed at debris minimization." E. Lee Triton, III,
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February 24

March

April 1

May

May

Chair of the Orbital Debris Committee at NASA Headquarters, inserted this

reference to the orbital debris problem into the President's Space Policy
Directive.

Nicholas L. Johnson and Darren McKnight. ArtiJk'ial Space Debris, revised
edition. Orbit Books. 1991: interview. David S. F. Portree with Andrew E.
Potter, May 14, 1993: interview, David S. F. Portree with E. Lee Tiltom III,
August 23, 1993.

The orbital debris team at JSC details the requirements for the DECR radar

system, which will "collect statistical data on orbital debris down to a size of

1 cm or smaller diameter at an altitude of 500 kin." DECR would be the first

radar specifically designed for orbital debris research. It would draw on

lessons learned during a decade of debris detection using tracking radars.

DECR would not track (using a "non-tracking radar simplifies the design and

resources requirements," the document states), and would have "a narrow

radiation pattern, which would, ideally, be directed vertically... [and] would

be stationary and let debris particles pass through the beam." The document

contains reports from JSC, Lockheed, Battelle, and Teledyne Brown Engineer-

ing dated from May 1987 through January 1988.

"'Debris Environment Characterization Radar Design Studies" (JSC 22827 ),
February 24. 1988.

The U.S. Air Force cancels its program to develop kinetic-energy interceptor

ASATs launched by F-15 fighter planes in the face of on-going Congressional

opposition to ASAT testing. In the course of testing, four ASATs were

launched against points in space, one with only partial success. The third

test, in 1985, destroyed the Solwind satellite. The last test occurred in Octo-

ber 1986.

The first issue of The Orbital Debris Monitor is published. The quarterly

publication is the first dedicated to orbital debris. Its editor is Darren

McKnight.

This month a particle blasts a crater in the outer pane of a two-pane Mir base

block viewport. The crater is surrounded by cracks up to 3 mm long. The

damage area is 6-8 mm across. The Soviets assume the impactor was a piece
of orbital debris.

Imeravia Space Directory 1992-1993, Andrew Wilson, editor, p. 183: Nicholas
L. Johnson, The Soviet Year in Space 1990. Teledyne Brown Engineering,
1991.

The Office of Commercial Space Transportation (OCST) of the DOT publishes

Hazard Analysis of Commercial Space Transportation, a three-volume report

prepared by the Transportation Systems Center in Cambridge, Massachu-

setts. Chapter 6 of Volume 2 deals with orbital debris hazards. The OCST

issues the report because the Commercial Space Launch Act of 1984 calls for

it to "promulgate and enforce appropriate safety criteria and regulatory

requirements for licensing the commercial space industry."

Hazard Analysis of Space Transportation, OCST. DOT, May 1988.
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June 30-July 2

July 13
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TASS announces that radio contact has been lost with the Cosmos 1900

RORSAT. In 1989 the Soviets reveal that contact was lost on April 9. On

April 13 Cosmos 1900 ignored a command to boost its reactor to a higher

storage orbit.

Nicholas L. Johnson, The SoYiet Year in Space 1988, Teledyne Bnw_'n

Engineering, 1989. pp. 72-77.

The Environmental Aspects of Activities in Outer Space Workshop is held in

Cologne, West Germany. It is an interdisciplinary meeting on orbital debris
and related issues attended by lawyers, scientists, and engineers.

JPL uses the 300-m Arecibo radio telescope in Puerto Rico to test the concept

of statistically monitoring orbital debris with a radar in a vertical staring

mode. Andrew Potter suggested the test to Robert Aller. The test is designed

to provide data to support development and construction of the DECR. It

provides data consistent with Kessler's estimates of the population of l-cm

debris. Fifteen 1-cm pieces per day pass through the 2-arc-rain main beam -

Kessler predicted 13 pieces. However, the beam pattern is not well under-

stood, reducing the utility of the experiment.

Thornton L. Page, Andrew E. Potter, and Donald J. Kessler, "The Histo_' of

Orbital Debris," 1990 (unpublished draft paper): interview, David S. F. Portrec

wilh Donald J. Kessler, May 17, 1993: note, Andrew E. Potter to David S. F.

Porlree, July 24, 1993.

The Subcommittee on Space Science and Applications of the U.S. House of

Representatives Committee on Science, Space, and Technology holds a

hearing on the orbital debris problem.

The 1988 Congressional Hearing on Orbital Debris

Before 1988, interest in orbital debris outside the DoD and NASA was intermittent. After President

Reagan mentioned the problem in his National Directive on Space Policy, however, many Federal

agencies developed sustained interest in orbital debris.

The Subcommittee on Space Science and Applications hearing of July 13, 1988, provides a good

overview of the state of orbital debris awareness at the time. It also gives insights into the orbital

debris concerns of different parts of the U.S. government. The Subcommittee heard testimony from

Joseph B. Mahon, Deputy Associate Administrator for Flight Systems in the NASA OSF: Philip

Kunsberg, Assistant Deputy Under Secretary for Policy, DoD: Michael A. Michaud, Director of the

Office of Advanced Technology, Department of State; S. Neil Elosenball, former NASA General

Counsel and former NASA delegate to the U.N. COPUOS: and Nicholas Johnson, author of books

and articles on the orbital debris problem and Advisory Scientist for Teledyne Brown Engineering.

Mahon summarized NASA's three-thrust debris strategy. The technical thrust, he said, involved

developing mathematical models and maintaining a database to characterize the orbital debris

environment. The measurements thrust involved developing a special orbital debris radar (the JPL

DECR) to detect objects in the 1-10-cm range in time for the SSF Critical Design Review (CDR) in

mid-1991. According to Mahon, "a firm requirement to protect the station against a future orbital

debris hazard has been documented." The policy thrust involved "devising management options

for orbital debris prevention, protection, and possible elimination." "NASA has already taken

concrete steps to reduce the amount of debris in space.., the most significant has been the NASA
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requirement in force since 1982 which established the procedure for Delta upper stages of venting

the unspent propellants and gases to prevent an explosion of the Delta upper stage," Mahon added.

He also cited establishment of the NASA-ESA Working Group, which developed from joint NASA-

ESA efforts to apply NASA's experience with Delta breakups to Ariane.

Philip Kunsberg reported that PARCS radar tests indicated a debris population 7-35 percent larger

than that catalogued. He stated that study of returned surfaces from the Solar Maximum Mission

satellite indicated the possibility of billions of small debris particles, each about 0.1 mm in size, in

LEO. Kunsberg echoed the February 4, 1987, DoD orbital debris policy when he declared that,

"while we cannot solve the problem of space debris without the cooperation of other nations, the

United States, in the meantime, should address the problem as a nation, both to protect our space-

craft and ameliorate the problem as much as possible."

Michael A. Michaud stated that Soviet Foreign Minister Edvard Schevardnadze had said in May

1988 that space "pollution" needed to be prevented. He declared that the State Department saw

"space debris as an inherently international issue. Orbital debris does not observe national bound-

aries.., we are all in this together. Sooner or later we need to consult with others." S. Neil

Hosenball also described international orbital debris policy. He stated that two international

treaties are relevant to the orbital debris problem - the 1967 Treaty on Principles Governing the

Activities of States in the Exploration and Use of Outer Space (the Outer Space Treaty), and the 1972

Convention on International Liability for Damage Caused by Space Objects (the Liability Conven-

tion). (For detailed descriptions, see Laws for Orbital Debris: The U.N. Space Treaties of 1967 and 1972,

page 15).

Nicholas Johnson then provided an overview of the orbital debris technical issues. He reported

that only 5 percent of the artificial objects in space are operational spacecraft. In the year prior to

his testimony, he stated, seven Soviet spacecraft had undergone high-intensity explosions. Johnson

also stated that less than 20 percent of the human-made objects in space were catalogued.

Orbital Space Debri.s, Hearing Before the Subcommittee on Space Science am/
Applications. Contmittee oH Science. Space. atul Technology, U.S. Hou_e _/
Representatives, July 13, 1988.

September 29-
October 3 Discovery deploys a TDRS during STS-26, the first Shuttle mission since the

loss of Challenger in January 1986. USSPACECOM detects an orbital debris

object in the Shuttle's 5 km-by-25-km-by-5-km alert box. It does not enter the

2 km-by-5-km-by-2-km maneuver box, so the MCC takes no action.

J. Steven Slich. "STS Collision Avoidance Procedures" (presentation materi-

als), January 17, 1992, p. 10.

September 30 The Cosmos 1900 RORSAT continued its uncontrolled decay over the sum-

mer. In mid-September the Soviet Union gave the International Atomic

Energy Agency of the U.N. a complete inventory of the reactor's contents in

anticipation of a large-scale release of radioactive material. On this date

Cosmos 1900 unexpectedly depletes its attitude control propellant. An

automatic safety system activates which blasts the reactor, with its 31 kg of

enriched uranium fuel, to a 763-km-by-695-km storage orbit. The main body

of the satellite reenters over the Indian Ocean the next day. TASS announces

that the Soviet Union will continue to launch RORSATs. As of July 1, 1993,
however, no new RORSATs had been launched.

Nicholas L. Johnson, Tire Soviet Year in Space 1990, Teledyne Brown

Engineering, 1988, p. 77.



November

November

December 2-6

1988-1989

The ESA Space Debris Working Group publishes the report Space Debris. In

his preface, Professor Reimar LOst, Director General of ESA, states that the

report aims to increase public awareness of the threat to the near-Earth

environment posed by orbital debris. He also says that by our failure "to
take preventative measures, future generations will inherit an ominous

legacy." Dietrich Rex told the University of Chicago Preservation of Near-

Earth Space for Future Generations symposium that "by the European report

it became clear that Europe heavily depended on U.S. knowledge and data in

the space debris field and that increased European activities should be
initiated." The Space Debris Working Group was succeeded by the ESA
Space Debris Advisory Group and the Space Debris Coordination and Tech-

nical Analysis Group after it released this report.

Space Debris: A RtT)ort.[)'om the ESA Space Debri.s Working Group. European

Space Agency, 1988: Dietrich Rex, "The Current and Future Space Debris

Environment as Assessed in Europe," presented at the Preservatinn of Near-

Earth Space for Future Generations symposium, University of Chicago, June
24-26, 1992.

Gautam Badhwar, with other JSC researchers, develops a method for deter-

mining the probable cause of breakups using data on orbital plane change

angles and the radar cross sections of pieces produced. Application of this
method to breakups of uncertain cause reveals that several breakups thought

to have been caused by exploding propellants could have been caused by
collisions.

Gaulam Badhwar, et al, "Chan_cleristics of Salellite Breakups from Radar

Cross Section and Phme Change Angle," Joumml of Spacecraft and Rockets.

Vol. 25, 1988. pp. 42(I-426.

STS-27 is a DoD Shuttle mission. Four orbital debris objects enter the 5-km-

by-25-km-by-S-km alert box, and one enters the 2-km-by-5-km-by-2-km

maneuver box. As permitted in Flight Rule 4-61, the MCC waives the ma-

neuver requirement, because maneuvering would impact mission objectives.

J. Sleven Stich, "STS Collision Avoidance Procedures" (presentation inaleri-

als). January 17, 1992, p. 10.

1989
End of year launches reaching Earth orbit or beyond (since 1957) 3196
End of year satellites (objects in orbit) 6726* )

During the year

*The decline since 1988 was caused by

record-high levels of solar activity during the 1988-1991 solar

nlaximum period.

The ESA Council approves the Resolution on the Agency's Policy vis-a-vis

the Space Debris Issue, based on the findings and recommendations of the

ESA Space Debris Working Group.

K. Heftman, "Overview of European Activities on Orbital Debris," Orbital
Debris: Technical Issues and Future Directions (NASA CP 10077 ). Andrew E.

Potter, editor, September 1992, pp. 1-7.
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January At JSC Gautam Badhwar and Phillip Anz-Meador develop a means of calcu-

lating the mass of a debris object based on its radar cross section and the

changes in its orbital elements caused by atmospheric drag. They find that

the mass distribution differs according to the type of breakup, providing a

new clue to determining breakup causes.

Gautam Badhwar and Phillip Anz-Meador, "'Determiqation of Area and Mass
Distribution of Orbital Debris Fragments," Earth. Moon, atul Platters, Vol. 45,
1989, pp. 29-51.

February The IG (Space) publishes Report on Orbital Debris, the first report on the

orbital debris problem to draw on broad-based input from U.S. Federal

agencies. It calls for joint NASA-DoD orbital debris studies, and mandates

international cooperation on orbital debris.

Report on Orbital Debris, IG (Space), February 1989.

February The U.S. National Security Council endorses the IG (Space) report.

Ibid.

The Interagency Group (Space) Report, International Cooperation on Orbital Debris,

and the Changing World of Spaceflight

According to Donald Kessler, the IG (Space) report was extremely significant, though not for its

technical content. "It said what we [members of the orbital debris community] had been saying all
along," he stated. The report also put on record the orbital debris views of a number of different

Federal agencies. Loftus called it "the culmination of consciousness-raising activities in the U.S.

government." It constituted a U.S. government consensus position on the orbital debris problem.

More important in the long-term, however, the IG (Space) report was, according to Kessler, "a

charter for us to educate the international community.., if it had not been for this report, we would

not have had a clear charter to do that." In effect, the U.S. government got its policy house in order,

clearing the way to foster orbital debris policies and awareness beyond U.S. borders. Members of

the JSC orbital debris team and NASA Headquarters officials visited Japan, the Soviet Union,

Europe, and China. They shared reports on their discussions with other agencies of the U.S. gov-
ernment.

Only a few month after the IG (Space) report was published, revolution swept the Soviet Union's

satellite states in eastern and central Europe. The border between East and West Germany was

erased and the once-outlawed Solidarity movement took charge in Poland. The Cold War ended on

January 1, 1992, when the tricolor flag of Russia replaced the red flag of the Soviet Union over the

Moscow Kremlin. The first day of 1992, the International Space Year, saw the creation of more than

a dozen new nations in eastern Europe and central Asia, as the unitary Soviet state officially ceased
to exist.

Such sweeping political changes could not help but have profound implications for human space

activities. Some argued that large space projects had no place in the post-Cold War world. They

advocated diverting the resources of large space projects, such as SSF, SDI, Buran, the Space Explo-

ration Initiative, and Hermes, to non-space activities. Others argued that the Cold War's end was

an opportunity for increased space cooperation. Paradoxically, cooperation often benefited when

spacefaring nations reduced the resources available for large space projects. Space programs

strapped for cash came together where they had complementary capabilities. For example, the

United States selected a modified version of the Russian Soyuz spacecraft to serve as a lifeboat for
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SSF. In August I993, Russia and the U.S. agreed to combine the SSF and Mir 2 space station pro-

grams. European and Japanese concerns about U.S. commitment to SSF gave them impetus to

explore new relationships with Russia and with each other.

The common threat to human space activities from orbital debris was also a catalyst for interna-

tional space cooperation. Countries exchanged knowledge and experience. They took the next step

in cooperation when they began developing joint projects to study orbital debris. The United States

led the way in instigating many of the cooperative orbital debris efforts, thereby helping to raise the

priority assigned to orbital debris in other countries. Discussions on orbital debris became increas-

ingly high-level and multilateral.

Report on Orbital Debris, IG {Space), February 1989: interview, David S. F.

Portree with Donald J. Kessler, June 7, 1993.

March 12-18 The STS-29 Space Shuttle mission deploys a TDRS. During postflight inspec-

tion of the Space Shuttle Discovery, a hole 1 cm wide and 10 cm long is found

in a Thermal Protection System tile. The hole does not resemble those com-

monly caused during launch and landing. Sampling reveals the presence of

silver, an element not commonly used in the Shuttle orbiter, external tank, or

solid rocket boosters. Confirmation that the damage was caused by orbital

debris remains difficult, however, because of the techniques used to examine

the hole. The impactor was probably smaller than 1 ram. No objects were

detected entering the 5-km-by-25-km-by-5-km alert box during the mission,

pointing up the limitations of ground-based tracking systems - at Shuttle

orbital altitude the smallest object detectable is approximately 10 cm across.

Only about 10 percent of the objects in orbit large enough to harm a Shuttle

orbiter can be detected using conventional tracking methods.

Space Program Space Debris: A Potential Threat to Space Station and Shuttle,

GAO, April 1990: J. Steven Stich, "'STS Collision Awfidance Maneuvers'"

(presentation materials), January 17, 1992, p. 10: interview, David S, F, Portree

with Michael F. Collins and J. Steven Stich, August 17, 1993.

April 4 The U.S. Congress Office of Technology Assessment (OTA) and the United

States Space Foundation (USSF) sponsor the Joint Workshop on Space Debris

and Its Policy Implications as part of the USSF's Fifth National Space Sympo-

sium. The workshop looks at technical, policy, and legal orbital debris issues.

Joseph Loftus states that much progress has been made since 1977, when

NASA became interested in orbital debris through Donald Kessler's work.
"Originally," he recounts, "it was very difficult to do any consciousness

raising. And it's natural to understand why... [s]pace is, by definition,

empty... [s]o it's difficult to get people to understand that there can be a

hazard." Loftus concludes by stating his concerns about GEO. He points out
that LEO has been the focus of most orbital debris research. However, GEO

growth rates are higher and objects in GEO remain aloft longer than objects

in LEO. Among other speakers is Howard Baker, an environmental law and

space activities specialist, who states that "on Earth, humanity's failure to

account for environmental protection in planning the development of living

and working communities has yielded both life-taking and life-threatening

situations. [P]roblems analogous to these can be avoided in the relatively
pristine environment of space."

Space: A New Era, proceedings of the Fifth National Space Symposium, Allison

Kinsley, chief editor, 1989.
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May Joseph Loftus, Andrew Potter, William Djinis, NASA Headquarters Orbital

Debris Program Manager, and Daniel Jacobs, NASA Headquarters Interna-

tional Relations Office, travel to Japan to discuss orbital debris with Japanese

space officials. Several preliminary agreements on future joint activities are
concluded.

NASA/NASDA Technical Interchange Meeting Minutes, January 15. 1991.

May 4-8 On STS-30 the Space Shuttle Atlantis carries the first new American planetary

probe in 11 years, the Magellan Venus radar mapper. Magellan and its IUS

are deployed into LEO and successfully launched onto an interplanetary

trajectory for a 16-month voyage to cloudy Venus. During the 4-day, 58-min

Shuttle mission three objects intrude on the 5-km-by-25-km-by-5-km alert

box, but none enter the 2-km-by-5-km-by-2-km maneuver box.

J. Steven Stich, "STS Collision Avoidance Procedures" (presentation materi-

als), January 17, 1992, p. 10.

June Karl Henize conducts the third of six 2-week orbital debris photometry

sessions at Rattlesnake Mountain Observatory in Washington State. He uses

the new JSC CCD Debris Telescope (CDT) to gather more data on the optical
characteristics of orbital debris.

Interview, David S. F. Portree with Karl Henize, June 8. 1993.

September 25 The OTA holds a workshop on orbital debris in Washington, D.C. In atten-

dance are representatives from NASA Headquarters, JSC, Teledyne Brown,

the U.S. Army, Stanford University, the DOT, the Department of State,

General Dynamics, and other organizations. The workshop is the primary

information source for the OTA background paper Orbiting Debris: A Space

Environmental Problem, published in September 1990.

Orbitiug Debris: A Space Environmental Problem, OTA, 1990.

September 29 NASA agrees to use USSPACECOM's existing Haystack radar and the

planned Haystack Auxiliary (HAX) radar for orbital debris measurements.

The agreement leads to cancellation of DECR. NASA accepts a

USSPACECOM proposal of August 15 (as modified and expanded Septem-

ber 1) because data from Haystack-HAX can be available sooner than DECR

data. This will permit it to support the planned 1991 SSF CDR. In addition,

Haystack-HAX would be less expensive than DECR.

Space Program Space Debris: A Pote,tial Threat to Space Station atut Shutth,,

GAO, April 1990: interview. David S. F. Portree with John Stanley, Jtme 21,

1993: letter, William Lenior, NASA Headquarters, to Vice Admiral Hemandez,

USSPACECOM, June 7, 1990, with enclosed Memorandum of Agrcement
between USSPACECOM and NASA for Orbital Debris Data Collection.

October 2 NASA and TUBS orbital debris researchers hold the first in a series of semi-

annual meetings on orbital debris environment modeling in Braunschweig.

October 18-23 Atlantis deploys the Galileo Jupiter orbiter and atmospheric probe atop an

IUS. During the Shuttle's nearly 5-day mission, one space object intrudes on

its 5-km-by-25-km-by-5-km alert box.
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J. Steven Stich, "STS Collision Avoidance Procedures" (presentation materi-

als), January 17, 1992, p. 10.

The West German government sponsors a meeting called Safety Aspects of

Nuclear Reactors in Space, in Cologne. Dietrich Rex predicts that Soviet

space nuclear reactors will undergo 2-3 on-orbit collisions in the next 300

years. Each will result in world-wide reentry of radioactive debris.

Note. Andrew E. Potter to David S. F. Portree, August 2, 1993.

STS-33 is a DoD mission. After the third night launch in Shuttle program

history, Discovery enters a 28.45-deg inclination orbit for 5 days. During that

time one object intrudes on its 5-km-by-25-km-by-5-km alert box. This is the

last time an object enters the alert box until STS-48 in September 1991.

J. Sleven Stich, "STS Collision Avoidance" (presentation materials), January

17, 1992, p. 10.

Donald Kessler, Joseph Loftus, Andrew Potter, William Djinis, and Daniel

Jacobs meet their counterparts at TsNIIMash, the Central Research Institute

for the Ministry of General Machine Building, in Moscow. In addition to

TsNIIMash, NPO Energia, the Ministry of Defense, the Foreign Ministry, and

GLAVCOSMOS send representatives. The Soviets take the NASA delegation

on a tour of Star City, where they examine a mockup of the Mir space station.

They also learn of Soviet cosmonauts' concerns about orbital debris impacts

on Soviet space stations (damage to exterior lights is mentioned). The Soviets
share data from spacecraft recovered after up to a year in LEO. They reveal

that their space station meteoroid shields are of Whipple design, with

bumpers 0.5 to 1 mm thick suspended 70 to 100 mm above their pressure

hulls. The Soviets say they plan to mitigate the debris hazard by safely

deorbiting all large spacecraft, expelling oxidizer from upper stages left in

orbit, and minimizing launch debris and multiple payload launches. The

U.S.-Soviet Orbital Debris Working Group is established.

Thornton L. Page, Andrew E. Polter, and Donald J. Kessler, "The History of

Orbital Debris," 1990 (unpublished draft paper): interview, David S. F. Ponree

with Donald J. Kessler, Juqe 7, 1993: Trip Report, Loflus Orbital Debris Files:

interview, David S. F. Portree with Joseph P. Loflus, Jr., August 25. 1993.

1990 End of year satellites (objects in orbit) )End of year launches reaching Earth orbit or beyond (since 1957) 3312
6830

January 9-20

January 22

February 13

On STS-32, Columbia recovers the LDEF from a nearly circular 331-km orbit.

The satellite was originally intended to spend only about a year in orbit, but

its 57 experiments were forced to remain in space for nearly 6 years after the

Challenger accident.

The GAO sends NASA a draft copy of its report, Space Program Space Debris:

Potential Threat to Space Station and Shuttle.

NASA responds to the GAO report. NASA Assistant Deputy Administrator

John E. O'Brien points out "misunderstandings" which he says lead the GAO
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March

March 14

March 19-22

April

April

April 16-19

to suggest NASA has been "derelict in its responsibility to protect mission

crews and valuable hardware from unnecessary risks arising as a result of

space debris." He states that the 1988 update of the orbital debris environ-

ment is not used in SSF design because it contains "the same large degree of

uncertainty" as the 1984 model. He reports that NASA is collecting more

data, citing the NASA-USSPACECOM Haystack-HAX radar agreement.

O'Brien states that the impact rates and probabilities used in the GAO report

are derived from the 1989 IG (Space) report, which, he says, is now out of

date, as national governments and international organizations have modified

their space operations to reduce the amount of orbital debris they create. He

points out that the probability of debris striking SSF has become smaller,

because the current SSF design measures only 2000 m 2. The design measured

5000 m e when the IG (Space) made its calculations. O'Brien's response is

printed as an appendix in the final version of the GAO report.

Space Program Space Debris: A Potential Threat to Space Station and Shuttle,

GAO, April 1990, Appendix 1, pp. 30-34.

The Soviet Union pledges to inform the U.N. before it launches any more
nuclear reactors into Earth orbit.

The third Intelsat 6 series satellite is launched atop a U.S. Titan 3. The cylin-

drical Intelsat 6 satellites are 3.63 m in diameter and 11.84 m high. They are

capable of carrying 45,000 two-way telephone conversations. A separation

system failure strands the satellite in LEO. It is placed in a 555-km storage
orbit. The satellite is initially declared a $265-million total loss. NASA and

the Intelsat organization commence planning a Space Shuttle mission to

recover the satellite. It was originally meant to be launched on the Space

Shuttle, so Shuttle-compatible handling equipment already exists. In addi-

tion, the enormous cost of the satellite makes practical a rescue attempt.

The Southwest Research Institute (SRI) in San Antonio, Texas, first presents
The Growing Challenge: A Short Course on Dealing with Orbital Debris. The
instructors for the course are Donald Kessler, Burton Cour-Palais, Charles E.

Anderson, Jr., and Randy Tullos. Anderson is an SRI expert in the

hypervelocity impact field, and Tullos is an expert on hypervelocity model-

ing. The course comprises 30 percent environment modeling, 30 percent

hypervelocity penetration mechanics, 20 percent design and validation

considerations, and 20 percent shielding design.

Brochure, "The Growing Challenge: A Short Course ou Dealing with Orbital

Debris." Southwest Research Institute.

The GAO publishes Space Program Space Debris: a Potential Threat to Space
Station and Shuttle.

TUBS and JSC representatives hold a meeting on orbital debris modeling in
Houston.

AIAA sponsors the AIAA/NASA/DoD Orbital Debris Conference in Balti-

more. Researchers from Europe and Japan participate, reflecting growing

international concern over orbital debris. This is the first major orbital debris
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June 25-July 6

1990

conference since 1982. Paper topics include orbital debris shielding for the

U.S., European, and Japanese SSF modules, modeling the debris environ-
ment, debris detection using optical telescopes, radars, and IRAS, and analy-

sis of returned spacecraft surfaces.

Orbital Debris: Technical Issues and Furore Directions (NASA CP 1(X)77),

Andrew E. Potter. editor, September 1992, p. i.

William Lenoir, NASA Associate Administrator for Space Flight, sends a

letter to Vice Admiral D. E. Hernandez, Deputy Commander in Chief of

USSPACECOM. He encloses a signed memorandum of agreement (MOA) on

Haystack-HAX. He opens his letter by declaring that the "timely collection

of orbital debris data to support the Space Station Freedom is of very high

priority." The MOA lists U.S. Air Force Space Command as
USSPACECOM's representative in the arrangement, and JSC as NASA's. The

agreement stipulates that NASA will pay $11.38 million for the HAX radar
and for modifications to Haystack. In exchange for paying for part of the

maintenance and operations of the Haystack radar, NASA will receive at

least 400 hours of Haystack data in fiscal year (FY) 1990 and 800 in FY 1991.
In FY 1992 NASA will receive 700 hours each from the Haystack and HAX

radars. From FY 1993 through FY 1997, NASA will receive 800 hours from
each radar• If NASA elects to use the planned Ground Based Radar-Experi-

mental (GBR-X) facility on Kwajalein Atoll, USSPACECOM will provide 700-

1200 hours of data per year for 5 years beginning when GBR-X is operational.
If NASA elects not to use the GBR-X, it will build an equatorial site radar,

and USSPACECOM will pay for operations and maintenance. Vice Admiral

Hernandez signs the MOA on June 12.

Letter, William Lcninr, NASA Headquarters, to Vice Admiral Hemandez,

USSPACECOM, June 7, 1990, with enclosed Memorandum of Agreement

between the USSPACECOM and NASA tot Orbital Debris Data Cnllection.

At the COSPAR XXVIII meeting in the Hague, Netherlands, Donald Kessler

presents "Collisional Cascading: The Limits of Population Growth in Low
Earth Orbit." According to Kessler, collisional cascading will occur

•.. in the long term... [when] a critical population density is reached,

[andl the rate of fragment production from random collisions exceeds

the rate of removal by atmospheric drag. Once this critical density is

reached, the debris population will increase without placing any more

objects into orbit. This increase will stop only when the population of

large objects is sufficiently reduced, either by active removal or by

fragmentation. However, by the time fragmentation reduces the

population of large objects, the resulting debris environment is likely
to be too hostile for future space use .... [T]he data that already exists

is sufficient to show that cascading collisions will control the future

debris environment with no or very minor increases in the current

low Earth orbit population. Two populations control this process -

explosion fragments and expended rocket bodies and payloads.
Practices are already changing to limit explosions in low Earth orbit.

It is now necessary to begin limiting the number of expended rocket

bodies and payloads in orbit.
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In his concluding remarks, he reports that some LEO regions are already
unstable. Assuming no increase in the LEO population, the rate of new

debris production will be slow - one breakup every 10-20 years, depending

on the size of the uncatalogued population - with half the breakups in the
unstable regions. Large debris objects produced will remain confined to the

unstable regions. However, small debris will be ejected into other orbits,
"increasing the amount of small debris in LEO for centuries."

Donakt J. Kessler, "'Collisional Cascading: The Limits of Population Growth in

LEO," Advanced Space Research, Vol. 11, No. 12, 1991.

July NASA and DoD begin the joint orbital debris studies called for in the IG

(Space) report of February 1989. The U.S. Air Force is lead service, with the

Air Force Space Technology Center (Phillips Laboratory) as DoD technical

lead. NASA chooses JSC as its technical lead. The joint NASA/DoD research
program plan is approved by the National Space Council this month. It has

two objectives - to characterize the LEO debris environment down to 1 mm,

and to identify candidate technologies for minimizing debris production and

enhancing spacecraft survivability. Implementation of the second objective
depends on the results of the environment studies called for in the first

objective. NASA and the DoD also begin work on a guide for spacecraft

builders and launch operators, which they plan to call the Space Debris Mini-

mization and Mitigation Handbook.

Albert Reinhardt, Jr., "Potential Effects of the Space Debris Environment on

Military Space Systems," presented at the Preservation of Near-Earth Space lot

Future Generations symposium, University of Chicago, June 24-26, 1992.

August At North Carolina State University (NCSU) teams of students compete to

design systems for deploying radar calibration spheres from a Space Shuttle

in LEO. Andrew Potter and John Stanley foster the project, which develops
into the Orbital Debris Radar Calibration Spheres (ODERACS) experiment.

Interview. David S. F. Portree with John Stanley, July 30, 1993.

August 11-14 In St. Petersburg, the joint U.S-Soviet Orbital Debris Working Group holds its

second meeting.

Autumn John Stanley conducts a three-part test to calibrate the Haystack Radar for

orbital debris studies. In the first part he selects 100 1-5-cm pieces of a satel-

lite fragmented on Earth in a DoD experiment. The pieces are characterized

using the radar calibration laboratory at Science Planning Corporation in

Virginia. Algorithms are developed for interpreting the radar signatures of

the pieces. In the second part of the test, nine pieces are dropped by balloons
from altitudes between 12,500-20,000 m at Kwajalein Atoll, in the Marshall

Islands. The four radars of the Kiernan Reentry Measurements Site track the

objects. The XonTech Corporation analyzes the radar results and correctly

determines the sizes and shapes of the pieces. The radars also take data on

over 100 satellites. The third part of the test involves tracking 25 objects in

orbit using optical sensors and radars simultaneously, with the aim of com-

paring observed characteristics.
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Research and Technology Annual Report 1990 (NASA TM 102172 ), pp. II 17-

18: interview, David S. F. Portrec with John Stanley, June 21, 1993.
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September

September

1990

The OTA publishes Orbiting Debris: A Space Environmental Problem, a back-

ground paper largely based on the September 25, 1989, orbital debris work-

shop in Washington, D.C. Additional information was drawn from the April

4-7, 1989, Fifth National Space Symposium, jointly sponsored by the OTA

and the USSF, the 1989 IG (Space) report, and the 1988 ESA report. The OTA

report presents eleven commonly-held concerns of the orbital debris commu-

nity. They are

• Prompt action is called for from space users, lest certain orbits be re-
stricted in the near future.

• Better data is needed on the orbital distribution and size of debris.

• Additional debris mitigation techniques need to be developed.

• Paying for debris removal is not warranted at this time.

• Protection technologies (shielding) can reduce the debris hazard.

• The threat to the lives of astronauts and cosmonauts posed by high-speed

objects in LEO is significant.

• Active involvement by all space-faring nations is required to control
orbital debris.

• Existing treaties are inadequate for minimizing debris.

Legal issues, such as the definition of the term orbital debris, jurisdiction
and control over orbital debris, and liability for damage caused by orbital

debris must be resolved.

• Private sector space users will need to aid governments in mitigating the

orbital debris population.

• International education on orbital debris is necessary as many misconcep-

tions exist about the problem.

Orbiting Debris: A Space Environmental Problem, OTA, 1990.

The Japan Society for Aeronautical and Space Sciences (JSASS) founds its

Space Debris Study Group. It aims to "promote overall space debris-related

research, to stimulate public awareness of this issue and to provide guide-

lines to cope with it."

Susuma Toda, "The Currenl and Future Space Debris Environmen! as Assessed

in Japan," presented al the Preservation of Near-Earth Space for fnlure

Generations symposium, University of Chicago, June 24-26, 1992.

NASA and NASDA hold their first Technical Interchange Meeting (TIM) on

SSF meteoroid and orbital debris issues at MSFC. After the meeting, NASDA

reevaluates the Japanese Experiment Module (JEM) meteoroid and orbital
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September

October

October 4

October 22

debris shielding development process and determines that a new process
should be established.

Memorandum to Distribution with enclosures, "NASA/NASDA TIM Min-
utes," from Raymond L. Nieder, Chairman, JSC Meteoroid and Debris
Protection Working Group. January 15, 1991.

At the AIAA Space Programs and Technologies Conference in Huntsville,

Alabama, Eric Christiansen, Research Engineer, JSC Hypervelocity Impact

Test Facility (HIT-F) (formerly the Orbital Debris Impact Laboratory), Jeanne

Lee Crews, HIT-F Manager, and Jennifer Horn, Aerospace Engineer, MSFC,

describe ways of augmenting SSF orbital debris shielding to prevent critical

damage to the station during its planned 30-year lifetime. They use the 1988

Kessler-Anderson orbital debris environment model. They report that "the

small and medium debris environment is predicted to be worse than was

expected when the SSF program began," and that the problem will "grow

with time, becoming even more severe during station assembly and opera-

tions." The researchers contend that the existing module design will be

adequate for only 6-9.5 years after SSF deployment. They propose that the

baseline shielding be augmented after SSF assembly is completed. This

would permit the original design to be used. The augmentation configura-

tion could also be tailored to meet unforeseen demands of the changing

orbital debris environment. They suggest that the baseline SSF Whipple

Bumper be augmented with the Multi-Shock Shield (MSS) invented by

Burton Cour-Palais and Crews, or by Christiansen's Mesh Double-Bumper

(MDB) shield (fig. 6). They also propose systems which would activate only

when a debris impact is imminent, such as inflatable Nextel ceramic fabric

MSS airbags. To reduce the population of small orbital debris, the research-

ers suggest deployment of a 1-10-km diameter space sweeper comprising a

multilayer Nextel balloon. The sweeper would move through space indepen-

dent of SSF, impacting with and absorbing debris particles. They describe

methods for delivering augmentation shielding to the station and deploying
it with minimal astronaut EVA time.

Jeanne Lee Crews and Burton Cour-Palais, "A Multi-Shock Concept lk)r
Spacecraft Shielding," International Journal of lmpact Engineering, Vol. 10,
1990, pp. 135-146: Eric Christiansen, Jennifer Horn, and Jeanne Lee Crews,
"'Augmentation of Orbital Debris Shielding for Space Station Freedom," AIAA
paper 90-3665, AIAA Space Programs and Technologies Conference, Septem-
ber 25-28, 1990.

The U.S. Air Force Haystack radar on Millstone Hill, Tyngsboro, Massachu-
setts, commences occasional observations of orbital debris.

The Chinese launched the Fengyun 1-2 weather satellite atop a Long March 4

rocket on September 3, 1990. On this date the rocket's upper stage explodes,

producing more than 80 trackable debris pieces. It described a 895-km-by-

880-km orbit at an inclination of 89.9 deg.

A Cooperation Meeting on Orbital Debris is held in Braunschweig between

representatives of JSC, Deutsche Agentur for Raumfahrtangelegenheiten

(DARA), and TUBS. The main topic is orbital debris environment modeling.
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Figure 6.

The Multi-Shock Shield (MSS) and Mesh Double Bumper (MDB) are variations on the Whipple

Bumper (see fig. 4) designed to reduce its weight and enhance its effectiveness as protection against

orbital debris. The MSS (top) relies on multiple layers of ceramic fiber to disrupt impactors and

shock them to higher temperatures. They melt and sometimes vaporize before they reach the

aluminum backplate (the spacecraft hull). The MDB (bottom) augments the basic Whipple design

by placing a layer of lightweight ceramic fabric between its aluminum bumper and the aluminum

backplate (again, the spacecraft hull). A layer of lightweight aluminum mesh is placed above the

bumper. The mesh disrupts impactors, permitting the bumper to be thin and light. The layer of
ceramic fabric catches fragments of the impactor which penetrate the bumper as well as fragments

of the bumper punched out by the impactor (these can under certain conditions cause more damage

to the spacecraft hull than the original impactor). See also the Stuffed Whipple (fig. 8).
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October 24-25

November 13

November 13

NASA and ESA hold their Fifth Space Debris Coordination Meeting at the

ESA European Space Operations Center (ESOC) in Darmstadt, Germany.

Helmut Heusmann of the ESA-ESOC Columbus System Division describes

meteoroid and orbital debris protection systems on the ESA Columbus SSF
module. Donald Kessler describes the 1988 orbital debris environment

model (modified 1990), the basis for proposed revisions to the SSF orbital
debris design requirements.

Draftof Minutes of tile Fiflh ESA-NASA SpaceDebris Coordinatio.1Meeting,
October 24-25,199(t.

Four years after the Ariane V16 upper stage explosion, ESA estimates that the

orbits of the pieces produced have spread to form a shell around the Earth.

Only the extreme northern and southern latitudes of the Earth are not over-

flown by Ariane V16 debris.

The Subcommittee on Micrometeor and Debris Protection of the Space Sta-

tion Advisory Committee, led by Edward Crawley of MIT, publishes its

findings and recommendations on this date. The report is based largely on

two fact-finding sessions held in June 1990 at the Space Station Program

Office in Reston, Virginia, and at JSC. It recommends that NASA adopt the

1988 Kessler-Anderson orbital debris model, as modified by memorandum

SN3-90-68 (1990). The Subcommittee states that "this model is currently the

best available and is supported by data from Solar Max and various ground

observatories." They also recommend a review of the orbital debris environ-

ment every 5 years, a permanent board to assure SSF survivability, and a

memorandum of understanding arranging for USSPACECOM to provide
services and information on the orbital environment during the SSF opera-

tions phase. The Subcommittee calls for exchange of data on orbital debris

and micrometeoroids with other nations. They single out the Soviet Union,

which they say has "extensive long-duration orbital experience."

"'Relx_rtof the Subcommittee on Micrometeor andDebris Protection,"Space
Station Advisory Council, November 13, 1990.

1991
End of year launches reaching Earth orbit or beyond (since 1957) 3400
End of year satellites (objects in orbit) 7049 )

7O

January 15-17

February 5

NASA and NASDA hold a TIM at JSC on SSF orbital debris issues. NASDA

seeks to coordinate with NASA the resolution of problems encountered in

implementing the new JEM orbital debris shielding development process.

The basic JEM shielding comprises a pressure wall/backplate 3.2 mm thick

and two aluminum bumpers. The bumpers have a total thickness of less than

4 mm. The outer bumper is 102 mm from the backplate. Multilayer insula-

tion is attached to the inner surface of the inner bumper.

Memorandum to Distribution wilh enclosures, "NASA/NASDA Technical
Interchange Meeting Minutes," from Raymond L. Nieder, Chairman, JSC
Meteoroidand Debris Protection Working Group,January 15, 1991.

The Congressional Research Service (CRS) of the Library of Congress releases

a report on orbital debris by Marcia S. Smith, Aerospace Policy Specialist in
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the Science Policy Research Division. The document, which is titled Space

Debris: A Growing Problem, is prepared for Members and committees of

Congress. It runs six pages, and references White House, GAO, OTA, and

ESA reports on orbital debris published since 1988. Smith's report references

no NASA sources, but the sources it uses depend almost entirely on NASA

reports and experts for their information.

Marcia Smith, Space Debri,,. A Gm,'ing Problem.CongressionalResearch
Service. Library of Congress, 1991.

February 7 After hosting more than 20 cosmonauts, Salyut 7 was finally abandoned in

mid-1986 with the large Cosmos 1686 module still attached. The 43-ton

combination was boosted to a higher altitude to forestall reentry, and plans
were floated to revisit the derelict station in the future to collect materials

exposed to spaceflight conditions for year. It was even suggested that the

Soviet space shuttle Buran could return the entire core station to Earth. In

late 1989 cosmonaut Vladimir Dzhanibekov, a former Salyut 7 resident who

helped rescue the station in 1985, called plans to retrieve Salyut 7 "fantasy."

Controlled deorbit was not an option, he said, because the station contained

no fuel. Plans to deorbit Salyut 7 using the engines on an automated

Progress freighter or manned Soyuz were complicated by the station's slow,

wobbling spin. On this date the Salyut 7/Cosmos 1686 combination makes

an uncontrolled reentry over Argentina. The Soviets announce in advance

that at least 1500-2000 kg of the complex are expected to reach the ground,

including the large reentry module attached to Cosmos 1686. Traffic control-

lers at Buenos Aires International Airport watch the fireball for 2 minutes.

Large pieces are found northwest of the Argentine capital. A piece the size of
a car lands 500 km north of Buenos Aires and sets fire to trees. No other

injuries or property damage are reported.

"News Breaks,"AriationWeek& Space Technology,FebruaO' 1I. 1991,p. 15:
"Soviets plan 1o 'scuttle" Salyut 7,'"Spac¢_ilight,The British Interplanetary
Society, January 19t_),p. 7: Loftus Orbital DebrisFiles.

April NASA and TUBS hold a meeting on orbital debris modeling at JSC.

April 9 The International Workshop on the Salyut 7/Cosmos 1686 Reentry is held at
ESOC.

Salyut 7�Cosmos 1686Reeno3' (ESA SP-345). B. Battrick, editor, ESA-ESOC,
August 1991.

April 16-17 NASA and ESA hold their Sixth Orbital Debris Coordination Meeting at JSC.

Participants discuss ESA and NASA LDEF research and other topics.

Minutes of the Sixth ESA/NASA Space Debris Coordination Meeting, April
16-17, 1992.

May 1 Nimbus 6, a weather satellite, was launched on a Delta rocket on June 12,

1975. On this date its derelict Delta second stage explodes in orbit, producing

237 trackable debris pieces. About 190 remained in orbit on January 1, 1998.

May 15 Joseph Loftus and Eugene Stansbery meet CNES and Arianespace officials in

Evry, near Paris. They discuss provisions for debris control for the planned
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June

June

June

June 2-8

June6

Ariane 5 booster. Loftus is in Paris to attend the Fourth European Aerospace
Conference, where he chairs a session on orbital debris.

Joseph P. Loftus. Jr., "'Trip Report - Discussion with CNES-Arianespace and
ESA. re: Ariane 5."

The Haystack radar begins providing calibrated useful data to orbital debris

researchers at JSC. MIT-LL, which operates Haystack on contract to the U.S.

Air Force, collects data on magnetic tape and sends it to JSC. JSC's Orbital

Debris Data Analysis Facility then transfers the data to optical disks and

analyzes it. Each January JSC provides the SSF program with an orbital

debris environment report based on the Haystack measurements.

lnte_'iew, David S. F. Portree with John Stanley, June 2 I, 1993.

During the annual 2-week optical debris detection session at Rattlesnake

Mountain Observatory in Washington State, Karl Henize uses the JSC CDT to

make 655 observations of 270 objects.

Interview, David S. F. Portree with Karl Henize, June 8, 1993.

John Stanley briefs a Haystack Radar peer review group on the NCSU contest

to develop a radar calibration sphere deployment system. The peer review

group calls for orbital debris radar calibration spheres to be deployed in orbit
as soon as possible.

Interview, David S. F. Portree with John Stanley, July 30, 1993.

NASA holds the First LDEF Post-Retrieval Symposium in Kissimmee,

Florida. The LDEF Space Environmental Effects Newsletter reports that "the

major achievement to date in the analysis of LDEF meteoroid and debris data

is a preliminary comparison of the combined environment and its effects

observed on LDEF with existing models." Less than 10 percent of the signifi-

cant impact pits on LDEF have been analyzed by this date. However, impact

pits on LDEF's trailing surfaces provide the first clear evidence for debris in

elliptical orbits. Researchers also find impact pits formed by small particles

accelerated from the direction of the Sun by solar radiation, and evidence for

debris clouds produced by the Shuttle and other launch vehicles.

"Summm'y of the First LDEF Post-Retrieval Symposium." LDEF Space

Enrironmental Effi'cts Newsletter, Vol. 2, No. 3, June 15. 1991; LDEF- 69

Months in Space: First Post-Retrieral Symposium ( NASA CP 3134. Parl 1 ),
Arlene Levinc. editor, t991.

USSPACECOM issues "Minimization and Mitigation of Orbital Debris"

(USSPACECOM Regulation 57-2). It lists guidelines for the operation and

development of current and future space systems, with an eye toward miti-

gating the production of orbital debris. In 1992 an AIAA special report states

that some of its provisions could "serve as models for the civil sector agen-

cies" in the development of orbital debris policies.

Orbital Debris Mitigation Tecllniques: Technical, Economic. and Legal

A_pect.s. A1AA Special Project Report SP-OI 6-1992.
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June 11 New SSF orbital debris shielding design requirements based on the 1988

Kessler-Anderson orbital debris environment model, as amended by a 1990

memorandum, are submitted to the Space Station Control Board for consider-

ation.

June 11-12 Joseph Loftus, Andrew Potter, Donald Kessler, Daniel Jacobs, and George

Levin, NASA Orbital Debris Program Manager, travel to Japan for orbital

debris discussions. They visit NASDA Headquarters, the light-gas guns at

Mitsubishi Heavy Industries, and other facilities.

Trip report menmrandunl, Loftus Orbital Debris Files.

June 12 The International Radio Consultative Committee (CCIR) of the International

Telecommunications Union (ITU) formulates a draft recommendation stating

that "as little debris as possible should be released into geostationary orbit"

and that "every reasonable effort should be made to shorten the lifetime of

debris in transfer orbit." The non-binding recommendation also states that

GEO satellites should be transferred to "supersynchronous graveyards"

(orbits above GEO altitude) at the end of their useful life. No minimum

acceptable graveyard altitude is recommended.

Pamela Meredith, "A Legal Regime for Orbital Debris: Elements of a Multilat-
eral Treaty," presented at the Preservation of Near-Earth Space for Future
Generations symposium, University of Chicago, June 24-26. 1992.

GEO and Orbital Debris

GEO contains far fewer objects than LEO. The GEO population was 545 known spacecraft on

January 1, 1998. This number does not include spent upper stages. The number of spacecraft placed

in GEO is about 30-35 objects/year, and an increasing number of satellites are boosted out of GEO

at end of mission. If the current GEO population did not change, we would not see our first signifi-

cant debris-producing collision for about 10,000 years. If the present rate of population increase

continues, however, our first collision will likely occur in less than a century. If the increase rate

grows, then the first collision will, of course, occur sooner.

Atmospheric drag plays little role in the decay of GEO debris. Solar radiation pressure can remove

micron-size debris particles (those with the least potential for causing damage) in less than a year.

Intermediate-size particles (a fraction of a 1 mm to 1 cm) are made to decay by a combination of

solar radiation pressure and the solar radiation pressure drag component (the Poynting-Robertson

Effect). Even so, they need at least 60,000 years to leave GEO. Large objects, like intact satellites.

require a million years or longer to leave GEO.

Uncontrolled objects in GEO drift in longitude. Their orbital plane also precesses with a period of

53 years. As a result, about 20 years after active station-keeping ends, a satellite's orbit reaches an

inclination of about 15 deg. The inclination of the orbit cycles back to 0 deg 53 years after station-

keeping ends. The cycle then repeats.

Satellites in 15-deg inclination orbit cross the equatorial belt twice each day. The difference in

velocity between a satellite in a 15-deg inclination GEO orbit and one at equatorial inclination is

about 800 m/second.This is faster than a jet aircraft.

Several GEO users have instituted a policy of clearing GEO by changing the orbital height of their

satellites when they near the end of their planned useful lives. The JSC orbital debris team and ESA

have jointly agreed that minimum separation distances above or below GEO in the hundreds of
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kilometers should be used. Objects should be moved to at least 300 km from GEO, plus 2000 km for

every m2/kg of satellite to compensate for the effects of solar radiation pressure. For example, for a
10 m z satellite weighing 1000 kg, 20 km of altitude would need to be added to take into account
solar radiation pressure. This yields a recommended graveyard orbit altitude of 320 km.

Another opportunity for GEO debris management is the stable plane. The stable plane is inclined
7.3 deg to the Earth's equator, and has a right ascension (RA) of 0 deg (that is, the plane is inclined
toward the Sun). Satellites do not achieve the stable plane RA without intervention by their opera-
tors. Once a satellite is in the stable plane, no station-keeping is needed to maintain that orbital
plane. The collision velocity between satellites in the stable plane is 5 m/second - about as fast as a
running person. This is useful for orbital debris management because low-velocity collisions
produce far fewer pieces than high-velocity collisions.

Stable plane orbits above or below GEO altitude use the best features of the stable plane and grave-
yard orbit strategies. However, neither the stable plane nor graveyard orbits hundreds of kilome-
ters above GEO can do anything to protect GEO from satellite explosions. These can be prevented

only by depleting stored energy sources. If stored energy source depletion is not routinely em-
ployed, graveyard orbits thousands of kilometers above GEO will be needed to protect it for future
human use.

Joseph P. Loftus. Jr., "Orbital Debris Issues in GEO'" (presentation materials),

June 1992: interview, David S. F. Portree with Donald J. Kessler, June 23,

1993: Larry Jay Friesen, "'Orbital Debris and Power Satellites," The Journal of

5;pace Derelopnwnt, May, June 1993.

June 12-22 Joseph Loftus, Andrew Potter, Donald Kessler, George Levin, NASA Head-

quarters Office of Space Flight, and Daniel Jacobs visit the People's Republic

of China. They hold orbital debris discussions with the Chinese Academy of

Space Technology and other organizations. The Chinese report they formed

their Orbital Debris Study Group in 1989. It has representatives from the

Ministry of Aerospace Industry, the Chinese Academy of Science, the Science

Commission, and the Foreign Ministry. A major topic of the meeting is the

breakup of the Fengyun 1-2 satellite's Long March 4 launch vehicle upper
stage on October 4, 1990. NASA describes modifications made to U.S. Delta,

Japanese H-I, and European Ariane rockets to avoid explosions. The sides

discuss making similar modifications to the Long March 4 upper stage.

Trip Report, Loflus Orbital Debris Files: note, Andrew E. PoUer to David S. F.

Portree. July 24, 1993.

July The new SSF shielding requirements based on the 1988 Kessler-Anderson

orbital debris environment model, as modified by a 1990 memorandum, are

accepted by the Space Station Control Board.
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July 17 ESA's first ERS (European Remote Sensing) satellite is launched atop an

Ariane 4 rocket into a 782-km-by-777-km, 98.5-deg sun-synchronous orbit.

ERS-1 carries ground-pointing radar altimeter, radiometer, and microwave

sensors. The satellite, which cost $550 million, provides data to subscribing

receiving stations on every continent save Africa. Mass at the beginning of

operations is 2384 kg. ERS-1 measures 11.8 m high and 11.7 m across its solar
arrays. The size, orbital altitude, and importance of the ERS- 1 satellite make

it especially vulnerable to orbital debris. It is only one of an increasing

number of large, extremely costly satellites. The loss of any one of these to

orbital debris would seriously damage the space programs of which they are

part.
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In St. Petersburg, representatives from NASA meet Soviet representatives

from the Institute for Space Research (IKI), the Foreign Ministry, and the

KOSMOS organization. They discuss exchange of satellite catalogs and

flown witness plates, flight of a NASA capture cell experiment on Mir, timely

exchange of data on major breakups, and means of cataloguing debris events.

Trip report, Loftus Orbital Debris Files.

September JSC engineers select a multi-spring design from among the working proto-

types of a debris calibration sphere deployment system designed and built by

NCSU students. JSC begins ODERACS flight hardware fabrication. John

Stanley is flight hardware program manager and experiment Principal

Investigator. Development proceeds toward a planned September 1992
launch.

Interview, David S. F. Portree with John Stanley, July 30, 1993.

September 12-18 On the STS-48 mission, Space Shuttle Discovery deploys the Upper Atmo-

sphere Research Satellite (UARS), an important component of NASA's

Mission to Planet Earth program. The STS-48 mission lasts 5 days, 8 hours.

Twice space objects enter Discovery's 5 km-by-25-km-by-5-km alert box.

One, the spent Cosmos 955 upper stage (launched in 1977), intrudes on the 2-

km-by-5-km-by-2-km maneuver box. Discovery avoids it by firing its thrust-

ers for 7 seconds, slowing its motion by about 0.6 m/second. This is the first

time an orbital debris avoidance maneuver is conducted in the history of

spaceflight.

"STS-48 Mission Report," NASA JSC, October 1991: J. Steven Stich. "STS

Coltision Avoidance" (presentation materials), January 17, 1992, p. 10.

November In a paper published this month, Phillip Anz-Meador and Andrew Potter

write that they have applied the NASA EVOLVE evolutionary debris envi-

ronment computer model to determine the collision risk for Soviet space

nuclear reactors. Their study confirms that several collisional breakups

among the more than 30 reactors in orbit can be expected in the next few
centuries.

Phillip Anz-Meador and Andrew E. Potter, "Radioactive Satellites: Intact

Reentry and Breakup by Debris Impact," Advanced Space Research, Vol. 11,

1991, pp. 37-42.

November JSC and USSPACECOM sign an MOA on Space Station orbital debris colli-

sion avoidance support.

November 1 Leonid A. Gorshkov, Head of the Department of Orbital Station Design,

Energia Design Bureau, talks with members of the JSC orbital debris team

while in Houston to speak at the Exploration 91 meeting. He was the Chief

Designer of the Mir space station. Gorshkov and other Energia officials

discuss participation by the design bureau in U.S.-Soviet Orbital Debris

Working Group discussions scheduled to take place in Moscow. They also

discuss flying a U.S. capture cell on Mir and Soviet experience with orbital

debris gained during the Mir program. The Soviet delegation shows little

interest in sharing returned capture cells, but does express interest in ex-

change of services - specifically in NASA help to set up a communications
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relay for Mir for the period of its orbit when it is out of sight of Soviet ground
stations and communications ships. They tell the JSC team they want NASA

to buy space on Mir for the capture cell. The Soviet delegation also describes

the Mir pressure hull. It is a chemically milled sheet 2 mm thick with webs 4

mm thick welded to form the station's cylindrical body. The largest cylinder

(the main compartment) is covered by a body-mounted radiator with a 20-
mm standoff from the pressure hull. The radiator is 2 mm thick. The smaller

cylinders are covered by a multilayer thermal blanket comprising 40 layers of
aluminized Mylar and scrim. Several layers of Kevlar-like material cover the

thermal blanket. Gorshkov reports that Mir has suffered impact damage on

its outer windows and on the fiat sealing surface of one of its six docking
rings. The Soviet officials do not wish to discuss the exact nature of the

damage because doing so would compromise a commercial proposal they

plan to make to Boeing Corporation of Seattle, Washington.

"Memorandum for the Record," Joseph P. Loflus, Jr. to Andrew E. Poller,
November 4, 1991.

November 16 JSASS and ISAS hold the Space Debris Workshop 91 in Sagamihara, Japan.

International orbital debris experts participate in the workshop, which consti-

tutes an important step forward for Japan's development of an orbital debris
policy.

November 24-

December 1 The manifest for the STS-44 mission includes several DoD experiments.

Atlantis maneuvers to avoid a spent Soviet upper stage which intrudes deep

into its 5-km-by-25-km-by-5 km alert box. It passes very near the edge of the

orbiter's 2-km-by-5-km-by-2-km maneuver box. The MCC elects to conduct

an avoidance maneuver 10 hours ahead of the predicted conjunction at a time
"consistent with payload objectives and crew timeline." The crew fires two
+X (aft) thrusters for 7 seconds.

"STS-44 Mission Report," NASA JSC, January 1992: J. Steven Stich,

"STS Collision Avoidance Procedures" (presentation materials 1, January

17. 1992, p. t0.
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December In March 1988, Faith Vilas received funding for a Phase A study of the Debris

Collision Warning Sensors flight experiment. The experiment would be

carried in the Space Shuttle payload bay, and would sample the debris

population in LEO and GEO. It would use infrared and visible light sensors

to study debris down to 1 mm dia in LEO and objects as small as 3 cm to an

altitude of 2000 km. Vilas presented results of the Phase A study to the

NASA Headquarters Office of Aeronautical and Space Technology in August

1988. The experiment was augmented to include a plan to release objects, the

properties of which would be characterized on the ground before launch,

from the Shuttle payload bay. These would be observed by the Debris Colli-

sion Warning Sensors. JSC carries out in-house Phase B studies. In April 1989,

Kaman Sciences and Ball Electro-Optics/Cryogenics Division were selected

to carry out additional Phase B studies, which were completed in April 1991.

Faith Vilas was Principal Investigator, and C. Donald Harris of JSC was

Project Manager for the contracted Phase B studies. In July 1991 Harris and

Vilas presented Phase B results to Arnold D. Aldrich, Associate Administra-

tor of the NASA Headquarters Office of Aeronautics, Exploration, and Tech-
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nology. Aldrich asked them to study ways of reducing costs. He also sug-

gested the use of existing sensors, and placement of the experiment on a free

flying platform and SSF. This month Ball and Kaman Sciences present final

extended Phase B study results at JSC. Cost is estimated at $50 million. The

Shuttle-borne option is found to be less expensive than the SSF or free-flyer

options. A Shuttle payload proof-of-concept experiment using visible light

only is priced at $8.9 million. NASA elects not to fund the experiment

through the development Phase C/D because of costs.

Note, Failh Vilas to David S. F. Portree, December 3, 1993.

End of year launches reaching Earth orbit or beyond (since 1957) 3495 )1992 End of year satellites (objects in orbi0 7320

During the year

January

An informal team of orbital debris researchers, with cooperation and support

from the DoD service space commands, the Naval Research Laboratory,

Raytheon, XonTech, Lockheed, Mitre, and other organizations, conducts a

year-long feasibility study of the "design of a family of instruments and the

configuration of a network to provide collision avoidance for the space

station and all other high value assets in low earth orbit against a threat

environment of 1-cm particles." It would comprise a fence of dedicated

debris sensors extending thousands of km across the Earth's surface. The

system would shrink the 2-km-by-5-km-by-2-km Shuttle maneuver box to

about 100 m on a side (space station size), reducing the number of SSF debris

avoidance maneuvers required. As many as 20 avoidance maneuvers per

year would be required if the station were to use the Shuttle maneuver box,

playing havoc with sensitive experiments dependent on extended periods of

microgravity. The team finds that "to move the threshold of the [existing]

Space Surveillance Network [SSN] from 10-30 cm to 1 cm, one needs to

upgrade the sensors from 70-cm... to 5-cm wavelengths. To accommodate

that change in sensitivity and the increase in targets that will be detected one

needs to improve the database processing." The team points to experience

gained using the SSN, GBR-X, and other systems to support its assertions.

The total cost of setting up the system is given as $1 billion, with an annual

operating cost of $100 million. The team states that this estimate "may sound

high but such a system could 'shut down' numerous less capable facilities

[sol the savings might pay for the new capability in a very few years." The

ground-based system could be augmented with onboard optical sensors of

the type studied by Ball Aerospace and Kaman Sciences under direction of

Vilas and Harris. They would further reduce the false alarm rate by provid-

ing additional location data on objects tagged as collision threats by the

ground-based system. The informal team briefs Space Station Program

management on December 4, 1992.

Note, Joseph P. Loftus, Jr., to David S. F. Portree. September 9, 1993:

interview, David S. F. Portree wilh Joseph P. Loftus, Jr., August 25, 1993:

interview, David S. F. Porlree wilh Joseph Loftus, December 3, 1993.

The Space Debris Study Group of JSASS publishes its Interim Report. The

report was summarized by Susuma Toda of the National Aerospace Labora-

tory of Japan at the University of Chicago Centennial Symposium, June 24-26,
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January 10

February 9-10

February 10

February 12-13

February 24-28

1992. According to Toda, the report presents an overview of orbital debris

issues, with particular attention paid to Japanese contributions in the field.

The report cites observations made by Kyoto University's Middle and Upper

atmosphere radar (MU) and optical observations of GEO objects by the

Communications Research Laboratory (CRL) 1.5-m telescope as sources of

orbital debris data. Only known GEO satellites were detected. Toda states

that the report declares Japan's debris record to be "clean," though debris-

producing "past mission failures concerned with the upper stage motor

collision [the ECS-1 satellite collided with its own upper stage in 1979] and

abnormal engine burning" are acknowledged. Toda states that the report

characterizes NASDA's orbital debris achievements as "still very limited

compared with those of the U.S.A. and Europe."

Susuma Toda, "The Current and Future Space Debris Environment as Assessed
in Japan," Presented al the Preservation of Near-Earth Space for Future
Generations symposium, University of Chicago, June 24-26, 1992.

Oscar 22, an unused satellite of the Transit series, is destroyed by a 150-gm

aluminum pellet traveling at 6 kin/second at the U.S. Air Force AEDC. The

purpose of the exercise is to simulate an orbital debris strike on a satellite in

orbit. Many more micron-sized particles are created than expected.

lnteraviu Space Directory 1992-93, Andrew Wilson, editor, p. 183.

An orbital debris modeling coordination meeting is held at TUBS in Ger-

many. Papers are presented on solid rocket motor particulates, optical and

radar orbital debris measurements, the Tethered Remover Satellite (TERESA)

concept, and other issues. Representatives from JSC, TUBS, and DARA

participate.

Minutes of Orbital Debris Modeling Coordination Meeting, NASA and TUBS.
February 9-10, 1992.

By this date, 1092 hours of orbital debris data have been collected as a result

of the Haystack-HAX agreement between USSPACECOM, MIT-LL, and
NASA.

Minutes of the Seventh Space Debris Coordination Meeting, ESA/U.S./Japan,
February 12-13, 1992.

The Seventh Space Debris Coordination Meeting is held at the European

Space Technology Center (ESTEC) in Noordwijk, the Netherlands. Japan,

NASA, and Europe participate. The Europeans give presentations on mete-

oroid and orbital debris protection for Columbus and the Hermes shuttle.

Ibid.

A conference called Technogenic Space Debris: Problems and Directions of

Research is held at the IKI in Moscow. The Russian Defense Ministry, Rus-

sian Space Agency (RKA), and Russian Academy of Sciences sponsor the

conference. The approximately 200 attendees include representatives from

Japan, Europe, and U.S. companies. NASA debris experts were invited, but

none could attend because the invitation came too late for them to prepare

for the trip to Moscow. Papers are presented on the Soviet/Commonwealth
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of Independent States (CIS) Space Surveillance System (SSS), optical and

radar systems used to compile the CIS satellite catalog, and other topics.

Proposals are made for a dedicated phased array equatorial orbital debris

radar, and for a joint U.S.-CIS tracking exercise using the Pion subsatellRes

(at this time scheduled for deployment in Spring 1992). A report on Cosmos

1275 reveals that the Russians believe a collision caused its breakup. The

Russians also reveal that the Ekran 2 DBS broke up in GEO in 1978. The

Russians report that condenser meteoroid detectors have flown on Soviet

space stations since Salyut 1 in 1971, and that hypervelocity tests to 17 km/

second were performed in support of the Vega Halley's Comet probes.

"Memorandunl for llle Record, Subj.: Technogenic Space Debris Conference."
Kaman Sciences Corporation, March 9, 1992.

April German orbital debris researchers share with NASA radar images of orbital

debris objects. The images were collected using the German FGAN radar

system. Half the objects observed are not rotating. Presumably the breakups

which produced them would have made them spin. The Germans also detect

objects with slowing spin rates. Researchers suggest that interactions with

Earth's magnetic field are stabilizing the debris pieces. Stable objects compli-

cate optical observing because they do not present many sides as they move

through the field of view of a telescope. It is thus more difficult to derive a

mean value for shape and brightness for stable objects, as brightness depends

on the viewing angle. This implies a new parameter to be taken into account

in orbital debris albedo measurements.

Interview, David S. F. Ponree wilh Karl Henize, June 8, 1992: interview, David
S. F. Ponree wflh Donald J. Kessler, June 23, 1993.

May 7-16 On the STS-49 mission, Endeavour recovers the Intelsat 6 satellite stranded in

LEO 2 years earlier. The rescue is considered practical because of the enor-

mous cost of building and launching a replacement (about $260 million) and

the long lead-times before a replacement can be readied. NASA is to charge

the Intelsat Organization $90-98 million for the rescue, depending on how

much of the repair effort can be justified as SSF EVA practice. After the first

3-person EVA, Intelsat 6 is fitted with a kick stage and boosted to a GEO slot

at 325.5 deg east, over the Atlantic.

May 15 The Space Debris Forum is held in Tokyo by JSASS and NEC Corporation.

International experts on orbital debris provide overviews of several aspects

of the issue.

May 25-June 3 After the U.K. proposed in an ITU consultative working group that all GEO
satellites be boosted to 53 km above GEO at end of useful life, the U.S. De-

partment of State and the FCC approached JSC to learn if the proposed

separation distance was sufficient to safeguard GEO. The 53-km separation

marks the outer boundary of the nominal migration of an object left to drift in

a perfect geosynchronous orbit (period of 1436.1 minutes at 37,000 kin).

When JSC orbital debris team members declared the distance to be inad-

equate, pointing out that not all objects in GEO are in perfect geosynchronous

orbits, the FCC and State Department asked Donald Kessler, Larry Jay

Friesen of Lockheed Corporation at JSC, and Joseph Loftus to prepare the

U.S. position paper on the issue. This was completed on April 15, 1992.
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Loftus attends the CCIR 4 meeting in Geneva May 25-June 3, where his draft

of a recommendation for GEO satellite disposal is accepted by the CCIR and
routed to the more than 180 member-states of the ITU for comment. It rec-

ommends that as little debris as possible be left in GEO, that the lifetime of

objects in transfer orbits be minimized, and that transfer to graveyard orbits

be carried out in such a way as to avoid blocking the radio communications

of active satellites. A later draft (June 17, 1992 - CCIR document 4/141-E)

adds the recommendation that an effective graveyard orbit for satellites be

determined. While not bearing the force of international treaty or law, the

recommendation would carry substantial weight if endorsed by a consensus
of the countries in the ITU.

Interviews, David S. F. Portree with Joseph P. Loflus, Jr., August 9, 1993, and
September 9, 1993: CCIR Document, USWP. 4A/9, "Management of Orbital
Debris in the Geosynchronous Orbit"; CCIR Document 4A/TEMP/92(Rev. 2-
E) and CC1R Document 4/14 l-E, "Draft New Recommendation, Environnlental
Protection of the Geostationaw Orbit."

May 28 Douglas S. Adams, JSC Structural Mechanics Branch, and Karen Edelstein,

JSC Structural Subsystem Manager for the Orbiter Forward Fuselage and

Crew Module, respond to a request from Valerie Neal, Smithsonian Institu-

tion Department of Space History, for a piece of Shuttle window glass con-

taining an impact pit. They offer a left-side windshield thermal pane from

Columbia. It was pitted during the STS-35 mission in December 1990. The

pit is one of the largest in the history of the Shuttle program. Edelstein and

Adams call it "an excellent display piece." Columbia's crew noticed the pit

while they were still in orbit. Most researchers favor impact by a fragment of

an upper stage as the most probable cause. SEM analysis detected zinc and

aluminum, neither of which normally occurs in meteoroids. The zinc signa-

ture was, however, atypical.

Letter, Douglas S. Adams and Karen Edelstein to Valerie Neal, May 28, 1992.
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June The GAO releases Space Station: Delays in Dealing with Space Debris May

Reduce Safety and Increase Costs. In it, the GAO states that SSF was designed

using the 1984 NASA orbital debris model, and that the model adopted by

NASA in 1991 describes an orbital debris environment eight times worse. It

reports that NASA ordered its centers to incorporate the 1991 model, but that

no decisions had yet been made to implement the changes. The GAO cites

January 1992 testimony by unnamed NASA engineers and debris experts,

who stated that the new orbital debris model raises to 36 percent the risk of

critical component shielding penetration in the first decade of operation.

This would increase to 88 percent over SSF's projected 30-year lifetime. In its

conclusions, the report states that difficult trade-offs between costs and risks

will have to be made before the SSF CDR in 1993 (this was moved from 1991

after an SSF redesign). The GAO recommends that the CDR be delayed until

"the 1991 model of the debris environment is fully implemented[,] changes to

NASA's debris safety criteria are thoroughly assessed[,1 and NASA develops

a comprehensive strategy for dealing with debris." The GAO calls on NASA

to develop shielding augmentation for small debris and other protection

systems for medium and large debris.

Space Station: Delays in Dealing with Space Debris May Reduce Safe O'and
Increase Costs, GAO, June 1992.
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June 24-26

June 25-July 9
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In Moscow, the U.S. and Russia hold their third joint Orbital Debris Working

Group meeting.

At the Second LDEF Post-Retrieval Symposium 26 papers are presented on

meteoroid and debris topics. Several researchers report that orbital debris

caused 15 percent of the impacts on LDEF trailing surfaces - preflight model-

ing indicated these should be far fewer. The researchers state that this im-

plies a population of debris in highly elliptical orbits 20-30 times larger than

previously estimated. It probably originates in explosions of upper stages in

geosynchronous transfer orbits. The largest LDEF impact feature is 5.25 mm

across. No impactor is found, but researchers speculate that aluminum beads
found in the crater are the remnant of an orbital debris impactor. Other

debris found embedded in LDEF surfaces includes metal of many kinds,

paint, and human waste.

Michael Zolensky. "Summary of tile Second LDEF Symposium." LDEF Space

Flight Environmental Effects New_h'tter, Vol. 3, No. 3. June 30, 1992: H. W.

Dursch. et al, Analysis oJSy3tem,_ Hardware Flown on LDEF - Result._ _!f tlu"

System Special Investigation Grotq_ (NASA CR 189628), April 1992: Second

LDEF Post-Retrie_'al Synq_osium Abstracts (NAS A CP 1(X)97), Arlene Lev inc.

editor, 1992.

NASA and CNES representatives meet in Toulouse, France. The French ask

to participate in the NASA ODERACS experiment.

Minutes of Space Debris Meeting, NASA/CNES, Toulouse, France, June 4,

1992.

The University of Chicago marks the beginning of its second century with a

Centennial Symposium called The Preservation of Near-Earth Space for

Future Generations. Because 1992 is the International Space Year, an impor-

tant focus is international cooperation on orbital debris. Representatives

from the space establishments of Europe, China, India, Japan, France, Russia,

and the U.S. report on their orbital debris policies and methods.

"'Debris Meeting in Chicago," Orbital Debris Monitor, Vol. 5, No. 4, October

1, 1992, pp. 12-19.

Columbia orbits Earth for nearly 14 days on the first Extended Duration

Orbiter (EDO) mission (STS-50). The oldest orbiter spends nearly 10 days

with its nose toward space and its payload bay facing its direction of motion.

After landing, NASA and Lockheed engineers discover 51 hypervelocity

impact damage sites on the windows, reinforced carbon-carbon wing leading

edges, and radiator panels. The Thermal Protection System (the bulk of the
surface of the orbiter) is not examined because it normally sustains from 50-

200 low-velocity debris strikes during launch and landing, and there are

insufficient resources available to distinguish this damage from

hypervelocity impact damage. SEM analysis shows that 35 percent of the

hypervelocity impact damage sites contain orbital debris objects (paint flecks,
stainless steel, aluminum, and titanium). Meteoroids caused 25 percent of

the damage sites. The remaining 40 percent are of unknown origin. Six
craters are found in five of the orbiter windows, including the deepest found

in the history of the Shuttle program (0.57 mm). It was caused by a titanium-

rich particle. Three windows are replaced at a cost of $50,000 each. Up to
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July 31-August 8

August 10-12

August 15

August 19

STS-45 (March 24-April 2, 1992) Shuttle windows suffered impact damage 49

times, resulting in 25 discarded thermal glass panes.

Eric Christiansen, et al, "Assessment of High Velocity Impacts on Exposed

Shuttle Surfaces," presented at the First European Conference on Space Debris,

Darmstadt. Gemmny, April 5-7, 1993: Memorandum, "Orbiter Window

Damage," Karen Edelstein to Joseph P. Loflus, Jr., April 22. 1992: "'New

Shuttle Flight Rule." Orbital Debri.x Momtor, Vnl. 5, No. 4, October 1, 1992.

The Space Shuttle Atlantis deploys the European Retrievable Carrier (Eureca)

on the STS-46 mission. It carries the Timeband Capture Cell Experiment

(TiCCE) from the University of Kent (England), which collects micron-sized

particles in "Space Station-type" orbits. The device unrolls a tape at a steady

pace, exposing new sections (timebands) to space every 2-3 days over 9
months. This permits the time of impact events to be determined. Eureca

was recovered by the Space Shuttle Endeavour on the STS-57 flight in June
1993.

T. J. Stevenson, "Eureca TiCCE - A Nine-Month Survey of Cosmic Dust and

Space Debris at 50(I km Altitude." Jour, al of the British lute,plaueta 0' Socieo',

Vol. 4l, 1988, pp. 429-432.

John Vedder, Jill Tabor, and Diane Walyus, McDonnell Douglas Space Sys-

tems Company, describe the orbital debris problems of future Nuclear Elec-

tric Propulsion (NEP) spacecraft on Moon and Mars missions. Such vehicles

would accelerate slowly, spending weeks or month spiraling slowly outward
from Earth before attaining escape velocity. The researchers determine that

the greatest danger exists in LEO, and that 80 percent of the total hazard is in

the 800-1100-km altitude region. They recommend spending as little time as

possible in LEO, and that the long axis of an NEP vehicle be kept parallel to

its direction of motion so it presents a smaller target to debris.

John Vedder, et al, "'Orbital Debris Hazard for Nuclear Electric Propulsion

Earth-Escape Trajectories." 1992 AIAA/AAS Astrodynamics Cm_ference. A

Collection of Technical Papers, pp. 165-175.

NASA Administrator Daniel Goldin writes to Ralph Carlone, Assistant

Comptroller General of the GAO, in response to the GAO report Space Sta-

tion: Delays in Dealing with Space Debris May Reduce Safety and Increase Costs.

Goldin states that the SSF orbital debris model adopted in 1991 was devel-

oped by NASA and is accepted by the international space community. He

says NASA will check and upgrade the model as appropriate, using data

from its ongoing debris measurement program. Any proposed changes will

undergo scrutiny by an independent review team before being implemented.

Goldin says that the "safety of humans in space is our highest priority." He
states that the 1993 CDR will not be delayed.

Letter lrom Daniel Goldin, NASA Adnfinistrator, to RaLph Carlone, Assistant

Comptroller General. GAO, August 15. 1992.

The RKA launches the Vostok-based Resurs F-16 imaging film return space-

craft. It carries a Beryllium 7 collection experiment provided by the U.S. Air

Force Space Test Program and the Naval Research Laboratory. Resurs F-16

also carries the Pion 5 and Pion 6 subsatellites, metal spheres approximately
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August 20-21

August 27
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60 cm in diameter. Resurs F-16 releases them on September 4, just before it

returns to Earth. They are tracked as they decay from orbit. Pion 6 reenters

on September 24, and Pion 5 reenters the next day. In 1989 the U.S.S.R.
conducted two similar missions to help update their space tracking capabili-

ties. NASA's planned ODERACS experiment is similar in principle to the

Russian experiments.

"'Russian Satellite Deploys First U.S. Military Test," Avi_tion Week & Space

Technology, August 31, 1992, p. 23: TRW Space Log 1992. p. 54.

The JSC MOD Orbit Flight Techniques Panel holds its 131st meeting, at

which representatives of Rockwell Corporation (builder of the Shuttle orbit-

ers) and Donald Kessler and Eric Christiansen present results of a study of

orbital debris damage risks associated with certain Shuttle flight attitudes.

The study indicates that "the -ZVV [payload bay forward] attitude.., is the
worst attitude from a catastrophic damage perspective. The risk was be-

tween three and five times greater.., than the best attitude which is -ZLV, -

XVV (bay down, tail forward)." The study also finds that the risk of damage
to the Shuttle radiators, which are deployed from the inside of the payload

bay doors, is 16 times greater in -ZVV than in -ZLV. Damage to windows is

20 times more likely in -ZVV with the +XVV (nose forward) attitude almost

as risky (fig. 7). These results are reinforced by examination of Columbia's
surfaces after the STS-50 EDO flight. In October 1992 the Orbit Flight Tech-

niques Panel develops Flight Rule 2-77, "Attitude Restrictions for Orbital
Debris," which states that use of the -ZVV and +XVV, +XLV (payload bay

up) or +YLV (payload bay out of plane) attitudes will be minimized during

preflight mission planning and during the mission. It further states that the
"-ZLV attitude will be the normal orbiter attitude unless payload or orbiter

requirements dictate otherwise." The rule calls for orbiter preflight planning
to be tailored so the orbiter will spend fewer than 48 hours of cumulative

time during a mission in the higher-risk attitudes. Exceptions will be made

on the basis of flight requirements and documented in the annex to the flight

rules for a given flight. In addition, MOD adds section 4.2.4.2., "Altitude

Adjustment Strategy," to its "Space Shuttle Operational Flight Design Stan-
dard Ground Rules and Constraints." Section 4.2.4.2. states that mission

designs will be selected which keep Shuttle orbital altitudes below 320 kin,

provided that such altitudes are "compatible with mandatory payload con-

straints and other high priority objectives." In addition, when the mission

activities which require the orbiter to operate above 320 km conclude, the

orbiter should be moved to a lower orbit if propellant supply permits.

"'NASA Johnson Space Center Flight Rules," Flight Rule 2-77, pp. 2-80a - 2-

80b: interview, David S. F. Portree with Michael F. Collins and J. Steven Stich,

August 17, 1993: "Space Shuttle Operational Flight Design Standard Ground

Rules and Constraints" (NSTS-21075 Rev. A), Level B, Change 6, April 30,

1993, 4.2.4.2.

An ESA-Russia Workshop on objects in GEO is held at ESOC.

Letter, Walter Flury, ESA ESOC, to Joseph P. Loftus, Jr., NASA JSC,

September 29, 1992.

The International Academy of Astronautics (IAA) Ad Hoc Expert Group of

the Committee for Safety, Reliability, and Quality circulates to its members a
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Window Replacement vs. Shuttle Orientation
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Figure 7.

More than 70 Shuttle windows have had to be replaced (as of January 1998) because of impact

damage since the Shuttle program began in 1981. This chart above, which is based on calculations

using the BUMPER II computer program devised by the Space Science Branch, JSC, shows the

number of orbiter window replacements expected for various attitudes. The tail-forward, cargo bay

down (that is, away from the cold of space) attitude protects the windows and is preferred for

thermal reasons, but increases risk to the wing leading edges. The nose-down, belly-forward

orientation is preferred when astronauts conduct spacewalks in the Shuttle cargo bay. The cargo

bay forward, nose-up attitude increases risk to Shuttle windows, wing leading edges, and vital

components, such as the radiator panels on the inside of the cargo bay doors, and tanks under the

cargo bay floor. The attitude of the orbiter docked to the International Space Station is nose-up,

belly forward.
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September 5

September

September 3-4

September 5-6
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draft copy of "A Position Paper on Orbital Debris." The Ad Hoc Expert

Group includes representatives from the U.S., Russia, Japan, Germany, ESA,

and Czechoslovakia. The position paper calls for internationally accepted
debris controls, international coordination meetings, educational efforts,

space law specifically governing orbital debris, a forum to coordinate multi-

lateral agreements, and other measures. The position paper has three objec-
tives - "to make clear how significant and severe the continued deposition of
orbital debris into the near-Earth environment is to the future use of space for

all mankind, to provide some clear guidelines as to how the international

community might wish to proceed in order to combat this growing space
environmental hazard, and to extend discussion of the debris issue by other

international groups to exercise the techniques and dialog necessary to begin

to formulate international agreements on this topic."

"'A Position Paper on Orbital Debris Compiled by au Ad Hoc Expert Group of

tile International Academy of Astronautics, Commiuee on Safely, Rescue. and

Quality," August 27, 1992 (draft).

The World Space Congress convenes in Washington, D.C. In conjunction

with the Congress, papers on orbital debris issues are presented and orbital

debris meetings are held.

Nicholas Johnson and Darren McKnight, Kaman Sciences Corporation, J. M.

Cherniyevski of the Center for Program Studies of the Russian Academy of
Sciences, and B. V. Cherniatiev, Energia Scientific Production Association,

meet to determine the probable cause of five debris events linked to the

Proton Block DM (fourth stage). They occurred between 1984 and September

1992. Through "unprecedented international cooperation," the team deter-

mines that two small (56-kg dry mass) auxiliary motors used to settle fuel in

the Block DM after weightless coast (ullage motors) are responsible. They are

routinely ejected when the Block DM stage ignites for the final time. Remain-

ing in each auxiliary motor at ejection are 10-40 kg of hypergolic propellants.
The international team decides that an explosion occurs when a thin interior

wall ruptures, allowing the fuel and oxidizer to mix. Additional debris-

producing explosions are likely because the Proton launch vehicle is com-

monly used. Thirty-four auxiliary motors remain in orbit from Russian

global positioning navigation system (GLONASS) launches alone.

B. V. Cherniatiev, et al. "Identification and Resolution or an Orbital Debris

Problem with the Proton Launch Vehicle," Orhital Debris Monitm', Vol. 6, No.

1, January 1, 1993, pp. 7-9.

An orbital debris coordination meeting is held in Washington, D.C. between
NASA and the TUBS.

The Fourth Meeting of the Joint U.S.-Russia Orbital Debris Working Group is

held in Washington, D.C., in conjunction with the World Space Congress.

The countries provide each other with copies of their satellite catalogs. An

agreement to exchange modeling results is reaffirmed. The Russians propose
that ESA participate in orbital debris talks with NASA and the Russian

KOSMOS organization. The sides also discuss a joint debris-tracking radar.
The Russians tell NASA that Walter Flury of ESA and Nicholas Johnson,
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September 28-
October 5

Senior Scientist at Kaman Sciences, will participate in the Pion subsatellite

tracking experiment. The question of NASA participation is left unresolved.

Eugene Stansbery is made point-of-contact between the U.S. and Russia for

the Pion experiment.

Minules of the Fourth Meeting of the U.S./Russian Orbital Debris Working

Group, September 5-6, 1992.

Lubos Perek, Astronomical Institute, Czechoslovak Academy of Sciences,

presents "Must Space Missions Be Beneficial?" at the 35th Colloquium on the

Law of Outer Space, Washington, D.C., a paper describing novel space
activities and their implications. He refers to the Outer Space Treaty (1967),

which calls for space to be used for the benefit of all countries. He points out,
however, that the potential exists for conflicts of interest over what is benefi-

cial and what is not. What one country, agency, company, or community of
interest calls "harmful interference" (the term used in Article IX of the treaty),

another might consider beneficial space activity. He uses the example of the
conflict between the satellite launching industry and the community of
astronomers over the effects on optical astronomy of disused satellites. Perek
then describes several other projects, including

A proposed ARSAT (Art Satellite) which would have commemorated the
centennial of the Eiffel Tower in 1989. It would have consisted of 100

inflatable spheres, each 6 m across, linked by cables to form a "ring of
stars" as large as the full moon.

Celestis Space Services' Urnsat scheme to launch cremated human re-

mains into orbit. Perek writes that "It]he generations succeeding those

cremated and launched would know that their ancestors are still moving
overhead and posing a hazard to the lives of astronauts. What a cruel and

unusual punishment beyond anything Dante Alighieri could think of for
his Comedia Divina!"

Lunetta, Powersoletta, Agrisoletta, and Biosoletta, which would reflect

sunlight over large areas of the Earth from orbit for a variety of beneficial
purposes. Perek points out that despite detailed technical studies of these

systems in the late 1970s, little thought was given to their possible envi-
ronmental effects, and none to their effects on astronomy.

Solar Power Satellite (SPS) systems of the type supported by Christopher
Kraft in the mid-to-late 1970s in GEO. Perek points out that these were

studied for their environmental effects (in part by the EEO under Andrew
Potter at JSC). Each SPS would be as bright as Venus at its brightest. The

combined brightness of many SPS would interfere with optical astronomy,
and SPS in GEO would contribute to GEO crowding.

Perek states that "[tlhe real danger of such projects is not in proposing them
because a grain of truth may be in any product of human imagination. The

danger lies with official agencies reviewing and approving space projects on
formal grounds only without taking into account all implications and with-
out realizing that the consequences of their decisions may be with us much

longer than anything else that mankind ever produced."
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Lubos Perek. "Must Space Missions be Beneficial?" Proceeding,_ of the 35th

Colloquium on the Law of Outer Sl_ace, Washington, AIAA, 1993, pp. 3(13-306.

The Eighth Coordination Meeting on Orbital Debris, NASA/ESA/Japan, is

held at JSC. Naoki Sato of NASDA describes the status of JEM debris protec-

tion development, and Hehnut Heusmann briefs the meeting on Columbus

debris protection. Christiansen and Crews describe SSF shielding. H.

Klinkrad and R. Jehn of ESA tell the meeting that analysis of the decay of the

Pion 5 and 6 subsatellites released by the Russian Resurs F-16 satellite on

September 4 has improved decay predictions.

Minutes of tile Eighth Coordination Meeting on Orbital Debris, ESA/NASA/

Japan, October 20-21, 1992: Memorandum, Andre,,,,' E. Potter to Distribution.

January 20. 1993.

Aerospace Daily reports that the amount of EVA assembly time planned for

SSF has been reduced, in part because of the orbital debris hazard to space-

walkers. The article refers to statements by William Raney, NASA Special

Assistant for Space Station. U.S. spacesuits have a pressurized inner suit and

an outer thermal garment which provides protection against meteoroids and

orbital debris to about 1 mm in size. Russian suits are of generally similar

design.

Aerospace Daily, October 29, 1992.

An LDEF II planning briefing is held at JSC. Michael Zolensky, Office of the

Curator (of Lunar Samples), Solar System Exploration Division, JSC, de-

scribes lessons learned from working with the first LDEF. Zolensky suggests

that the next LDEF have improved capabilities for gathering data on meteor-

oids and orbital debris. He states that the same care used in handling LDEF

experiments during removal should be used when installing them before
launch. No anodized aluminum surfaces should be used, because they

contain nonmetallic impurities which complicate analysis. In addition,

collection systems which permit accurate impact time determination should
be included.

Memorandum, Michael Zolensky to LDEF 11 meeting attendees, December 1,
1992.

The International Journal of Impact Engineering publishes an article by Eric

Christiansen and Justin Kerr, JSC, titled "Mesh Double-Bumper Shield: a

Low-Weight Alternative for Spacecraft Meteoroid and Orbital Debris Protec-

tion." The MDB shield was first described by Christiansen in a 1990 paper

presented at the AIAA/NASA/DoD Orbital Debris Conference. They state

that, "The MDB shield was developed to demonstrate that a Whipple shield

could be 'augmented'... to substantially improve protection by adding a

mesh.., in front of the Whipple bumper and inserting a layer of high

strength fabric between the second bumper and the wall." Research in the

JSC HIT-F indicates that by using the MDB design a 30-70 percent weight

savings can be achieved without a corresponding loss in level of protection.

Eric Christiansen and J. H. Kerr, "Mesh Double-Bumper Shield: A Low-

Weight Alternative for Spacecraft Meteoroid and Orbital Debris Protection,"

International,lournal of lmpact Engineering, November 1992: Eric

Christiansen, "Advanced Meteoroid and Debris Shielding Concepts," AIAA
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paper 90-1336, Orbital Debri,w Technical Issues and Future Directions (NASA

CP 10077), Andrew E. Potter, editor, September 1992.

November 8 Cosmos 1508 is a 550-kg, 1.8-m octagonal satellite. It was launched into a

394-km-by-1943-km, 82.9-deg inclination orbit on November 11, 1983, to

carry out a minor military mission (possibly radar calibration, air density

measurements, electronic monitoring, or technology demonstration). On this

date the disused satellite passes within 300 m of the Mir space station, which

at this time is home to Soyuz-TM 15 cosmonauts Anatoli Solovyov and Sergei

Avdeyev. This is the closest known conjunction between an uncontrolled

satellite and a manned spacecraft.

TRW Space Log 1992, p. 28: Jos Heyman. SpacecraJ? Tables 1957-1990, p.

136: letter, Nicholas L. Johnson to Joseph P. Loflus, Jr., August 17, 1993.

December The British company Sira, working with Unispace and the Royal Greenwich

Observatory, completes a feasibility study as part of an ESA contract. The

company calls the study "the first step in the development of instruments to

detect and characterize debris in Earth orbit." It proposes ground-based and

space-based optical, infrared, and radar instruments for monitoring LEO and

GEO. The system would collect data on the sizes, shapes, densities, albedos,

spin rates, altitudes, and orbital inclinations of debris pieces. The four-phase

development program would require 3 years from inception to launch or
installation.

Tim Fumiss, "Spying on Space Debris," Flight International, December 23,

1992-January 5, 1993, p. 36.

December 2-9 On the STS-53 Space Shuttle flight, the orbiter Discovery carries the

ODERACS experiment. ODERACS comprises six spheres of different diam-

eters, made of aluminum or steel, which are to be deployed from a Get-Away

Special (GAS) canister in the payload bay. The experiment is meant to

provide calibration targets in LEO for ground-based radar and optical sys-

tems. Three of the spheres are highly polished ("specular") and three are

sand-blasted to a dull finish ("diffuse") so they can serve as Bond albedo

(reflectivity) calibration targets. After deployment at 256 km, the spheres will

be tracked using the Haystack radar and other U.S. radar and optical tracking

systems. The German FGAN radar and French, Japanese, Russian, and

Chinese tracking systems will also take part. Through no fault of its NCSU

student designers or the program staff under John Stanley, the door on the

GAS canister fails to open. The experiment is not powered up and the

spheres cannot deploy. The ODERACS experiment is subsequently resched-

uled for flight on the STS-60 mission in early 1994. On flight day 6 Discovery

avoids a large piece of orbital debris by changing velocity by 0.7 m/second

with an 8-second burn using the +X (aft) thrusters.

"'STS-53 Mission Report," NASA JSC, February, 1993, p. 4: "Orbital Debris

Radar Calibration Spheres" tcopies of transparencies), June 15, 1993: inter-

view. David S. F. Portree with John Stanley, June 21, 1993.
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December 17-18 A sixth Block DM auxiliary motor explodes. The ullage motor was part of the
Proton launch vehicle which inserted the Soviet Gorizont 17 domestic com-

munications satellite into GEO in 1989. Between 75 and 100 trackable pieces
are produced.
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B. V. Cherniatiev, eta/, "'Identification and Resolution of an Orbital Debris

Problem with the Proton Launch Vehicle," Orbital Debris Monitor, Vol. 6, No.

1. January 1, 1993, pp. 7-9.

1993
End of year launches reaching Earth orbit or beyond (since 1957) 3574
End of year satellites (objects in orbit) 7585 )

January 10-14

January 27-28

February4

In a paper presented at the Tenth Symposium on Space Nuclear Power and
Propulsion, planners of space nuclear power system operations state that it is

necessary to take into account the possibility of orbital debris collisions with

space nuclear power systems.

J. A. Shollis, et al, "U,S. Space Nuclear Safety: Pasl. Presenl, and Fulure,'"

presented at the Tenth Symposium on Space Nuclear Power and Propulsion,

Albuquerque, New Mexico, January 10-14, 1993.

JSC holds a meeting to evaluate in light of new Haystack radar data the SSF

orbital debris model NASA adopted in 1991. Representatives from XonTech,

JSC, Kaman Sciences, MSFC, AFSPACECOM, and other organizations attend

the meeting. They reach general consensus that

For the sizes of interest to SSF shielding designers (smaller than 3 cm), the

new Haystack observations fall within the expected uncertainty of the
1991 model.

For objects in the larger "mid-range and collision avoidance regime,"

Haystack provides "convincing evidence that the size [of the population]

of these objects has been overestimated.., perhaps by a factor of two."

However, this has little impact on SSF engineering considerations.

The uncertainty in projecting the future orbital debris environment re-

mains as high as before Haystack data became available, because "previ-

ously unmodeled sources of debris appear to be required to fully under-

stand the Haystack data." The participants conclude that Haystack data

should be gathered over a full solar cycle, and that the times and operative

modes of the radar, as agreed upon by NASA and USSPACECOM, might

require changing.

The participants recommend that the SSF program continue to use the orbital

debris environment model adopted in 1991. They acknowledge, however,

that some Haystack data point already to a need for the model's eventual

refinement. They resolve to continue their critical examinations of the exist-

ing model, using data not only from the Haystack radar, but also from the
LDEF, the Goldstone radar, and USSPACECOM.

Memorandum, Donald J. Kessler to George Levin, NASA Headquarters,

Februaw 6, 1993.

The Russian Progress-M 15 cargo spacecraft undocks and backs away from

the Mir space station complex after 3 months docked at its forward port.

Progress-M 15 deploys Znamya (Banner), a 20-m dia solar reflector, from its
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March

March

March

nose. It is billed as the world's first solar sail, but during this test it is used as

a soletta, reflecting sunlight down toward the Earth. The reflector completes

four orbits of the Earth in 5 hours, passing over Spain, France, Austria,

Poland, Belarus, Ukraine, Russia, Kazakhstan, China, Japan, and portions of

South America. It is then detached from Progress-M 15. It remains visible,

tumbling and sparkling, for 24 hours after the test, and is seen widely in
Canada. The mission manager for the Znamya experiment, Vladimir S.

Syromiatnikov, NPO Energia company, reports that the beam of light was
more diffuse than anticipated. He says, however, that the test was a success,

and that "I believe we can persuade our leaders to perform a second test very
soon.'" The area on the ground lit by Znamya at any one time measured 4 km
across.

Peler B. de Selding, "'Russians Deploy Reflector, Test Illuminating Idea," Space
News, February 8-14, 1993, pp. 3-21.

Researchers at the HIT-F complete tests begun in November 1992 on the

Stuffed Whipple meteoroid and orbital debris protection system (fig. 8). The

Stuffed Whipple, a hybrid of the MDB and MSS designs, is designed to

augment the baseline SSF Whipple shield. It comprises a layered blanket of

aluminum mesh, Nextel ceramic fabric, and Kevlar polymer, which would be

placed between the aluminum Whipple bumper and the aluminum backplate

(the SSF module pressure hull). Hypervelocity impact tests show the Stuffed

Whipple can meet or exceed the SSF orbital debris design requirements.

Inlerview, David S. F. Portree with Eric Christiansen. May 11, 1993.

The Space Debris Study Group of JSASS releases its final report. It describes

shuttle and spacesuit debris protection, impact tolerant designs, and debris
crater formation. It cites many ESA and NASA authors.

Space Debris Study Group Report, Space Debris Study Group, JSASS, March
1993.

The Midcourse Space Experiment (MSX) satellite is an SDIO vehicle. The

Space-Based Visible Experiment Principal Investigator team, lead by Michael

Gaposchkin of MIT-LL, is responsible for the satellite's many optical experi-

ments. This month Faith Vilas and Phillip Anz-Meador at JSC complete
designs for three MSX experiments with application to orbital debris studies.

The Debris Detection and Characterization experiment will search the region

around three fragmentation events - one each for LEO, GEO, and a highly

eccentric orbit. The Ram/Anti-Ram Debris Observations experiment will

search for debris ahead of and behind MSX, providing data for search strate-

gies for collision avoidance by spacecraft and space stations in Earth orbit.

The Resident Space Object Fragmentation experiment will observe a frag-
mentation event in LEO 24-48 hours after it is spotted by ground-based

USSPACECOM tracking systems, with the aim of characterizing the frag-

ments produced. MSX orbital debris experiments are constrained by the
requirements of the many other experiments on the satellite. For this reason

they will be aimed at targets of opportunity - they will not monitor the debris

9O
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Figure 8.

The Stuffed Whipple is a hybrid of the Multi-Shock Shield and Mesh Double Bumper protection

systems (see fig. 6). It is designed to augment the baseline Space Station Freedom Whipple

Bumpers. A "blanket" comprising multiple layers of aluminum mesh and ceramic fabric would be

unrolled between the aluminum bumper and the backplate (the spacecraft hull), probably after

Freedom deployment in orbit. NASA would thereby avoid any Space Station deployment delay

caused by a need to redesign its existing orbital debris protection. In addition, the blanket could be

rapidly tailored to take into account possible refined assessments of the debris environment. The

blanket would further break up impactors and capture most impactor and bumper pieces before

they could strike the spacecraft hull.
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1993

April

April 2-3

April 5

environment. The MSX satellite is scheduled for launch in August 1994. Its

mission is projected to last 4-5 years.

Note. Faith Vilas to Davis S. F. Porlree, December 6, 1993: interview, David

S. F. Porlree with Faith Vilas, December 7, 1993.

In the face of a mounting U.S. federal budget deficit, President William

Clinton calls on NASA to redesign SSF to reduce its costs. With the selection

of Option Alpha, the U.S. Space Station becomes smaller and more compact -

in theory a smaller target for orbital debris. In practice, Option Alpha may

contain greater risks as it lacks the "shadowing" common in earlier SSF

designs. That is, the critical components, such as crew modules, are not as

shielded against orbital debris impacts by less critical or more durable com-

ponents as they were in the SSF configurations. Late in the summer the U.S.

and Russia agree to combine the U.S. station and the planned Russian Mir 2

station. The new joint station will be placed in a 51.6-deg inclination orbit so

it is accessible to both U.S. and Russian spacecraft. Orbital debris poses a 15-

20 percent greater risk for a vehicle in a 51.6-deg inclination orbit than for one

in a 28.5-deg orbit (the original SSF inclination). If they are to operate at SSF

altitude, Mir 2 components might require shielding augmentation to bring

them up to the standards adopted by the U.S., Japan, and Europe for SSF

meteoroid and orbital debris shielding. A rigorous assessment will be re-

quired to determine the level of augmentation needed. At lower Mir 1

altitudes, such shielding is not as important. Mir 1 operates within the

"sensible atmosphere," meaning that debris approaching the station is bound

for rapid decay. This reduces the chances that its path will intersect the
station's on a future orbit.

Interview. David S. F. Portree with Donald J. Kessler, September 8, 1993:

interview, David S. F. Portree with Joseph P. Loflus, Jr., Seplember 9, 1993.

Representatives of ESA, NASDA, RKA, and NASA - in short, all the major

space powers - meet in Darmstadt for multilateral talks. The four agencies

agree to exchange technical information and experience in the context of the

Inter-Agency Space Debris Coordination Committee (IADC). Although the

IADC is new, this is designated the 9th IADC meeting. IADC grew from

previous bilateral and multilateral meetings between NASA and the other

agencies formed after the 1986 Ariane Vl6 breakup and the 1989 Interagency
Group (Space) Report.

NASA Management Instruction (NMI) 1700.8, "Policy for Limiting Orbital

Debris Generation," is published. It states:

NASA's policy is to employ design and operations practices that limit

the generation of orbital debris consistent with mission requirements
and cost-effectiveness.

The two-page document, which remains effective through this date in 1997, is

the first NASA-wide binding guidance on orbital debris mitigation. The NMI

fulfills a requirement of the U.S. National Space Policy (February 11, 1988).

"'Policy fl)r Limiting Orbital Debris Generation," NASA Management hlslruc-

lion 17(X).8, April 5, 1993: Guideline,_ and Assessment Procedures for Limiting

Orbital Debris, NSS 1740.14, August 1995.
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ESA holds the First European Conference on Space Debris in Darmstadt.
More than 250 orbital debris researchers from the U.S., China, Russia and the

other CIS countries, Japan, India, and a dozen other states attend. In a joint

statement, they conclude that the more than 7000 objects in Earth orbit do not

pose an immediate danger to human space activity, though measures must

be taken to keep the hazards from growing beyond safe limits. Because it is

neither technically nor economically feasible to clean up space, action must

be taken to prevent the creation of new debris. Furthermore, they declare

that any action can be successful only if it is implemented through interna-

tional cooperation. Victor J. Slabinski, of the Intelsat organization, presents a

paper called "Intelsat Satellite Disposal: Orbit Raising Considerations,"

which supports the position taken in the U.S. CCIR position paper of April

15, 1992, as well as the draft recommendation written by Loftus and submit-

ted at CCIR 4 on May 29, 1992.

Ibid: "First European Space Debris Conference." Spaceflight. Vot. 35, June

1993, p. 185: Victor J. Slabinski. Intelsat Spacecraft Disposal: Orbit Raising

Considerations." presented at the First European Conference cm Space Debris,

Darmstadt, Gemmny, April 5-7. 1993.

June The U.S. Congress inserts language into the FY 1994 NASA Authorization Bill

calling for U.S. government action on orbital debris. Specifically, section 309

mandates that "[tlhe Office of Science and Technology Policy, in coordination

with the National Aeronautics and Space Administration, the Department of

Defense, the Department of State, and other agencies as appropriate, shall

submit a plan to Congress within one year after the date of enactment of this

Act for the control of orbital debris." Section 309 also calls for the plan to

include "launch vehicle and spacecraft design standards and operational

procedures to minimize the creation of new debris" and "a schedule for the

incorporation of the standards into all United States civil, military, and

commercial space activities." Finally, it states that the plan "shall include a

schedule for the development of an international agreement on the control of
orbital debris."

FY 1994 NASA Authorization Bill, Augusl 4, 1993 version, p. 25

June Zhang Wen Xiang and Liao Shao Ying of the Chinese Launch Vehicle System

Design and Research Institute announce that the upper stage of the Long

March 4 rocket is being redesigned to make it less likely to explode in orbit.

Z. W. Xiang and L. S. Ying. "Analyzing the Cause of LM-4(A I's Upper

Stage's Disintegralion and the Countemleasure." presented at the Internatinnal

Space Conference of Pacific Basin Societies. Shanghai. China, June 6-9, 1993.

June During the Plenary Session of the U.N. COPUOS, the U.S. initiates a consen-

sus decision to place the orbital debris issue on the agenda of the U.N.

COPUOS Scientific and Technical (S & T) Subcommittee meeting scheduled

for February 1994.

Interview, David S. F. Portrce with Joseph P. Loftus, Jr., December 31, 1997.

June 1 The Monthly Notices of the Royal Astronomical Society publishes a letter by

Martin Beech and Peter Brown, graduate students at the University of West-

ern Ontario, on the possible danger of the 1993 Perseid meteor stream to
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Earth-orbiting satellites. They report that the geometry of Earth and the
comet which produces the Perseid stream, Swift-Tuttle, is such that meteor-
old flux could attain "storm" levels in 1993.

Interview, David S. F. Porlree with Mark Matney, November 21, 1997: "Impact

Possibilities on Artificial Satellites for the 1993 Perseid Meteor Stream,"

Monthly Notices of the Royal Astronomical Society, Vol. 262, L35-36 ( 1993 ).

June 21-July 1 On the STS-57 mission, the Space Shuttle Endeavour orbits Earth for nearly

10 days. It carries in the forward half of its payload bay the first Spacehab

module, a commercial space facility. Endeavour retrieves the Eureca satellite,

which carries the TiCCE, a British-built device for collecting orbital debris

particles. The MCC delays a planned maneuver by 45 minutes to avoid a

space object predicted to pass near the orbiter's 2-km-by-5-km-by-2-km
maneuver box. Endeavour's orbit is lowered after Eureca retrieval in accor-

dance with Flight Design Standard Ground Rule 4.2.4.2. Eureca meteroid and

orbital debris analysis begins in July.

Interview. David S. F. Portree with Michael F. Collins and Steven Slich.

August 17, 1993: "'Conjunction Summary for STS-26 through STS-85,"

memorandum with attachments. Stevcn Stich, DM32/Lead, Orbit Flight

Dynamics Group. September 17. 1997.

June 22 Larry Petro of the Space Telescope Science Institute issues a recommendation

that HST be oriented to shield sensitive systems and present a minimal cross-

section during the upcoming passage of Earth through the Perseid meteor

stream. He cites the Brown and Beech letter in the Monthly Notices of the Royal

Astronomical Society. The institute adopts Petro's recommendation in July.

Interview, David S. F. Portree with Mark Matney, November 21. 1997: "'The

Persekl Meteors - 1993, a Chronology of Our Involvement," presentation

materials, no date.

July 12-13 ESA and RKA meet at TsNIIMash, outside Moscow, to exchange and review

information on orbital debris. V. I. Lukyashchenko is meeting chair, and

many important figures in European and Russian orbital debris work attend.

The sides review the draft IADC Terms of Reference. Other presentations

cover ESA's log of GEO objects, Russian debris models, and debris mitigation

techniques of the Proton, Zenit, and Ariane launchers. Participants visit

TsNIIMash's light-gas gun used for hypervelocity impact experiments.

"Notes on the RKA/ESA Space Debris Coordination Mtg., Tsniimash,

Kaliningrad/Moscow. Russia," July 12-13, 1993.
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July 29 On this date officials of the Space Shuttle Program at NASA JSC teleconfer-

ence with other NASA centers to discuss the possible threat the Perseid

meteor stream poses to STS-51. The meeting was called by Shuttle Program

Manager Brewster Shaw at the urging of Joseph Loftus. Discovery is sched-

uled to be in orbit August 11-12, during a possible meteor storm in which as

many as 100,000 meteors/hour could strike Earth. According to Donald

Kessler, in the worst case the risk of a meteoroid impact damaging the
Shuttle could double during the possible Perseids storm, from 1 in 1000 to 1

in 500. Storm meteoroids averaging 0.1 mm in diameter could impact at
greater than 70 km/second. Orbital debris moves at 10-12 km/second and

normal micrometeoroids move at an average speed of 20 km/second. On July
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30 Space Shuttle Program management elects to delay the STS-51 launch until

after the peak of the Perseids shower.

Interview, David S. F. Portree with Mark Malney, November 21, 1997: "'The

Perseid Meteors - 1993, a Chronology of Our Inw_lvemenl," presenlation

materials, no date: "'Approaching meteors scultle shuttle launch." Houston

Chronicle. July, 31, 1993. p. 14A.

NASDA forms an in-house space debris working group.

Perseids storm occurs, though not with the ferocity originally predicted.

Nevertheless, cosmonauts on Mir report 100 significant hits on the station.

ESA's experimental Olympus satellite, launched into geosynchronous orbit

on July 12, 1989, began to tumble late on August 11,just prior to the pre-

dicted peak. The precise cause of the satellite's failure is unknown. Olympus

was experiencing technical problems prior to this, but an impact is deemed a

possible "straw that broke the camel's back." A worldwide monitoring effort
accumulates data on the effects of the stream to predict and manage re-

sponses to future events.

Interview, David S. F. Portree wilh Mark Mamey, November 21, 1997:

"Olympus and lhe Perseids - An Encounter?" R. Douglas Caswell, Olympus

Spacecraft Manager, presentation materials, NASA Leonid Meteor Shower

Working Group Meeting, May 8-9, 1997.

The Committee on Space Debris of the National Research Council's Commis-

sion on Engineering and Technical Systems, Aeronautics and Space Engineer-

ing Board, meets for the first time in Washington, D.C. The meeting launches

the study effort which culminates in the NRC's report Orbital Debris: A

Technical Assessment (1995). The purpose of the study is to

• characterize the debris environment

• "project how this environment might change in the absence of new mea-

sures to alleviate debris proliferation"

• "examine ongoing alleviation activities and existing space law pertaining

to the debris problem"

• "explore measures to address the problem, including further research on

debris monitoring and modeling, and methods to minimize debris genera-
tion"

• develop recommendations on technical and engineering methods to

address the problems of debris proliferation

Retired TRW chief of engineering George Gleghorn is study chair. Interna-

tional orbital debris experts form the study's steering committee, including

Walter Flury. ESA/ESOC; Nicholas Johnson, Kaman Sciences: Donald

Kessler, NASA JSC; Dietrich Rex, TUBS: Susumu Toda, National Aerospace

Laboratory of Japan; and Stanislav Veniaminov, SRC Kosmos.

Interview, David S. F. Portree with Nicholas Johnson, November 15. 1997:

interview, David S. F. Portree with Donald Kessler, November 25, 1997:

Bri@'ng Book: Committee ot_ Space Debris Workshop, November 18-23, 1993.
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September

September

September 7

October

October 16-22

Cosmic Background Explorer (COBE) was launched in November 1989. In

January the satellite began producing debris objects non-catastrophically

(that is, without an obvious debris-producing event). By this month, with the

satellite in a 900-km circular orbit at 99 deg of inclination, U.S. Space Com-

mand catalogues 33 debris pieces. The debris decays from orbit more rapidly

than the spacecraft, rocket body, and two pieces of operational debris. One

theory is that the new debris objects are fragments of insulation: however,

COBE experiences neither temperature changes nor other obvious changes in

its systems, and decay is not as rapid as would be expected if the debris were

insulation, which typically has a large area-to-mass ratio.

"Breakup in Review: COBE,'" Nicholas Johnson, Orbital Debris Monitor,
October 1993, pp. 16-18: interviev< David S. F. Porlree with Dc,nald Kessler.
November 25. 1997.

JSASS forms committee on space debris prevention design standards at

request of NASDA.

The Program Implementation Plan for the International Space Station (ISS),

published on this date, declares that the "design and operation of the Space

Station will provide a probability of no catastrophic failure from impact of 95

percent over a 10-year period. This performance is based on a corresponding

requirement for a probability of no penetration of 90 percent over a 10-year

period."

Orbital Debris Monitor, Vol. 6(4l, October 1993.

Acta Astronautic& the Journal of the IAA, publishes a "cosmic study" on

orbital debris prepared by "an ad hoc expert group" of the IAA Committee on

Safety, Rescue, and Quality. Its purpose is to

• "make clear how significant and severe the continued deposition of orbital

debris into the near Earth environment is to the future use of space for all
humankind"

• "provide some clear guidelines as to how the international community

might wish to proceed in order to combat this growing space environmen-
tal hazard"

• "extend discussion of the debris issue by other international groups_r-=..to

begin to formulate international agreements on this topic"

Members of the ad hoc group include Darren McKnight, Kaman Sciences, co-

chair; Walter Flury, ESA/ESOC, co-chair: Vladimir Chobotov, The Aerospace

Corporation: Nicholas Johnson, Kaman Sciences; Joseph Loflus, NASA JSC;

Lubos Perek, Astronomical Institute CSAV: Dietrich Rex, TUBS: and A. A.

Sukhanov, IKI. The study is adopted as a position paper of the IAA in 1995.

Acta Astronautica, Vol. 31, Oclober 1993, pp. 169-191.

The 26th annual Space Safety and Rescue symposium is held in conjunction

with the 44th International Astronautical Federation conference in Graz,

Austria. Paper topics include a summary of the First European Conference on
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Space Debris; the DISCOS European space debris database; progress on the

NASA orbital debris safety standard ("the orbital debris handbook"): colli-

sion avoidance; orbital debris environment predictions: and the IAA orbital

debris position paper. The IAA subcommittee on space debris meets for the
first time.

Orbital Debris Monitor. Vol. 7(4), January 1, 1994: Space SaJbty aml Rescue

1993. Gloria Heath. editor, AAS Science and Technology Series. Vol. 87. 1996.

October 18 The 1.8-ton Cosmos 1484 Meteor-Priroda remote-sensing salellite reached a

593-by-661-km sun-synchronous orbit at 98 deg of inclination on July 24,

1983. The satellite failed in February 1984 and decayed by this date to 549 by
596 kin. On this date, at an altitude of 560 km over the Java Sea, the satellite

undergoes highly energetic breakup. Orbital periods of debris pieces increase

by up to 14 minutes. Within a month, U.S. Naval Space Command detects

over 100 fragments, of which 15 are officially catalogued by mid-December.

Following this detonation, Haystack data indicates a two-fold increase in 7-
mm-to-l-cm debris between 450 km and 550 km.

Orbital Debris Monitor, Vol. 7(l). January l, 1994: "'Orbital Debris Damage,"

presentation materials, Eric Christiansen. May 10, 1996.

October 25-26 The 10th IADC meeting at TsNIIMash in Kaliningrad, Russia, produces

Terms of Reference for governing IADC activities. The terms specify that

IADC will consist of a steering group made up of representatives of each

member plus the following working groups: Working Group 1 - Measure-

ments: Working Group 2 - Environment and Database: Working Group 3 -

Protection: and Working Group 4 - Mitigation. The IADC's structure is

designed to foster coordinated international research into debris issues.

October 29 The Unit for Space Sciences of the University of Kent reports that the

Olympus satellite might have been damaged when a Perseid meteoroid

impact generated plasma around and within the spacecraft, producing short-

circuiting in electronic components. ESA shut off Olympus on August 31

after depleting the spacecraft's fuel by lowering it 16 km below geosynchro-
nous orbit.

The Olympus Satellite Amm_aly: H37_ervelocity Impact Effects and Meteoroid

Collision Assessment, Urtit for Space Sciences, University of Kent, October 29,

1993: "Olympus and the Perseids - An Encounter':" R. Douglas Caswell,

Olympus Spacecraft Manager, presentation materials, NASA Leonid Meteor

Shower Working Group Meeting, May 8-9. 1997.

November 8-12 The Third LDEF Post-Retrieval Symposium in Williamsburg, Virginia,

includes 140 papers, of which 33 cover meteoroid and orbital debris effects

on LDEF. The proceedings state that, while LDEF provided a "benchmark"

for future space environmental effects studies, the symposium marks "the

transition from focusing solely on a single spacecraft (LDEF) and its exposure

to low Earth orbit, to focusing on a broad approach to study the space envi-

ronment and its effects." For example, the symposium includes nine papers

on preliminary analysis of the European Eureca satellite.

LDEF - 69 Months in Space, Third Post-Retrieval Symposium, NASA Confer-
ence Publication 3275. Parts 1 and 2, 1993.
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November 17-23

December 1

December 2-13

The NRC's Committee on Space Debris holds its second meeting at the

National Academies of Sciences and Engineering Beckman Center in Irvine,

California. The Executive Committee session occurs November 17: report

planning and writing sessions occur November 21-23. A workshop with

briefings and plenary sessions takes place November 18-20. Representatives

attend from NASA JSC, NASA Headquarters, ESA, NPO Energia, TUBS, the

Embassy of India, the U.S. Air Force and U.S. Navy Space Commands,
Canada's Department of Justice, Kaman Sciences, China Great Wall Indus-

tries, Inc., the U.S. Air Force Phillips Laboratory, Japan's National Aerospace

Laboratory, and other international industrial, government, and research

organizations.

Interview, David S. F. Portree with Donald Kessler, November 25. 1997:

Briefing Book: Committee o_ Space Debris Workshop, November 18-23, 1993.

The German FGAN radar observes the Cosmos 1484 spacecraft, which under-

went an energetic debris-producing event on October 18, but provides few

new clues to the breakup's cause. Results indicate that the spacecraft is

spinning every 70 seconds but remains largely intact. The USSPACECOM

database contains no conjunctions, so collision with a tracked space object is

not a likely breakup cause. The spacecraft contained three stored energy
sources - four small tanks covered by 40 to 50 layers of foil insulation rated to

120 atmospheres burst pressure but only pressurized to one atmosphere: bus

pressurized at 0.6 atmospheres: and Ni-Cad batteries in thin aluminum cases.

Orbital Debris Monitor, Vol. 7( 1), January, 1, 1994.

During STS-61, the first HST servicing mission, the Cosmos 1441 satellite

conjuncts three times with Space Shuttle Endeavour. On December 5, EVA

astronaut Kathy Thornton manually jettisons the damaged 160-kg starboard

solar array, which could not be rolled shut as planned for return to Earth. The

partially closed array remains in orbit at a high altitude despite early reports

that it would reenter quickly. The Wide Field and Planetary Camera, port

solar array, and other HST parts are returned to Earth for meteoroid/orbital

debris analysis.

Memorandum with attachments, Steven Stich, DM32/Lead, Orbil Flight

Dynamics Group, "Conjunction Summary for STS-26 through STS-85."

September 17. 1997: Walking to Olympus: An EVA Chrottology, David S. F.

Portree and Robert C. Trevino, Monographs in Aerospace History #7, NASA

Headquarters, October 1997, p. 1(12.

1994
End of year launches reaching Earth orbit or beyond (since 1957) 3663
End of year satellites (objects in orbit) 7774 )
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January 25 The Clementine spacecraft, also known as Deep Space Program Science

Experiment 1, launches on a U,S. Air Force Titan II missile modified to serve

as a space launcher. Clementine, the first in a planned series of technology

demonstration missions jointly sponsored by the Ballistic Missile Defense

Organization and NASA, is the first U.S. lunar explorer since 1972. The

residual propellant vent on the Titan II's 3300-kg upper stage is locked shut

because stage instability caused by venting had contributed to the failure of a
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NOAA Landsat spacecraft in October and there was insufficient time to

repair the problem before Clementine's scheduled launch. About 196 kg of

oxidizer and 26 kg of fuel are left on board. On February 7, the stage ruptures

245 km over the South Atlantic, creating several hundred debris pieces. After

some initial concern, the breakup is determined to pose little threat to STS-60,

in orbit at this time. The breakup has only a short-lived effect on the debris

environment and none of the fragments are catalogued. The Titan II's

interstage adapter is left in a 259-km-by-296-km orbit at 67.2 deg of inclina-
tion. It carries the Orbital Meteoroid and Debris Counter, a 0.5-kg, $200,000

experiment that operates until the adapter reenters in May 1994.

Orbital Debris: A TechnicalAssessment, National Research Council, 1995,p.
48: Orbital Debris Monitor. Vol. 7(2)April 1, 1994.

February 3-11 On STS-60 Sergei Krikalev becomes the first Russian cosmonaut to launch
aboard a U.S. spacecraft. The mission is also the first successful ODERACS

flight. On February 9, Discovery's crew successfully deploys six ODERACS

spheres. One two-inch sphere is polished stainless steel; the second is sand-
blasted stainless steel. One four-inch and one six-inch sphere are sand-

blasted aluminum, and one four-inch and one six-inch sphere are chrome-

plated aluminum. The Haystack radar collects data in April and June 1994 to
calibrate its principal polarization channel. The ODERACS spheres reenter
between October 2, 1994 and March 3, 1995. Results of this and the second

successful ODERACS flight experiment (February 1995) yield improvements

in orbital debris tracking software and calibration techniques.

"Low Earth Orbit Debris History 1990-1994,'"Thomas J. Settecerri and Eugene
Stansbery, Space Forum, Vol. 1, No. 1-4. 1996, pp. 63-82: Radar and Optical
G1wundMeasurements Final Report - Orbital Debris Radar Calibration
Spheres (JSC 2724[ I,G. H. Cress, et al, June 1996.

February 8 The transtage of the Titan rocket that launched the IDCSP 3-1 satellite on July

1, 1967, undergoes an energetic event that produces a change in its orbital

period. No fragments are detected, but the event probably generated small
debris.

Orbital Debris Monitor, Vol. 9(1), Janua_' 1, 1996:"Debris in Geosynchronous
Orbits," Antonio F. Pensa, G. Edward Powell, Eugene W. Rorik, and
Ramaswamy Sridharan, Space Forum, Vol. 1, No. 1-4, 1996: special issue-
proceedings of the Ist International Workshop on Space Debris, Oclnber 1995,
pp. 23-37.

February-March The topic of space debris appears on the agenda of U.N. COPUOS S & T
Subcommittee as a separate item for first time, largely through the efforts of
the IADC countries. NASA Orbital Debris Program manager George Levin

formally moved to place the item on the agenda. According to Dietrich Rex,
who became Chairman of the S & T Subcommittee in 1996, "all delegations

welcomed the new agenda item and emphasized its importance." The U.S.
and Russia had vetoed including orbital debris on the S & T Subcommittee

agenda as a formal item up to this point because both wanted to gather
additional data to permit informed decisions on orbital debris policy and

avoid potentially uninformed inputs from and decisions by non-spacefaring
nations. The late 1980s and early 1990s saw a "satellite proliferation," how-
ever, so the topic was placed on the S & T Subcommittee agenda as part of
orbital debris educational efforts.
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"'The Role of the Scientific & Technical Subcommittee of UN-COPUOS for lhe

Space Debris Work of the United Nations," Dietrich Rex: interview, David S.

F. Portree with Joseph P. Loftus, Jr., December 31, 1997.

March The HAX radar begins collecting orbital debris data. HAX was developed

from surplus communication antennas and uses the Haystack control and

data systems. The radar, which became operational in 1993, collects 371 hours

of data in FY 1994. HAX, which stares at zenith, is less sensitive than Hay-
stack, but has a wider of field of view so can collect more data.

Measurements of the Orbital Debris Environment: Conq_arisolt :_the

Haystack and HAX Radars, JSC-27971, T. J. Settecerri and E. G. Stansbery,

August 1997: Haystack Radar Measurements of the Orbital Debris Environ-

merit: 1994-1990, JSC-27842, T. J. Settecerri, E. G. Stansbery, J. N. Opiela.

and R. Henderson, May 1997.

March-September The British National Space Center (BNSC), DARA, CNES, and Italy's Agenzia

Spaziale Italiana (ASI) hold a series of meetings with ESA to identify national

facilities of use in orbital debris research and to develop a common European
policy on orbital debris mitigation.

March 10 The Small Expendable Deployer System (SEDS)-2 was launched on March 5

attached to the upper stage of a Delta II. Upon arriving in 327-km-by-331-km

orbit at 32.3 deg inclination, SEDS-2 pays out a 20-km-long, 0.75-mm-diam-

eter tether with a 25-kg end weight/payload. At the tether's full length of 20

km, it has a cross-section area of 15 sq m and a surface area of 47 sq m. On

this date the tether breaks, leaving the SEDS-2 deployment system and upper

stage trailing a 7-km tether with a total area large enough to be seen by the
naked eye from the Earth's surface. Kwajalein Atoll's 1.5-m telescope photo-

graphs the tether on March 19. An orbital debris collision with the tether is

proposed as a cause for the break: another theory is that the tether was

weakened by interaction with atomic oxygen, though the break might have

happened too soon after launch for atomic oxygen to have been a significant

factor. Donald Kessler first noted the vulnerability of tethers to orbital debris
and meteoroids in 1984, when he predicted that a 20-km aluminum tether 1

mm across will be cut by an impact within an average of 3 weeks. The SEDS-

2 tether and upper stage decay rapidly because they have a large area-to-
mass ratio, and reenter on May 8, 1994.

Interview, David S. F. Portree with Joseph P. Loftus, Jr., December 31, 1997:

interview, David S. F. Portrce with Donald Kessler, November 25, 1997:

"'Tether Sever Rate from Meteoroids and Debris," memorandum, Donald

Kessler to Jim McCoy, August 20. 1984: Orbital Debris: A Techmcal

Assessment, National Research Council, 1995. p. 97.

1(_)

March 21 An ISS Analysis Integration Team meeting on this date is the setting for a

disagreement between Russia and the U.S. over the ISS orbital debris envi-

ronment model. The Russian Space Agency expresses a desire to apply its
own, less stringent requirements to its modules, but is convinced to use the

1991 NASA model after Donald Kessler briefs Russian ISS manager Vladimir

Solovyov on the methods and data used to derive it. Russian requirements

were based on experience with the Salyut 6, Salyut 7, and Mir stations, which

presented less cross-sectional area than ISS. In addition, past Soviet stations

have operated at altitudes lower than ISS; so low, in fact, that debris tends to

be nearing reentry and thus does not persist in posing a threat to the station.



April 9-20

May 12-14

June14

June 26-27
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Interview, David S. F. Ponree with Donald Kessler, November 25, 1997:

interview, David S. F. Portree with Joseph P. Lol'tus, Jr., December 3 l, 1997.

During the STS-59/Space Radar Laboratory-1 mission, mission requirements

dictate that Space Shuttle Endeavour's attitude not be controlled to avoid

orbital debris impacts on its windows. Endeavour encounters a paint chip,

suffering a window ding 1.2 cm across. The window is replaced upon return
to Earth.

"'Orbital Debris Damage," presentation materials. Eric Christiansen, May 10,
1996.

Japen hosts the 1 lth IADC meeting at Tsukuba Space Center. The meeting's

sixty-five participants hear opening remarks by Susumu Toda, National

Aerospace Laboratory. NASA Orbital Debris Program manager George Levin
presents photographs of the frayed Tethered Satellite System- 1 Reflight (TSS-

1R) tether, believed by many to have been cut by a meteoroid or orbital

debris impact. ESA's Walter Flury reveals that Eureca postflight analysis
found a 6-mm impact pit. Russia is not fully represented at this IADC. On

May 12, Working Groups 1, 2, and 4 meet in a joint session chaired by An-

drew Potter, NASA JSC, to discuss "topics of common interest." These in-
clude international cooperation on GEO observations: an international data-

base of spacecraft failures and anomalies: HST solar array impact study

results; reports on the ODERACS and Pion radar calibration experiments:

correlation of the SSN and Russian SSS catalogs: the status of ESA 1-m Zeiss

orbital debris telescope: and other topics. Working Groups 1, 2, and 3 meet
jointly on May 13 to discuss NASDA hypervelocity impact testing: breakup

of the Clementine Titan II upper stage; the NASDA GEO reorbit policy: ITU

reorbit requirements: orbital debris issues associated with geosynchronous

transfer orbits; and other topics.

"Min. of the 1 lth IADC Mtg., May 12-14, 1994." memorandum with attach-
ments, Susumu Toda to Distribution.

An industrial consortium led by Unispace Kent of Britain, and consisting of

Space Applications Services of Belgium, Mare Crisium of Britain, ONERA/

DERTS of France, and the C. Maag Company of the U.S. presents the Final
Presentation of the Eureca impact study begun in July 1993. An interim

report issued in March stated that Eureca surfaces reveal eight times more
damage than expected from meteoroid and/or orbital debris. The consortium

reports that no functional failures on Eureca were caused by impact: the front

of the solar arrays suffered 30 percent (about 1000) of the total impacts,

indicating impactor direction of origin: and the largest crater found measures
6.4 mm across.

Orbital Debris Monitor, Vol. 7(4L October [. 1994.

As part of the 30th Joint Propulsion Conference in Indianapolis, Indiana, a

Solid Rocket Motor (SRM) aluminum slag production workshop is held. In

their report, workshop participants write that SRMs burning aluminum
perchlorate propellant produce aluminum oxide and small amounts of

unburned aluminum metal as by-products, Liquid metal forms a ring around
the recessed base inside the SRM nozzle until no more can fit, then breaks
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July 14

August

August

September

loose, leaves the nozzle, and contributes aluminum slag fragments to the
orbital debris environment.

WorkshopReport: Modeling of Slag Generation inSolid Rocket Motor_, M.
Salita, 3(IthJoint Propulsion Conference, Indianapolis, Indiana.

The "Scientific Meeting on Space Debris" at COSPAR XXX in Hamburg,

Germany, is the first orbital debris meeting sponsored by both COSPAR and

the IAA. The meeting consists of two sessions - "measurements and

modelization of space debris and meteoroids" (chair, Eugene Stansbery,

NASA JSC: referee H. Klinkrad, ESA/ESOC), and "modelization and protec-

tive measures for the particulate environment" (chair, J.A.M. McDonnell:

referee Robert Reynolds, Lockheed) - and includes eight invited papers, 13

contributed papers, and four posters.

Advances in Space Research. Space Debris, Waller Flury, editor, Vol. 16,
Number 11, 1995.

Last in a series of five GEO debris observing runs performed at Mt.

Haleakala, Maui, Hawaii, by David Talent, Andrew Potter, and Karl Henize

(until his death in 1993). The series, which began in December 1992, accumu-

lated 13,516 CCD images in 252 hours over 42 nights. At least one object

appeared in 26.7 percent of the 6758 fields observed. Of these, 208 objects did
not correlate with any known satellite.

DavidTalent, Andrew Potter,and Karl Henize, "A Searchlot Orbital Debris in
GEO," Proceedings of theSecond Eurat)ean Conference on Space Debris, ESA
SP-393, May 1997,pp. 99-104.

At its 66th conference in Buenos Aires, Argentina, the International Law

Association adopts a draft International Instrument on the Protection of the

Environment from Damage Caused by Space Debris (the "Buenos Aires Instru-

ment"), which was drafted by its Space Law Committee. The convention

contains no technical means to mitigate debris creation, nor does it amount to

policy or taw. The association commenced study of orbital debris legal issues
in 1986.

Space Polic?v,February 1996,pp. 82-84; Orbital Debris: A Technical Assess-
merit,National Research Cnunci[, t995, p. 187.

NASA orbital debris scientists discuss with a Russian representative to the

IADC the possibility that sodium potassium (NaK) liquid metal coolant

escaping from Bouk reactors in Russian RORSAT satellites is the source of 1-

cm debris observed by the Haystack, Goldstone, and Arecibo radars between

850 and 1000 km and at about 725 km. The Russian representative reports

after discussions with the RORSAT Chief Designer that RORSATs contain no

small particle sources, and suggests that the radars are detecting uranium

fuel rod fragments. On October 4, the RORSAT Deputy Chief General De-

signer confirms that NaK serves as RORSAT coolant, and that NaK droplets

can be released when the fuel rods are ejected after reboost to neutralize the
RORSAT reactor.

The Seatx'hJbra Previously Unknown Source of Orbital Debris: The Possibil-
it.vof a Coolant Leak in Radar Ocean Reconnaissance Satellites, D. J. Kessler.
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September 21-23

October 9-14

November

November 3-14

December 13-14

1995

1994-1995

M. J. Matney, R. C. Reynolds, R. P. Bernhard. E. G. Stansbery, N. L. Johnson,

A. E. Potter, D. Anz-Meador, JSC-27737, NASA JSC, February 21. [997:

interview, David S. F. Portree with Donald Kessler, November 25, 1997.

The First European Space Debris Course at the University of Kent, United

Kingdom is sponsored by Century Dynamics, the Defense Research Agency

of the United Kingdom, ESA, Kaman Sciences Corporation, Matra Marconi,

Space Guard of Australia, TUBS, the University of Kent, and the University
of Utrecht.

Orbital Debri,s Monitor, Vol. 7[4), Oclober I. 1994.

Orbital debris papers dominate the 27th annual Space Safety and Rescue

symposium of the IAA held in conjunction with the 45th International Astro-

nautical Federation meeting in Jerusalem, Israel. Topics include CNES debris

modeling activities; fragmentation of Russian upper stages in LEO: orbital

debris minimization design; ESA's Meteoroid and Space debris Terrestrial

Environment Reference (MASTER) debris model; and efforts to reduce debris

produced by the Zenit rocket. A special session, including three papers,
focuses on orbital debris and satellite constellations. The IADC Steering

Group, meeting in conjunction with the IAF, agrees to invite China to join the

IADC. The China National Space Administration officially accepts IADC

membership in July 1995.

Space Safety and Re,search 1994, Gloria Heath, editor, AAS Science and

Technology Series, Vol. 88, 1996.

Donald Kessler proposes an orbital debris environment "Intermediate
Model" which lowers overall debris flux by a factor of 2, but shows that

simple, meaningful environment models are no longer possible.

Interview, David S. F. Portree with Donald Kessler. November 25, 1997.

During the STS-66 ATLAS 3 atmospheric science mission, orbiter Atlantis

conjuncts twice with ODERACS spheres within the 5-km-by-25-km-by-5-km
alert box.

Memorandum with attachments, Steven Stich, Lead, Orbit Flight Dynamics

Group, "Conjunction Summary lbr STS-26 through STS-85," September 17,

1997.

The FGAN (Germany) and Fylingdales (United Kingdom) radars and Royal
Greenwich Observatory (United Kingdom) and Zimmerwald (Switzerland)

optical systems conduct a 24-hour LEO debris measurement campaign.

End of year satellites (objects in orbit)

End of year launches reaching Earth orbit or beyond (since 1957) 3738*
7868

January-February

*Fewer launches took place this year than in any since 1963.

Kaman Sciences and the Center for Program Studies, Russian Academy of

Sciences work together under contract to NASA JSC to refine and expand a

103



104

1995

February 3-11

list of Soviet/Russian satellites known or suspected to have broken up in

Earth orbit. The two main objectives of the study are to

• identify Russian/Soviet breakups unknown in the West

• collect data for improved modeling of the near-Earth space environment

A U.S. list of breakups provided by Kaman in October 1994 was supple-

mented in December by a preliminary Russian list of 131 satellite breakups.

This is subsequently expanded to include 142 breakups, two of which are not

considered breakups by the U.S. After discussions to resolve discrepancies,

Kaman consolidates the lists and analyzes breakup causes. The company

finds that the most common cause (48 breakups) is deliberate self-destruc-

tion. While Soviet/Russian satellites are involved in about two-thirds of all

known breakups, fragments from these satellites account for only 17 percent

of the catalogued Earth satellite population still in orbit. The database be-

comes the basis for the common debris event list maintained by IADC Work-

ing Group 4.

"'History of Soviet/Russian Satellite Fragmentations - a Joint U.S.-Russian

Investigation," Nicholas Johnson, Grigoriy Chemyavskiy, and Nikolai

Morozov, Space Forum, Vol. 1, No. 1-4, 1996, pp. 95-102.

The STS-63 astronauts deploy ODERACS II spheres and dipoles from

Discovery's payload bay on February 5 to calibrate ground-based orbital

debris radars. The three spheres measure two, four, and six in across, respec-

tively. Two of the dipoles measure 5.255 in long by 0.040 in wide, while a

third measures 1.740 in by 0.040 in. This experiment and the first successful

ODERACS experiment (February 1994) yield improvements in orbital debris

calibration techniques and tracking software. The ODERACS II spheres and

dipoles decay from orbit between February 27, 1995, and September 29, 1996.

On February 6, Discovery performs a fly-around of the Mir space station,

during which the orbiter crew performs Development Test Objective (DTO)

1118, a photographic survey of the station's exterior using hand-held 35-ram
Nikon and 70-ram Hasselblad cameras, which reveals features as small as 2

or 3 mm across. The payload bay cameras suffice for larger features. DTO

1118 is designed as an ISS risk mitigation activity with objectives that include

• providing NASA engineers with assurance of crew and orbiter safety

while in Mir's vicinity

• assess Mir's overall condition

• study the effects of the space environment on a long-duration space
vehicle

• understand the impact of attitude control jet plume impingement during

proximity operations

The astronauts snap 655 35-mm photographs and 355 70-mm photographs.

"Photographic surveys of the Mir space station and the detection of orbital

debris and meteoroid impacts," Mike Gaunce, Robert ScharL Nicholas Johnson.
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February 9

Early March

March 2-18
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Eric Christiansen; paper presented at SPIE International Symposium on Optical

Science, Engineering, and Instrumentation, Conference on Characteristics and

Consequences of Orbital Debris and Natural Space lmpactors II, July 27- Aug

1, 1997, San Diego, California. Radar altd Optical Ground Measuremem_

Final R¢7_ort - Orhital Debris Radar Calibratioa Sphere,s (JSC 27241 ). G. H.

Cress, el al, June 1996.

The Scientific & Technical Subcommittee of U.N. COPUOS holds its 32nd

session. Walter Flury of ESA makes available to the subcommittee the IAA

position paper on orbital debris. The subcommittee adopts a multi-year work

plan with a different focus assigned to each year.

1996: Orbital debris environment measurement

1997: Modeling the orbital debris environment and risk assessment

1998: Orbital debris mitigation

1999: Aggregation of data

According to the multi-year plan. after 1999 discussions may commence on a

U.N. plan of action for dealing with orbital debris, assuming that consensus
is achieved.

"The Role of the Scientific & Technical Subcommittee of UN-COPUOS for the

Space Debris Work of the United Nations," Dietrich Rex: interview, David S.

F. Portree with Joseph P. Loftus, Jr., December 3 l, 1997.

The ITU releases regulatory standard ITU-R S. 1003, "Environmental Protec-

tion of the Geosynchronous Orbit." The Standard declares, among other
things, that GEO satellites should reorbit to an altitude 300 km above GEO

plus 1000 times the area-to-mass ratio.

ITU-R S. 1003, "Environmental Protection of the Geosynchnmous Orbit,"

Februar 3, 9, 1995.

Los Alamos National Laboratory determines that NaK escaped from

RORSATs is the probable source of increased 1-cm orbital debris at altitudes

between 850 km and 1000 km and at about 725 km. The laboratory deter-
mines that micrometeoroid penetrations of radiator surfaces is probably not

the cause of leaks allowing the NaK to escape. A total of 15 Bouk RORSAT

reactors have been boosted to graveyard orbit since Cosmos 1176 in 1980,

each with the potential for spilling five liters of NaK from its cooling loop.

This would place 70 kg of NaK droplets between 850 km and 1000 km and

five kg at 725 kin, quantities in accordance with Haystack and Goldstone
radar data.

The Search for a Previoush' Unkmm'n Source eg'Orbital Debris: The Possibil-

io' _/'a Coo/am Leak in Radar Ocew_ Recomzaisaance Sawllite,_. D, J. Kessler,

M. J. Matney, R. C. Reynolds, R. P. Bernhard, E. G. Stansbery, N. L. Johnson,

A. E. Potter, D. Anz-Meador. JSC-27737, NASA JSC, Eebruao' 21, 1997:

interview, David S. F. Portree with Donald Kessler, November 25, 1997.

On STS-67, orbiter Endeavour carries the ASTRO 2 ultraviolet astronomy

payload. The Japanese Space Flyer Unit (SFU) was scheduled to launch on

March 15 on an H-2 rocket into an orbit similar to Endeavour's, creating a
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March 8-10

June 14

potential Collision on-orbit Avoidance (COLA) issue. Because of technical

problems, NASDA postpones the launch until March 18. The orbiter is

planned to return to Earth on March 17, but is waved offfor 24 hours. Talks

between Japanese and U.S. mission operations officials resolve the renewed

COLA issue. NASDA agrees to launch SFU no earlier than 6 minutes into its

launch window to prevent the spacecraft and its streamlined payload fairing
from approaching Endeavour any closer than 200 kin. SFU is launched into a

Shuttle-type orbit because it is scheduled to be retrieved by Endeavour early
in 1996.

Intervie;_. David S. F. Porlree with Joseph P. Loflus.Jr., December 31, 1997:
e-rnail from Donald Pearson,NASA JSC MissionOperations Directorate.
March 2, 1998.

The IADC holds its 12th meeting in Houston. China participates as an ob-

server. Working Group 1 (Measurements - A. Potter, chair) includes presenta-

tions on discrepancies between data sets collected by the U.S. Haystack and
German FGAN radars and results of examination of HST and Eureca re-

turned surfaces. Working Group 2 (Modeling - S. Veniaminov, chair) in-

cludes presentations on the NASA EVOLVE and ESA CHAIN and MASTER

models; exchange of U.S. and Russian satellite catalogues; and the RORSAT

NaK issue. Working Group 3 (Protection - H. Heusmann, chair) includes

presentations on the Shuttle and debris while Working Group 4 (Mitigation -

J. Loftus, chair) includes presentations on NASA's orbital debris safety

standard, Ariane 5 debris issues, debris removal using lasers, and geosyn-

chronous transfer orbit lifetimes. The U.S. delegation presents its RORSAT

findings with a request that Russia assist in understanding NaK debris. The

Russian delegation insists that RORSAT NaK is not required to explain
Haystack and Goldstone data.

The Searchfor a Previously Unknown Source rf Orbital Debris: The Possibil-
io"_a CoolantLeak inRadar Ocean Reconnaissance Satellites. D. J. Kessler,
M. J. Matney, R. C. Reynolds, R. P. Bernhard, E. G. Stansbery, N. L.Johnson,
A. E. Potter. D. Anz-Meador, JSC-27737, NASA JSC, Februzu'y21, 1997:
"Comparison of Space Debris Models with HaystackRadar Measurements," A.
Nazarenko. 12th lttwr-Agency Space Debris CoordinationMeeting Proceed-
ing_. Vol. II. Presentations: inte_,iew, David S. F. Portree with Donald Kessler,
November 25, 1997.

The NRC publishes Orbital Debris - A Technical Assessment. The report is

designed to be the basis for a multi-year research program independent of

the ISS and Shuttle program debris assessments. In addition it is to provide

an overview of debris issues and to provide guidance for "a responsible

approach to orbital debris," which will require

• "continuing measurement and modeling efforts to increase our knowledge

of the current and future debris population"

• "the development of tools to aid spacecraft designers in protecting their

spacecraft appropriately against the existing debris hazard"

• "widespread implementation of appropriate measures to minimize the
creation of additional debris"
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The report states that "[t[he threat that orbital debris poses to international

space activities is presently not large, but it may be on the verge of becoming

significant. If and when it does, the consequences could be very costly - and

extremely difficult to reverse. By contrast, the cost of reducing the growth of

the hazard can be relatively low..." Specific recommendations include:

• increase understanding of the GEO debris environment.

• develop a strategy for obtaining data on the sources and evolution of Ihe

small debris population and use this data to compile a standard popula-
tion characterization reference model

• develop new techniques for hypervelocity impact testing at LEO collision

speeds and analytical tools consistent over a range of debris impact

shapes, velocities, and compositions

• write a handbook describing the capabilities of international hypervelocity
facilities

• study impact damage effects on critical spacecraft components

• write and distribute widely a debris mitigation guide for spacecraft de-

signers

The NRC calls on spacecraft designers to

• "adopt design requirements to dissipate on-board energy sources to

ensure that spacecraft or rocket bodies do not explode after their func-

tional lifetimes"

• avoid "release of mission-related objects during spacecraft deployment

and operations [andl intentional breakups...whenever possible...no

intentional breakups expected to produce numerous debris with orbital

lifetimes longer than a few years should be conducted in Earth orbit"

• design "spacecraft and rocket bodies...to minimize the unintentional

release of surface materials, including paint and other thermal control

materials, both during and after their operational lifetimes"

• remove from LEO or reduce the lifetime of spacecraft and rocket bodies in

LEO and highly elliptical orbits passing through LEO at the end of their
functional lifetime

"Until [further studies of GEO disposal orbits[ produce a verifiably supe-

rior long-term strategy for dealing with the GEO debris hazard, "[satellite]

operators.., should...reorbit their spacecraft at the end of their functional

lifetimes if they are capable of safely performing a reorbiting maneuver to

a disposal orbit at least 300 km from GEO."

Orbital Debris: A Technical Assessment, Nalional Research Council, 1995, pp.

3-9, 14: interview, David S. F. Porlree with Nicholas Johnson, November 6,

1997.
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June 29-July 4

July

August

September 28

STS-?I is the first Shuttle-Mir (ISS Phase 1) docking mission. Atlantis is

docked to Kristall from June 27 to July 7, 1995, which is in turn docked to

Mir's forward (-X) docking port. This is also the second DTO 1118 flight. The

astronauts survey Mir's exterior using the same types of cameras used on

STS-63, plus an electronic still camera capable of imaging larger impact

features. The crew takes 215 35-mm and 435 70-ram photos. A small orbital

debris object associated with the Progress-M 27 automated cargo ship

conjuncts with Atlantis and Mir within the 5-km-by-25-km-by-5-km alert box

17 times in one 13-hour period. Six of these conjunctions occur within the 2-

km-by-5-km-by-2-km maneuver box. USSPACECOM sensors have difficulty

distinguishing the object from the nearby orbiter and Mir station, leading to

dramatic changes in its listed state vector. Atlantis suffers a window impact -

possibly a piece of aluminum slag from an SRM - creating a 2-mm pit.

Memorandum with attachments,Steven Stich, Lead.Orbit Flight Dynamics
Group, "'Conjunction Summarylot STS-26 throughSTS-85," September 17,
1997: "Photographic surveys of the Mir space stationand thedetection of
orbital debris and meteoroid impacls,"Mike Gaunce, Robert Scharf, Nicholas
Johnson, Eric Chrisliansen: paperpresented al SHE International S.vnlposium
on Optical Science, Engineering,and Instrumentation.Conference on Charac-
teristics and Consequences of Orbital Debrisand Natural Space Impactors It,
July 27-Aug 1. 1997,San Diego,California: OrbitalDebris Quarterly Ncw,_,
Vol. 2, Issue 2, April-June 1997.

ESA publishes the final report on its MASTER model. MASTER is written by
the IfRR at TUBS. H. Klinkrad is ESA/ESOC technical supervisor: IfRR TUBS

head is Dietrich Rex: and MASTER report author is Holger Sdunnus.

MASTERFinal Report, ESOCContract [0453/93/D/CS, July 1995.

NASA releases Guidelines and Assessment Procedures for Limiting Orbital Debris

(NASA Safety Standard 1740.14), a "companion" to NMI 1700.8 (April 5,

1993) which "provides specific guidelines and methods to comply with the

NASA policy to limit orbital debris generation." The standard, drafted by

Joseph Loftus, NASA JSC, and Robert Reynolds, Lockheed, is designed to "be

used by the program manager or project manager as the primary reference
for conducting debris assessments."

Guidelines and Assessment Procedures]or LhnititzgOrbital Debris. NSS
1740.14. August 1995.

Space Shuttle Meteoroid and Orbital Debris Damage Assessment Team is

chartered at the request of Shuttle Program manager Tommy Holloway
following a letter from Joseph Loftus pointing out possible orbital debris

consequences for the Shuttle and ISS programs. The Shuttle was designed in
the early 1970s for a meteoroid environment, not a mid-1990s orbital debris

environment. The team, chaired by William Schneider, NASA JSC, consists of

NASA JSC, NASA MSFC, and Rockwell International (Shuttle prime contrac-

tor) representatives. According to Holloway's letter establishing the team, its

major objectives are to

• "review the environmental modeling and assess accuracy and recommend
improvement as appropriate"
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"review orbiter modeling used in predicting orbiter damage and assess

accuracy and recommend improvement as appropriate"

"la]ssess the potential for damage to the orbiter during operations planned

for a) Shuttle-Mir; b) International Space Station; and c) Science Mis-
sions"

• "[r]ecommend concepts and methods to reduce risk to critical orbiter
areas"

• "lr]eview the reporting process and make recommendations for improve-
ments"

"'Space Shuttle Meteoroid lind Debris Damage Team," memorandum to

distribution, MA/Manager, Space Shuttle Program, to Distribution, September

28, 1995.

The Earth Space Institute and ASCONT organizations in Russia sponsor the

1st International Workshop on Space Debris in Moscow, which includes
sessions on "Remote and In-Situ Debris Observations," "Identification of

Debris Sources," "Critical Review of Debris Modeling," "Debris Mitigation,"

"Debris Mitigation Measures of Constellations," and "Debris Countermea-

sures Effectiveness." Participants from Russia, the U.S., Japan, and Europe

present more than two dozen papers.

Space Forum, Volume 1, No. 1-4, 1996: special isstie - proceedings of the l sl

International Workshop on Space Debris, October 1995.

Orbital Debris Monitor publishes a report by Andrei Nazarenko, Russian

Academy of Sciences, on Russian efforts to model the small orbital debris
environment. He states that NaK from RORSAT Bouk reactors need not be

invoked to explain the preponderance of 1-cm debris found in Haystack data,

concluding

that the altitude range of 800-to-1000-km is now the most "populated"

with large catalogued objects. It comprises presently about 1800

objects larger than 10-to-g0-cm in size. The total yearly average num-

ber of their collisions with small particles sizing greater than 0.3 cm is

some tens. One cannot exclude that it is just these collisions which

give rise to an increased number of small particles in the above-

mentioned altitude range, which have been recorded by Haystack
Radar.

Orbital Debris Monitor, Vol. 8(4L October 1, 1995.

The 28th annual Space Safety and Rescue symposium is held in conjunction

with the 46th International Astronautical Federation meeting in Oslo, Nor-

way. Paper topics in the plenary session on orbital debris include U.N.

principles on nuclear power sources in space: an update on NASDA orbital

debris mitigation standards; NASDA efforts to minimize the number of

upper stages left in geosynchronous transfer orbit: IADC activities: new

findings on collisional cascading; modeling the orbital debris environment:

and the U.S. space nuclear program. The IADC Steering Group, which meets
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October 20

October 20-

November 5

November 4

during the meeting, agrees to accept applications for membership from

CNES, BNSC, and Indian Space Research Organization (ISRO), bringing the

total number of IADC members to eight. The Steering Group then amends

the IADC Terms of Reference to stipulate that IADC members must partici-

pate in at least the Steering Group and Working Group 4 (Mitigation) to

remain eligible for membership - this move is designed to ensure that the

IADC will not include inactive partners. In addition, the Steering Group

decides that members may include in their delegations representatives from

agencies other than the member's national space agency, including represen-
tatives from industry.

ESA astronaut Thomas Reiter and Russian cosmonaut Sergei Avdeyev per-

form a 5-hour, 11-minute EVA to install the European Space Exposure Facil-
ity (ESEF) 1 on the exterior of Mir's Spektr module. Reiter installs two cas-

settes designed to be exposed by remote control from within Mir. Four of five

experiments aim to detect, measure, and/or collect meteoroid and orbital

debris particles.

Walkingto Olympus: An EVA Chronology, David S. F. Portreeand Robert C.
Trevino. Monographs in Aerospace History#7. NASA Headquarlers, October
1997. p. 115:"The European Space Extx_sureFacility (ESEF),'" Sunil
Deshpande, Orbital Debris Monitor. pp. 11-14.

On STS-73 orbiter Columbia orbits Earth for 16 days carrying the United

States Microgravity Laboratory (USML) 2 Spacelab mission. Mission require-

ments prepared by NASA MSFC pointed Columbia's payload bay in the
direction of motion (the "ram" direction); however, in a letter Joseph Loftus

warned Shuttle Program Manager Tommy Holloway against this attitude, so

the oldest orbiter points its port wing in the ram direction for about 13 days

of the mission. The port payload bay door is held partially closed to shield

Columbia's Extended Duration Orbiter cryogenics pallet and the USML-2

Spacelab Long Module from impact. The largest of many impact craters

detected on Columbia after landing is located on the port payload bay door.
The crater, 17 mm in diameter and 6 mm deep, yields a 1.2-mm circuit board

fragment. Three of Columbia's windows are replaced - one for orbital debris

damage, one for meteoroid damage, one for damage caused by an impactor
of indeterminate origin.

Orbital Debris Monitor, Vol. 911),January 1, 1996: interview, David S. F.
Portrce with Joseph P. Loftus, Jr., December 31. 1997: "Orbital Debris as
Detected on Exposed Spacecraft," R. Berhardand E. Chrisliansen, Orbital
Debris Quarterly News, Vol. 2, Issue 4, October-December 1997.

Radarsat is a joint Canadian/U.S. Synthetic Aperture Radar satellite

launched on a U.S. Delta II rocket. NASA and NOAA participate in Radarsat,

which is intended to operate until 1999. On this date the 3000-kg satellite

reaches its intended 791-km-by-793-km sun-synchronous orbit at 98.6 deg of
inclination. Radarsat has a 5-sq-m cross-section and orbits at an altitude

known for its relatively high orbital debris flux, so the Canadian Space
Agency called upon NASA JSC to assess the orbital debris risk to Radarsat

and help develop protection. Radarsat's vulnerabilities were assessed in the

HIT-F. then its multi-layer insulation blankets, radiators, and component
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December10

1996

1995-1996

walls were reinforced as necessary. Increasing Radarsat's survivability from

0.5 to 0.87 added only 17 kg to Radarsat's mass.

"Effects of Space Debris on Commercial Spacecraft - Tile RADARSAT

Example," H. R. Warren and M. J. Yelle, Preservation of Near-Earth Stmcefor

Future Generations. John A. Simpson, editor, 1994, pp. 77-83.

On mission STS-74 orbiter Atlantis delivers the Docking Module to Mir's

Kristall module, which was docked to Mir's -Z lateral port. The orbiter

remains docked to Mir from November 15 to November 18, 1995. During this

period, the crew performs DTO 1118 photography, snapping 470 35-ram and
560 70-mm images of Mir's exterior. Two objects (Mir debris and a Chinese

CZ-3 rocket body) conjunct with Atlantis within the 5-km-by-25-km-by-5-km
alert box.

"'Photographic surveys of the Mir space station and the detection of orbital

debris and meteoroid impacts," Mike Gatmce, Robert Scharf, Nicholas Johnson,

Eric Christiansen: paper presented at SPIE International Symposium on Optical

Science, Engineering, and lnslrumentation. Conference on Characteristics and

Consequences of Orbital Debris anti Natural Space Impaclors 11. July 27-Aug 1,

1997, San Diego. Canada: Memorandum with attachments, Steven Stich, Lead,

Orbit Flight Dynamics Group, "Conjunction Summary for STS-26 through

STS-85," September 17, 1997.

Cosmos 398 is a museum piece - an unpiloted test version of the Soviet LK

piloted moon lander. It was launched on a Soyuz rocket on February 26. 1971.
Another LK, Cosmos 434, reentered in 1981. On this date the Cosmos 398

reenters Earth's atmosphere near the Falkland Islands in the South Atlantic
Ocean. For the first time data on the uncontrolled reentry of a space object is

shared among the U.S., Europe, and Russia in near real-time. The U.S. and

Russia share tracking data, while Europe shares analysis of that data but does
not track Cosmos 398.

Interview, David S. F. Portree with Nicholas Johnson, December 15, 1997:

End of year satellites (objects in orbit) )End of year launches reaching Earth orbit or beyond (since 1957) 3811
8517

January 11-29

February 8

During STS-72, a l-ram aluminum particle impacts on the inside of
Endeavour's open rudder speed brake, perforating the orbiter's aluminum

honeycomb tail structure. Endeavour maneuvers to avoid the Miniature

Seeker Technology Integration 2 (MSTI-2) satellite before it conjuncts with
the orbiter within the 2-km-by-5-km-by-2-km maneuver box. Endeavour
recovers the SFU satellite and returns it to Earth, where it is subjected to

orbital debris analysis by the JSASS Study Group on Space Debris and Mb

crometeoroid Impact Detection.

Memorandum with attachments+ Sleven Stich. Lead. Orbit Flight Dytmmics

Group, "'Conjunclkm Summary tk)r STS-26 throt, gh STS-85+" September 17+

1997.

Thomas Reiter and Yuri Gidzenko perform an EVA to retrieve the ESEF 1
orbital debris and meteoroid collectors installed outside Mir's Spektr module

in October. The ESEF 1 collectors return to Earth with Reiter on February 29.
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Walking to Olyml_uS. An EVA Chronology, David S. F. Porlree and Robert C.

Trevino. Monographs in Aerospace History #7, NASA Headquarters, October

1997, pp. 117-118.

February 11-23 The 33rd session of the U.N. COPUOS S & T Subcommittee discusses orbital

debris measurement. TUBS Professor Dietrich Rex is elected subcommittee

chair. The subcommittee invites the IADC to present a paper on orbital debris

at its 1997 meeting. Papers on orbital debris measurements are presented,

and the participants draft the first part of a planned U.N. report on orbital
debris.

"Discussions in/he United Nations in 1996,'" Lubos Perek, IISL-96-11SL-4.08,

1996: "'The Role of Ihe Scienlific & Technical Subcommiuee of UN-COPUOS

for the Space Debris Work of tlle United Nations." Dietrich Rex.

February 19 The Russian Proton Block DM used to boost the Raduga 33 satellite to GEO

explodes near its first geosynchronous transfer orbit apogee soon after

launch, producing at least 200 orbital debris objects. None are catalogued.

Orbital Debris Quarterly News, Vol. 2, Issue 1, January-March 1997.

February 2Z-
March 9 During the 16-day STS-75 mission, an orbital debris object creates a l-ram

crater in TSS-1R hardware in Columbia's payload bay, forming a secondary
ejecta stain and a 5-ram spall on the impact's rear face. Upon return to Earth

one of Columbia's windows is replaced for orbital debris damage. The large

impacts that occurred on missions STS-73, STS-72, and STS-75 probably
reflect more in-depth studies of orbiter surfaces and a time-variable debris

environment, not a persistently elevated debris flux posing a new threat to

orbiters. However, the effects of the impacts are long-lasting because they

help raise awareness of the relative vulnerability of the orbiter to impacts,

lending credence to efforts to reinforce orbiter radiators and wing leading

edges. The TSS-1R tether snaps near full 20-kin extension on February 25.

Meteoroid or orbital debris impact are absolved as the cause despite early

speculation: the review board determines that the most probable cause was

damage to the tether caused by incorrect tolerance dimensions in support
structure. The TSS-1R satellite reenters on March 19.

"'TSS-IR: The Mission." Spaceflight Environment, Vol. VII. No. 2. July 1996,

pp. 5-9

February 28-
March 1 The IADC holds its 13th meeting at ESA/ESOC in Darmstadt, Germany. The

organization prepares a draft Common Database Cooperative Agreement

and draft IADC Recommendation for Space Debris Management. The CNES,

BNSC, and ISRO join the IADC. New Working Group chairs are selected,

implementing the principal of a rotating chair in the Working Groups by
which the co-chair becomes chair and a new co-chair is selected. Tadashi

Takano, ISAS, becomes Working Group 1 (measurement) chair: others are:

Working Group 2 (environment & database) - Hans-Heinrich Klinkrad, ESA;

Working Group 3 (protection) - Jeanne Lee Crews, NASA JSC; and Working
Group 4 (mitigation) Akira Takano, NASDA.

112
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1996, Vol. 1, Summaries: Vol. 11, Proceedings,
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February 29 lnteragency Report on Orbital Debris 1995, an update of the 1989 document, is

officially released. The report contains five specific recommendations:

• Continue and enhance orbital debris measurement, modeling, and moni-

toring capabilities

• Conduct a focused study on orbital debris and emerging LEO satellite

systems

• Develop government/industry design guidelines on orbital debris

• Develop a strategy for international orbital debris discussions

• Review and update U.S. orbital debris policy

Interagency R_7_ortolt Orbital Debri._, Office of Science and Technology

Policy, Novcmbcr 1989, p. 6.

March Donald Kessler retires as NASA's Chief Scientist for Orbital Debris, though

he continues his work as a consultant. In June, Nicholas Johnson is hired

from industry to take up the post. NASA considered the position sufficiently

important to hire Johnson despite an agency-wide hiring freeze.

March Russian analysis indicates that NaK droplets spilled in orbit by RORSAT

Bouk nuclear reactors will reach temperatures of 1050 deg K in sunlight. This

would cause them to evaporate so rapidly that they should not be detectable

in orbit.

The Search ]br a Previously Unkm_wn Somz'e of Orbital Debris: The Possibil-
ity of a Coolam Leak in Radar Oceau Recomtaissam'e Satellites, D. J. Kessler,
M. J. Matney, R. C. Reynolds, R. P. Bernhard, E. G. Stansbery, N. L. Johnson,
A. E. Potter, D. Anz-Meador, JSC-27737, NASA JSC, February 21, 1997:

"'About the Equilibrium Temperature of K-Na Droplets in the Near-Earth
Orbits," S. A. Meshcheryakov, Orbital Debris Monitor, April 1, 1996, pp. 12-
13: intervicw. David S. F. Portrcc with Donald Kesslcr, November 25, 1997.

March 12 The Chinese FSW 1-5 (China 40) photo-reconnaissance satellite was launched

into a 56.5-deg orbit by a Long March 2-C rocket on October 8, 1993. The

conical satellite, which consisted of a 650-kg reentry capsule and an equip-

ment module, was designed to photograph targets on Earth for up to 10 days

then return its exposed film to China for analysis. FSW 1-5 was commanded

to reenter on October 18, but its retrorockets were pointed 90 deg. from the

planned direction at ignition. The equipment module separated automati-

cally and reentered on October 28, but the 1.5-m-long-by-l.6 m-wide reentry

module was boosted into a higher orbit. The capsule was, of course, designed

to survive reentry, so a world-wide effort to predict FSW 1-5's impact time
and location commenced in late 1995. On March 11, 1996, 14 hours before

reentry, the tumbling capsule was in a 115-by-199-km orbit. Its last orbit is

almost entirely over water. For a time it appears that it might strike Alaska.
On this date FSW 1-5 reenters off Brazil and crashes at about 645 kph into the

South Atlantic at 23 deg south, 20 deg west, about 2000 km from South

America.

"FSW-1 Sinks in Atlantic," Aviatim_ Week & Space Technology, March 18,

1996, p. 62: United States Space Command News Release. No. 1(I-96, "'Chinese
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Satellite Entry," March 11. 1996: European Space Agency Inlbrmation Note

No. 13, March l 1, 1996.

March 22-31 Atlantis docks with Mir on March 24. On March 27, STS-76 astronauts Rich

Clifford and Linda Godwin perform a spacewalk to install the Mir Environ-

mental Effects Payload (MEEP) on the outside of the Docking Module deliv-

ered during STS-74 in November. The main orbital debris experiment on

MEEP is the JSC-built Orbital Debris Collector (ODC), a pair of capture cells

containing 72 low-density silicon dioxide Aerogel tiles. Each tile is a 9.53-mm

square 1.27-cm thick. Together the 72 tiles weigh only 166 grams. In a con-

tinuation of DTO 1118, STS-76 crewmembers snap 180 35-mm and 1100 70-

mm photos of Mir's exterior. Atlantis undocks on March 29. One window is

replaced after STS-76 due to orbital debris damage.

"Photographic surveys of the Mir space station and the detection of orbital

debris and meteoroid impacts," Mike Gaunce, Robert Schar[', Nicholas Johnson,

Erie' Chrisliansen: paper presented at SPIE International Symposium nu Optical

Science, Engineering, and Instrumentation, Conference on Characteristics and

Consequences of Orbital Debris and Natural Space lmpactors II, 27 Jul - 1 Aug

97, San Diego, CA: Walking to Olympua: An EVA Chronology, David S. F.

Portree and Roberl C. Trevino, Monographs in Aerospace History, #7, NASA

Headquarters, October 1997, pp. 119-120.

March 28 NASDA approves STD-18, Space Debris Mitigation Standard, which focuses

largely on post-mission disposal. NASDA's Reliability Assurance Depart-

ment launched work in 1993 on the STD-18 by creating a Space Debris Study

Group. The Group included representatives from major Japanese industrial

firms (and NASDA contractors) such as Mitsubishi Heavy Industries,

Toshiba, Nissan Motor Co., Ishikawazima-Harima Heavy Industries, and

Nippon Electric Co., as well as Kyushu University. The Group examined

NASA Safety Standard 1740.14 (August 1995). STD-18 requires that GEO
satellites be reorbited to 200 km above GEO at end of life, not the 300 km

required by ITU and NASA.

"NASDA Space Debris Mitigation Standard," IAF-96-V.6.06, A. Kalo, 47th

International Astrommtical Congress, October 7-11, 1996, Beijing, China.

April 1-4 The NRC holds its first meeting in its study of ISS and orbital debris. George

Gleghorn, retired TRW Space and Technology Group vice president and chief

of engineering, is committee chair.

April 24 The Department of Defense launches the MSX satellite on a Delta II rocket

into a 902-km-by-911-km sun-synchronous orbit at 99.4 deg of inclination.

MSX includes three orbital debris experiments. After deploying the satellite,

the Delta II upper stage performs a propellant depletion burn to avoid explo-
sion.

Orbital Debris Quarterly News, Vol. 2, Issue 2, April-June 1997.
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May 10 Eric Christiansen, JSC HIT-F, describes recent damage to Shuttle orbiter

surfaces and windows in a presentation to Space Shuttle Program manager

Tommy Holloway. The presentation is one of many made to Shuttle and ISS

management as part of an on-going NASA Orbital Debris Program effort to

reinforce the orbiters' radiators and wing leading edges. Christiansen cites

Shuttle missions STS-72, STS-73, and STS-75, and reports that improved
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June3

June4

July 17-18

1996

inspections beginning in early 1994 account for some of the apparent increase

in orbital debris damage to the orbiter. He states that "flight attitude is the

major driver on window damage," pointing out that there is a factor of 20

difference in the number of post-flight window replacements between the

best and worst attitudes, and points to effectiveness of Flight Rule 2-77

(November 1992) which governs orbiter attitude.

"Orbital Debris Danmge," presentation materials, Eric Christiansen, May 10,

1996: interview, Joseph P. koftus, Jr., December 31, 1997: interview David S.

F. Portree with Joseph P. Loflus, Jr., alld Nicholas Jolmson, Jalluary 30, 1998;.

NASA JSC launches the Orbital Debris Quarterly News.

Shuttle Program manager Tommy Holloway and Randy Brinkley, ISS Pro-

gram manager, send a joint letter to NASA JSC director George Abbey point-

ing out that plans to close the HIT-F at JSC and transfer its hypervelocity test

responsibilities to JSC's White Sands Test Facility (WSTF) in New Mexico, as

recommended by the NASA Facilities Consolidation Committee, run counter
to recommendations made in reports of the NRC {April 1995) and the Inter-

Agency Group {Space) (November 1995). HIT-F transfer occurs officially on

February 2, 1998, when the HIT-F ceases light-gas gun testing. The lab,

renamed the Hypervelocity Impact Technology Facility (HIT-F), continues to

provide meteoroid and orbital debris risk assessments and protection con-

cepts for spacecraft using data from light-gas guns at WSTF and shaped-

charge data from Southwest Research Institute. The HIT-F's .50-caliber gun is

shipped to WSTF, and its. 17-caliber gun is transferred to Rice University in

Houston. The lab performed 6891 tests at JSC on spacecraft materials and

components since it was established in 1982.

"Hypervelocity Impact Facilities and Orbital Debris Flight Safety Issues,"

memorandum, MA/Manager, Space Shuttle Program to OA/Manager, Space

Station Program, to AA/Director, NASA JSC, June 3, 1996: "Hypel-velocily

Impact Technology Facility' (HIT-F) Historical Notes," Eric Christiansen,
March 3. 1998.

The Hydrazine Auxiliary Propulsion System (HAPS) monopropellant fourth

stage of the winged Pegasus XL launch vehicle used to place STEP II satellite
into orbit on May 18 ruptures at an altitude of 625 km. HAPS was the first

composite material upper stage. Although the stage is roughly the size of an

oil drum and has a dry mass of only 97 kg, the explosion produces more than

700 debris objects trackable by the SSN. In terms of number of debris frag-

ments cataloged, this is the worst satellite breakup to date. The many frag-

ments decay from orbit slowly - of the 683 objects catalogued, 63 percent

remain in orbit 18 months after the breakup.

"'Analysis of the Pegasus Breakup," AAS 97-641, James G. Miller, paper

presented at AAS Astrodynamics Conference, Sun Valley, Idaho, August 5,

1997: Orbital Debris Quarterly News, Vol. 2, Issue 1, January-March 1997:

Orbital Debris Quarwrly News, Vol. 3, No. 1, January-March 1998.

The IAA, International Astronautical Federation (IAF), IAU, and U.N. Office

for Outer Space Affairs sponsor the orbital debris meeting at COSPAR XXXI

in Birmingham, UK. The meeting includes 17 invited papers, 13 contributed,

and 2 posters in three sessions devoted to remote and in-situ measurements
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July 24

July 30

August

August 4-7

August 14

of space debris and meteoroids: modelization of particulate environment in

space: and risk analysis, hypervelocity impacts, and mitigation.

Advances in Space Research, Space Debris, Wailer Flury, editor, Vol. 16,
No. 11, 1996.

CNES launched the CERISE satellite for studies of Earth's radio environment

into a retrograde orbit on July 7, 1995. On this date, a 10-year-old fragment of

Ariane V16 upper stage debris collides with and severs CERISE's stabilizing

gravity boom at 678 km altitude, producing one debris object. The satellite

remained operational with degraded perfomance. This is the first known

collision between an operational spacecraft and an identified orbital debris

fragment.

Interview, David S. F. Portree with Donald Kessler, November 25. 1997.

Revised Russian analysis determines that NaK droplets released by

RORSATs will reach a temperature of only 293 deg K in sunlight, giving

them an on-orbit lifetime before evaporation of about a century. A 1-cm NaK

droplet in 950-km orbit is expected to remain in orbit for about 80 years

before decaying and entering Earth's atmosphere, at which time entry heat-

ing will cause them to rapidly sublimate.

The Search fi, a Previously Unknown Source of Orbital Debris: The Possibil-
iO'of a Coolant Leak in Radar Ocean Reeomtaisaanc'e Satellites, D. J. Kessler,
M. J. Matney, R. C. Reynolds, R. P. Bernhard. E. G. Stansbery, N. L. Johnson,
A. E. Porter, D. Anz-Meador. JSC-27737, NASA JSC, February 21. 1997:
intep,,iew, David S. F. Portree with Donald Kessler, November 25, 1997.

The first Characteristics and Consequences of Orbital Debris and Natural

Space Impactors session is held at the SPIE (International Society of Optical

Engineering) Annual Meeting in Denver.

Orbital Debris Monitor. Vol. 9(4}, October I. 1996.

The Haystack radar measures the Pegasus HAPS debris cloud. By mid-

December more than 75 catalogued debris have decayed. Special Haystack

and Goldstone observations reveal many other 3-mm-to-5-mm debris objects.

Preliminary analysis reveals that the breakup doubles the orbital debris

population of this size range at about 600 km altitude.

"'Haystack-Pegasus Debris Measurements," Thomas Seltecerri, Eugene
Stansbery', John Opiela, Mark Matney, 1997 Space Control Conference. MIT,
March 1997: Orbital Debri,_ Quarter(v News, Vol. 2. No. 1, Jantlarv-March

1997.

Nicholas Johnson presents an overview of the Pegasus HAPS breakup to the

13th meeting of the STS-82 Integrated Product Team. STS-82 is the second

HST servicing mission and is planned to occur in early 1997. Immediately

following the HAPS breakup, the NASA Orbital Debris Program commenced

intensive efforts to assess possible risk to STS-82 with special attention to

spacewalk safety and collision avoidance maneuver probabilities. According

to Johnson, 100-kilogram (220-1b) upper stage broke up about 25 km (15 mi)

above HST's operating altitude. Modeling the amount and behavior of the

many debris objects produced is challenging because HAPS breakup has

several anomalous features: the number of trackable fragments produced
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greatly exceeds model predictions (it is an "order of magnitude too high");
radar cross-section data implies an "unusual" (large) area-to-mass ratio: and

observed decay behavior "does not yet support high area-to-mass ratio" -

that is, decay has occurred too slowly to imply that the fragments are large

yet light. Preliminary analysis shows that HAPS debris could enter the 2-kin-

by 5-km-by-2-km collision avoidance box around the orbiter "several times"
while it is docked to HST during an 8-day STS-82 mission, while less easily
avoided "smaller HAPS debris (0.1-10 cm) maybe pose [al significantly

higher threat." Johnson points out, however, that no impacts have been
detected on HST since the HAPS breakup; a fact possibly attributable to a

"'noisy' quiescent state" aboard the orbiting telescope.

"Pegasus Rocket Body Breakup Influence on STS-82." N. L. Johnson, August

14, 1996.

September 14 In 1995, President Clinton directed the Office of Science and Technology

Policy and National Security Council to review national space policy. As part

of this comprehensive review, they incorporated recommendations contained

in the November 1995 Interagency Report on Orbital Debris (released February

1996). On this date, President Clinton signs the new National Space Policy,
which contains the following revision of the orbital debris passage contained

in the 1989 final National Space Policy:

The United States will seek to minimize the creation of space debris.

NASA, the Intelligence Community, and the DoD, in cooperation

with the private sector, will develop design guidelines for future

government procurements of spacecraft, launch vehicles, and ser-
vices. The design and operation of space tests, experiments, and

systems will minimize or reduce accumulation of space debris consis-
tent with mission requirements and cost effectiveness.

It is in the interest of the U.S. Government to ensure that space debris

minimization practices are applied by other spacefaring nations and

international organizations. The U.S. Government will take a leader-

ship role in international fora to adopt policies and practices aimed at
debris minimization and will cooperate internationally in the ex-

change of information on debris research and the identification of

debris mitigation options.

September 16-26 On mission STS-79, Space Shuttle Atlantis docks with Mir on September 19.

The orbiter's crew snaps 230 35-mm photos and 940 70-mm photographs in

support of DTO 1118. During the mission a l-ram aluminum particle hits a

payload bay door and six objects conjunct within the 5-km-by-25-km-by-5-
km alert box: one enters the 2-km-by-5-km-by-2-km maneuver box. After the

flight, four windows are replaced because of impact damage.

"'Photographic surveys of the Mir space station and the detection of orbital

debris and meteoroid impacts," Mike Gaunce, Robert Scharf, Nicholas Johnson,

Eric Christiansen: paper presented at SPIE International Symposium on Optical

Science, Engineering, and Instrumentation, Conference on Characteristics and

Consequences of Orbital Debris and Natural Space Impactors II, 27 July - 1

Aug 97, San Diego, CA.: Memorandum with attachments, Steven Stich, Lead,

Orbit Flight Dynamics Group, "'Conjunction Summary for STS-26 through

STS-85," September 17, 1997.
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October The Liquid Mirror Telescope (LMT) begins operations in Cloudcroft, New

Mexico. By the end of November about 30 hours of orbital debris video data

are recorded. The LMT consists of a 3-m dish holding several gallons of the

liquid metal mercury. The dish spins 10 times/minutes. Centrifugal force and

surface tension cause the mercury to form a thin reflective surface. The

telescope stares straight up to observe debris passing through its 0.5-deg field

of view. The LMT is scheduled to be fitted in 1998 with a high-speed CCD

camera to allow it to achieve its design goal of detecting l-cm debris objects.

"'Liquid Metal Mirror for Optical Measurements of Orbital Debris." Andrew E.

Potler and Mark Mulrooney. Adrances in Space Re,search. Space Dehri,s.

Waller Flury, editor, Vo[. 16. Number 1 l, 1996, pp. 213-219: Orbital Debris

Quarwrly News. Vol. 2, No. 1. January-March 1997: interview David S. F.

Portree wilh Glen Cress, January 7. 1998.

October 7-11 The 29th annual Space Safety and Rescue symposium of the IAA is held in

conjunction with the 47th IAF meeting in Beijing, China. Paper topics include
an overview of the recently released NASDA STD-18: debris families ob-

served by Haystack: aluminum slag from solid rocket motors: a Japanese
GEO environmental model: Italian orbital debris research: orbital debris

mitigation techniques employed in Lockheed Martin launch vehicle pro-

grams: and GEO environmental management issues.

October 24 At its fifteenth meeting, Nicholas Johnson updates the STS-82 Integrated

Product Team on the Pegasus HAPS debris cloud as part of ongoing intense

efforts to assess the risk to STS-82, the second HST servicing mission, sched-

uled for early 1997. He reports that 25 debris pieces have officially decayed,

while 650 pieces are being tracked. Analysis of the anomalous HAPS debris
cloud continues, bringing to bear radars from all over the world. The

Fylingdales radar in Britain characterized 253 catalogued pieces. The Hay-

stack radar observed the cloud on August 6-7, while the Goldstone radar

observed the cloud on October 2. Haystack determined that some objects

have "dipole-like" characteristics which could produce a false indication of

their actual size. Johnson states that HST still reports no debris damage.

Based on the radar observations and computer modeling, Johnson reports
that the probability of critical penetration during STS-82 is within established

guidelines while the probability of an orbiter radiator leak caused by impact

is higher than established guidelines. By February the small particle (less

than 1-cm diameter) population may decrease significantly, while the large

particle population is not likely to decrease.

"'Update on Pegasus/HAPS Debris Cloud," N. L. Johnson, October 24. 1996.

November Nicholas Johnson gives the orbital debris Flight Readiness Review briefing
for STS-80 at KSC, marking the first application of NASA's new Orbital

Debris Engineering Model (ORDEM) 96 to Shuttle mission risk assessment.

Unlike earlier NASA debris environment models, which were largely theo-

retical, ORDEM 96 is a "semi-empirical" model based on firm data, including
Haystack radar observations and analysis of Solar Max, LDEF, and other
returned surfaces. In December the ORDEM 96 model documentation and

software are distributed to the international orbital debris community.
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bital Debris Quarterly News, Vol. 2, No. 1, January-March 1997: A Computer-

Based Orbital Debris Environment Mode�for Spacecraft Design and Observa-

tion in Low Earth Orbit. D. J. Kessler. J. Zhang, M. J. Matney. P. Eichler, R. C.

Reynolds, P. D. Aqz-Meador, and E. G. Stansbery, NASA Technical Memoran-

dum 104825, November 1996.

NASA begins advising the Russians of close approaches between the Mir

space station and space objects, including orbital debris, when American
astronauts are on board. In Houston, MOD Flight Dynamics Officers main-

tain a duty rotation. When USSPACECOM determines that an object will

trespass on the 5-km-by-25-km-by-5-km alert box or the 2-km-by-5-km-by-2-

km maneuvere box surrounding Mir, they page the duty officer in Houston.

If the conjunction meets established criteria, the Flight Dynamics Officer uses

a laptop computer to establish an internet/fax link to the Flight Control
Center outside Moscow, and sends one of a standard set of alert messages to

the Russian flight director.

"Orbital Debris Risk Assessments and Collision Avoidance Procedures for the

Space Shuttle," IAA-97-1AA.6.5.O3. Joseph P. Loftus, Don J. Pearson, and Eric
L. Christiansen. 48th International Astronautical Congress, October 6-10. 1997,

Turin. Italy: interview. David S. F. Portree with Joseph P. Loftus. Jr., Decem-

ber 31. 1997.

Space Shuttle Meteoroid and Orbital Debris Damage Assessment Team (the
Schneider Committee) makes its final presentation to Shuttle management on
this date. The team reaches its conclusions based on hypervelocity impact

testing in the JSC HIT-F, application of a methodology developed by the U.S.

Navy to assess aircraft survivability, and tests and modeling performed at

orbiter prime contractor Rockwell Corporation. The Schneider Committee

reports that

the orbiter's twin door-mounted radiators present the greatest threat of

early mission termination because a single puncture can drain an entire

radiator (fig. 9)

Reinforced Carbon-Carbon wing leading edge and nose cap penetrations

could lead to reentry burn-through and damage to the orbiter's aluminum

structure, though with a reasonable chance of survivability depending on
location

and recommends that Shuttle management

• place thin aluminum foil over radiator tubes to shield them

• fit a "flexible beanie cap" over each of the tanks located beneath the orbiter

payload bay floor

Interview, David S. F. Portree with Donald Kessler, November 25, 1997:

"Space Shuttle Meteoroid and Debris Damage Team," memorandum to

distribution, MA/Manager, Space Shuttle Program to Distribution, September

28, 1995: Space Shutth" Meteoroid and Orbital Debris Damage As,_essment

Team Final Presentation, presentation materials. November 1. 1996: "Shuttle

Modifications for Station Support," IAA-97-1AF.I.3.08, Joseph P. Loftus, Eric

L. Christiansen, and William C. Schneider, 48th International Astronautical

Congress. October 6-10, 1997. Turin, Italy.
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Figure 9.

The Shuttle orbiter has four radiator panels attached to the inside surface of its twin payload bay

doors. The doors remain open in orbit so the radiators can reject heat produced by the orbiter's

systems. This chart illustrates the risk that an orbital debris strike will produce a radiator leak at

various orbiter attitudes. Risk was determined using the NASA Orbital Debris Program's BUMPER

II computer model. Leak risk is highest when the orbiter points its payload bay in its direction of

motion around the Earth, so mission planners avoid this attitude whenever possible.
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November 19-

December 7

Late in the year

1996-1997

Following the STS-80 mission, which occurs between these dates, two of

Columbia's windows are replaced because of impact damage. As with

Gemini in 1965, the window glass provides an excellent catch medium for

hypervelocity particles. Researchers locate 51 window pits, of which 28 are

subjected to SEM analysis. The impactor cannot be identified for half. Four

pits contain meteoroids while paint chips and aluminum account for three

pits each. Stainless steel, silver, copper, and plastic account for one pit each.

"Pholographic surveys of the Mir space station and tile detection of orbital

debris and meteoroid impacts." Mike Gaunce, Robert Scharf, Nicholas Johnson,

Eric Christiansen: paper presented ill SPIE Inlernational S.vmposium on Optical

Science, Engineering, and Instrumentation, Conference on Characteristics and

Consequences of Orbital Debris and Natural Space Impactors II, 27 July - l

Aug 97, San Diego, California.

The Russians confirm that solid rocket motors boost RORSAT reactors to

graveyard orbits. Aluminum oxide slag is known to leave solid rockets as

they exhaust their fuel, so MIT LL uses the Haystack radar to determine if

aluminum slag is a significant component of RORSAT-associated debris.

They find that the mass density of the debris is 1 gm/cm - inconsistent with

aluminum oxide (4 gm/cm), but consistent with NaK. The debris is metallic

and spherical - also consistent with NaK droplets. In addition, the debris

quantity observed is not consistent with amount of slag expected from
RORSAT solid rocket motors.

"The Search tk)r a Previot, sly Unknown Source of Orbital Debris: The

Possibility of a Coolant Leak in Radar Ocean Reconnaissance Satellites," IAA-

97-1AA.6.3.03, D. J. Kessler, M. J. Matney, R. C. Reynolds, R. P. Bernhard, E.

G. Stansbery, N. L. Johnson, A. E. Potter, D. Anz-Meador, presented at the

48th lnlemational Astronautical Congress, October 6-10. 1997, Turin, Italy:

interview, David S. F. Portree with Donald Kessler, November 25, 1997.

End of year launches reaching Earth orbit or beyond (since 1957) 8544 )1997 End of year satellites (objects in orbit) 3897

January Orbital Debris Monitor ceases publication after nine years when its editor and

founder, Darren McKnight, moves on to other pursuits.

January 8 The NRC releases its report Protecting the Space Station from Meteoroids and

Orbital Debris. The study committee finds that

Overall efforts to protect the station have been extensive and thor-

ough. However, the space station will be particularly vulnerable to
collisions because of its size and because it will be in orbit for at least

15 years. Space station managers need to take extra precautions to
reduce the risk of harm to the space station and its crew. The success

of these precautions will depend on continued international efforts to
reduce the amount of new debris - such as fragments from satellite or

rocket body breakups - left behind from other missions.
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January 12-22

January 22

The NASA-funded report recommends that

Protecting the Russian-built Service Module - the station's first habitable

volume - must be made a priority. The Russian segment is not as well
shielded as the U.S. segment and international modules, and thus more

vulnerable to impacts.

• NASA needs to perform more meteoroid and orbital debris shield testing.

Space suit penetration risk must be reassessed; recent studies indicate that

the small debris most likely to puncture a suit could be up to three times

more common than previously believed.

The ISS partners need to prepare for problems that can result from meteor-

oid and orbital debris impact other than catastrophic depressurization,

such as short circuiting and power loss caused by solar array damage. In

addition, better coordination of emergency procedures is required.

Situations that prevent prompt ISS collision avoidance maneuvers when

the SSN sounds a warning must be resolved. For example, the station is
not meant to be moved while a Shuttle is docked.

Efforts should be made to reduce the expected number of false collision

warnings released by the SSN. Currently these might force the station to

move more than the planned six times per year.

Protecting the Space Station jiom MeteoroMs and Orbital Debris, National
Research Council, 1997.

Atlantis remains docked with Mir from January 15 through January 20

during the STS-81 mission. The crew snaps 500 35-mm and 400 70-ram photos

of Mir's exterior in support of DTO 1118.

"Photographic su_'eys of the Mir space station and the detection of orbital
debris and meteoroid impacts," Mike Gaunce, Robert Scharf, NicholasJohnson,
Eric Christiansen: paper presented at SPIE International Symposium on Optical
Science, Engineering. and Instrumentation, Conference on Characteristicsand
Consequences of Orbital Debris and Natural Space Impactors If, 27 Jul - 1Aug
97, San Diego, CA.

An upper stage propellant tank of the Delta II rocket that launched the MSX

satellite on April 24, 1996, survives reentry on this date to impact outside

Georgetown, Texas, near the state capital of Austin. The stainless steel tank

weighs 250 kg (550 lb). A 30-kg (66-1b) spherical helium pressurant tank

made of titanium survives to land near Seguin, Texas. After delivering MSX

to 902-km-by-911-km sun-synchronous orbit at 99.4 deg of inclination, the

upper stage performed a propellant depletion burn that placed it in a 207-
km-by-860-km orbit and reduced its lifetime to about 9 months. Both tanks

were transferred to JSC for inspection and analysis.

Orbital Debris Quarter(vNews, Vol. 2, Issue 2, April-June 1997:"Delta Upper
Stage Crashes in Texas Field," Leonard David, Space News, February 24-
March 2, 1997, p. 4: interview, David S. F. Portree with NicholasJohnson,
November 6, 1997.
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January 27 Eric Christiansen and Nicholas Johnson present the orbital debris/meteoroid

risk assessment for the STS-82 Flight Readiness Review. STS-82, the second

HST servicing mission, will spend 9.7 days in 583-km (315-mi) orbit at 28.5

deg of inclination. During that time, the orbiter Discovery will spend 2.5 days

with its wing pointed generally in the direction of motion and its payload

bay toward Earth, and 5 days with its tail pointed in the direction of motion

and its payload bay pointed toward Earth. Christiansen and Johnson report
that 630 of 750 trackable Pegasus/HAPS debris remain in orbit, of which 480
intersect HST's orbit. However, to date HST has suffered no known impacts

from HAPS debris. They state that, based on their analysis, the probabilities

of critical penetration and radiator leak caused by impact for the mission are

within established Shuttle guidelines. However, the probability that an object

will penetrate the 2-km-by-5-km-by-2-km maneuver box during the flight is

86 percent, while the probability that a window will need to be replaced after

the flight is 60 percent. They recommend that STS-82 is "Ready to Fly."

"STS-82 Flight Readiness Review: Orbital Debris/Meteoroid Risk Assess-
ment,'"E. L. Christiansenand N. Johnson, January 27, 1997.

February 6 Citing cost reduction efforts in the wake of the Cold War, the Department of
Defense closes the SSN's dish radar at Pirinclik, Turkey. Pirinclik, the first

radar to detect the breakup of the Ariane V16 upper stage (1986), is only the

latest in a series of orbital debris monitoring facilities fallen victim to cost

cutting. These included: the GEODSS II optical telescope facility at Taegu,
South Korea, closed October 15, 1993: the Saipan Island dish radar, closed

November 1, 1993: the COBRA DANE phase array radar at Shemya, Alaska,

closed April 1, 1994: and the PAVE PAWS SE and SW phase array radars at

Robins AFB in Georgia and Eldorado, Texas, respectively, closed September

1, 1995.

February 11-21 STS-82, the second HST servicing mission, includes five EVAs by four astro-

nauts in Discovery's payload bay. Modeling and special observations using

the Goldstone and Haystack radars indicate that the Pegasus/HAPS explo-

sion (June 4, 1996) doubled the debris flux at HST's altitude. During the flight

ten conjunctions occur within the 5-km-by-25-km-by-5-km alert box: two

occur within the 2-km-by-5-km-by-2-km maneuver box. Discovery maneu-

vers to avoid one, a piece of Pegasus/HAPS debris. The other debris frag-

ment (Thor-Ablestar debris from the 1960s) is predicted to miss the orbiter by

1.9 km, so no avoidance maneuver occurs.

Memorandumwith attachments, Steven Stich. Lead, Orbit Flight Dynamics
Group, "Conjunction Summary for STS-26 through STS-85.'"September 17,
1997: Walkingto Olympus: An EI'A Chronology, David S. F. Portree and
Robert C. Trevino, Monographs in Aerospace History #7, NASA Headquarters,
October 1997,pp. 119-120.

February 17-28 IADC representatives Walter Flury, ESA, and George Levin, NASA, address
the S & T Subcommittee of U.N. COPUOS during its 34th session. The S & T

Subcommittee agrees to continue cooperation with IADC in 1998. According

to the nominal 5-year plan established in 1995, this year's meeting is given
over to orbital debris modeling. The IAA becomes an official observer, and A.

Kato, NASDA, briefs the Subcommittee on NASDA STD-18.

"The Role of tlle Scientific & Technical Subcommittee of UN-COPUOS for the
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February 28

March 17-19

March 20-21

April-June

April 3

Space Debris Work of the United Nations," Dietrich Rex: NASDA Space DebrL_

Mitigation Stamlard, NASDA-STD- 18, A. Kato, NASDA.

NASA Administrator Daniel Goldin and U.S. Air Force General Howell Estes

met at NASA Headquarters to sign a Memorandum of Agreement establish-

ing the NASA/Air Force Space Command Partnership Council. The Council

has implications for NASA use of DoD orbital debris tracking resources.

Memorandtnn to distribution from NASA/AT/Associate Deputy Administrator

_Technical) and AFSPC/XP/Acling Director for Plans and Programs. November
24, 1997.

The 2nd European Conference on Space Debris takes place at ESOC,

Darmstadt, Germany. The conference, organized by Walter Flury, ESA, is a

follow-on to the 1993 meeting, and is co-sponsored by ASI, BNSC, CNES,

DARA, and IAA. More than 200 orbital debris experts from 18 countries

attend and present papers on a broad range of debris topics.

Proceedings ¢¢'the Second European Conference on Space Debris, ESA SP-393

(SD-02), May 1997.

The 14th IADC meeting is held in conjunction with the 2nd European Confer-

ence on Space Debris in Darmstadt, Germany. Germany becomes an IADC

member, bringing membership to nine. The organization makes RORSAT

NaK study an IADC action item, adopts a uniform list of satellite breakups,
and reviews common database work. The database will be made available on

an ESA-based website, and will contain data on solar and geomagnetic

activity, launch sites and launch vehicles, spacecraft and rocket body geomet-

ric and radar cross-section descriptions, the uniform list of satellite breakups,
and other data. The IADC also discusses plans for an international GEO

search campaign set to commence in October, and reaches preliminary

consensus on a risk object reentry notification system architecture. The U.S.

SSN and Russian SSS will provide routine tracking data to the IADC risk
object database.

Orbital Debris Quarterly News, Vol. 2, Issue 2, April-June 1997.

Albert Jackson and Ronnie Bernhard, Lockheed Martin, report in Orbital

Debris Quarterly News that 86 percent of the approximately 1000 impact pits
found on LDEF's trailing edge can be attributed to micron-size aluminum

and aluminum oxide particles from solid rocket motors.

Orbital Debris Quarterly News, Vol. 2, Issue 2. April-June 1997.

On February 28, NASA Administrator Daniel Goldin and U.S. Air Force

General Howell Estes met at NASA Headquarters in Washington, D.C., to

sign a Memorandum of Agreement establishing the NASA/U.S. Air Force

Space Command Partnership Council. On this date, the first formal meeting

of the Partnership Council occurs at Air Force Space Command Headquarters

in Colorado. Representatives of the two organizations establish seven task

teams, of which two, "Space Debris" and "Cooperation on Space Environ-

ment," have implications for orbital debris.

Memorandum 1o distribution from NASA/AT/Associate Deputy Administrator
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May 5

1997

(Technical) and AFSPC/XP/Acting Director fl)r Plans and Proorams, November

24, 1997.

The NRC Committee on Space Shuttle Meteoroid/Debris Risk Management

holds its first meeting in Washington, D.C. Former Shuttle astronaut Rick

Hauck is chair. NASA presents its strategy for Shuttle meteoroid and orbital

debris risk management on April 27, and the committee develops a study

plan and report outline on April 28.

Protecting the Space Shunh, fi'om Meteoroid,s am/Orbital Debris, National

Research Council, 1997.

The HIT-F issues a report documenting 49 tests on Shuttle Extravehicular

Mobility Unit space suit materials and ballistic limit equations performed for

the EVA Project Office and NASA JSC. The HIT-F fired projectiles of different

sizes at speeds of up to 7.29 km/second at suit materials, glove fngers, and

the glove gauntlet at angles of 0 deg, 30 deg, 45 deg, and 60 deg. During ISS

assembly U.S. astronauts will accumulate about 500 clock hours of EVA

experience.

H37)erveloci O' lnq_act tests qf Extravettieular Mobilio' Unit fEMU t (Space Suit)

Material Samples. Part 1, Larry Jay Friesen and Eric Chrisliansen, JSC-27856,

May 1997.

A Delta II rocket launches the first five satellites of the new Iridium satellite

constellation. Iridium, built by Motorola and owned and operated by Iridium

LLC, is the latest in a series of constellations launched over the past 30 years.
A Russian Proton rocket launches seven more Iridium satellites on June 18.

Commercial Satellite Constellations and Orbital Debris

Technology breakthroughs have produced satellites not much larger and heavier than the "grape-

fruits" launched by the U.S. in the early days of the Space Age, yet orders of magnitude more

capable and less costly. The confluence of these small satellites with economical expendable launch

systems, some so affordable that university science departments can purchase flights, has produced

a new arena for space commerce - commercial communication satellite constellations in LEO.

In January 1995. the U.S. firm Final Analysis, Inc. became the first to test this new arena's potential
with the first launch (on a Russian Cosmos rocket) of its FAIsat constellation. The U.S. company

OrbComm started its Pegasus-launched OrbComm constellation in May 1995, and Russia began

building up the Gonets ("messenger") constellation in February 1996. But a case can be made that
launch of the first five Motorola-built Iridium satellites on May 5, 1997, marked the start of the full

exploitation of this market's potential.

LEO satellite constellations are not a new phenomenon. Since the early 1960s, literally hundreds of

satellites have been included in constellations. For example:

1970-1992 - The Russian Strela 1 military communications constellation included 360 spacecraft

and 45 rocket bodies at 1450 km altitude inclined 74 deg to the equator. All Strela 1 satellites

and rocket bodies remain in orbit. Strela 1 was followed by the Strela 2 and Strela 3 constella-

tions: the Gonets constellation satellites are derived from the Strela 3 spacecraft.
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• 1964-1988 - The U.S. Transit military communications constellation included 20 spacecraft and

16 rocket bodies at 900-1200 km altitude inclined 90 deg to the equator. All are still in orbit.

New generation commercial constellations include similar numbers of spacecraft operating at

similar altitudes. For example:

1995 (first launch) - The Orbcomm constellation could include as many 84 spacecraft (36 are

licensed: 48 more are proposed) in 4 planes inclined at 46 deg and 2 planes inclined at 70 deg,
775-825 km above the Earth.

• 1997 (first launch) - Iridium could include as many as 66 operational spacecraft (plus spares on

orbital standby) in six planes inclined at 86.4 deg, 780 km above the Earth.

• 1998 (first launch) - Globalstar could include as many as 48 satellites in eight planes inclined at

52 deg, 1414 km above the Earth.

2001 (first launch) - The Teledesic constellation, one of the largest presently envisioned, could

include 288 spacecraft (plus orbital standbys) in 12 planes inclined at 84.7 deg, 1372.5-1379 km
above the Earth.

For several years concerns have been raised that these new generation constellations might become

a new and potent orbital debris source. The constellations represent a new source of mass and

cross-sectional area (and thus collision potential) put into orbit. However, older Soviet satellite

systems are being retired, so the contribution to the total cross-sectional area of satellites orbiting

Earth produced by the new generation commercial constellations could be minor. The current

launch rate augmented by constellation launches, while greater than the rate in recent years, re-

mains less than the rate through the 1980s up to 1991, because the Soviet Union launched more

frequently than Russia does today. (In 1997, 86 launches occurred: in 1991, 117 launches took place.)

In addition, constellations contain no inherent, special threat of accelerated debris creation. Constel-

lation satellite operators need only follow the same passivation and operational guidelines that

apply to operators for all satellites.

Iridium is a model of correct commercial constellation operations. Iridium is doing more mitigation

than was done with most of the historic constellations. The Iridium rocket bodies are passivated at

a low altitude ensuring rapid decay. Each satellite boosts under its own power to operational

altitude, then deorbits at end-of-life. Motorola, the builder of Iridium, also take care in designing

their spacecraft to anticipate inherent debris or nuisance-producing problems.

Other constellation operators show a similarly enlightened attitude. The Pegasus XL-launched

OrbComm satellites are essentially passivated at end of life. Teledesic has indicated that it will

adhere as much as possible to NASA's passivation guidelines.

Compliance occurs so readily because these new generation constellations are managed by new

generation managers aware of the significance of the orbital debris problem. Most know that early

consideration of debris mitigation in new spacecraft designs minimizes the cost of implementation.

They enlist orbital debris experts to make certain that their operations do not needlessly contribute

to the debris environment. In addition, few operators want to create a problem which could endan-

ger this promising new space commercial market.

Interview with Nicholas Johnson and Joseph P. Loflus. Jr.. January 30, 1998:
"Selected Historical LEO Constellations." Nicholas Johnson, 1997: "'Orbital

Debris Modeling for LEO Constellations," Paula Krisko, U.S. Government
Orbital Debris Workshop lk_rIndustry, January 27-29, 1998: "Results of NASA
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LEO Constellation Modeling, Robert Reynolds, U.S. Government Orbital

Debris Workshop for Industry', January 27-29, 1998: "Debris Environment
Interactions with Low Earth Orbit Constellations," Robert Reynolds, Anette

Bade, Karl Siebold. and Nicholas Johnson, Proceedings of the Second European

Conference on Space Debris, ESA SP-393 (SD-02), May 1997.

NASA Leonid Meteor Shower Working Group holds a meeting at NASA JSC

in anticipation ofa Leonid storm in 1998 or 1999. Walter Marker leads the JSC
Leonids effort. The working group hears papers on the Olympus anomaly

during the Perseids on August 1 l, 1993, as well as Leonids papers from the

University of Western Ontario Meteor Group, NASA JSC, and the National

Central University of Taiwan.

Meeting packet. NASA Leonid Meteor Shower Working Group Meeting, May

8-9, 1997.

Atlantis docks with Mir during STS-84. The orbiter's crew snaps 830 35-mm

and 160 70-ram photos in support of DTO 1118. Three objects conjunct with

the orbiter within the 5-km-by-25-km-by-5-km alert box.

"Pholngraphic surveys of the Mir space station and the detection of orbital

debris and meteoroid impacts," Mike Gaunce, Robert Scharf, Nicholas Johnson,

Eric Chrisliansen: paper presented at SPIE lntemalional Symposium on Optical

Science, Engineering, and Instrumentation, Conference on Characteristics and

Consequences of Orbital Debris and Natural Space lmpaclors 11, July, 27-Aug 1,

1997, San Diego, Calilomia: Memorandt, m with attachments. Steven Stich,

Lead, Orbit Flight Dynamics Group, "Conjunction Sunmmry for STS-26

through STS-85," September 17, 1997.

The auxiliary motor that settled propellants in the Proton Block DM fourth

stage used to place the Ekran 17 satellite in GEO (1987) explodes in 310-km-

by-22,975-km, 46.6-deg geosynchronous transfer orbit, producing 72 detect-

able debris objects. This is the fifteenth Proton auxiliary motor explosion

since 1984. Normally few fragments from such breakups are catalogued, and

to date these breakups appear to pose little threat.

Orbital Debris Quarterly News, Vol. 2, Issue 3, July-September 1997.

NASA Policy Directive (NPD) 8710.3 is issued on this date to replace NMI

1700.8 (April 1993). The new NPD, effective through May 29, 2002, states that

NASA orbital debris policy is to

• employ design and operation practices that limit the generation of orbital

debris, consistent with mission requirements and cost-effectiveness.

conduct a formal assessment in accordance with NASA Safety Standard

(NSS) 1740.14 "Guidelines and Assessment Procedures for Limiting

Orbital Debris," 1995, on each NASA program/project, of debris genera-

tion potential and debris mitigation options. As a minimum, the assess-

ment should address the potential for orbital debris generation in both

nominal operation and malfunction conditions; the potential for orbit

debris generation due to on-orbit impact with existing space debris (natu-

ral or human-generated) or other orbiting space systems; and postmission

disposal.
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June

June 16-18

June 26

June 27

July 11

• establish and implement additional debris mitigation measures when the

assessed debris contributions are not considered acceptable.

NASA NPD 8710.3. May 29, 1997

Mars TransHab Design Team formed in March 1997 as part of efforts to

develop a low-cost, inflatable Mars transit habitat that could also serve as an

ISS module. One mission profile has a crewless Transhab spiraling slowly out

from LEO over nine months using a solar electric propulsion system. The

crew boards in high Earth orbit just before the vehicle leaves Earth orbit for

Mars. While reducing the amount of mass which must be launched from

Earth, this profile means that the vehicle lingers in several altitude regimes

with relatively dense orbital debris concentrations. A deployable Multi-Shock
Shield covers the inflatable Transhab's skin. The shield consists of three

Nextel fabric bumpers separated from each other by 10 cm of open-cell foam

hollowed by cylindrical volumes over a rear wall of 5 layers of Kevlar. Seven

Transhab HIT-F tests were performed - four of the baseline shield and three

with varying amounts of foam and adhesive. In the four baseline tests,

neither a 157.7 mg object moving at 6.74 km/second nor a 375.2 mg object

moving at 6.82 km/second penetrated the rearwall. Probability of no penetra-

tion is -98 percent over an entire Mars flight.

"TransHab Overview." Donna Fender. NASA JSC Engineering Directorate.
August 5. 1997: Mars TransHab Meteoroid and Orbital Debris Shiehl
Perfi,v_ance Assessment. JSC 27892. Glen Shortliffe and Eric Christiansen.
June 1997: Orbital Debris Quarterly News. Vol. 2. Issue 3. July-September
1997.

The NRC Committee on Space Shuttle Meteoroid/Debris Risk Management

holds its second meeting in Houston, Texas. The Committee hears about the

EVA astronaut vulnerability to meteoroids and orbital debris.

Protecting the Space Shuttle from MeteoroMs attd Orbital Debris, National
Research Council, 1997.

Cosmos 2313, an ELINT ocean reconnaissance satellite (EORSAT) breaks up

at an altitude of 285 km in a 210-km-by-325-km orbit at 65 deg of inclination,

close to the 300-km orbit planned for orbiter Columbia during STS-94, due to

launch on July 1. The 3000-kg EORSAT remains largely intact but produces

about 90 detectable debris pieces, most of which reenter by June 30. Follow-

ing an alert by U.S. Navy Space Command, the NASA Orbital Debris Pro-

gram determines that critical component and radiator tube penetration risks

remain within Shuttle program guidelines. The team also assesses the likeli-

hood that avoidance maneuvers will be required during STS-94. The flight is

a microgravity research mission with objectives which can be compromised

by collision avoidance maneuvers.

Orbital Debris Quarterly News, Vol. 2, Issue 3, July-September 1997.

NASA approved the "Joint NASA/DoD Work Plan on Orbital Debris" in

June 1996; on this date the Department of Defense adopts it.

George Levin retires, effectively transferring the NASA Orbital Debris Pro-

gram manager position to Nicholas Johnson at JSC. Official transfer takes
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August 7-19

September 3-4
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place through a letter from JSC Director George Abbey to Wilbur Trafton of

NASA Headquarters on September 15.

The second Characteristics and Consequences of Orbital Debris and Natural

Space Impactors session is held on July 28 as part of the SPIE International

Symposium on Optical Science, Engineering, and Instrumentation in San

Diego, California.

NASA MSFC publishes a meteoroid and orbital debris primer as part of its

meteoroid and orbital debris technology program. MSFC work complements

the larger NASA Orbital Debris Program managed at NASA JSC.

"Meteoroids and Orbital Debris Effects on Spacecraft," NASA RP 1408, C. A.

Belk, J. H. Rnbinson, M. B. Alexander, W. J. Cooke, aud S. D. Pavelitz

During STS-85 a debris object passes within 0.2 km of the Shuttle Payload

Satellite (SPAS) freeflyer deployed from orbiter Discovery. SPAS leads

orbiter by about 50 km at this time.

Memorandum with attachments, Steven Slich, Lead, Orbit Flight Dynamics

Group, "Conjunction Summary lk)r STS-26 through STS-85," September 17,

1997.

NASA and U.S. Air Force representatives meet with Canadian meteoroid

experts in London, Ontario, Canada to develop a Tripartite Leonids Meteor

Storm Campaign to occur in November 1997. The purpose of the campaign is

to develop higher confidence threat assessments for the potential 1998-2000
Leonids storms.

"NASA/AFSPC Space Debris Task Team Status Report," October 22, 1997.

Mir's crew, which includes a U.S. astronaut, boards its Soyuz-TM ferry as a

precaution during a close conjunction with the U.S. MSTI-2 satellite. Their
action is based on NASA advice using USSPACECOM data. MSTI-2 launched

on May 9, 1994, on the last Scout rocket. NASA sent the Russians eight
advisories between November 1996 and October 1997, but this is the first for

which action is taken.

"'Orbital Debris Risk Assessments and Collision Avoidance Procedures for the

Space Shuttle." IAA-97-1AA.6.5.03, Joseph P. Loftus, Jr., Don J. Pearson. and

Eric L. Christiansen. 48th International Astronautical Congress. October 6- t0,

1997, Turin, Italy.

Russia intentionally explodes a military reconnaissance satellite in LEO for

the first time in 4 years at an altitude of 230 km. Cosmos 2343, launched May
15, 1997, is the latest in a series of satellites designed to be destroyed at end-

of-life. The SSN characterizes orbits of 32 debris objects within 48 hours of the

explosion. NASA JSC determines that 70 percent of the threat to the Mir

station passes within 24 hours, and that the short-lived Cosmos 2343 debris

cloud is unlikely to pose a threat to the STS-86 Shuttle mission.

"Intentional LEO Spacecraft Breakup," Orbital Debris Quarwr(v New,_, Vol. 2.

No. 4, October-December 1997; Joint NASA/DoD Work Plan on Orbital

Debris, June 27, 1997, Final Draft.
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September 25-
October 6 Prior to the STS-86 mission, the HIT-F updated its models of meteoroid and

orbital debris risks to the Shuttle to take into account new Mir docking

attitudes. A total of 77 attitude/altitude combinations are evaluated using

BUMPER II calculations, making STS-86 the most computationally intensive

mission to date. During STS-86 Atlantis docks with Mir and astronaut Scott

Parazynski and cosmonaut Vladimir Titov perform a joint EVA to recover the

MEEP from Mir's Docking Module for return to Earth.

"'Hypervelocity lmpacl Technology Facility (HIT-F) Historical Notes," Eric
Christ)arisen, March 3, 1998.

October NASA/Air Force Space Partnership Council reviews a "White Paper Study of

the Design of a Collision Avoidance Network for Orbital Debris with Sizes

Down to 5-cm" circulated by Space Debris Task Team. The paper notes that

the SSN can monitor objects as small as 10 cm, but 0.1-cm objects can cause
significant damage. It recommends a range of SSN improvement studies, as

well as upgrades and use modifications for existing facilities (particularly the

Eglin FPS-85, Millstone, and Cavalier radars). The paper also recommends

investigation of a low-cost optical system to aid in cataloging and maintain-

ing orbital elements for objects in high-eccentricity orbits with perigees over

the southern hemisphere.

"'White Paper Study of the Design of a Collision Avoidance Network for

Orbital Debris with Sizes Down to 5-cnf' NASA/AFSPC Partnership Council,
October 1997.

October The GEO observation campaign begins under auspices of the IADC. U.S.

observations occur at Cloudcroft, New Mexico, using the 32-cm CDT instru-

ment, which has a 1.6-deg field of view and is capable of imaging 16-magni-
tude stars with a 20-second exposure.

Interview, David S. F. Portree with Glen Cress, Januar 7 7. 1998.

13O

October 3 White House Office of Science and Technology Policy director John Gibbons

signs the launch approval for the Cassini Saturn probe. The spacecraft relies

on RTGs containing plutonium fuel for electrical power, as have about 30

other U.S. space vehicles in the past three decades. Because Titan IV is not

powerful enough to send 5300-kg (11,660-1b) Cassini on a direct trajectory to

Saturn, the automated orbiter must perform gravity-assist swingbys of Venus

(twice), Earth, and Jupiter. The Earth flyby is scheduled for August 18, 1999,

at a distance of 1160 km (720 mi). Concern was raised about the possibility
that a meteoroid might impact Cassini between the second Venus encounter

and Earth flyby, causing loss of control and permitting Cassini to collide with

Earth. The Interagency Nuclear Safety Review Panel, which consists of about

50 safety experts from NASA, DOE, DoD, the Environmental Protection

Agency, and the Nuclear Regulatory Commission, convenes a special review

panel to assess the issue. They find that a meteoroid impact that destroys the

propulsion system could produce an impulse deflecting Cassini into a colli-

sion with Earth only if it occurs 50 days before Earth swingby. The probabil-

ity of this occurrence is estimated at less than 1 in 1,000,000. Cassini departs

Earth with a cargo of a dozen scientific instruments and ESA's Huyghens

Titan probe on October 15. Cassini will begin the first in-depth Saturn explo-
ration in 2004.
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"NASA Receives Approval to Launch Cassini Mission," NASA press release

97-225, October 3, 1997: "'Spacecraft Power lk_rCassini,'" NASA Facl Sheet,

February 1996: "The Cassini Mission to Saturn," NASA Fact Sheet, Marcia

1996.

The ISS Program publishes its Debris Avoidance Operations plan. ISS will

always accelerate at 1 m/second to avoid conjunctions so that all avoidance
maneuvers contribute to raising the station's orbit. Conjunction prediction is

to be based on a new' probability-based, real-time procedure in order to

reduce the number of required avoidance maneuvers to six per year, assum-

ing no breakups in a near or intersecting orbit. Probability calculations will

be made at the Space Station Control Center at NASA JSC. If the Shuttle

system of alert and maneuver boxes were used, 20 to 40 avoidance maneu-

vers per year might be required. This is intolerable because ISS requires a

0.60 probability of six uninterrupted 30-day microgravity periods/year and
because the amount of propellant needed would be prohibitive.

"Orbital Debris Risk Assessments and Collision Avoidance Procedures lor lhe

Space Shullle," IAA-97-1AA.6.5.03, Joseph P. Loftus, Don J. Pearson, and Eric
L. Chrisfiansen, 481b International Astronautical Congress, October 6-10. 1997,

Turin, Italy.

The 30th annual Space Safety and Rescue symposium of the International

Academy of Astronautics held in conjunction with the 48th International

Astronautical Federation meeting in Turin, Italy. Paper topics include SFU

post-flight analyses: joint European-Russian work to perform in-situ mea-

surement of meteoroids and space debris in GEO: constellations and orbital

debris; large debris reentries: and probable NaK coolant leaks from Soviet
RORSATs.

The MEEP arrives at NASA JSC, where the ODC is removed and subjected to

analysis in the Facility for the Optical Inspection of Large Surfaces laboratory.
In November researchers release a 30-day report containing results of their

large-scale inspection of the two ODC Aerogel trays. They report that they
found a total of 86 distinct tracks (often "carrot-shaped"), 74 pits, and 191

"flakes." Some of the tracks are indicative of particle swarms.

Macroscopic Inspection oJthe Orbital Debris Collector E tperiment (ODC) 30-

Day R_7_ort, Friedrich Horz, et al.

The NASA/Air Force Space Partnership Council meets for the second time at

NASA Headquarters in Washington, D.C. The "space debris" task team, co-

chaired by NASA's Nicholas Johnson, and U.S. Air Force representatives Col.

James Brechwald and Dr. David Spencer, reports that

• the "Joint NASA/DoD Work Plan on Orbital Debris" has been adopted

• an assessment of SSN capabilities to detect small debris has been handed

off to the Joint NASA/DoD Work Plan

• NASA/DoD orbital debris mitigation guidelines were developed based on

NSS 1740.14, which will be presented to industry at a NASA/DoD Work-

shop in January
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November 3

November 4-5

Mid-November

December

• The NASA/DoD Workshop is in an advanced state of preparation

• NASA and DoD have become partners in the IADC: future activities are to

be carried out under the NASA/DoD work plan

NASA/U.S. Air Force Space Partnership Council/Canada Leonids Meteor

Storm Campaign was established and handed over to a Tripartite Leonids

Meteor Storm Campaign team

The task team takes as an action item providing an estimate of the ISS reli-

ability improvement achievable by cataloguing objects as small as 5 cm in

diameter using DoD-funded upgrades.

Memorandum toDistribution from NASA/AT/AssociateDeputy Administrator
(Technical) and AFSPC/XP/Acting Director tbr Plans and Programs, November
24, 1997.

USSPACECOM issues UPDIO-39, Satellite Disposal Procedures, which estab-

lishes the following end of life disposal guidelines for U.S. Department of
Defense satellites:

• LEO satellites will be moved to a disposal orbit with a lifetime of no more

than 25 years.

• Medium-Earth orbit satellites will be moved to circular disposal orbit at
least 500 km above 12-hour orbit and 500 km below GEO.

• GEO satellites will be reboosted to a circular orbit at least 300 km above

GEO.

"DoD Policyon Disposal of Satellites," Orbital Debris Quarterly New_, Vol. 3,
No. 1.

The Aerospace Corporation Center for Orbital and Reentry Studies holds the

Aerospace Forum on Space Debris, Collision Avoidance, and Reentry Haz-
ard. William Allot, the Center's director, coordinates the Forum, which

includes an orbital debris overview by Aerospace Corporation's Vladimir

Chobotov. The Forum also includes sessions on policy by David Spencer,

U.S. Air Force Phillips Laboratory, and on End-of-Mission Requirements,

Reentry Prediction and Breakup, and Collision on Launch Avoidance by The

Aerospace Corporation employees Spencer Campbell, Wayne Hallman, and

Dan Oltrogge, respectively.

Aerospace Fro'urnon Space Debris, Collision Avoidance. and Reentry Hazard:
proceedings of a meeting held at theAerospace Corporation Center for Orbital
Debris and Reentry Studies, November4-5, 1997.

Space Shuttle management elects to delay Columbia's launch on the STS-87

mission by a few days to avoid the peak of the Leonid Meteor Shower.

The U.S. Air Force Scientific Advisory Board reports that the SSN is inad-

equate to meet current and future needs and advises improvements. The

board states in its report that "[tlhe present radars, with some modest up-
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December 9-12
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grades and proper calibration, could perform superior earth satellite surveil-

lance, if the processing capability were updated."

Space Surveillance, Asteroid.s and Comets, and Space Debri.s, U.S. Air Force

Scientific Advisory Board, December 1997.

At the request of Subcommittee on Space and Aeronautics of the House of

Representatives, the Government Accounting Office publishes its report

Space Surveillance: DoD and NASA Need Consolidated Requirements and a

Coordinated Plan. The purpose of the report is to assess

• how well DoD's existing surveillance capabilities support DoD's and

NASA's current and future surveillance requirements

• the extent to which potential surveillance capabilities and technologies are

coordinated to provide opportunities for improvements

The report finds that the existing SSN cannot satisfy emerging requirements.

In addition, potential surveillance capabilities are inadequately coordinated
between the DoD branches and NASA. The report recommends that the

Secretary of Defense and NASA Administrator, in coordination with Director

of Central Intelligence Agency,

establish a consolidated set of government-wide space surveillance re-

quirements for evaluating current SSN capabilities and future SSN archi-
tectures

develop a coordinated government-wide space surveillance plan that sets

forth and evaluates alternative capabilities to support human spaceflight

and emerging national security requirements, and ensures that any

planned funding for space surveillance upgrades is directed toward

satisfying consolidated government-wide requirements.

Space Surveillance: DoD and NASA Need Consolidated Requiremems attd a

Coordinated Plan, GAO/NSIAD-98-42, December 1, 1997.

Over 90 orbital debris experts from nine member space agencies attend the

15th IADC in Houston (see Appendix 1). At the urging of the Japanese

delegation, the members agree to a new policy for end of life GEO reboost to

235 km plus a distance in kilometers equal to 1000 times the area divided by
mass. The IADC also establishes the orbits 200 km above or below GEO as

transfer corridors for repositioning assets. Italy petitions to become an IADC
member.

Interview. David S. F. Portree with Joseph P. Loflus, Jr., December 3l, 1997:

Orbital Debris Quarterly News, Vol. 3, No. 1, January-March 1998.

The NRC releases Protecting the Space Shuttle from Meteoroids and Orbital

Debris. The report fails to take into account NASA efforts to reinforce the

orbiter (figs. 10, 1 l) which began formally with the work of the Space Shuttle

Meteoroid and Orbital Debris Damage Assessment Team in 1995. Some of its

recommendations - for example, that NASA and the Department of Defense

work together to satisfy NASA's on-orbit collision avoidance requirements -
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The illustration above depicts the general layout of the Shuttle orbiter radiator fluid loops and steps

taken to reduce their vulnerability to orbital debris. Both sides of the twin forward radiator panels

reject heat, so they contain more tubes than the aft panels. Puncturing a tube can cause an entire

side of the orbiter cooling system to drain, halving the spacecraft's ability to reject heat and forcing

early mission termination. Beginning in 1998, NASA "armored" the tubes with 0.0g-inch-thick

bonded aluminum strips. The agency also added isolation valves. If an impactor penetrates the new

"armor," the valves can prevent complete coolant loss on the affected side. This allows the orbiter

to fall back on the flash evaporator cooling system it normally uses while the payload bay doors are
closed.
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Figure 11.

The orbiter wings are highly redundant structures, so penetrations over much of the wing area do

not present a safety hazard. Nevertheless, analysis indicated that damage to portions of the Rein-
forced Carbon-Carbon (RCC) wing leading edges could produce unacceptable wing damage. This

is because a debris impact perforation small enough to be unnoticed in orbit could act as an inlet

for hot plasma (ionized gas) generated during reentry. The plasma could pour into the cavity

behind the RCC and impinge on the aluminum wing structure, damaging critical components.

"Region 1" in the illustration above is particularly susceptible because it is located at the confluence
of the orbiter bow and wing shockwaves - thus it experiences the highest reentry heating levels.

NASA reinforced the wing main spar thermal insulation by adding a layer of Nextel (an alumina

silicate ceramic fabric) behind the existing Inconel 601 cerachrome foil insulation within the wings.

The Nextel does not prevent impact penetrations, but it does increase the ability of the wing leading

edge structure to withstand entry heating.
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December 23

December 25

were already underway when the report was in preparation. In addition, it

promotes the misconception that the risk of critical penetration from meteor-

oids or orbital debris is 1 in 200 - that is, greater than the risk incurred during

Shuttle ascent or descent. In a letter published in Space News in early Febru-

ary, NASA Chief Scientist for Orbital Debris Nicholas Johnson responds to

this assertion, stating that

The claim is in fact erroneous and steins from an apparent miscom-

munication...The 1-in-200 estimation of risk of critical penetration by

orbital debris arose early in the NASA space shuttle orbital debris

risk-assessment process. It represented a highly conservative assess-

ment based on criterion of no penetration of the reinforced carbon-

carbon material on certain portions of the leading edge of the shuttle's

wing. This benchmark was used until a series of hypervelocity impact

tests [in the JSC HIT-F] and thermal and structural responses deter-

mined that holes as large as several millimeters in diameter...will not

pose a threat to crew or vehicle...the predicted risks from orbital

debris and micrometeoroid impacts now are substantially less than

those present during launch. In 1997, NASA adopted a modification

to the orbiters to tolerate even larger holes without threat to the crew

or vehicle, thus reducing flight risks and improving safety even
further.

Protecting the Space Shuttle j?om Meteoroids and Orbital Debris, N RC, 1997:

"Clearing Debris," Nicholas Johnson, Space News, January, 26-February 1,

1998.

An Orbital Sciences Corporation Pegasus XL winged launcher successfully

delivers eight satellites of the new OrbComm messaging satellite constella-

tion to LEO, bringing the total number of spacecraft in the constellation to 10

(OrbComm launched the first two satellites on a Pegasus XL in April 1995).

The winged Pegasus XL launcher uses a HAPS fourth stage akin to the one

that ruptured in orbit in June 1996. Orbital Sciences Corporation, maker of

the Pegasus XL and HAPS, traced the explosion to residual helium

pressurant that may have leaked past a faulty regulator valve and repressur-

ized the hydrazine propellant tank. The company redesigned HAPS, doing

away with the helium tank in favor of a "blow-down" propellant system. On

December 8, the Federal Aviation Administration (FAA) suspends Orbital

Science Corporation's launch license after learning that the company does not

intend to passivate the redesigned HAPS as it had agreed to do when granted
its launch license in March 1997. The FAA restores the license after the

company agrees to make a software fix to vent residual HAPS propellant.

After delivering its payloads into a circular orbit at an altitude of 825 km, the

HAPS vents residual helium, hydrazine, and nitrogen, placing itself in a 410-

km-by-827-km orbit that significantly reduces its orbital lifetime.

"FAA Yanks Pegasus XL Launch License," Warren Fersler, Space New_,

December 15-21, 1997, p. 1,20: interview, David S. F. Porlree with Joseph P.

Loflus, December 31. 1997: "Pegasus Upper Stage," Orbital Debris Quarterly

News, Vol. 3, No. 1. January-March 1998.

The Proton Block DM fourth stage carrying Asiasat 3 (launched December 24)

suffers apparent catastrophic failure at first geosynchronous transfer orbit
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apogee (35,995 km), one second into its circularization burn. The SSN spots
fewer than 10 objects, of which only two are still being observed on January

9, 1998. The accident is similar to the one which befell Raduga 33 on February

19, 1996.

Email from Nicholas Johnson, Janua O' 9, 1998.

)
January 15

January 27-29

Ballistic Missile Defense Organization officials announce that an unidentified

orbital debris object collided with and destroyed a Minuteman III Multi-

Service Launch System booster 450 km over the Kwajalein Islands, 30 min-

utes after launch from Vandenberg Air Force Base, California. The rocket's

solid-fueled third stage had completed its mission and was falling back into

the atmosphere when the reported collision occurred. Breakup of the third

stage was observed by airborne optical and ground-based and sea-based

radar sensors, but only one radar detected the possible debris object. The

orbital debris detection was later judged erroneous.

"'Minuleman Third Stages Destroyed by Orbital Debris.'" James Oberg, Space

News, February 16-22, 1998. p. 3: email froln Nicholas Johnson, March 5,

1998.

U.S. Government Orbital Debris Workshop for Industry is held in Houston.

Representatives of U.S. government organizations - specifically the Depart-
ment of Defense, NASA, FAA, and FCC - place emphasis on educating the

growing space private sector about orbital debris. Nicholas Johnson presents
an overview of the NASA Orbital Debris Program, while Ruben Van

Mitchell, with DOT's Commercial Space Transportation Office presents FAA

regulations. Kelli Seybolt presents the DoD perspective, and Karl Kensinger,

the FCC view. Joseph Loftus reviews international orbital debris mitigation

activities. Participants also review the draft U.S. Government Orbital Debris

Mitigation Standard Practices and the orbital debris issues associated with
low-Earth orbit satellite constellations. The workshop divides into three

working groups to help foster industry inputs.

lmerview, David S, F. Porlree with Nicholas Johnson and Joseph P. Lofms, Jr..

January 30, 1998.
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Appendix 1: Participants in the 15th IADC meeting

The membership roster of the 15th IADC meeting, held in December 1997, in Houston, Texas,

graphically illustrates the expansion of international orbital debris awareness over the past 37

years. Participants are grouped by delegation: individuals within each delegation may hold other
affiliations.

British National Space Center

Richard J. Tremayne-Smith
Richard Crowther

Peter Hedley Stokes

Roger Walker
Malcolm Bain

David Holland

Dick James

Centre National d'Etudes Spatiale

Pierre Moskwa

Fernand Alby

Christophe Bonnal
Gilbert Marthon

Andre Rolfo

Jean Claude Mandeville

Thierry Michal
Olivier Bonfils

China National Space Administration

Qi Yongliang

Liu Yenfeng

Weng Weiliang

Wang Lizai
Lu Bo

Tu Xinying
Wu Liandam

Jian Yaowen

Deutsche Zentrum ffir Lufle und Raumfahrt e.V.

Detlef Alwes

Dieter Mehrholz

Frank K. Schaefer

Hans-Guenther Reimerdes

European Space Agency

Walter Flury
Hans-Heinrich Klinkrad

Gerhard Drolshagen

Ruediger Jehn
Michel Lambert

Walter Naumann

Inigo Mascaraque
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Dietrich Rex
BrunoBertotti

Indian SpaceResearchOrganization
Aiyam S.Ganeshan

Japan
SusumuToda
SeishiroKibe
ShunjiSuematsu
TadashiTakano
Akira Takano
FumioTerada
ToruTajima
Hiroyuki Konno
SyuzoIsobe
TetsuyaYamamoto
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NASA

Nicholas Johnson
Eric Christiansen

Jeanne Crews

Wayne Frazier
Justin Kerr

Joe Loflus
Walter Marker

Wendell Mendell

Gene Stansbery
Jeff Theall

Faith Vilas

Greg Olsen

Kelli Seybolt

David Spencer

Tim Payne
Taft DeVere

Firooz Allahdadi

Anthony Andrews
Kim Luu

Jeffrey Maclure

George Levin
Drew Potter

Anette Bade

Peter Eichler

Neal Hartsough
A1 Jackson
Don Kessler

Ben Kirk

Paula Krisko

Mark Matney
Babara Nowakowski

John Opiela



BobReynolds
William Rochelle
Tom Settecerri
Karl Seibold
AlejandroSoto
Phillip Anz-Meador
SpencerCampbell
Val Chobotov
Marion Sorge

RussianSpaceAgency
Vladimir Pochukaev
SergeyChekalin
SergeyMescheriakov
Andrey Nazarenko
StanislavVeniaminov
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A
A-1 (Aslerixl [see salellites)
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