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Nonreflecting Far-Field Boundary Conditions
for Unsteady Transonic Flow Computation

D. Kwak °

NASA Ames Research Center, Moffett Field, Calif.

The approximate nonreflecting far-field boundary condition, as proposed by Engquist and Majda, is im-
plemented in the computer code LTRAN2. This code solves the implicit finile-difference representation of the
small-disturbance equations for unsteady transonic flows about airfoils. The nonrefiecting boundary condition
and the description of the algorithm for implementing these conditions in LTRAN2 are discussed. Various cases
are computed and compared with results from the older, more conventional procedures. One concludes that the

nonreflecting far-field boundary approximation allows the far-field boundary to be located closer to the airfoil;
this permits u decrease in the computer time required to obtain the solution through the use of fewer mesh
points.

I. Introduction

O compute time-dependent flows over an infinite region
using finite-difference procedures requires either that the

problem be reduced to the one in a finite domain via a
coordinate transformation, or that boundaries be placed at a

finite distance from the body and the boundary conditions
modified along them. When the solution at infinity is simple,
a coordinate transformation technique can be used. However,

for many practical problems, especially when the flow is

singular at infinity, the coordinate transformation method is
not applicable. In such cases, computational simulations of
unsteady flows in an unbounded region are performed on

grids with finite dimensions. The artificial-wall effect created
by these grid far-field boundaries must therefore be
minimized so as not to degrade the resulting numerical

solution.

Various approaches have been developed to reduce this

spurious influence of far-field boundaries on interior
solutions, some of which are listed below:

1) It is common _ to place these boundaries far enough

(typically hundreds of chord lengths) from the airfoil such
that reflected waves have been greatly reduced in amplitudes

by numerical dissipation through the travel from these
boundaries. Such a procedure naturally requires a large

number of grid points.
2) In a series of papers, Engquist and Majda 2_ developed a

nonreflecting boundary condition procedure. By absorbing

waves incident on the boundary in certain directions, they
designed approximate local conditions for simulating the far-

field effects along those boundaries. Their lowest order
approximation can be interpreted as a simplified form of the

characteristic equation.
3) Bayliss and Turkel 5 derived a far-field boundary

condition procedure based on an asymptotic expansion to any
order in the reciprocal of the distance from the origin. The
dependence of the far-field distance is shown in the work of

Fung, s where the linearized unsteady small-disturbance
transonic flow equation is solved to get a far-field condition.

This condition is equivalent to a vortex solution with a time
lag for waves originating at the airfoil and propagating to the
far-field boundary.

4) A viscous damping method which absorbs incident
waves on the far-field boundaries was tried by Bushby and
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Timpson. 7 This method, however, requires a considerable
number of grid points near the far-field boundary.

5) Guderley s (see also Krupp and Cole 9) has shown that in
a limited number of cases, far-field conditions can be derived

analytically to investigate basic mathematical concepts.
However, an extension of this to more general nonlinear

problems is not clear at this point.
Unsteady transonic flow regions are encountered in the

flight of many existing flight vehicles. Typical examples
include a fluttering airfoil and spinning helicopter rotors, io

For unsteady small-disturbance transonic flows, Ballhaus and

Goorjian I have developed a time-accurate implicit finite-
difference computer code, LTRAN2. Their boundary con-
ditions at the top, bottom, and upstream boundaries (see Fig.

l) are perfectly reflecting conditions and are the proper ones
for boundaries infinitely far away. In the present work,

approximate nonreflecting boundary conditions are employed
in this code to bring the far-field boundaries closer to the

airfoil. As illustrated in Fig. I, waves originating from the

airfoil propagate to the far-field boundaries. The old
boundary which is placed at a large distance from the airfoil
leaves the near-field solution unaffected by reflected waves
from the outer boundary. With nonreflecting conditions, the

new boundary can be located closer to the airfoil, thus

reducing the area of computation and thereby increasing the
degree of resolution within the computational domain.

Among the approaches listed above, the approximate local
condition procedure designed by Engquist and Majda z'* was
selected to be used in the present study. Their conditions are

simple to implement and require only a modest change in the
existing computer code; however, these conditions result in a
marked improvement in the computational efficiency of that

code.
In Sec. II of this paper, the governing equation and the

boundary condition procedure by Engquist and Majda are

presented. In Sec. III, the finite-difference scheme for im-
plementing these conditions in LTRAN2 is described. In Sec.
IV, computed results using the old reflecting far-field

boundary conditions and those using the new nonreflecting
conditions are compared with large grid solutions.

11. Governing Equation and Far-Field
Boundary Conditions

A. Governing Equation

The unsteady, transonic small-disturbance equation for low

reduced frequencies can be written as

A¢_t = B_,. + ¢_,y (la)
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where

A =2kM2= 16 2/3

B= (1-M2=)/5 2_3 - (7+ l)M_=_bx [lb)

Here, _ is the disturbance velocity potential, _5 the airfoil

thickness-to-chord ratio, and M** the freestream Mach
number. The reduced frequency is defined as klwc/U= for

an airfoil of chord length c executing some unsteady
oscillatory motion of frequency w. The choice of the exponent

m is somewhat arbitrary and is made to extend the Mach
number range of the small-disturbance theory (a rather

complete review is given in Ref. 10). The quantities x, y, t, and
have been scaled by c, c/6 In, u_-I, and c,52nU**, respec-

tively. In deriving Eq. (la), it is assumed that

k-M n- (I-ME)41 (2)

B. Far-Reid Boundar_ Conditions

In LTRAN2, Eq. (la) is solved for the flow about airfoils
by an alternating-direction implicit (ADD finite-difference

algorithm. The existing far-field boundary conditions im-
posed in LTRAN2 are

upstream: _ = 0

downstream: _x = 0

top and bottom: Oy = O

(3)

These conditions are perfectly reflecting. In other words, all
of the waves originating from the airfoil for unsteady

problems are reflected back into the computational domain
from the boundaries. Hence, the outer boundaries must be

placed far enough from the airfoil in the original version of
LTRAN2.

Following Engquist and Majda, 4 conditions are introduced
to absorb at least a portion of the waves incident on the outer
boundaries. For the upstream condition, B in Eq. (Ib) is
assumed to be locally constant; therefore, the analysis is

performed on a linear equation. This approximation assumes
that the flowfield is governed by a linear equation in the
vicinity of a far-field boundary. By considering waves
traveling left from the interior to the upstream boundary for

subsonic freestream, a perfectly nonreflecting condition is
derived. Since this condition requires information from the
mathematical domain of dependence of that boundary,

approximations are made to get the following local conditions

upstream

B

I 1st approx: 4J,-_46x=O (4)A_ 1
2ndapprox: _x,- n_b, + ._ ,_j,y= 0 (5)D

The first approximate condition absorbs waves normally

incident on the boundary, while higher approximations
absorb portions of obliquely incident waves.

Since waves travel infinitely fast in the downstream
direction, the following consistency conditions seem ap-

propriate (see Krupp and Cole 9)

downstream _'or _x =0
t. ¢x., = 0

(6)

(7)

Considering waves traveling to the top and bottom

boundaries, a nonreflecting condition is developed. Sub-
sequently, local approximations to it are made, resulting in

top and _" 1st approx: 4_, ± Ix/'T-_, =0 (8)

bottom (. 2nd approx: 4J,y + r2_xy ± rt _,,, = 0 (9)

Here, -6- corresponds to top and bottom boundaries, and r I,

r 2 govern the absorption of waves obliquely incident to the
boundaries. The values r t, r_ are discussed in more detail by
Engquist and Majda.'

Alternatively, a nonreflecting far-field condition can be
designed by considering characteristic equations. Assuming
B=const in Eq. (Ib) at a large distance from the airfoil, the

characteristic equation can be written as

This equation is satisfied by the characteristic plane

(10)

_(x,y,t) =r- (xlx/B+ 2v_t/A) =const (I la)

where

r= (xlV'-B,y)
and

_=f(_) (1 lb)

is a solution to Eq. (la) which represents a traveling plane
wave. From these, the following equation is derived by

forcing linear combinations of the derivatives of 4_to be zero.

x I Ax A(- +
This equation can be used as a nonreflecting far-field
boundary condition. Since this equation requires the

evaluation of x/r and y/r along the boundary at each time

step, a further simplification is made. In the upstream region,
x- -on with lyl finite, so that Eq. (12a) becomes

cb, - ( BIA )_, = 0 (I 2b)

For the top and bottom boundaries, y- _ on with Ix] finite,

so that Eq. (12a) becomes

_._4._ (A/_)Of =0

Replacing _t by _ using Eq. (llb), thisequation can be
written equivalently as

_._ + Y'B¢,.=0 (12c)
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These are the first approximate relations obtained by

Engquist and Majda. Therefore, we may interpret Eqs. (4)
and (8) as special forms of a far-field characteristic relation

designed for simple, yet very efficient, applications.

III. Finite-Difference Scheme

In LTRAN2, ' Eq. (la) is solved by a two-step procedure to
advance from time step n to n + 1

xsweep:A(At) -II_x(_7.i_t-_.t) =Dd'j.t+byyC'_.t (13)

y sweep: AfAr) -t6x(rk_,? I __.?l) = ½6_y(O_.?'-ebbs) (14)

Similarly, for the y sweep, the top and bottom boundary
conditions become

(_n + h'2 ,._n'¢-1/2
'_j- l/Lt --'_j- l/2.t- t ) / (Yt--Yt- t ) .4- IB__ I /Lt_ t/2 { '_

[thn'l-I/2 ,#.n4112
x ,,.j.t-l/:-,_j-l,t-,:,/(xj-xj_j) =0

j= 2 ..... jmax

where

%....,t = _ ('/';.t + _j.t,A

O,+_/z= ½(_.+t +_.)

(17)

The operators in Eqs. (13) and (14) are defined by the
following equations

6_%,e=2(%.t_4_j_l,¢) (x_+ t _x__t ) -I
{first order)

= (36is- 4_j- is+ 6j-zt) (xj+l -xj-i) -t
(second order)

_'ySjs = 2[(Sis* J- _SJ.t)(Yt, I -Yr) -1

- ($j.t- _j.t-l) (Yt-Y_-/) -t](Yt, l -Yf-/) -I

f j.r= ½fB",.i.t*,,_j.t_'"+t + ( l _ M_ )_j.t/15,'/._ ]

B" = ( l-M_)/b _/_- ('I+ I)M_O_, .
J.f _,_

4%+ ms = (4b. u - Or,e) (x_+ _-x_ ) -

D,J',.t=e(x:+,-xj_t) -'It/-_,) (Y,+ .z, -YJ- .z,)

+ _,-, _- ,_., -_- _,_.,)1

_=l_ for (B:+_:,.,+B:_t/zt)[._]O

Here, At is the time step and j, t' are the grid point indices in
the x and y directions.

The first approximate nonreflecting far-field boundary
conditions are readily incorporated into the above two-

dimensional sweep procedure. For the x sweep, the upstream
boundary condition [Eq. (12b)] becomes

(At) - t (¢_2.t - _;+ _,2.t) - ½ Bj + t/ztA - ' (At) - '

".+t _2,.+t_ tO. ¢_" _-0x[(_:*t,t _'_.t ,+_ j*t,¢- _.v_-

j= 1, t= 1..... _nax (15)

Here

B i._/zt=[(I-M_)/M/_]-[('_+I)M_( "_"_.,+_J-¢b"_,t,

x(x),t_xj ) -t], j--I

The downstream boundary condition is

,_,,+ t .,. a,, _ ,7., + I a.,, /._=0jmax.f -- _/jmax.f "_'./ma_ - I.t -- _V,/max - (16a)

or equivalently, since _")ma_t,td_n__ _t'jm=,x_C_n_ _.t--O from the previous
iteration

_g=(s : _+_ _-,.,, e= I...../max (16b)

Here, jmax and /'max are maximum indices in x and y
directions and represent downstream and top boundaries,

respectively.

When j = 2, Eq. (17) requires ,_ at j = 1. Therefore, for j = 2 we

use Eq. (12b) also. Here, the upstream condition Eq. (15) is
changed to "

(At) -t t.hn+t .4,. _

X[ n+l -- n+l(6j÷Js _._ ) +(_';,u-6_.,)l =0

j=l, t=l, or t max (18)

Then Eqs. (17) and 08) are solved simultaneously.
The higher-order approximations can be applied in a

similar way, however, at the expense of increased computing
time.

IV. Computed Results for Various Test Cases

In the production version of LTRAN2, the default grid
boundaries are located 857 chords from the airfoil in y

direction and 200 chords from the leading edge, with
smoothly stretched grid spacings in both directions (I 13, 97

mesh in x,y directions). The large grid solutions in Figs. 2-7
are obtained using this grid. However, depending on the

particular problem, equivalent results can be obtained with
smaller grids, and the minimum number of mesh points
required is shown in the figures. Therefore, identical solutions

are obtained when far-field boundaries are placed farther
away than the minimum required.

In computing the large grid solutions, two different sets of
far-field boundary conditions are imposed independently,

namely: I) perfectly reflecting conditions as given by Eq. (3);
and 2) the first approximate conditions as given by Eqs. (4),

(6), and (8). These boundary conditions yield essentially
identical results, i.e., within plottable accuracy. Since the

large grid results can be duplicated using different com-
binations of grids and boundary conditions, it is reasonable to
assume that these are solutions of Eq. (I) with far-field

boundaries at infinity.

A. Slep Change in Angle of Attack

An impulsively started airfoil in plunging motion creates a

pressure pulse. This is simulated numerically by a step change
in the angle of attack. Due to the low-frequency nature of the
governing equation, the lift and moment coefficients

gradually increase after the initial change in the angle of
attack. A problem such as this provides a good test case for

investigating the influence of the computational far-field
distances on the flow solution near the airfoil.

Starting from the standard large grid, the far-field
boundary distances are reduced by removing outer grid lines

in the x (both upstream and downstream equally) and y
directions. Both the old reflecting boundary conditions [Eq.
(3)] and the new nonreflecting ones are tested with these
reduced grids. In Figs. 2 and 3, the lift and moment coef-

ficients for an NACA 64A006 airfoil are plotted on a time
scale in units of chord lengths of airfoil traveled. The indicial

responses to a unit change in the angle of attack o_ are C_
and C,,,,, as described in Ref. 11, and can be regarded as
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Fig. 2 Effect of far-field boundar) distance on Ct= and C,.. vs r for
step change in angle of attack.

Ctlcz and C,,la in this case. By using the old conditions, the

computed results start to deviate from the large grid solutions

when the mesh gets smaller than 103x81 at M® =0.80 and

0.85. However, applying the first approximate nonreflecting

conditions, the mesh can be reduced to 93 x71 at M® =0.80

without significant deviations from the large grid results.

Similar results are obtained at M= =0.85, as shown in Fig. 2.

Since the x boundary can be brought to 3.8 chords from the

leading edge ffsing the first approximate condition, the second

approximation was tried to bring the y boundary closer.

However, there was practically no improvement to justify the

additional computation required to implement the second

approximation. In Table I, the minimum mesh and the

computational efficiency required to use the old and the first

approximate boundary conditions are shown. Using the

nonreflecting boundary conditions, the computational ef-

ficiencies gained are 19 and 10°70 at M= =0.80 and 0.85,

respectively.

B. Oscillating Flap Case

Another test of the nonreflecting boundary conditions was

performed for the case of an oscillating trailing-edge flap. The

configuration consisted of an NACA 64A006 airfoil with a

sinusoidally oscillating flap. Of the three types of possible

shock-wave motions, type A (sinusoidal shock-wave motion)

and type B (interrupted shock-wave motion) are shown in

Figs. 4 and 5. In both cases, large grid results can be obtained

with a grid as small as 93x77. Again the minimum x

boundary distance is very small. As expected, the influence of

the y boundary is very pronounced. By the time the y

boundary distance is reduced to 7.6 chords from the airfoil,

the old reflecting conditions cause significant deviation of the

lift and the moment coefficient from the large grid solution.
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Fig. 3 Effect of far-field boundar) distance on C_ and Cma for step
change in angle of attack.

Table ! Indicial response to a step change tn angle of attack:
NACA 64A006, or= 1 deg (Xm= _ and Yma_ are Riven in units of chord)

Boundary condition
Nonreflectin$

Reflecting (lst approx)

M= = 0.80
Mesh 103 x 81 93 x 71

Am=x x Yma',, 25x79c 3.8x21.5 c
CPU a I. 19 1.00

M= =0.85
Mesh 103 x 81 93 x 79

Xma x x }'max 25x79c 3.gx61 c
CPU' 1.10 1.00

a CPU time is normalized by the nonreflecting case.

Table 2 Sinusoidally oscillating trailing-edge flap:
NACA 64A006, # = sintot

Boundary condition

Nonreflecting
Reflecting (I st approx)

Mesh 93 x 77 93 x 61

Xma x X Yma,_ 3.8X47 c 3.8 x7.6c
CPU = 1.24 1.00

aCPU time i_ normalized by the nonreflecting case.



NOVEMBER 1981 UNSTEADY TRANSONIC FLOW COMPUTATION 1405

Fig. 4 Effect of far-field distance

on C,, and C t for an NACA

64A906 airfoil with oscillaling

Irailing-edge flap: a) type A,

At'= =0.875, k=0.468; b) type B,

M= = 0.854, k = 0.358.
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Fig. 5 Effect of far-field distance

on upper surface pressure coef-
ficient for an NACA 64A006

airfoil with oscillating trailing-edge

flap: a) type A, M=,=0.875,

k = 0.468; b) type B, M® = 0.854,

k = 0,358,
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As shown in Fig. 5, when the reflecting boundary is located

too close to the airfoil, reflected waves cause the shocks to

move slightly downstream in both the type A and type B

motion. The reflecting boundary conditions on the top and

bottom, 6,. =0, model solid-wall boundaries. Hence, this

close-in imposition restricts the flow and produces stronger

shocks. _2 However, applying nonreflecting conditions, waves

incident on the far-fidd boundaries are mostly absorbed,

yielding reasonably good results as shown in Figs. 4 and 5. It

is to be noted that slight changes in Cp profile (Fig. 5) produce

significant changes in unsteady loads (Fig. 4). The gain in

computational efficiency, due to the first approximate

conditions as well as the reduction in computational domain,

is shown in Table 2.

C. lmpulsivelyStarted Airfoil

To visualize the behavior of waves originating from the

airfoil and then propagating throughout the computational

domain, an NACA 64A006 airfoil is impulsively started from

rest at time zero with M= = 0.85. This is equivalently done in

LTRAN 2 by turning on the freestream from rest. To see the

reflection more clearly, the far-field boundaries are placed

very close to the airfoil (X,,,, x = 1.22 c, Ym=_ = 1.08 c). The

propagation of disturbances is demonstrated by the pressure

contour of the upper half plane of the computational domain.

in Fig. 6, the results are shown at three sequential times

measured by chord lengths of airfoil traveled.

Figure 6a is obtained from the large grid solution by

looking through the window of 1.22 x 1.08 c. In this sequence

taken from a movie produced from the calculation, waves

from the airfoil propagate outwardly only during the time

observed as though the domain were infinite. In Fig. 6b, the

old reflecting conditions are used. Physically, this is

equivalent to placing solid walls on the boundaries. As time

increases, the influence of the boundaries, especially the y

boundary, becomes more apparent and, at t = 7.1, the flow is

shown to be choked. This illustrates a possible influence that a

solid wind-tunnel wall can have on experimental results.

When the nonreflecting conditions are used (Fig. 6c), the

pressure contour map more closely resembles the large grid

solution. As shown by the upper surface pressure coefficient

plot in Fig. 7, the reflecting conditions contaminate the near-

field solution much faster, Since the nonreflecting conditions

used are simple approximations to perfectly absorbing

conditions, some reflections still exist.

V. Conclusion

The first approximate nonreflecting far-field boundary

condition procedure of Engquist and Majda has been suc-

cessfully applied in solving various practical problems using

the unsteady small-disturbance transonic flow code,

LTRAN2. (As discussed in Sec. IIB, their first approximation

is a form of the characteristic equation. Therefore, the

boundary condition procedure based on the first ap-

proximation alone may be regarded as a characteristic con-

dition procedure.) It has been demonstrated successfully that

the computational domain can be reduced considerably using

their boundary condition procedure. However, since the mesh

system is stretched in LTRAN2, the number of computational

grid points is not linearly proportional to the distance of the

boundary from the airfoil. The gain in computer time after
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implementing the new conditions is problem dependent and,

for the cases tested using the first approximate conditions, the

time saved is 10-24070. Further reduction in the computational

mesh may be achieved by higher-order approximations.

However, the benefit obtained by the. reduced number of

mesh is overshadowed by the increased computing time

required to implement these high-order boundary conditions.

Since the approximate conditions applied here are very simple

and do not permit any waves to propagate in from the out-

side, modifications can be made to accommodate the waves

which should come back into the domain. However,

especially in the production version of a code, the simplicity

of the first approximate nonreflecting conditions and the

computational efficiency gained are more than adequate for

applications in the design process.

References

Ballhaus, W. F. and Goorjian, P. M., "Implicit Finite-Difference

Computations of Unsteady Transonic Flows About Airfoils," AIAA
Journal, Vol. 15, Dec. 1977, pp. 1728-1735.

2Engquist, B. and Majda, A., "Absorbing Boundary Conditions
for the Numerical Simulation of Waves," Mathematics of Com-

putation, Vol. 31, No. 139, July 1977, pp. 629-651.
_Engquist, B. and Majda, A., "Radiation Boundary Conditions

for Acoustic and Elastic Wave Calculations," Communicattons on

Pure and Applied Mathematics, Vol. 32, May 1979, pp. 313-357.

4Engquist, B. and Majda, A., "Numerical Radiation Boundary

Conditions for Unsteady Transonic Flow," Journal of Com.
putationalPhysics, Voi. 40, No. I, March 1981, pp. 91-103.

SBayliss, A. and Turkel, E., "Radiation Boundary Conditions for

Wave-like Equations," ICASE Rept. 79-26, NASA Langley Research
Center, Oct. 1979.

6Fung, K.-Y., "Far-Field Boundary Conditions for Unsteady

Transonic Flows," AIAA Journal, Vol. 19, Feb. 1981, pp. 180-183.
_Bushby, F. H. and Timpson, M. S., "A 10-level Atmospheric

Model and Frontal Rain," Quarterly Journal of the Royal

MeteorologicalSociety, Vol. 93, 1967, pp. 1-17.
SGuderly, K. G., "Far Field Conditions for Subsonic Flows with

Small Superimposed Harmonic Oscillations," AFFDL-TR-79-3109,
July 1979.

9Krupp, J. A+ and Cole, J. D., "Studies in Transonic Flow IV,
Unsteady Transonic Flow," UCLA-ENG-76104, Oct. 1976.

l°Ballhaus, W. F., "Some Recent Progress in Transonic Flow

Computations," VKI Lecture Series: Computational Fluid Dynamics,
yon K,_rm,_n Institute for Fluid Dynamics, Rhode-St-Genese,
Belgium, March, 1976.

If Ballhaus, W. F. and Goorjian, P. M., "Computation of Un-

steady Transonic Flows by the Indicial Method," AIAA Journal, Vol.
16, Feb. 1978, pp. 117-124.

I-'Ballhaus, W. F. and Goorjian, P. M., "Efficient Solution of

Unsteady Transonic Flows About Airfoils," AGARD Specialists
Meeting on Unsteady Airloads in Separated and Transonic Flow,

Lisbon, Portugal, April 1977, AGARD Conf. Proc. 226, Paper No.
14.


