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Abstract

The primary purpose of the study presented in this volume of the Task Order 25 Final

Report is to develop improved models for the acoustic impedance of treatment panels at high

frequencies, for application to sub-scale treatment designs. Effects that cause significant deviation

of the impedance from simple geometric scaling are examined in detail, an improved high

frequency impedance model is developed, and the improved model is correlated with high

frequency impedance measurements.

Only single-degree-of-freedom honeycomb sandwich resonator panels with either

perforated sheet or "linear" wiremesh faceplates are considered here. The objective is to

understand those effects that cause the simple single-degree-of-freedom resonator panels to

deviate at the higher scaled frequency from the impedance that would be obtained at the

corresponding full scale frequency. This will allow the sub-scale panel to be designed to achieve a

specified impedance spectrum over at least a limited range of frequencies. As long as the

impedance achieved in the scale model is known with a sufficient degree of accuracy, it can be

reliably translated to the full scale design.

An advanced impedance prediction model has been developed that accounts for some of

the known effects at high frequency that have previously been ignored as a small source of error

for full scale frequency ranges. The model has been implemented in a computer program and

used to compare with predicted data from the currently-used impedance model and with measured

data for a number of treatment configurations of various scale. Based on this study, the outlook

on ability to use scaled perforate facesheet single-degree-of-freedom resonator liners to represent

full scale is encouraging. Care must be taken to make the proper adjustments in porosity and

cavity depth of the scaled liner to best fit the full scale impedance.
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I. Introduction

I.I Purpose and Problems of Treatment Scaling

The noise suppression provided by acoustic treatment liners in aircraft engine ducts is

essential to being able to meet aircraft flyover noise regulations. Testing to validate the

performance of acoustic treatment design concepts is an integral part of the design process. The

cost of building and testing treatment designs on full scale engines, however, is prohibitive, and

designers are seldom afforded the luxury of more than one attempt at designing and testing the

final design that will be used in production.

The ability to design, build, and test miniaturized acoustic treatment panels on scale model

fan rigs representative of the full scale engine provides not only a cost-saving but an opportunity

to optimize the treatment by allowing tests of different designs. To be able to use scale model

treatment as a full scale design tool, it is necessary that the designer be able to reliably translate

the scale model design and performance to an equivalent full scale design.

The key to this accomplishment is the acoustic treatment impedance parameter. The

suppression obtained at a full scale frequency for a given treatment impedance value should be the

same as that obtained with the same impedance value at the corresponding scaled frequency in the

scale model. At that frequency, at least, the impedance design parameter transfers directly from
sub-scale to full scale.

When testing acoustic treatment on sub-scale model vehicles, it would be desirable to

achieve the same treatment suppression as a function of scaled frequency that would be obtained

on the full scale engine. This requires that the source generation characteristics, the engine

geometry, and the acoustic impedance scale directly with frequency over the full frequency range

of interest. Although sub-scale fan rigs are believed to represent the source characteristics and

duct geometry with adequate validity, the treatment impedance representation presents unique

problems.

The acoustic impedance for conventionally designed acoustic treatment panels does not

scale directly with geometric length and frequency, due to second-order effects. One cannot

simply "shrink" a full scale treatment design and expect the impedance at the scaled frequency to

be the same as that at full scale. While the sub-scale treatment can be designed to achieve any

impedance at a single frequency, it may not have the same impedance spectrum over the scaled

frequency range as the equivalent full scale liner does over its corresponding range.

Thus, the particular impedance characteristics of the sub-scale liner under its particular

operating conditions must be accommodated for treatment scaling to be a successful design tool.

The key is being able to know what acoustic impedance has been obtained as a function of

frequency in the scale model with sufficient assurance that the impedance values can be

transferred to the full scale design, if not the physical treatment design parameters. To achieve

this, improved impedance models and measurement methods are needed to be able to determine

acoustic impedance accurately at high frequencies.



1.2 Objectives and Limitations of Study

The primary purpose of the study presented in this volume of the Task Order 25 Final

Report is to develop improved models for the acoustic impedance of treatment panels at high

frequencies. Effects that cause significant deviation of the impedance from simple geometric

scaling are examined in detail, an improved high frequency impedance model is developed, and the

improved model is correlated with high frequency impedance measurements.

Only the simplest acoustic treatment panel designs are considered here. These are single-

degree-of-freedom honeycomb sandwich resonator panels with either perforated sheet or "linear"

wiremesh faceplates. The perforated sheet resonators are defined in terms of the panel geometric

parameters. The perforations are assumed to be straight, square-edged holes. The wiremesh

liners are defined in terms of DC flow resistance coefficients and cavity depth. All treatment

panels are assumed to be locally reacting.

Double layer liners (designated by 2DOF or DDOF) are a natural extension of single layer

liners (SDOF). DDOF liners are not considered explicitly in this report, but the items pertaining

to resistance and mass reactance of SDOF facesheets are directly applicable to DDOF

counterparts, either facesheet or septum. The septum of a DDOF liner, of course, has no grazing

flow effect contribution. A model for calculating the impedance of a DDOF liner, given the

facesheet and septum properties, can be found in Reference 1 and is also discussed briefly in

Volume 3 of this Final Report.

Bulk absorber liners might find use in scaled treatment designs, but cost limitations

precluded their examination in this Contract. Bulk absorber liners are currently a topic of

investigation in NASA Contract NAS1-20102, Task 4, which involves both impedance model

development and impedance measurement.

This limitation to simple panel types is based on the assumption that it is more appropriate

to use the treatment scaling tool by designing and building the simplest, cheapest, and most easily

controlled treatment panels for testing in the scale model, as opposed to attempting to represent

the frequency-dependent impedance variation of complex designs such as two-degree-of-freedom

honeycomb sandwich panels or bulk absorbers. The potential application of treatment scaling to

more advanced treatment designs is considered in a separate volume.

The objective, then, is to understand those effects that cause the simple single-degree-of-

freedom resonator panels to deviate at the higher scaled frequency from the impedance that would

be obtained at the corresponding full scale frequency. This will allow the sub-scale panel to be

designed to achieve a specified impedance spectrum over at least a limited range of frequencies.

As long as the impedance achieved in the scale model is known with a sufficient degree of

accuracy, it can be reliably translated to the full scale design.

Motsinger, R. E. and Kraft, R. E., "Design and Performance of Duct Acoustic Treatment", in Hubbard, H.
H. ed., Aeroacoustics of Flight Vehicles." Theory and Practice, Vol. 2: Noise Control, NASA Ref. Pub.
1248, Vol. 2, August 1991, p.177,
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In this study, we exclusively consider frequency-domainimpedancemodels. The
developmentand applicationof time-domainimpedancemodels is the subject of a separate
volumeof theFinalReport. A comparisonof the advantagesandlimitationsof frequency-domain
modelsandtime-domainmodelswill bediscussedbrieflybelow.

An originalintentof thestudywasto includetheeffectsof grazingflow on theimpedance
of treatment panels at high frequency. Difficulties encountered in the laboratory experiments to

measure the impedance with grazing flow at high frequencies have significantly proscribed the

progress made toward this objective, since we are not able to evaluate the accuracy of current

models in the high frequency regime with flow. Thus, this study is limited to the case of normal

incidence impedance without grazing flow, and the problems of measuring impedance in the

presence of grazing flow and recommendations for overcoming these problems in the future are

presented in a separate volume.

1.3 Treatment Scaling Philosophy

1.3.1 Geometric Scaling

Scaling is based on the assumption of similarity of physical phenomena under changes in

length scale. Scaling of aircraft engines for noise studies assumes similarity in fluid flow and

acoustic generation and propagation phenomena. We consider those scaling parameters that are

particularly relevant to acoustic propagation phenomena, assuming that the noise generation

mechanisms and the flow field maintain perfect similarity with scaling.

A useful approximation for aircraft engine acoustic scaling is that the engine fan rpm at

any particular operating condition varies inversely with fan diameter, maintaining a constant fan

tip speed. This rule applies even for fan designs with different numbers of fan blades, as the blade

loading generally increases as the blade number decreases while the fan rpm remains constant.

The fan blade tip speed is proportional to the fan rpm times the fan diameter,

2x_ D
V y - (1-1)

60 2

where Vr is the tip speed, f_ is the fan rpm, and D is the fan diameter. The blade-passing-

frequency, fbp is given by

NB_ (I-2)
fbp- 60

where NB is the number of fan blades. Using these two relations, the constant tip speed relation

can be expressed as



fbpD_ cnst (1-3)

Theconstantis proportionalto thenumberof fanblades,but thesemustbe the samein the scale
modelandfull scaleengineto maintainperformanceandacousticgenerationsimilarity.

Thefundamentalnon-dimensionalizedfrequencyscalingparametercanbedefinedas

fD
I"1- (1-4)

C

where c is the speed of sound and D must be interpreted as the fan diameter in the cylindrical inlet

duct and be replaced by the duct height H in the annular exhaust duct. The acoustic scaling rule is

that, at a minimum, the value oft I must be the same in the scale model and full scale fan:

Dfsffs Dsmfsm
lqfs -- -- lqsm - -- (1-5)

C C

where the subscript fs indicates full scale and the subscript sm indicates scale model.

If the temperatures of the scale model and full scale are the same, the speed of sound will

be the same in both cases, and this means that the scale model frequency is related to the full scale

frequency by

fsm = Dfs ffs (1-6)
Dsm

Thus the frequency scales inversely with model length scale.

Further justification for treatment scaling can be obtained in terms of the mode content of

the source. Similarity in source generation requires that the same duct modes be generated at the

corresponding scale model and full scale frequencies. The propagation of these modes can be

non-dimensionalized by use of the parameter rl.

The duct mode eigenvalues can be non-dimensionalized by the duct radius, such that the

eigenvalue, denoted by ?, is the same for any size duct. The mode cut-offfrequency, which is the

frequency below which the mode attenuates exponentially and above which it propagates

unattenuated in a hardwall duct, is given in terms of? as

fc/o = ?___cc (1-7)
rd9

The q-value at cut-offis then simply

4



rlc/o= y-- = cnst (1-8)
7_

Thus, mode cut-off is independent of duct scale. We will consider the implications of duct modal

propagation on treatment scaling in greater detail below.

1.3.2 Expected Scaling Ranges

The scale factor relating scale model to full scale can be expressed as the ratio of scale
model fan diameter to full scale fan diameter:

SF = D sm (1-9)
Dfs

The frequency, of course, goes inversely as scale factor, such that a 1/5 scale model, for instance,

would run at 5 times the full scale frequency.

To get an idea of what the range of scale factor that might be encountered in practice

might be, assume the following:

Maximum full scale fan diameter

Minimum full scale fan diameter

Maximum scale model fan diameter

Minimum scale model fan diameter

= 120 inches

= 60 inches

= 24 inches

= 12 inches

Then the minimum scale factor encountered would be 1/10, and the maximum value would be
1/2.5.

Assuming that 10,000 Hz. is the highest full scale frequency of interest, then the upper

limit of scaled frequencies would be from 25,000 Hz. to 100,000 Hz. These upper frequencies

are beyond the range of hearing and are well above those normally dealt with in aircraft noise

measurements, extending into the ultrasonic range. As an aside, it should be noted that

frequencies in this range may lead to difficulties in the farfield measurement of the noise levels,

since the atmospheric absorption correction for propagation to the farfield may not be known

accurately.

Consider also that a 1/2.5 scale model applied to a large 120 inch turbofan gives a 48 inch

diameter scale model, which is as large as some small full scale fans used in commuter aircraft.

On the other hand, consider that a one inch deep treatment tuned to about 2000 Hz. on the 120

inch fan would have to be scaled to only 0.10 inches deep for a 1/10 scale model, a formidable

fabrication task considering the required precision.

The objective is to determine a range of scale factor for a given full scale fan size for

which treatment scaling is a practical undertaking. This will be bounded by the cost factor for the



largest diameterscale model fan obtainableand the precision/constructabilityfactor for the
thinnestdepthacoustictreatmentpanelthat canachievethedesiredimpedancecomponents.

1.3.3 Impedance Scaling Parameters

The fundamental acoustic treatment design and scaling parameter is the acoustic

impedance, Z, defined as the ratio of acoustic pressure to normal component of acoustic velocity

at the treatment surface. The impedance is a frequency-domain parameter, defined to have a

certain value at each frequency. As a frequency-domain parameter, the impedance must account

for differences in phasing between the acoustic pressure and velocity, and is therefore represented

as a complex number,

Z=R+iX (1-10)

where i = 4rS-1, R, the real part of the impedance, is the acoustic resistance, and X, the imaginary

part of the acoustic impedance, is the acoustic reactance.

The units of acoustic impedance in the cgs system are g/(cm 2 sec) or cgs Rayls. The

acoustic impedance is usually non-dimensionalized by the characteristic acoustic impedance of air

(free space), which is given at a pressure of 1 atmosphere and 20 ° C by 90c = 41.5 cgs Rayls,

where 9o is the ambient atmospheric density.

The fundamental law of acoustic treatment scaling is that the scaled treatment impedance

at the scaled frequency must equal the full scale treatment impedance at the corresponding full

scale frequency:

Zfs(ffs) Zsm (fsm)

P0 c P0 c
where fsm = SF-ffs (1-11)

This is a direct consequence of the modal theory of duct propagation, which shall be described in
detail below.

The design parameters for a perforated plate single-degree-of-freedom treatment panel are

the perforate porosity (open area ratio), the orifice hole diameter, the faceplate thickness, and the

cavity depth. Environmental effects on impedance include the mean flow Mach number, the

boundary layer thickness, and the incident sound intensity. How the impedance depends on each

of these parameters and their consequences regarding treatment impedance scaling is the subject
of this report.



1.3.4 Phenemona Preventing Simple Impedance Scaling

It will be shown in what follows that certain components of the acoustic resistance and

reactance scale geometrically without a problem, but that other components include secondary

effects that do not scale. Effects that are functions of the orifice Reynolds number, in particular,

the orifice mass reactance, will be shown to cause scaling problems. It will also be demonstrated

how these non-scaleable effects can be minimized and accommodated, resulting in a positive

perspective regarding the feasibility of treatment scaling.

1.4 Prior Work in Treatment Impedance Modeling

An extensive literature exists on the study of the impedance of resonators with orifices,

dating back to the middle of the last century, if one includes the work of Kirchoff, Helmholtz, and

Raleigh. Important work on the impedance of orifices and perforates was done in this century by

Sivian in the 1930's and by Ingard and associates in the 1950's. Effort on this problem

accelerated rapidly toward the end of the 1960's, when it became apparent that perforated

honeycomb sandwich liners were highly practical and effective noise suppressers when applied as

linings to the walls of aircraft engine ducts.

It is not the purpose of this study to present an extensive literature review of this work, as

this has been accomplished within the past 25 years by a number of authors, very notably by

Melling 2 in 1973. A comprehensive bibliography of references used in this study will be provided

at the end of Section 3.0.

This study builds on the prior effort of many researchers, but is oriented to attempt to

discover those effects that might have special relevance to impedance of scaled treatment at high

frequencies. In order to obtain models of treatment impedance that were appropriate for full scale

engines at frequencies below 10,000 Hz, prior researchers often made simplifying assumptions

that caused small errors in the range of interest, but may lead to significant discrepancies for

scaled treatment conditions. The objective of this study is to identify and re-examine some of

these assumptions.

1.5 Approach

The first step in this study was to examine existing acoustic impedance models and the

assumptions upon which they were based. Simplifying assumptions that may have some relevance

to high frequencies were identified. Investigations to attempt to quantify the effects that were

potential contributors to impedance at high frequencies were made.

Melling, T. H., "The Acoustic Impedance of Perforates at Medium and High Sound Pressure Levels", J. of
Sound and Vibration, 29(1), 1973, pp. 1-65.



An advancedimpedanceprediction model that includes high frequencyeffects was
developed.The model was compared to results of the current impedance model and to measured

data using normal incidence impedance tube measurements that were conducted as part of this

contract. Predictions and measurements cover a frequency range up to 12,000 Hz., about twice

the highest frequency of measurement available prior to the study.

Results of the predictions and measurements were analyzed for their implications on the

feasibility of acoustic treatment scaling as a design tool. A preliminary assessment is made, and

recommendations are made for both analytical and experimental improvements that are needed

before a final decision on the feasibility on treatment scaling and the proper method for its

implementation can be made.

1.6 Summary of Results

An advanced impedance prediction model has been developed that accounts for some of

the known effects at high frequency that have previously been ignored as a small source of error

for full scale frequency ranges. The model has been implemented in a computer program and

used to compare with predicted data from the currently-used impedance model and with measured

data for a number of treatment configurations of various scale.

For broadband pressure excitation at high SPL levels such as will be experienced in an

aircraft engine duct, the nonlinear effect on resistance tends to give a fiat resistance spectrum over

the full range of excitation frequencies. This appears to be verified by measurement for both full

scale and sub-scale perforated plate treatment panels up to about 13,000 Hz.

The biggest problem encountered was accounting for the effects of the end correction on

resistance and mass reactance. No comprehensive model was found that fit all cases, as the end

correction has been found to vary in a complex manner with orifice Reynolds number, orifice

geometry, and porosity. An extensive set of parametric measurements and concurrent theoretical

investigations is needed if it is desired to develop a more universally-applicable model

Good agreement between predicted and measured impedance was found in the linear

facesheet case when the DC flow resistance values are used to determine resistance, at least up to

13,000 Hz. The mass reactance issue is not so clear, but the mass reactance of a wiremesh
facesheet is small.

Based on this study, the outlook on ability to use scaled perforate facesheet single-degree-

of-freedom resonator liners to represent full scale is encouraging. Care must be taken to make the

proper adjustments in porosity and cavity depth of the scaled liner to best fit the full scale

impedance.

A safer solution at this point is probably to use a linear wiremesh facesheet bonded

directly to the honeycomb with no supporting perforate. Predicted and measured impedance for

the linear single-degree-of-freedom panels agree quite well up to 13,000 Hz. The use of the

8



wiremeshwith no perforate support requiresa small honeycombcell size and may present
bondingproblems.

The conclusionsin this study are restricted by the upper limit to the measurement
frequencyof 13,000Hz. Extendingto higher frequencieswill requireadvancedmeasurement
techniquesboth with and without grazing flow that are not yet available. It is highly
recommendedthat any further effort includedevelopmentof advancedimpedancemeasurement
methods.

9



2. Current Full-Scale Impedance Models

2.1 Acoustic Suppression Due to Treatment

2.1.1 Analytical Suppression Prediction Models

To understand the importance of acoustic impedance as a design parameter in determining

the performance of acoustic treatment as a noise suppression concept, it is useful to review briefly

the modal solution to acoustic wave propagation in a duct. Readers interested in a more detailed

formulation of wave propagation in aircraft engine ducts are directed to the early papers by Rice 3'4

or the more recent survey article by Eversman 5.

The partial differential equation for the acoustic pressure in a duct with uniform mean flow

is given by

(a a)2_- + U_z P = c2V2p (2-1)

where

t = time

z = axial variable

p = acoustic pressure

c = speed of sound

U = mean flow velocity

The solution to this equation in cylindrical coordinates for the mth order spinning mode in

an inlet duct is given by

where

oo ( r "_ imO i(_mjz-mt/p(r, O, z, t) = j=_lAmjJ m y mj _-)e e" " (2-2)

j

=
Jm =

radial mode index

(m,j) mode coefficient
m th order Bessel function of the first kind

Rice, Edward J., "Attenuation of Sound in Soft Walled Circular Ducts", NASA TM X-52443, May, 1968.

Rice, Edward J., "Spinning Mode Sound Propagation in Ducts with Acoustic Treatment and Sheared
Flow", NASA TM X-71672, March 1975.

Eversman, Walter, "Theoretical Models for Duct Acoustic Propagation and Radiation", Chapter 13 in

Hubbard, H. H., ed., Aeroacoustics of Flight Vehicles: Theory and Practice, Volume 2: Noise Control,

NASA Reference Publication 1258, Vol. 2, 1991, pp. 101-163. (Currently published by and available from
the Acoustical Society of America.)

10



Tmj =
R =

0 =

(.9 =

eigenvalue for (m,j) mode

duct radius

circumferential variable

circular frequency, = 2 rt f

and Km3is the axial propagation constant, given by

2 2
-kRM ____/(k_R) 2 -(1- M )y mj

KmjR = (2-3)
1-M 2

The e "i°t time convention has arbitrarily been used for the propagation equation. It should be

noted that it is customary in treatment design to use the e +i°t convention, which requires taking

the complex conjugate of the impedance values when shifting conventions. (This difference

between theoreticians and designers has been unresolved for 30 years.)

The boundary condition that the solution must satisfy is that the pressure divided by the

normal component of acoustic velocity must equal the wall impedance, or,

Z = 19 (2-4)
Vw

For continuity of particle displacement at the wall, assuming an infinitely thin boundary layer, it

can be shown that the normal component of acoustic velocity at the wall, vw, is related to the

radial derivative of acoustic pressure by 6

c_p//

v w = -i k / Or (2-5)

PC (k- MKmj) 2

The previous two equations can be combined to give the boundary condition that the acoustic

pressure must satisfy at the duct wall,

Z = ip(k- MKmj) 2

pc k 0 P/f_ r

(2-6)

When the pressure modal expansion in Equation (2-2) is substituted into this expression,
we obtain

Eversman, Walter, "Theoretical Models for Duct Acoustic Propagation and Radiation", Chapter 13 in

Hubbard, H., ed., Aeroacoustics of Flight Vehicles." Theory and Practice. Volume 2, NASA Reference

Publication 1258, August, 1991, p. 112 (currently published by ASA).
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jm(Ymj)+ i Z 7mj Jm(]/mj) =0 (2-7)
2

where the prime denotes the derivative of the Bessel function with respect to r. This is a complex,

nonlinear, transcendental equation for the roots 7=j, which must be solved by nonlinear equation

root extraction techniques.

The modal suppression rate, in terms of dB per normalized axial distance (axial length

divided by duct radius) is given by

dBperR -- -8.686Im0cmjR ) (2-8)

where Im( ) implies the imaginary part. From Equation (2-3) and Equation (1-4) we see that v_jR

can be written in terms of the frequency parameter rl as

KmjR =
1- M 2

(2-9)

Thus, KmjR is a function ofrl, M, and 7mj. Also, from Equation (1-4), we have

2rffR nfD
kR- - -Tt'q (2-10)

g C

Then Equation (2-7) can be written

jm(Ymj)+ i Z Ymj Jm(Ymj) =0 (2-11)

and, since 1"1is invariant with respect to scaling, we can conclude that the eigenvalue 7mj is
invariant with scale factor.

Since both r1 and ymjare invariant in scaling, this indicates that the axial modal suppression

per unit radius is the same for both sub-scale model and full scale. Further, since the total

suppression of any pressure source can be completely described as a linear superposition of

modes, the overall suppression rate will be the same in sub-scale and full scale ducts. The

argument holds equally well for annular ducts, where the only difference is that the radial modes

12



mustbe replacedby eigenfunctionsgivenby a combinationof Besselfunctionsof the first and
secondkinds.

The key point is that the suppressionat a given 1"1value dependsonly on the wall
impedanceboundarycondition,and this is independentof the duct scalefactor. This is true
whetheranidealizedmodalsolutionis usedor whetherthe acousticpropagationis determinedby
a numericalsolutionmethodsuchasthe finite elementmethod,which could beusedfor a non-
uniformduct. All methodsrequirethatthe wall boundaryconditionbegivenin terms of acoustic
impedance.

Theactualduct suppressionobtainedwill alsodependupontheparticularcombinationof
modesthat is generatedby thefannoisesource.For successfultreatmentscaling,the scalemodel
mustgeneratethesamesetof modesasthefull scalefan. Thiswill be thecaseif closeattentionis
paid to obtainingflow and geometrysimilarity betweenthe scalemodel rotor/stator and the
correspondingfull scalecase.

2.1.2 Acoustic Impedance as a Design Parameter

At a given q-value in a uniformly-treated segment of duct, there is a particular value of

acoustic impedance that maximizes the attenuation rate of a given mode 7,s. Each mode will have

a different optimum impedance value. Any linear weighted combination of modes will have an

optimum impedance value that may not be the same as the optimum value for any of the

component modes.

The job of the treatment designer is to estimate the impedance that will maximize the

suppression over a desirable range of frequencies and then design a treatment panel concept that

will achieve these impedance values as closely as possible over as wide a frequency range as

possible.

This job requires accurate prediction models to relate the physical parameters of the

treatment panel to the acoustic impedance. Accurate methods of measuring acoustic impedance,

particularly under aircratt engine duct environmental conditions are necessary to validate the

prediction models. Suppression performance of treatment designs measured in scale model or full

scale engine tests then provide proof of the design concept.

Due to the cost of full scale engine testing, the designer may not have the ability to test the

design until the actual engine noise certification test. Not only is this test costly, but the cost of a

noise certification failure, in both financial and time terms, would be devastating to an engine

program. This leads to conservatism in treatment design, which may not optimize engine weight.

Rice, Edward J., "'Attenuation of Sound in Ducts with Acoustic Treatment - A Generalized Approximate
Equation", NASA TM X-71830, November, 1975.
Rice, Edward J., "Acoustic Liner Optimum Impedance for Spinning Modes with Mode Cut-Off Ratio as
the Design Criterion", NASA TM X-73411, 1976.

13



This is the justification for running preliminary scale model tests to determine treatment

performance in a cost effective and timely fashion.

If it weren't for the acoustic impedance, which incorporates two design parameters

(resistance and reactance), the treatment designer would be forced to determine optimum designs

in terms of the physical parameters of the liner. Even for a simple single-degree-of-freedom liner,

this would include porosity, hole diameter, faceplate thickness, and cavity depth--four parameters

(although porosity and cavity depth are the most important).

To design a more complex two-degree-of-freedom panel to achieve suppression

bandwidth, at least three additional parameters must be added (two DC flow resistance

coefficients and a percent immersion for a wiremesh septum). Thus, adequate models to relate

the physical parameters to impedance and reliable impedance measurement methods to validate

the models are necessary tools for efficient liner design.

2.2 Basic Impedance Prediction Models

2.2.1 Single-Degree-of-Freedom Treatment Panel

Figure (2-1). shows a drawing of a perforated plate honeycomb sandwich single-degree-

of-freedom treatment panel that is the focus of this study. Figure (2-2). defines the geometric

parameters for the treatment panel design. The open area ratio (or porosity), a, is defined as the

area of one hole times the number of holes per unit area of surface (assuming that all holes have

equal area or that an average hole area is known).

PERFORATED
FACESHEET

HONEYCOMB
CELLS

RIGID
BACKPLATE

14



Figure(2-1) Illustration of perforated plate honeycomb sandwich single-degree-of-

freedom treatment panel.

Hole diameter, d . _ Faceplate
_ ......

_' _ I _ Faceplate

/  -Ori, e Thickness, t

Cavity ]

I depth, h L,. Honeycomb
l//////j/,,/,,/,//,/]7_t,,/Backplat e

Figure (2-2) Geometric definition of single-degree-of-freedom resonator panel.

The design and impedance models for a perforated plate single-degree-of-freedom liner

are discussed in detail in an article by Motsinger and Krafi 9, which includes an extensive list of

references. Since this article fairly completely describes the currently-used impedance model, it

will be used as the basis for the discussion which follows. The results and a description of the

models are presented here, for reference. For details of the model derivations, refer to Motsinger
and Kraft.

The purpose of the discussion of the current impedance model is to provide a frame of

reference for the extensions and amplifications of the model which follows. This model has been

used with success for aircraft engine treatment design for many years, and is probably adequate

for use at frequencies below 10,000 Hz.

2.2.2 Acoustic Resistance

2.2.2.1 Components of resistance

There are three components of resistance for a perforated facesheet:

Motsinger, R. E. and Kraft, R. E., "Design and Performance of Duct Acoustic Treatment", Chapter 14 in
Hubbard, H. H., ed., Aeroacoustics of Flight Vehicles: Theory and Practice, Volume 2: Noise Control,
NASA Reference Publication 1258, Vol. 2, 1991, pp. 165-206. (Currently published by and available from
the Acoustical Society of America.)
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1. Linear viscous resistance component

2. Nonlinear turbulent jet resistance component

3. Grazing flow contribution

Linearity refers to the dependence of the resistance component on the intensity level of the

incident sound---linear components are independent of the incident sound level while nonlinear

components increase as incident sound level increases. We can write

R
-- = A + BU + Rgf (2-12)
pc

where

A - 32tat

pc_x3.CDd2 '
(2-13)

is the linear viscous resistance component,

1

B- 2c(aCD)2 , (2-14)

is the nonlinear turbulent jet resistance component, and

M

Rgf:/2.+1.256 a

(2-15)

is the linear grazing flow resistance component. For these formulas, we define

U

la =

t =

d =

CD =

C --

_* =

rms value of overall acoustic velocity incident on liner

absolute coefficient of viscosity of air

faceplate thickness

orifice hole diameter

orifice discharge coefficient

faceplate porosity

speed of sound

boundary layer displacement thickness

For an explanation of why one coefficient of a linear relationship in velocity is called the "linear

term" and the other coefficient is called the "nonlinear" term, see Motsinger and Kraft 9 , pp. 179-

180. Essentially, it is because the pressure drop across a resistive sheet is proportional to the
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square of the instantaneous velocity through the sheet. Dividing the pressure drop by the velocity

to get resistance makes the nonlinear pressure drop a linear resistance relationship.

The rms value of overall acoustic velocity, U, depends on the incident SPL and the

impedance of the liner at each frequency. It is defined as

where Vi 2 is the mean square velocity in the ith frequency band and the sum is over all participating

frequency bands. The mean square velocity in the ith band is determined from the impedance

relation,

(Vi)rm s _ (Prms)i (2-17)
Zi

where p_ is the rms value of acoustic pressure in the ith frequency band, obtained from the given

SPL at the ith frequency. The acoustic velocity is not known until liner impedance is determined,

and vice-versa, requiring an iterative procedure for their determination. Generally, the iteration

converges quite rapidly.

The grazing flow resistance contribution is an empirical formulation due to Heidelberg,

Rice, and Homyak _°, and is based on the pioneering work of Rice 1132. Note that it is constant

with frequency. The coefficients A and B are also independent of frequency. Since U is the rms

value of acoustic velocity integrated over all frequencies, U is also independent of frequency,

making the nonlinear term and therefore this entire model for the resistance totally frequency-

independent. Later, looking at more advanced models, we shall see that this is a first

approximation, and that there are higher-order resistance terms that are frequency-dependent.

Under typical aircraft engine operating conditions, with a flow Mach number around Mach

0.4, an overall SPL of about 140-15 0 dB, and a porosity of around 10%, the linear grazing flow

resistance, Rgf, is usually the dominant contributor. The second highest contribution to resistance

comes from the nonlinear term, BU. The linear viscous resistance A is normally negligible.

10

1!

12

Heidelberg, Laurence J., Rice, Edward J., and Homyak, Leonard, "Experimental Evaluation of a
Spinning-Mode Acoustic Treatment Design Concept for Aircraft Inlets", NASA Technical Paper 1613,
1980.

Rice, Edward J., "A Model for the Acoustic Impedance of a Perforated Plate Liner with Multiple
Frequent" Excitation", NASA TM X-67950, October, 1971.
Rice, Edward J., "A Model for the Pressure Excitation Spectnun and Acoustic Impedance of Sound
Absorbers in the Presence of Grazing Flow", AIAA Paper 73-995, October, 1973.
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2.2.2.2 DC flow resistance of perforated plate

It was noted in Motsinger and Kraft 9 that the coefficient A in Equation (2-12) is due to the

the pipe flow friction for flow in a hole and that the coefficient B is due to dynamic head loss due

to turbulence associated with entrance and exit losses. It has been noted that both of these

coefficients are independent of frequency. In fact, they can be identified as the DC flow resistance

coefficients for a resistive sheet, where DC implies Direct Current (adapted from the electrical

nomenclature for current with no fluctuating component).

A DC flow resistance measurement is an attempt to determine the A and B coefficients

experimentally _3. The pressure drop Ap across a resistive sheet sample and the incident constant

velocity UDc associated with this pressure drop are measured for several different values of

pressure drop and corresponding velocities (corrected as required). The measured DC flow

resistance is then given by

RD c _ Ap (2-18)
UDC

The measured RDc points are plotted as a function of UDc (usually in cgs Rayls versus crn/sec),

and the A and B coefficients are determined by a linear least squares curve fit.

Figure (2-3) is an example of a DC flow measurement for an 8.5% porosity perforated

facesheet with hole diameter of 0.062 inches and thickness of 0.024 inches. Note that the

assumption of linearity of DC flow resistance in velocity is quite good. As can be noted from the

statistical data from the curve fit, the DC flow A-value is 0.01279 cgs Rayls and the B-value is

0.1654 cgs Rayls per cm/sec.

13

Motsinger, R. E., Syed, A. A., Manley, M. B., "The Measurement of the Steady Flow Resistance of Porous
Materials", AIAA-83-0779, April, 1983.
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Figure (2-3) Example of DC flow resistance measurement with linear curve fit for 8.5%

porosity facesheet.

In practice, the DC flow resistance values are often expressed in a different form. The DC

flow resistance is given as its value at a specified flow velocity, say 105 cm/sec:

Rio 5=A+105.B (2-19)

and the Nonlinear Factor is given as the ratio of the DC flow resistance at a high flow rate to that

at a low flow rate, say 200 cm/sec and 20 cm/sec:

A + 200. B
- (2-20)NL--°72o A + 20-B

Unfortunately, there is no standardization as to the particular flow values at which to

define R or NLF, so that one must always be careful to specify the flow rates and, conversely, to

check the flow rates at which the values were measured if receiving the data. The A and B

values, which are not subject to the same inconsistency as long as the units are specified, can

always be obtained by inverting the R and NLF formulas.

The DC flow resistance coefficients are extremely useful for characterizing the resistance

of a faceplate, particularly under the assumption that the resistance is not a function of frequency.

For resistive facesheets such as wiremesh, this is the only way of characterizing the sheet resistive

properties, because analytical models for these types of liners are generally not available. In what
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follows, we shall examine correlations between the analytical models for A and B and the
measured DC flow values.

The major limitation of the DC flow resistance measurement is that it provides no

information about possible higher frequency effects on facesheet resistance, since the

measurements are made at zero frequency. This does not seem to have been a serious deficiency

in normal practice for either perforated plates or wiremesh type facesheets, but may be a problem

at sub-scale treatment frequencies.

2.2.2.3 Issues with resistance

The assumed dependence of the nonlinear resistance component on the overall rms

acoustic velocity means that the resistance becomes independent of the spectral shape of the

applied sound pressure. This appears to be a good approximation when the applied spectrum has

a flat broadband shape over the frequency range of interest, but little work has been done to

determine whether the shape of the pressure spectrum has any effect on the frequency dependence

of the impedance in cases where it might have a skewed or peaked shape. One might also

question whether the assumption is good at very high frequency ranges where the second-order

frequency-dependent effects increase in magnitude.

The empirical models for grazing flow effects are based primarily on in-situ impedance

measurements made using the two-microphone method of Dean 14. This method is very difficult to

implement in practice, and is subject to precision requirements that compounds the difficulty of its

application to the high frequency case. Better, less demanding measurement methods are required
to provide advancements in this area.

In the advanced model development below, we shall consider higher order frequency-

dependent effects that arise from the consideration of a more exact model of oscillating flow

through an orifice. Previously neglected effects such as the end correction to the linear part of the

resistance will be introduced. Effects such as the contribution from the radiation resistance,

negli_ble under current conditions, will be re-examined for potential contribution at higher

frequencies.

14

Dean, P. D., "An In-Situ Method of Wall Acoustic Impedance Measurement in Flow Ducts", J. Sound &
Vib., Vol 34, No. 1, May 8, 1974, pp. 97-130.
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2.2.3 Acoustic Reactance

2.2.3.1 Components of reactance

The reactance of a perforated plate single-degree-of-freedom liner can be separated into

three distinct components:

1. The mass reactance contributions from the air mass within the orifice tube core.

2. The mass reactance contributions from the end corrections just outside each end of the orifice
tubes.

3. The reactive contribution from the standing wave in the finite length cavity.

We can write this as

X Xmt + Xme c Xca v
-- .A¢.__

pc pc pc pc
(2-21)

where the meaning of the subscripts is obvious.

The simplest contribution is the reactance of the cavity, which can be written as

Xcav- cot(kh) (2-22)
pc

where h is the cavity depth. It should be noted that we are using the e+i'°t convention for the

reactance, and this requires the negative sign before the cotangent and gives a positive mass

reactance.

The cavity reactance can easily be derived by solving the forward-traveling and backward-

traveling wave solution in a tube with one end open and the other closed for the ratio of pressure

to velocity at the open end of the tube with an applied pressure at the open end. Inherent in this

formulation is the assumption that the cross-dimension of the cavity is much smaller than a

wavelen_h (only plane waves propagate in the cavity) and that the effects of viscosity at the

cavity walls on the acoustic propagation in the cavity can be neglected.

The form of the mass reactance that is currently in use as standard practice 9 for the core
mass reactance is:

Xmt kt

pc - _C D '
(2-23)

and the expression for the end correction is
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Xmec_ ked
, (2-24)

pc oC D

where the semi-empirically-determined end coefficient e is

0.85(1.-0.7_-)

e = M3 (2-25)1 + 305-

These equations can be combined to include both the core mass reactance and the end correction

in one expression for the overall mass reactance, X=,

X m k(t + ed)

pc GC D
(2-26)

The above formulas differ from those presented in Reference 9 in two respects. First, the

discharge coefficient is not shown in the denominator of the mass reactance in Reference 9. The

literature has been inconsistent in the presence of CD in the denominator of the mass reactance,

but, as will be shown in the formal theoretical derivation below, it should appear. Possibly the

absence of the discharge coefficient in the denominator is compensated by the empiricism in the

end correction factor, but this is not the proper way to formulate the problem.

Second, the Mach-number-dependent factor in the denominator of the mass reactance end

correction factor was omitted in Motsinger and Kraft. The reduction in end correction factor

with Mach number (the end correction on the flow side of the faceplate is at least partially "blown

away" by the grazing flow) should be included to increase the accuracy of the model.

2.2.3.2 Measurement of reactance

No information on mass reactance is obtained from the DC flow resistance measurement.

The usual method for obtaining measurements of reactance is a normal incidence impedance

measurement using a normal incidence impedance tube apparatus (see discussion and list of

references in Motsinger and Kraft9). Modem implementations of the normal incidence impedance

tube that use the multiple-microphone measurement method can obtain the entire impedance

spectrum rapidly using a broadband sound source 15. The source SPL spectrum at the faceplate

surface can be obtained as output of the measurement.

This measurement provides the impedance of the entire single-degree-of-freedom

resonator at each frequency, so that the reactance is the combined mass reactance and cavity

reactance. Since the cavity reactance is felt to be reliably predicted with the cotangent function,

15

Seybert, A. F. and Parrott, T. L., "Impedance Measurement Using a Two-Microphone, Random Excitation
Method", NASA TM-78785, 1978.
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the massreactancecan be extractedby subtractingthe cavity reactancefrom the measured
reactance,

X m = Xmeas - Xca v = Xmeas + cot(kh) (2-27)

If the capability of easily varying the cavity depth of the treatment sample in the normal incidence

impedance tube is provided, the depth at any frequency could be set to make cot(kh) = O, in which

case the mass reactance would be measured directly at that frequency.

There is no direct method of separating the mass reactance end correction from the core

mass reactance. Effects of incident sound intensity on the end effect must be intuited from

parametric measurements with the impedance tube.

2.2.3.3 Issues with mass reactance

As will be discussed in the next Section, the current model for the mass reactance ignores

higher order frequency-dependent terms. It is essentially the low frequency approximation to the

exact model. These high frequency effects may be very important to treatment scaling.

Current models for the mass reactance include an empirical model for the loss in end

correction with grazing flow, but generally ignore the effect of sound intensity on the decrease in

mass reactance. Measurements to be presented in this study indicate that this is an important

effect (this is not a new discovery--it has been known for decades!).

Historically, the mass reactance has been known to be the least accurately correlated

component between prediction and measurement, in some cases being over-predicted and in other

cases under-predicted. The effects have been relatively minor, however, and have largely been

ignored. It appears that through the happy circumstance of two wrongs making a right, the lack

of frequency dependence in the model has approximately compensated the end correction loss

effect at higher SPL levels. This situation may no longer be acceptable, however, in the case of
sub-scale treatment.
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3. High Frequency Impedance Implications of Prior Research

3.1 Objective of Research Review

The objective of reviewing prior research on acoustic impedance of single-degree-of-

freedom panels with perforated facesheets was to identify effects that researchers may have

ignored under the assumption that their contributions were negligible under ordinary treatment

operating conditions. These effects were examined for potential implications to impedance at

high frequencies.

Some of the possible effects identified to be investigated were:

1. Higher order effects on resistance and mass reactance, including end effects, that are

frequency-dependent and nonlinear.

2. The radiation resistance

3. The dependence of orifice discharge coefficient on orifice acoustic Reynold's number.

These effects are evaluated in this study, particularly in terms of the fluid mechanics of fluid flow

through an orifice, both in isolation and when affected by neighboring orifice flow.

A universal assumption of almost all researchers is that the dimensions of the facesheet

hole diameter and thickness and the cavity cross-dimension are all much smaller than a

wavelength (this is not a restriction for the cavity depth). For treatment scaling, we do not violate

this assumption. We assume that as the frequency goes up and the wavelength goes down, the

relevant treatment dimensions all scale such that they remain small compared to a wavelength.

The subject of this Section is to provide a brief historical discussion of selected instances

of prior work that have implication to treatment scaling. An extensive Historical Bibliography of

papers discussed and others that were omitted from the discussion is included as Appendix B.

3.2 Discussion of the Review by Melling

Probably one of the most comprehensive discussions of the impedance of perforated plate

single-degree-of-freedom resonators is that of Melling is. Much of the development in this study

is based on the material presented in this article.

Melling considers both the linear and nonlinear regimes of resistance and mass reactance.

He develops expressions for the impedance of an orifice from the exact theory of flow in a

capillary tube including effects of viscosity, commonly referred to as the Crandall model (but

traceable to Kirchoff and Raleigh in the last century). It is demonstrated that the current model

15
Melling, T. H., "The Acoustic Impedance of Perforates at Medium and High Sound Pressure Levels", J.
Sound & Vib., 29(1), 1973, pp. 1-65.
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for resistanceand massreactanceis the zero frequencyapproximationof the exact Crandall
model,referredto asthePoiseuillemodel.

Melling considersthe contributions of both Sivian and Ingard to the determination of the

end corrections for resistance and mass reactance. The issue of a final "best" model for end

correction is not fully resolved, but Melling recommends a final model.

Melling mentions the effect of radiation resistance, but assumes that it is negligible. A

correction for the effects of interaction among the orifices due to Fok has been included as part of
the resistance and mass reactance end correction.

The nonlinear resistance term is the subject of an extensive investigation. As part of this

study, Melling notes the importance and variability of the orifice discharge coefficient and its

dependence on orifice Reynolds number and orifice geometry. The form derived by Melling for

the nonlinear resistance coefficient B is very close to the standard value. Melling's recommended
value is

1 1- cr2
B M = 1.2 (3-1)

2C (_CD)2

This differs from Equation (2-12) by a factor of 1.2 and by the presence of a 0 2 term in the

numerator. The omission of the 0 2 term in the standard model is an approximation, and it should

be included for completeness.

The validity of the theoretical analysis is assessed by an extensive set of measurements of

perforated sheets of varying porosities. The frequencies in the measurements are limited to about

3400 Hz upper value.

Thus, Melling has identified all the issues that were identified as having potential impact

on the impedance of sub-scale treatment liners at high frequencies. The high frequency

implications of the foundation laid by Melling will be examined in the next Section. It should be

noted that there may yet be improvements to the standard impedance model at full scale

frequencies to be afforded by re-examining some of Melling's conclusions, combined with further

validation through a more comprehensive and precise set of measurements.

3.3 Contributions of Sivian and lngard

From the 1930's through the 1950's several researchers considered the problem of the

impedance of an isolated orifice. Sivian _6 derived an expression for the end corrections for

Sivian, L. J., "Acoustic Impedance of Small Orifices", J. Acoustic Society of America, Volume 7, October,
1935, pp. 94-101.
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resistanceandmassreactancethat arestill beingusedtoday. Ingard17deriveda slightlydifferent
empiricalcorrelationfor endcorrection. Both of thesecasesareconsideredin detailin Melling.

Ingard andhisassociateshavemadeextensivetheoreticalandexperimentalinvestigations
into thenonlinearityin the resistanceof orificesTM. Ingard and Labate _9noted the four regimes of

orifice flow behavior, which are classified depending on intensity and frequency of the incident

sound and the geometry of the orifice:

1. Low intensity, stationary circulation, flow along the axis out from the orifice, symmetric.

2. Stationary circulation, but flow along axis toward the orifice, symmetric.

3. Medium intensity, pulsations superimposed on circulation, not always symmetric.

4. High intensity, predominant pulsations, jets and vortex rings formed once each cycle, very

sudden onset, symmetric.

The region of circulation increases from the edges of the flow to the center as the intensity

increases. Ingard and Labate also noted that the orifice Reynold's number was not a very

accurate predictor of onset of nonlinearity since the nonlinearity is not due to turbulence alone,

but also depends on frequency and geometry. Many subsequent studies are confirmations or

amplifications of these observations.

3.4 Contributions of Rice and Hersh

In the 1970's, Edward Rice and his colleagues at NASA Lewis examined the effects of

multiple-frequency excitation and the effects of grazing flow on perforated plate resonators. Rice

noted that the overall rms acoustic velocity was the appropriate value to use in the nonlinear

resistance term, as opposed to the narrowband acoustic velocity, when the incident SPL spectrum

is relatively fiat 2°. Rice also noted that nonuniformities in the incident SPL spectrum, such as

multiple protruding tones, may have effects on the measured impedance not fully explained by the

overall rms velocity model.

Rice has also studied the effect of grazing flow on impedance, and examined the effects of

combined grazing flow and broadband pressure excitation 21. Rice noted the similarity in the

grazing flow and multiple frequency excitation effects, and postulated that there may be physical

interactions between the phenomena. Rice's correlation for the effects of grazing flow on

resistance is widely used in current practice.

17

18

19

20

21

Ingard, Uno, "On the Theory and Design of Acoustic Resonators", J. Acoustical Society of America, Vol.
25, No. 6, November, 1953, pp. 1037-1061.

Ingard, Uno and Ising, Hartmut, "Acoustic Nonlinearity of an Orifice", J. Acoustic Society of America,
Vol. 42, No. 1, 1967, pp. 6-17.

Ingard, U. and Labate, S., "Acoustic Circulation Effects and the Nonlinear Impedance of Orifices", J.
Acoustic Society of America, Volume 22, No. 2, March 1950.

Rice, Edward J., "A Model for the Acoustic Impedance of a Perforated Plate Liner with Multiple
Frequency Excitation", NASA TM X-67950, October, 1971.

Rice, Edward J., "A Model for the Pressure Excitation Spectrum and Acoustic Impedance of Sound
Absorbers in the Presence of Grazing Flow", AIAA 73-995, October 1973.
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Alan Hersh, Bruce Walker, and T. Rogers have been studying the behavior of Helmholtz

resonators for many years. They have used numerical integration techniques to solve a fluid

mechanical model, deriving an advanced model for mass reactance of an orifice 22'23'24. The model

establishes distinct nonlinear effects on mass reactance for sufficiently high orifice velocity levels,

and indicates that the effective orifice discharge coefficient is a function of orifice velocity, hole

diameter, and frequency.

Hersh and his associates have also done extensive studies on the effects of gazing flow on

the impedance of single and clustered orifices 25'26'27'2s. They have examined the effects of the

grazing flow on the fluid mechanics of the orifice, and developed analytical models that correlate

both resistance and reactance with grazing flow. Their studies indicate a complex dependence on

frequency, grazing flow boundary layer thickness, and orifice discharge coefficient, which itself

varies in a complex manner. For grazing flow Mach numbers typical of aircraft engine ducts, they

find a resistance relationship quite close to the Heidelberg model, and note that the effects of

grazing flow and high sound pressure levels appear to eliminate the end correction on the mass

reactance quite effectively.

The models of Hersh, Walker, and Rogers are fairly complex in form, and require the

determination of some empirical constants. Due to their complexity, probably not as much

attention was paid to these models as might be warranted for the current study. It would be

worthwhile to revisit the Hersh impedance models at a future date in light of the analytical results

and measured data to be presented below.

3.5 Other Contributions

Other authors have made significant contributions to specific aspects of the problem.

Tijdeman 29, for instance, presents an extensive theoretical study of sound propagation in rigid

cylindrical tubes, including numerical analysis solutions, but does not consider the effects of the

22

23

24

25

26

27

28

29

Hersh, A. S. and Rogers, T., "Fluid Mechanical Model of the Acoustic Impedance of Small Orifices",
AIAA 75-495, March, 1975.
Hersh, Alan S. and Walker, Bruce, "Fluid Mechanical Model of the Helmholtz Resonator", NASA CR-
2904, September, 1977.
Hersh, A. S., "Nonlinear Behavior of Helmholtz Resonators", AIAA 90-4020, October 1990.

Hersh, A. S. and Walker, B., "The Acoustic Behavior of Helmholtz Resonators Exposed to High Speed
Grazing Flows", AIAA 76-536, July, 1976.

Hersh, A. S. and Walker, B., "Effect of Grazing Flow on the Acoustic Impedance of Interacting Cavity-
Backed Orifices", AIAA 77-1336, October, 1977.

Hersh, A. S., Walker, B., and Bucka, M., "Effect of Grazing Flow on the Acoustic Impedance of
Helmholtz Resonators Consisting of Single and Clustered Orifices", AIAA 78-1124, July, 1978.
Walker, B. E., Charwat, A. F., "Correlation of the Effects of Grazing Flow on the Impedance of
Helmholtz Resonators", J. Acoustical Soc America, 72(2), August, 1982.
Tijdeman, H., "On the Propagation of Sound Waves in Cylindrical Tubes", J. Sound & Vibration, 39(1),
1975, pp. 1-33.
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end correction. In his monograph 3°, Allard focuses on propagation of sound in bulk absorber type

materials, but includes chapters on propagation in tubes and effects of perforated facesheets.

Kooi and Satin 31 develop an empirical model for grazing flow effects on resistance and

mass reactance end correction for a perforated faceplate resonator. Their correlations are a

function of frequency, Mach number, hole geometry, and a quantity they call skin friction velocity,

which depends on the Mach number, viscosity, and boundary layer thickness and profile. As with

the Hersh impedance model, the Kooi and Satin formulation is worthy of further examination in

light of the results of this study, but was not examined any further as part of this effort.

There are many other worthy research efforts that have not been mentioned here. Some

of this work will be referenced specifically in the analysis section that follows. It is hoped the

reader has gained at least a rough perspective of the work on impedance of Helmholtz resonators

that has been conducted in the past. The results of this historical study is the focus of the current

analysis on the research objectives listed at the beginning of this section. The interested reader is

referred to the Historical Bibliography in Appendix B for further guidance.

One recurring theme in these research projects is the variability of the orifice discharge

coefficient with flow conditions. Another is the empiricism associated with the resistance and

mass reactance end corrections. At times, it is felt that the two effects become empirically

entwined, and what may be a variation in end correction should be interpreted as a variation of

discharge coefficient, or vice-versa.

We have a good understanding of the fluid mechanical physical phenomena associated

with the orifice flow, but we need a more unified fluid mechanics theory to resolve these empirical

anomalies. Then we need accurate and reliable measurements to support the theory. Further

examination of some of these subjects could lead to improved full scale impedance models, as well

as provide enlightenment for treatment scaling.

The empirically-derived results are of limited value for the current effort because they

were generally measured at low frequencies (or under steady flow conditions) and may not apply

to sub-scale frequency regimes. Of more use are the discussions of theoretical models that

investigate fundamental physical phenomena that can be extended into the high frequency regime.

30
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Allard, J. F., Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials, Elsevier
Applied Science, 1993.

Kooi, J. W., and Sarin, S. L., "An Experimental Study of the Acoustic Impedance of Helmholtz Resonator
Arrays Under a Turbulent Boundary Layer", AIAA 81-1998, October, 1981.
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4. Examination of High Frequency Effects on Impedance

4.1 Advanced Impedance Model Development

4.1.1 Crandall Model for Impedance of a Tube

The solution for the propagation of an acoustic plane wave in a capillary tube including

the effects of viscosity has been derived by a number of authors 32'33, and will not be repeated here.

The following assumptions are invoked for the analysis:

1. All orifice dimensions are small compared to a wavelength.

2. The fluctuating flow through the orifice due to the acoustic excitation can be assumed to be

hydrodynamically incompressible.

3. The flow velocity profile across the hole diameter, while not uniform, can be replaced by its

averaged value.

4. The pressure gradient along the hole (in the thickness direction), _p/_x, can be replaced by

Ap/t, where t is the thickness of the plate (orifice length).

The basic solution is for an infinite length tube, that is, it includes only the mass of air in the tube

core. The end effects are added on as a separate component.

' ri. .tl (4-1)

c.o.c J

where c is the speed of sound, _ is the porosity, CD is the orifice discharge coefficient, m = 2nf is

the circular frequency, r is the orifice radius,

, / ico
1"

ks - _ v' (4-2)

is the Stokes wave number in the hole,

v' : -- (4-3)
P

is the effective kinematic viscosity under isothermal conditions near a highly conducting wall, It' is

the effective absolute viscosity, 19 is the air density, and

32

33

Allard, J. F., Propagation of Sound in Porous Media: Modelling Sound Absorbing ,Vfaterials, Elsevier
Applied Science, 1993, Chapter 4.
Melling, T. H., "The Acoustic Impedance of Perforates at Medium and High Sound Pressure Levels", J.
Sound and Vibration, 29(1), 1973, pp. 9-12.
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F(k'sr) =-1 2-Jl(k'sr) (4-4)
k'srJ0(k'sr )

where J0 and J1 are Bessel Functions of the first kind.

The expression for the impedance has been divided by the porosity times the orifice

discharge coefficient to convert from the lumped impedance of an isolated orifice to the lumped

surface impedance due to the facesheet for an array of holes in a perforated plate. For the

perforate, it is assumed that there is no interaction among the holes.

The argument of the Bessel functions is complex. In the past, this made the F(ksr)

function very difficult to compute, leading researchers to develop approximate forms or use

numerical integration solutions. With modem computers, subroutines are available to compute

the Bessel functions of complex argument with no problem.

The viscosity coefficient used in Equation (4-2) is not the usual absolute viscosity

coefficient of air. We will define It as the absolute coefficient of viscosity coefficient of air, for an

adiabatic process. The coefficient It', however, is an effective value that arises out of the acoustic

wave process along a highly conducting wall, where the process is assumed to be isothermal.

Sivian 34 noted the difference between the two viscosities, and gave the following formulation for

_t', but did not indicate its origin:

It'= It[1 + _r-rlrl ] 2 (4-5)

where 3' is the ratio of specific heats in air and Pr is the Prandtl number in air. We are using the

prime convention from the original nomenclature of Sivian and note that convention was switched

in Melling 33

In air 3' = 1.4 is a constant and the Prandtl number, defined as

Pr - CpIt (4-6)
KT

where cp is the specific heat of air at constant pressure, and KT is the thermal conductivity of air.

In air, Pr is a constant equal to 0.706 over a wide range of temperatures, so that we can set

It' = 2.179It (4-7)

34
Si,dan, L. J., "Acoustic Impedance of Small Orifices", J. Acoustical Soc America, Vol. 7, October 1935,
pp.94-101.
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A usefulexpressionfor the standardabsoluteviscosityof air asa functionof temperature,
knownasthe SutherlandLaw, is35

l.t(T)= l.trTr +111( T/15

T+111 _-_-r)
(4-8)

where T is the temperature in degrees Kelvin, and, in cgs units, the reference viscosity N is

1.796E-4 g/(cm-sec) at the reference temperature of Tr = 293 K.

A complete derivation of the expression for effective viscosity in terms of acoustic

vorticity and entropy modes can be found in either Pierce 36 or Morse and Ingard 37. The condition

under which the effective viscosity coefficient should be used is that the orifice walls are good

heat conductors and that the circumference of the orifice is large compared to a thermal

wavelength. The thermal wavelength, kr is given by

_'T = 2rt, l 2KT

V9¢0Cp
(4-9)

For a typical full-scale treatment 0.05 inch hole, this would require that the frequency be much

greater than about 15 Hz. For a sub-scale (or millipore) 0.005 inch hole, this would require that

the frequency be much greater than 1500 Hz. Thus, there are normal operating frequency ranges

where it is not clear which manifestation of the viscosity coefficient should be used.

This model results in both a real (resistance) and imaginary (mass reactance) term, both of

which are functions of frequency. These are, respectively, the linear viscous resistance term and

the mass reactance term that can be ascribed to the lumped slug of mass in the core of the orifice.

As yet, no end corrections have been applied. Note also that this is the linear contribution to the

resistance and mass reactance. There are strong velocity-dependent terms for the resistance and

nonlinear effects on reactance that are yet to be included.

One disadvantage of this form is that the resistance and mass reactance terms do not

separate explicitly, they must be determined as the real and imaginary parts of Equation (4-1).

The low frequency and high frequency approximations of this form, which shall be examined later,

are easier to compute and do provide this separation.

35

36

37

Sherman, Frederick S., Viscous Flow, McGraw-Hill, 1990, p. 70.
Pierce, Allan D., Acoustics: An Introduction to Its Physical Principles and Applications, McGraw-Hill,
1981, pp.523-529.
Morse, Philip M., and Ingard, K. Uno, Theoretical Acoustics, McGraw-Hill, 1968, pp. 291-292.
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4.1.2 End Effects on Resistance and Mass Reactance

While the contribution of the core slug in the orifice can be derived from purely theoretical

considerations, the contribution of the end correction, except possibly for very low orifice flow

velocities, is mostly empirically derived. Melling 33 describes the contributions of Sivian and

Ingard to the determination of the end correction in great detail, and this will not be repeated
here.

The final expression for the exact solution to the lumped facesheet resistance and mass

reactance of an array of orifices, including the end corrections, is given by Melling as

Z ico [ t 8d ] (4-10)pc- c._.C d F(k'sr ) ÷ 3rdZ(ksr)-w'(_ )

where the second term in brackets is that due to the end correction,

io_ks = (4-11)
V

is the Stokes wave number for an adiabatic medium (non-thermally-conducting region external to

the hole). W'(_,) is the Fok function, which accounts for interactions among neighboring holes 38,
where

_, -- _/-__ (4-12)

A computational expression for the Fok function is

V'(_) : _ an_ n (4-13)
n=0

where

ao = 1.0 a_ = -1.4092 a2 = 0.0

a3 = +0.33818 a4 = 0.0 a5 = +0.06793

a6 = -0.02287 a7 - +.003015 a8 = -0.01614

The Fok function starts from one when porosity is zero and increases monotonically to about 3.0

when porosity reaches 25%. Thus, its effect is to decrease the end correction with increasing
porosity.

Melling, T. H., "The Acoustic Impedance of Perforates at Medium and High Sound Pressure Levels", J.

Sound and Vibration, 29(1), 1973, pp. 16-17.
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The second term in the brackets in Equation (4-10) is an end correction term due to

Sivian 34. Equation (4-10) is the form recommended by Melling to predict the lumped mass

reactance of a perforated facesheet, and the form that will be adopted in the advanced impedance

prediction model below.

4.1.3 Approximations of Poiseuille and Helmholtz Regimes

The derivation and rationalization behind the low and high frequency approximations are

discussed in detail in Melling 33. Only the resulting equations will be presented here.

The Poiseuille model is the low frequency approximation to the exact model of Equation

(4-10). The Poiseuille form for the facesheet impedance is

8 d ] (4-14)
Zp_ 32vt +i k (4t+_____ 7
pc C_Cd d2 _C D _,3 )

where the real part is the resistance and the imaginary part is the mass reactance. The orifice

interaction effect is included as part of the end correction. Note that the resistance is just the DC

flow A-value. The Poiseuille model is valid when

d (27t'f] 1/2
_ _,--_--j (1 (4-15)

For full-scale engines at low frequencies, the linear resistance term is usually assumed to be small

enough to ignore.

The high frequency approximation to the facesheet impedance is known as the Helrnholtz

model. This is derived from the exact equation as

zH t 16v, )i kt _ t _8_d
- _- + -+ -_ _' (4-16)pc CoCDd coCDd 2 coC D d 3rt

The real part of the Helmholtz model is the high frequency approximation for the linear

contribution of viscous resistance of orifices in a perforate. A second order term has been added

to the resistance. This second order correction to the Helmholtz model resistance is important for

matching the exact model at intermediate frequencies. As in the Poiseuille model, the orifice
interaction effect has been included in the mass reactance. The Helmholtz model is valid when

)10 (4-17)
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Currently, it is often standardpractice to use the Poiseuillemodel at all frequencies,
regardlessof the predictedfrequencydependenceof the linear resistanceterm. This has been

acceptable only because the error is small at lower frequencies, due to small contribution of the

linear resistance term compared to the nonlinear term and the effects of grazing flow. This may

not be acceptable when considering sub-scale treatment frequency ranges.

Assuming c, Cd, cL and v are the same at full and sub-scale, the Helmholtz resistance

increases as xJ and t/d. Although Poiseuille resistance is not a function of frequency, it scales as

t/d 2. In the Helmholtz model, there is also seen to be an additional term proportional to _ in the

mass reactance. The issue of a variable discharge coefficient will be discussed later.

4.1.4 Radiation Resistance Contribution

A contribution to the resistance that has been assumed to be negligible under low

frequency conditions is the radiation resistance. If we assume that the radiation resistance of a

vibrating slug of air in the orifice of a perforated plate is the same as that of a piston vibrating in

an infinite baffle, ignoring interaction effects, the radiation resistance for an array of orifices in a

perforated plate will be 39

[ J,(2ka). l
Rra d _ 1 1 (4-18)

pc (_ ka J

where a is the radius of the holes in the perforated sheet. For very small values of ka, this can be

approximated by

Rrad - ltj (ka) 2 (4-19)

For full scale treatment, assuming the maximum frequency is 10,000 Hz the largest hole

size is 0.08 inches, and the minimum porosity is 5%, the radiation resistance contribution would

be P,,,d/pC = 0.34, which is a small but not a negligible contribution. A more typical 10% porosity

facesheet would have half this value, and it will drop rapidly with frequency.

Since ka is invariant with scaling, we can expect the same values for scaled acoustic

treatment, as long as the hole diameter is reduced by the appropriate scaling factor. If the hole

diameter for the scaled treatment is made larger than the value dictated by the scaling factor, the

radiation resistance will increase rapidly.

39 Morse, Philip M., and Ingard, K. Uno, TheoreticalAcoustics, McGraw-Hill, 1968, pp. 383-387.
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Figure (4-1) is a plot of the normalizedradiation resistanceas a function of ka for a
porosityof 5%. The exactform of the radiationresistancecontributionis includedin the final
modelfor acousticimpedance.
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Figure (4-1) Predicted radiation resistance normalized by pc for a 5% facesheet as
a function of ka.

4.1.5 Nonlinear Resistance Contribution

Melling 4° presents a detailed discussion of the development of the nonlinear contributions

to the resistance and reactance. By nonlinear, it should be noted, is meant that the resistance or

reactance depends on the acoustic velocity in the orifice, and therefore on the incident SPL of the

pressure wave. Since, given the incident SPL, the acoustic velocity depends on the impedance

and the impedance is a function of the acoustic velocity, an iterative procedure must be followed

to determine the acoustic impedance.

The theoretical derivation of the nonlinear terms in the impedance of a facesheet is based

on the linear momentum equation, under the following set of assumptions:

1. The fluid obeys the Stokes law for viscous shear.

2. Entropy variations are negligible.

3. The diffusion of acoustic momentum in the viscous medium is negligible.

4. The radial component of acoustic velocity outside the hole is compensated by an end effect.

5. The acoustic parameters can be replaced by their values averaged over the hole.

4O

Melling, T. H., "The Acoustic Impedance of Perforates at Medium and High Sound Pressure Levels", J.
Sound and Vibration, 29(1), 1973, pp. 44-59.
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6. The square of the acoustic velocity averaged over the hole area is approximately equal to the

square of the average velocity. This limits the analysis to relatively fiat flow profiles in the
hole.

7. The acoustic velocity has simple harmonic time dependence.

8. The gradient is constant along the hole, that is, we can replace c3/c3xwith 1/t (t << _), where t

is the length of the hole.

9. The orifice is square-edged.

10. The steady-state and the instantaneous acoustic behavior are equivalent.

The last assumption, that of quasi-steady motion for the flowfield due to the acoustic perturbation

around the hole, will be shown to be questionable under some operating conditions.

Under these assumptions, Melling derives the following form for the nonlinear resistance
contribution:

1.2 1-o 2RNL_

pc 2c (CYCD)2 Vrms (4-20)

The nonlinear resistance term arises from the loss of kinetic energy in the flow through the hole,

with a correction added for the effects of radial flow just outside both sides of the hole. By

invoking the quasi-steady flow condition, Melling then identifies this term with the standard form

for the nonlinear part of the DC flow resistance through a perforate. This form is a factor of 1.2

greater than the currently used impedance prediction form. This is somewhat compensated by the

reduction from 0 2 in the numerator of the Melling version, which is usually not included in the

standard impedance prediction model.

The linear part of the orifice mass reactance and resistance also arise from the momentum

equation derivation, but no corresponding nonlinear contribution to mass reactance appears.

Melling notes that the major velocity-dependent effect on mass reactance is that due to the loss of

the end effects as the flow through the orifice transforms from laminar to turbulent. The key to

determining the mass reactance effect is through knowledge of the axial location of the vena

contracta, which moves away from the orifice with increasing flow rate, but little is quantitatively
known about this behavior.

Melling notes that the quasi-steady flow assumption hinges on the relative size of the first

term in the Euler equation for the acoustic field perturbing the flow through the orifice, which

must be small compared to the other two terms 41. The Euler equation is

_c3u' 0u' '
+ =o (4-21)

41

Melling, T. H., "The Acoustic Impedance of Perforates at Medium and High Sound Pressure Levels", J.
Sound and Vibration, 29(1), 1973, p. 47.
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wherethe barsdenoteambientaveragevaluesandthe primesdenotefluctuatingquantities. The
inverseof the time scale is represented by a frequency, f, the length scale by an effective orifice

length tefr, and the velocity in the hole is related to the incident acoustic velocity by

V I

u' = -- (4-22)
CY

where the incident velocity is estimated from the incident pressure and assumed surface

impedance by

u' = _ (4-23)
oZ

Using these scales as estimates of the magnitude of each term in the equation, we can write the
ratio of term one to term two as

T__I_I= ocktef f (4-24)
T2 sP_/2n(7.68E - 7)10 /20

and the ratio of the first term to the third term as

T1 _ ktef f (4-25)
T3 o

If we assume that the maximum frequency of interest is 10,000 Hz. and that the maximum

value of tefr is 0.25 cm., then the maximum value of kt_e will be about 0.46. If we assume a

minimum SPL of 130 dB and a maximum porosity ofcy = 0.15, then the ratio of the first term

over the second term is given by

T1
--= 154.8 (4-26)
T2

If we assume a minimum porosity of 5%, then the ratio of the first term to the third term is

T1
-- = 9.2 (4-27)
T3

Neither of these ratios could be considered small--in fact, the frequency would have to be

reduced by more than two orders of magnitude before T1/T2 becomes small. This makes the

question of quasi-steady flow questionable, which makes the assumption that the DC flow

measured parameters can be applied to the resistance terms as empirical parameters questionable,

at least at the higher frequencies. Since kt_ is invariant with scaling, this is a potential problem
both at full scale and sub-scale.
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4.1.6 Advanced Impedance Prediction Model

To construct the advanced impedance prediction model, a number of elements of the

development from the previous section were adapted to the current impedance model as revisions

or options. In particular, the revisions were:

1. Incorporation of the exact Crandall model to compute the linear resistance and mass reactance

options. This replaces the Poiseuille model, which formed the basis of the existing model.

2. Addition of the radiation resistance term.

3. Incorporation of the Fok function for neighboring hole coupling effects on the end correction.

4. Incorporation of an option to apply an arbitrary factor to the end effect for the exact model

anywhere from zero (no end effect) to one (full end effect).

5. Incorporation of the option of using the Keith and John model for orifice discharge coefficient

as a function of orifice Reynolds number or entering a constant value for the discharge
coefficient.

Features maintained from the existing model were:

1. The empirical end effect that includes porosity and grazing flow effects is provided as an

option to the exact model. With this option, the exact model is used except for the end effect,

which is replaced with the empirical end effect model.

2. The Heidelberg model for the resistance due to grazing flow.

3. The standard cotangent function for the cavity reactance.

4. The iteration algorithm to determine the nonlinear resistance, which depends inherently on

acoustic velocity and impedance.

The incorporation of the exact Crandall model adds frequency-dependent features to the

linear resistance and mass reactance that are not included in the existing impedance model. It is

still a fundamental assumption of the model that the nonlinear velocity-dependent quantities are

functions of the rms velocity summed over all contributing frequency bands, rather than on the

acoustic velocity in individual narrowbands.

When the Keith and John model is chosen to determine the discharge coefficient as a

function of orifice Reynolds number, an iteration is performed similar to the iteration to determine

nonlinear resistance. The iteration is based on the orifice overall rms acoustic velocity, which

changes as the treatment impedance changes nonlineady. The CD iteration is coupled to the
nonlinear resistance iteration.

m.

A Users' Guide to the impedance model computer program PPZ4 is included as Appendix
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4.2 Reynolds Number Effects on Orifice Flow

4.2.1 Problems in Developing a Model for Orifice Discharge Coefficient

Melling notes that the major difficulty in applying the nonlinear form for resistance is that

the orifice discharge coefficient is not a constant, but is a function of orifice Reynolds number,

orifice geometry, and porosity. In fact, most of the discrepancies among the predictions and

measurements of both perforated plate impedance and DC flow resistance can probably be traced

to uncertainties in the value of the discharge coefficient, although uncertainties in the end effect

will also contribute. We shall examine some of these discrepancies at this point.

Melling obtained mixed results in comparing orifice discharge coefficients derived from

acoustic measurements, DC flow measurements, and a single ideal orifice model 42. Larger

discrepancies were found for the 7.5% porosity samples than for the 22% porosity samples.

Other than this initial work of Melling, there is little available in the open literature to shed further

light on this problem.

The discharge coefficient of an orifice, CD, is defined as the product of the coefficient of

contraction and the coefficient of velocity. The coefficient of contraction is the ratio of the area

of the vena contracta to the orifice area. The coefficient of velocity is the ratio of the ideal to

actual velocity at the vena contracta. The vena contracta is the minimum flow area in a jet

formed by contraction of the streamlines, at the point where the streamlines become parallel. At

this point the flow velocity is at a maximum and the effective flow area is a minimum.

The Reynolds number for the orifice based on hole diameter is defined as

Re d - Vhd (4-28)
V

where Vh is the flow velocity in the hole, d is the hole diameter, and v is the kinematic viscosity.

In terms of the incident acoustic velocity, this is can be written as

Re d - vid (4-29)
_CDV

where o is the porosity. Note that in this formulation, the acoustic form, the Reynolds number

depends on the discharge coefficient which in turn is a function of the Reynolds number.

It is useful to consider some typical ranges of orifice Reynolds number obtained in

acoustic excitation of perforated sheets in aircraft engine environments. First, however, we must

specify how to define the incident acoustic velocity. If the faceplate/cavity is excited by a pure

tone, the rms acoustic velocity will be given by magnitude of the incident acoustic pressure

42
Melling, T. H., "The Acoustic Impedance of Perforates at Medium and High Sound Pressure Levels", J.

Sound and Vibration, 29(1), 1973, pp. 54-55.
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dividedby the surfaceimpedance.For illustrativepurposes,we could assumean impedanceof
41.5 cgs Rayls and obtain pressure for several SPL values from 130 to 150 dB.

If the resonator is excited by a broadband pressure signal, the method of determining the

incident velocity becomes more problematic. The velocity in each narrowband is determined by

the pressure and impedance in that narrowband, and both pressure and impedance will vary over

the full frequency range. It seems reasonable to use the overall rms value of acoustic velocity

(integrated over all frequencies) in the Reynolds number, in the same sense that the overall rms

value appears to be the appropriate value to use in the nonlinear flow resistance term.

This would say that the velocity to use to calculate the Reynolds number to determine CD

would be the overall velocity. Although this would appear to make some sense for modeling CD

as a function of Red, there is no available experimental justification for doing so. An additional

consequence would be that the Reynolds number would be likely to be in the higher ranges for

SPL's above 130 dB or so, where CD has achieve a constant value, so that there may be no

problem with CD variation with low Reynolds numbers. At this point, this must be considered to

be an hypothesis.

Returning to our original objective of determining typical Reynolds number ranges for the

acoustic process, Figure (4-2) shows a contour plot of lines of constant Red in the plane of SPL

versus the parameter of hole diameter in cm. divided by porosity.
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Figure (4-2) Contours of constant orifice Reynolds number as a function of

incident SPL and d/a for constant CD = 0.76 and IZ/pc] = 1.0.

To calculate these contours, the discharge coefficient was assumed to be constant at 0.76 and the

impedance was held constant with a magnitude of 1.0. The resistance and reactance of the

hypothetical resonator can take on any values, as long as [Z/pc[ = 1.0. The SPL can be

interpreted either as the pressure level in a tone at which the wall impedance is 1.0 or as the

overall SPL, in which case the impedance of 1.0 would represent an overall average value. A

typical value ofd/_, for a hole diameter of 0.05 inches and porosity of 10% would be 1.27.

To illustrate cases where the orifice Reynolds number is based on the overall rms acoustic

velocity, Table (4-1) lists values obtained from impedance predictions for three different treatment

configurations. The impedances from these predictions will be compared to measured values later

in this report. Note that the fourth case is representative of a 1/4 scale treatment panel, has hole

diameters in the range usually associated with "linear" perforates, and is measured over a higher

frequency range.
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Case#

2

0.06

0.06

d, in

0.062

0.062

t, in

0.026

0.026

h, in.

0.75

0.75

SPL,

dB

139

149

Freq

Range

750-

6300

750-

6300

Urnls

cm/sec

61.6

166.9

Red

1264

3489

3 0.08 0.02 0.012 0.5 144 750- 61.4 339

63OO

4 0.08 0.008 0.005 0.2 136 2600- 17.4 46.9

13500

Table (4-1) Table of orifice Reynolds number obtained for typical treatment panels

under various SPL levels, using overall rms definition of Red.

It should be reiterated that the orifice discharge coefficient in not solely a function of the

orifice Reynolds number. It has been found to vary strongly with such effects as orifice thickness

to diameter ratio, the longitudinal shape of the hole (particularly whether the inlet and outlet

edges are sharp or rounded), and the porosity (a coupling effect among neighboring holes). These

effects will influence both the resistance and mass reactance. There is not, as yet, to the author's

knowledge, a unified model for the discharge coefficient of a perforated plate that incorporates all

these parameters.

4.2.2 Keith and John Model for Orifice Discharge Coefficient

One attempt to develop a model for the variation of CD with Ree was made by Keith and

John 43. They used a computational fluid dynamics procedure involving vorticity-stream function

system numerical integration to integrate the steady axisymmetric form of the Navier-Stokes

equation. This was applied to an isolated orifice mounted in a tube, with the ratio of the orifice

diameter to the tube diameter (square root of porosity) as a parameter. The study is also limited

to thin orifices, which means it will not account for effects of t/d or orifice interaction. They

compared their computations to the measurements previously made by several investigators, with
very good agreement.

A curve fit was made to the Keith and John model for the case that corresponded to a

porosity of 0.09. The model is divided into three regions, a linear low Red region, an intermediate

transition region, and a constant high Red region. The algorithm follows:

43

Keith, T. G. and John, J. E. A., "Calculated Orifice Plate Discharge Coefficients at Low Reynolds

Numbers", Transactions of the ASME, J. of Fluids Engineering, June, 1977, pp.424-425.
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Let

Let

For

For

For

Then

LGR = log10( Red )

LGCD = log10( CD )

Red < 3.33

LGCD = 0.4985-LGR - 0.8477

3.33 <Red < 300

LGCD = -0.842817 + 0.528152-LGR - 0.0283395-LGR z

- 0.04733.LGR 3 + 0.00828709.LGR 4

Red > 300

LGCD = -0.119

CD = 10 Lc'cD

The constant value of CD above Red = 300 is just 0.76, which is the nominal value of CD used in

the current impedance model, but this does not account for variations with hole geometry or

porosity.

Figure (4-3) is a plot of the curve fit to Keith and John model for orifice discharge

coefficient versus Reynolds number. This form of CD versus Red will be used as an option for the

Reynolds number variation of CD in the advanced impedance model.
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Figure (4-3) Curve fit to the Keith and John model for orifice discharge coefficient

as a function of orifice Reynolds number.

4.2.3 Discharge Coefficient Evaluation Using DC Flow Resistance Data

In the theoretical formulation, the discharge coefficient appears in both the linear and
nonlinear terms of the DC flow resistance model:

RDC 32vt 1 - _2
_ -- .4

pC cCYCDd2 2C(CYCD) 2
Uin c = A + B- Uin c (4-30)

where U=c is the steady flow velocity incident on the faceplate. As shown, the first term on the

right is the A-value, and the coefficient of Umc is the B-value. Given a set of measurement values

of Roc versus Um_, a value of CD can be extracted for each flow value, which can then be used to

compute Red.

To compare the predicted DC flow resistance to measured values for specific cases, two
treatment configurations were chosen for which measured data were available. The cases are

defined in Table (4-2). The first perforate is that typical of a full scale engine design at 8.5%

porosity and the second is roughly a 1/5 scale representation of the full scale, with 8.0% porosity,

very small hole size, and very thin. The measured DC flow resistance will be compared to the
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predicted DC flow resistance using an assumed constant CD of 0.76, an assumed constant CD that

is the average of the values that fit the model to the measured curve, and a variable CD as given by

the Keith and John model.

Case No. Porosity, _ Hole diameter, Thickness, t,

d, in. in.

1 0.085 0.062 0.024

2 0.08 0.008 0.005

Table (4-2) Definition of the perforated sheet cases for comparison of measured

and predicted DC flow resistance.

Figure (4-4) shows the comparison of predicted and measured DC flow resistance for

Case 1, the standard full scale facesheet. Note that the value predicted using CD = 0.76

underpredicts the flow resistance and also has a lower slope (B-value) than measured. The

measured data averaged fit coefficient, CD = 0.711, gives a much closer match to the measured

throughout the range of flow velocity. It should be noted that Red = 491 at the lowest flow

velocity, so that it is in the region where CD should be constant at its maximum value. The Keith

and John model, therefore, would give a constant CD of 0.76, so that it would give the same curve

as already plotted. The empirical maximum CD value, however, is about 6.5% less than this 0.76
nominal value.
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Figure (4-4) Predicted DC flow resistance compared to measured value for

different assumptions regarding orifice discharge coefficient, Case 1,
standard 8.5% facesheet.
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Figure (4-5) shows the comparison of predicted and measured DC flow resistance for

Case 2, the 1/5 scale facesheet with small diameter holes. In this case, the average best fit CD

value that matches the prediction model to the measured data is greater than 1.0, so that it is set

to 1.0. The lowest flow velocity does give a Reynolds number that is in the transition region of

the Keith and John model, so that it predicts a decrease in CD for the two lowest flow values as

indicated in Table (4-3).

U, cm/sec Red

30 73.0

6O

105

150

200

Table (4-3)

136.1

230.7

329.6

439.5

CD A B K&J RDc Meas RI)c

0.686 3.258 0.1969 9.16 4.29

0.736

0.76

0.76

0.76

3.037

2.942

2.942

2.942

0.1711

0.1606

.1616

.1616

13.30

19.80

27.19

35.27

7.23

11.65

16.07

20.97

Orifice Reynolds number, Keith and Johnson discharge coefficient, predicted

DC flow resistance A and B values, predicted DC flow resistance, and

measured DC flow resistance for facesheet Case 2, 8.0% 1/5 scale.
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Note that in this case, the predicted values using the nominal CD --- 0.76 give a worse

match to the measured values than the previous case. In this case, both the predicted A value and

B value are too large. Using the data fit averaged CD gives a very close match, as expected, and

implies that the discharge coefficient is 1.0. The Keith and John model for CD is causing the

predicted curve to move in the wrong direction at the lower flow velocity values, raising

questions regarding its validity as applied to the present ease.

Although it would be unwise to generalize these results to other perforated facesheets,

they are typical of the type of results that will be obtained. Some facesheets will give a very close

fit for CD = 0.76, others will give discrepancies that will vary in the opposite direction from the

examples provided here.

In conclusion, there is much lef_ to do in achieving a complete understanding of the

behavior of acoustic flow fluctuations through orifices. These results along with those previously

derived by Melling have shown a disagreement among the discharge coefficient values found from

ideal isolated orifices, the effective DC flow-derived values, and the acoustical values. The

problem may be made even more difficult by the coupling of the variation in end effects with the

same parameters that the discharge coefficient has been found to depend upon. This could effect

both the linear resistance component and the mass reactance.

Advancements in understanding and modeling the discharge coefficient and end effects on

impedance would bring improvements in both full scale and sub-scale impedance modeling.

Achieving these advancements will require an extensive and exacting series of tests in which all

the relevant facesheet parameters were varied over a useful range. Coupled with this should be

CFD studies that calculate the unsteady flow of an acoustic wave through a perforated sheet for

the laminar through the turbulent flow regimes.
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5. Comparison of Predictions with Measured Data

5.1 Measured and Predicted Comparisons

In this section, we shall compare predicted and measured impedances for six treatment

panel configurations. The measurements were made by Rohr, Inc., using both a 3.0 cm. low

frequency normal incidence impedance tube and a 1.5 cm. high frequency impedance tube.

Details of these tests and procedures will be documented in a separate final report volume. The

predictions are made using two models, the existing model that is currently in use by industry and

the advanced model that has been developed in this effort. Details of the parameters that define

the test configurations are given in Table (5-1). Since the measurements were made in a normal

incidence impedance tube, there are no grazing flow effects included.

Config
No.

Test
Panel

Designation
Panel 3.4

Open
Area

Ratio

Hole

Diam,

d, in
1 0.08 0.020

2 Panel 3.4 0.08 0.020

3 Panel R001a 0.0665 0.062

Thkns,

t, in
0.012

0.012

0.026

OASPL

Cavity Frequency Meas

Depth, Range of Values,
h, in Msrmnt dB

0.5 800-6200 144.3

0.5 2570-13500 130.7

0.75 750-6300 139

4 Panel R001a 0.0665 0.062 0.026 0.75 750-6300 149

5 Panel 3.6 0.08 0.008 0.005 0.2 800-6200 145.9

6 Panel 3.6 0.08 0.008 0.005 0.2 2570-13500 136.2

CD

from

DC

flow

0.812

0.812

n/a

n/a

0.972

0.972

Table (5-1) Definition of treatment panel configurations for which predicted and

measured impedance is to be compared.

Configuration 1

Configuration 1 is a half-scale perforated plate resonator panel with 8.0% porosity,

measured over the fuU-scale frequency range with 144.3 dB overall SPL The measurement was

made in the 3.0 cm. normal incidence impedance tube, with broadband excitation, and the data

were reduced with 20 Hz. frequency resolution. The predictions were made at the same

narrowband frequencies as the measurement.

Figure (5-1) shows a comparison of the measured impedance and the impedance predicted

using the current prediction model as described in Section 2. Figure (5-2) shows the SPL

spectrum shape for this measurement. The prediction, in this case, represents both the nominal CD

value of 0.76 and the CD derived from the DC flow resistance measurement, which was 0.812,

since there is only a negligible difference between the two cases.

Note that the agreement between prediction and measurement is quite good, although the

reactance is over-predicted above about 2500 Hz. This total reactance over-prediction is caused

by an over-prediction of the mass reactance component. The deviation in resistance below 1500

Hz. is caused by measurement problems in the normal incidence impedance tube experienced

when the magnitude of the impedance becomes large.
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Figure (5-3) compares the same measured impedance for Configuration 1 to predictions

using the exact impedance model as described in Section 3. The exact model prediction includes

two cases, one in which the end correction factor was set equal to zero (no-end correction) and

the other in which it was set equal to 1.0 (full end correction). For this prediction, the Keith and

John correlation for CD was used, although the resulting CD becomes just 0.76, based on the

overall rms acoustic velocity in both cases.

Note that the case with no end correction is remarkably close to the measured reactance

over the full frequency range and is close to the measured resistance above about 3300 Hz. The

full end correction, grossly over-predicts the mass reactance, giving large discrepancies above

about 1000 Hz. The resistance with full end correction is too high, although it appears to fit
better below 2500 Hz.
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Figure (5-3) Comparison of measured impedance to exact prediction with full and

no end correction for Configuration 1.
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Figure (5-4) compares the measured impedance to the exact model, using the empirical

end correction and a CD of 0.812, and to the current model, also using a CD of 0.812 This CD

value is the best fit to the measured DC flow resistance data. Both prediction cases use the same

empirical end correction and the same Cv, so that the only difference in the prediction model cases
is the exact model resistance and mass reactance versus that for the current model. The exact

model gives slightly higher resistance and mass reactance. For this case, the DC flow resistance

best fit to the CD value does not give appreciably better agreement with the measured impedance
than the nominal value of 0.76.
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Figure (5-4) Comparison of measured impedance to exact prediction model and

current model both using discharge coefficient of 0.812 for

Configuration 1.

Configuration 2

Configuration 2 is the high frequency measurement of Configuration 1 treatment panel,

made in the 1.5 cm normal incidence impedance tube. The measurement was made with

broadband excitation and the data reduced in 40 Hz. bandwidths. The predictions are made at the

same frequencies as the measurement.
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The overall SPL is 130.7 dB in this case. Figure (5-5) compares the measured impedance

with the prediction for the current model, using a CD of 0.76. The agreement is very good up to

about 9000 Hz., where the measurement is experiencing problems from the high magnitude of the

impedance. Figure (5-6) shows the SPL spectrum for this case.
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Figure (5-6) SPL spectrum for Configuration 2.

Figure (5-7) compares the measured impedance to the prediction using the exact model

with the Keith and John CD, with the full end correction and with no end correction. The CD in

this case does not achieve the nominal 0.76, becoming 0.740 with full end correction and 0.737
with no end correction.

Note that the no end correction case gives better agreement, as it did at the low

frequencies, but that the mass reactance is slightly under-predicted. Choosing a small number for

the end correction factor, say between 0.1 and 0.2, would have given a much better match to the

measured reactance. The full end correction gives an extreme over-prediction of the mass

reactance at the high frequencies. With the full end correction, the resistance prediction is too

high, not much in absolute value but fairly high in percent difference, given the low value of
measured resistance.

53



(1)
t..)
t'--
fO

"O

Q.
E

N

O3
E
k-

o
Z

0

-1

O
/

Measured Resistance /0

' ?
-- -- Measured Reactance 0 /

Resistance - full end correcbon _ I

-- _- Reactance - full end correction 0 ,P

- [:3" Reactance - no endcorrect_n < 0 " '

o-° t_
o_ ,. I, _

¢
0,,_ I • d

.9.,e I n_ ¢" I

x,"_° • " n" _ / t

#'_" t r
#

-2

2000 3000 4000 5000 6000 7000 8000 9000 1000011000120001300014000
Frequency, Hz.

Figure (5-7) Comparison of measured impedance to exact prediction model with

full and no end correction for Configuration 2.

Configurations 3 and 4

The panel used for Configurations 3 and 4 is a full-scale design with a porosity of 6.65%,

which might be a bit lower than would be used in practice. The hole size and facesheet thickness

are representative of full-scale designs. The impedance for Configuration 3 was measured in the

3.0 cm. impedance tube at low frequencies, with a broadband excitation of 139 dB SPL. The only

difference for Configuration 4 is the overall excitation SPL is 10 dB higher at 149 dB. The data

were reduced in 8 Hz. narrowbands, and the prediction is also made every 8 Hz.

Figure (5-8) compares the measured impedance with the impedance predicted using the

current impedance model with a CD of 0.76 for Configuration 3. The predicted and measured

resistance agree quite closely, but the reactance prediction is too high, indicative of an over-

predicted mass reactance. The measurement deviations from a smooth curve at both the low and

high frequency ends is likely to be caused by measurement error. Figure (5-9) shows the

excitation pressure spectrum for both Configurations 3 and 4.
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Figure (5-10) compares the measured impedance for Configuration 3 to the exact model

with the Keith and John impedance model, with and without end correction. The effective CD is

0.76 for both end correction cases. Note that the end correction makes little difference in the

resistance prediction, but that the mass reactance predictions bracket the measured reactance. An

end correction factor could be chosen to match the reactance curve quite closely, if desired.
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Figure (5-10) Comparison of measured impedance to exact prediction model with

full and no end correction for Configuration 3.

Figure (5-11) compares the measured impedance for Configuration 4 with the prediction

from the current impedance model. The resistance is predicted quite well, indicating the model is

accurately accounting for nonlinear resistance effects. The mass reactance has a higher over-

prediction than the lower SPL case, a possible indication of nonlinear effects on mass reactance,
which are not included in this model.
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Figure(5-11) Comparison of measured impedance to current prediction for

Configuration 4.

The exact model with and without end corrections is compared to the measured data in

Figure (5-12) for Configuration 4. The effective C9 is 0.76 for both end correction cases. The

resistance prediction is very similar to the current model prediction, and matches the measurement

quite well. The reactance with no end correction is just slightly below the measured reactance,

indicating that the 149 dB SPL high intensity effects may extinguish the end correction almost

entirely.
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Configurations 5 and 6

Configurations 5 and 6 represent a 1/5 scale model panel design, with 8% porosity but

with hole size and facesheet thickness reduced by the scale factor. The hole diameter in this case

is representative of "micro-porous" linear facesheets, but the primary difference is that the

microporous sheets would not have a reduced facesheet thickness, giving small holes with high

thickness-over-diameter aspect ratio. The measurement for Configuration 5 was made in the 3.0

cm normal incidence impedance tube, with broadband excitation of 145.9 dB overall SPL, and

the data were reduced with 20 Hz. frequency resolution. The predictions were made at the same

narrowband frequencies as the measurement.

Figure (5-13) compares the measured impedance with the prediction from the current

model for Configuration 5 for the low frequency range. The prediction matches the measurement

fairly well. Deviation at the low frequency end may be due to measurement problems. Figure (5-

14) shows the SPL excitation spectrum for this case.
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The measured impedance and the prediction for the exact models with and without end

corrections are shown for Configuration 5 in Figure (5-15). The effective Co for both end

correction cases is 0.76. The upper and lower end correction bands for the predicted impedance

in this case bracket the reactance curve much more closely than previous cases. The resistance is

predicted most closely by the no end correction case. Deviation at the very low frequencies may

be due to measurement error. As we tend toward the upper frequency limit, the no end correction

case is giving better agreement to the measured reactance.
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Figure (5-15) Comparison of measured impedance to exact prediction model with

full and no end correction for Configuration 5.

Figure (5-16) compares the measured impedance with the prediction from the current

model for Configuration 6 for the high frequency range, where the frequency resolution is now 40

Hz. The prediction is made with two different CD values, the nominal 0.76 and the DC flow

resistance best fit value of CD = 0.972. The prediction matches the measurement fairly well for

CD = 0.76 and extremely well for Co = 0.972. Deviation at the low frequency end may be due to

measurement problems. Figure (5-17) shows the SPL excitation spectrum for this case.
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The measuredimpedanceandthe predictionfor the exactmodelswith andwithout end
correctionsare shownfor Configuration6 in Figure (5-18). The effective CDfor both end
correctioncasesis 0.76. Theresistanceandreactancearebothpredictedmostcloselyby the no
endcorrectioncase,wheretheagreementis excellent.
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Figure (5-18) Comparison of measured impedance and exact prediction model with

full and no end correction for Configuration 6.

5.2 Observations

The potential for excellent agreement between measured and predicted impedance is seen

for almost all cases. The main problem is that the fit requires the choice of a mass reactance end

correction factor which is not known a priori and for which no universally-accepted general model

is available. The determination of the proper end correction factor would, in general, require an

extensive parametric study in which the porosity and hole geometry were varied, and in which the

discharge coefficient were a topic of investigation as well.

The data were too limited to draw conclusions about whether the DC flow best fit CD

value gave any improvement in the fit, although it did work well in one case. The empirical mass

reactance end correction is not too bad an approximation, giving roughly the same curve one

would have gotten by choosing the proper end correction factor for the exact model.
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No unexpected high frequency effects were found in the measured data up to the highest

measurement frequency of 13,400 Hz., which is twice the highest frequency studied previously.

This gives encouragement that the frequency effects will behave as expected under another

doubling of upper frequency. It appears to be fortunate that the end correction effects on mass

reactance up to the highest frequencies seem to be minimal, so that the mass reactance does not

increase with frequency as rapidly as it might. In many cases, the best fit to the measured data

required elimination of the end correction entirely. The effects of grazing flow should further

reduce the end correction.
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5.3 Application to Linear Facesheet Liners

5.3.1 Linear Facesheet Impedance Models

The standard method for handling the prediction of impedance for linear facesheet liners is

to assume that the resistance of the facesheet can be determined from the DC flow resistance

measurement and that the mass reactance is either zero or a nominally small amount (typically

about 0.15 pc). Fundamental assumptions for using the DC flow resistance are that the A- and B-

values measured under steady flow conditions can be used with the rms overall acoustic velocity

replacing the steady flow velocity and that A and B are not themselves functions of frequency.

There are several different types of so-called "linear" facesheet liners. One type is

fabricated from compressed and sintered randomly oriented metallic fibers, usually bonded to a

high open area (that is, from 25% to 35% porosity) perforated support sheet. Another is the

"microporous" or "millipore" design, in which extremely small holes, usually less than 0.010

inches in diameter, are laser drilled or etched into an otherwise standard thickness sheet. The

small hole size and relatively long hole length makes the linear viscous contribution to the

resistance high compared to the nonlinear component.

The type of linear facesheet with which we will be exclusively concerned in this study is

the fine-weave wiremesh sheet, either bonded to a perforated plate support or used in isolation.

Typical wire diameters for the wiremesh sheets range from a maximum of about 6 mils (0.006

inches) down to 10 microns (about 0.4 mils or 0.0004 inches). Such liners have been in service in

aircraft engines for many years, those built by Rohr, Inc. having the designation "DynaRohr".

A further advantage of linear liners is that they are known to be relatively unaffected by

grazing flow. Perfectly linear liners to not exist: they are usually characterized by nonlinear

factors (say NLF150,_0) on the order of 1.2 to 3.0, whereas perforates typically have nonlinear
factors greater than 5.0.

Little published work has been done on the behavior of linear wiremesh liners. Two

notable exceptions are the work of Rice 1 and of Hersh and Walker 2. Both authors conclude,

based on theory and corroborating experiment, that the grazing flow effects are negligible and that

the DC flow resistance model applied to the acoustic case gives no problems up through the full
scale frequency range.

Rice give a criterion for conditions under which frequency effects may begin to become
important for wiremesh sheets, in terms of the wire diameter. This is

Rice, Edward J., "A Model for the Acoustic Impedance of Linear Suppressor Materials Bonded on
Perforated Plate", NASA TM 82716, also AIAA 81-1999, October, 1981.
Hersh, A. S., and Walker B., "Effects of Grazing Flow on the Steady-State Flow Resistance and Acoustic
Impedance of Thin Porous-Faced Liners", AIAA 77-1335, October, 1977.
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Figure (5-19) Critical frequency above which impedance of wiremesh facesheet may

become frequency-dependent, as a function of wire diameter.

Application of Rice's model for wiremesh faceplate impedance requires knowledge of the

wire diameter and spacing of the screen, which is usually available from the manufacturer. The

expression for resistance is

R Rim

pc GppC

1_o,oi4_1/v' 1_o.,,,
-_ + 2-_2p (1- Gp)Vi (5-2)2cc 2 \Gse J

where % is the porosity of the perforated support sheet. The linear part of the resistance is given

by

Rlin = 272.61a(1- _X_se) 2

pc pcdw
(5-3)

where dw is the wire diameter. The effective screen porosity, oso, is given by

Ose : (0.95 + 36.56d w)Gsd (5-4)
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where the reference porosity, _sa, is given by

(_sd = (5-5)

where Sw is the wire spacing in the screen weave (projected on a plane parallel to the screen).

The various numerical constants were empirically-determined in the study by Hersh and

Walker, from whom much of the model originated, as Rice points out. The resistance expression

contains three terms; the linear viscous resistance due to the screen, the nonlinear resistance due

to the screen and the nonlinear resistance due to the perforate. The small viscous resistance

contribution from the perforate is neglected. The absence of a supporting perforated plate is

equivalent to setting op = 1. Note that the effect of the perforate on the resistance of the

wiremesh alone is to increase it by the factor 1/op. This formulation should give A and B values
quite close to those obtained from a DC flow resistance measurement.

An expression for the mass reactance, due primarily to Hersh and Walker, is

×mk[- -- tp +0.43dp +

t+O.52Sw _se-

13"se
(5-6)

where tp is the thickness of the perforated support plate and dp is the perforate hole diameter. The

effect of the wiremesh covering the holes, Rice surmises, is to reduce the orifice end correction by .

half, explaining the 0.43 value. The 0.52 is an empirical result based on the studies of Hersh and
Walker.

The mass reactance due to the screen alone is typically very small for fine screens at full

scale operating frequencies. Figure (5-20) shows the predicted mass reactance as a function of

frequency for a 400-mesh screen with wire diameter of 0.0025 cm, wire spacing of 0.0064 cm,

and an effective porosity of 0.424 (this was one of the sample cases in Rice). At 10,000 Hz.,

there is only a contribution of 0.031 pc to the reactance. The contribution goes up rapidly,

however, as wire diameter increases, and it is also magnified by a factor of 3 to 4 if the wiremesh

is supported by a perforated plate.
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Figure(5-20) Mass reactance of a 400 mesh wiremesh sheet predicted by

Rice/Hersh/Walker model versus frequency.

For further detail on the development of the models and their correlation with limited

available experimental data, the reader is referred to the paper by Rice 1. The Rice study gives a

good idea of the parameters that are important to the impedance of the wiremesh and gives a

feeling for the magnitude of the impedance as a function of frequency. For the current study,

however, the resistance prediction was based on the DC flow measurement data, since this was

readily available but the screen wire parameters were not. The simple empirical assumption of

adding a constant mass reactance of 0.15 was also used. The Rice/Hersh/Walker model for

wiremesh screen impedance would form an excellent foundation for further investigation,

particularly a more comprehensive set of wiremesh screen DC flow resistance and normal

incidence impedance measurements.

5.3.2 Comparison of Predicted and Measured Impedance

Four wiremesh liner configurations were tested as part of this program. There were two

sets of two configurations each. Each set had a full scale design and a 1/5 scale design. The 1/5

scale design was aimed at being equivalent to the full scale design. The first set was designed to

achieve a resistance (R_00) of about 80 cgs Rayls, the second set was designed to the lower R100 of

about 50 rayls.

The full scale designs were for 1.0 inch deep treatment panels, and the wiremesh was

supported by a 34% porosity perforated sheet. The 1/5 scale designs were 0.2 inches deep and

had no supporting facesheet. Table (5-2) gives a complete set of parameters for the treatment

designs. Table (5-3) presents the results of their DC flow resistance measurements.
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Panel

Designation
TP4.3

Faceplate

Porosity
0.34

Faceplate Hole

Diameter, in.
0.05

TP-4.5 n/a n/a

TP-5.3

Faceplate

Thickness, in.
0.025

n/a 0.2

Cavity

Depth, in.
1.0

0.34 0.05 0.025 1.0

TP-5.5 n/a n/a n/a 0.2

Table (5-2) Geometric parameter definition for wiremesh test panels.

Panel

Designation
TP4.3

Rio0

cgs Rayls
83.74

Nonlinear

Factor, NLF1sotzo

DC Flow

A-Value

DC-Flow

B-Value

1.291 67.86 0.1588

TP-4.5 83.11 1.106 76.77 0.06342

TP-5.3 56.20 1.346 43.85 0.1234

TP-5.5 48.42 1.150 43.32 0.0510

Table (5-3) Results of DC flow resistance measurements for wiremesh test panels.

The DC flow resistance measurements for the four wiremesh test panels is plotted in

Figure (5-21), along with the best-fit linear curves from which the A- and B-values are derived.

These measurements were made by Rohr, Inc, as part of this program.
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Figure (5-21) DC flow resistance measurement results for four wiremesh facesheets,
with linear best-fit curve.

Figure (5-22) compares the measured impedance for full scale TP-4.3 to the values

predicted using the current model for wiremesh facesheet single-degree-of-freedom treatment

panels. The measure impedance values are those measured in the 3.0 cm. normal incidence
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impedancetubeby Rohr over the low frequencyrange. Thepredictionis basedon the valuesof
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Figure (5-23) compares the prediction for 1/5 scale model TP 4.5 to the measured

impedance data for the high frequency range. The current prediction model was used, and the

measurement was made by Rohr over the high frequency range in the 1.5 cm. normal incidence

impedance tube. The overall SPL in this case was 147.4 dB. The predicted reactance is quite

close to the measured value up to about 10,000 Hz, where the measured reactance suddenly

increases rapidly. The predicted resistance is flat, as expected, but the measured resistance seems

to have a fairly wide variation. The predicted resistance is a good match to the average of the

measured resistance. No explanation is offered for the variations in the measured impedance

values, since the impedances are not sufficiently large near the deviations for them to be ascribed

to measurement problems.

69



0)

e-

0_

E

N

E
O

Z

2
v_vv

o

-1

-2

1
-3 K

?
-4

-5

2000 3000

_vv_vvvv_vvv,rvvv _-_,,_vvv_
_ ..______ 7

A

.3O

\

4000 5000 6000

r--

.jf_

Measured Resistance

Measured Reactance

Predicted Resistance

Predicted Reactance

--I T [ 1 7

__

7000 8000 9000 10000 11000 12000 13000 14000

Frequency, Hz.

Figure (5-23) Comparison of predicted and measured impedance for TP-4.5.

Figure (5-24) compares the measured impedance for full scale TP-5.3 to the values

predicted using the current model for wiremesh facesheet single-degree-of-freedom treatment

panels. The measure impedance values are those measured in the 3.0 cm. normal incidence

impedance tube by Rohr over the low frequency range. The overall SPL for the broadband

excitation for the normal incidence impedance measurement was 145.3 dB in this case. The

prediction can be seen to be quite good up to about 5200 Hz, above which the measurement is

encountering problems.
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Figure (5-24) Comparison of predicted and measured impedance for TP 5.3.

Figure (5-25) compares the prediction for 1/5 scale model TP 5.5 to the measured

impedance data for the high frequency range. The current prediction model was used, and the

measurement was made by Rohr over the high frequency range in the 1.5 cm. normal incidence

impedance tube. The overall SPL in this case was 146.9 dB. The predicted reactance seems to

under-predict the measurement. The measured reactance values seem to jump above 10,000 Hz.,

as they did in the TP 4.5 case. The predicted reactance is flat, as expected, but the measured

resistance seems to have a fairly wide variation, as it did for TP 4.5. Again, the predicted

resistance is a good match to the average of the measured resistance.
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Figure (5-25) Comparison of predicted and measured impedance for TP-5.5.

The SPL spectra for TP 4.5 and TP 5.5 are shown in Figure (5-26). The spectra closely

resemble the spectra for the high frequency perforated plate cases considered previously, and give

no indication of why the measured resistance for the 1/5 scale wire mesh cases might undergo

such wide variation. One possibility might be a mechanical vibration of the wiremesh sheet

without the perforated plate support over each open cell in the impedance tube.
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5.3.3 Conclusions

The comparisons of prediction and measurement indicate that the linear wiremesh

facesheets are behaving close to predicted up to the highest frequencies. Some deviations are

noted at the upper frequencies, but it is not clear at this point whether they are due to treatment

behavior or measurement problems.

The impedance prediction model of Rice, Hersh, and Walker provides some insight to the

behavior of linear wiremesh facesheets, but this model was not pursued to the fullest extent

possible in this study. A more comprehensive examination of this model is warranted, but it

would require an extensive concurrent test program to compare the prediction to measurement

over a wide range of parameter variation and provide improvements to the empirical aspects.

The behavior of the wiremesh facesheet is more accurately predictable at high frequencies

than the perforate, at least up to the maximum frequency studied of about 13,000 Hz. This is due

to the small mass reactance contribution and the relative immunity to grazing flow effects. For

this reason, it would make the best choice for scaled treatment design. From the results of Rice,

however, it appears that it would be wise to scale the wire diameter, using a finer diameter wire

for sub-scale designs, to minimize the effects of frequency on resistance mass reactance in

frequency regions where they are not fully understood.

73



5.4 Advanced Impedance Model Prediction for High Frequencies

A sample computation was made in which the impedance of a conventional full scale

perforate over honeycomb treatment panel was compared to the impedance of an equivalent 1/5

scale panel, with the scaled panel frequency range shifted to the full scale values. The full scale

panel impedance was predicted up to 10,000 Hz. and the 1/5 scale panel impedance was predicted

up to 50,000 Hz. The parameters used for the two panels, along with those for an "adjusted" 1/5

scale panel are listed in Table (5-4).

Parameter Full Scale

Thickness, in.

1/5 Scale

Porosity 0.08 0.08

Hole Diameter, in. 0.04 0.008 0.008

0.025 0.005 0.005

1.0Cavity Depth, in.

Table (5-4)

1/5 Scale

"Adjusted"
0.95

0.2 0.2

Parameters for full scale and 1/5 scale treatment designs.

Figure (5-27) shows the comparison of the full scale impedance prediction and the 1/5

scale impedance prediction shifted to full scale frequencies. The predictions were made assuming

an end correction factor of zero, that is, the end correction is eliminated. If the scaling were

perfect, the curves would overlay. Note that the resistance and reactance of the 1/5 scale design

are slightly higher than the full scale, indicating a frequency effect predicted by the model. The

comparison is encouraging; however, the deviation would have been larger if an end correction
were included.
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Figure (5-27) Comparison of impedance predictions for full scale liner and 1/5 scale

with frequency shifted to full scale.

Both the resistance and reactance can be decreased by increasing the porosity of the

facesheet. The impedance of the 1/5 scale liner was re-predicted with the porosity adjusted by

increasing it from 8.0% to the value of 9.5%. Figure (5-28) shows the comparison of the full

scale liner to the adjusted 1/5 scale design. Note that the resistance is still slightly high but that

the reactance is slightly low, and both are much closer than the previous case. This says that the

reactance can be matched by appropriate adjustment of the faceplate porosity.

The resistance is closer, but in the final case, the match of resistance must also include the

effects of grazing flow, for which the resistance will decrease with increasing porosity. The final

match may require some adjustment in both porosity and cavity depth of the scaled panel to give

the best match for a perforate plate resonator.
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6. Conclusions and Recommendations

An advanced impedance prediction model has been developed that accounts for some of

the known effects at high frequency that have previously been ignored as a small source of error

for full scale frequency ranges. The model has been implemented in a computer program and

used to compare with predicted data from the currently-used impedance model and with measured

data for a number of treatment configurations of various scale.

Due to problems with measurements, it was not possible to obtain reliable measured data

on the effects of grazing flow on impedance, so that this study has been limited to the case of no

grazing flow only. Available studies of grazing flow impedance indicate that the frequency

dependence of the grazing flow impedance component are minimal, but no data measured above

about 5000 Hz. are available to corroborate this conjecture.

For broadband pressure excitation at high SPL levels such as will be experienced in an

aircraft engine duct, the nonlinear effect on resistance tends to give a flat resistance spectrum over

the full range of excitation frequencies. This appears to be verified by measurement for both full

scale and sub-scale perforated plate treatment panels up to about 13,000 Hz.

The biggest problem encountered was accounting for the effects of the end correction on

resistance and mass reactance. No comprehensive model was found that fit all cases, as the end

correction has been found to vary in a complex manner with orifice Reynolds number, orifice

geometry, and porosity. An extensive set of parametric measurements and concurrent theoretical

investigations is needed if it is desired to develop a more universally-applicable model. The work

of Rice and of Hersh and Walker have provided an excellent foundation on which to build the

theoretical development.

Good agreement between predicted and measured impedance was found in the linear

facesheet case when the DC flow resistance values are used to determine resistance, at least up to

13,000 Hz. The mass reactance issue is not so clear, but the mass reactance of a wiremesh

facesheet is small. Further work to verify the model of Rice would be useful.

Based on this study, the outlook on ability to use scaled perforate facesheet single-degree-

of-freedom resonator liners to represent full scale is encouraging. Care must be taken to make the

proper adjustments in porosity and cavity depth of the scaled liner to best fit the full scale

impedance.

A safer solution at this point is probably to use a linear wiremesh facesheet bonded

directly to the honeycomb with no supporting perforate. Predicted and measured impedance for

the linear single-degree-of-freedom panels agree quite well up to 13,000 Hz. The use of the

wiremesh with no perforate support requires a small honeycomb cell size and may present

bonding problems. The results of Rice indicate that it is important to scale the wire diameter

when using wiremesh facesheets for scaled liners.
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The conclusions in this study are restricted by the upper limit to the measurement

frequency of 13,000 Hz. Extending to higher frequencies will require advanced measurement

techniques both with and without grazing flow that are not yet available. It is highly

recommended that any further effort include development of advanced impedance measurement

methods.
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7. Appendix A Acoustic Impedance Prediction Program - PPZ4

A FORTRAN computer program was written to incorporate the elements of the advanced

model described in Section 4. This section provides a Users' Guide, a sample input case, and a

sample output case to illustrate the use of the program.

Input Data File Guide for Program PPZ4

DATA INPUT THROUGH ASCII DATA FILE PPZ4.DAT

USES FREE FORMAT AS FOLLOWS:

TDF

SP

DHIN

THKIN

HCAVIN

FMACH

BLTIN

NL2V_RQ

FRQ(J),SPL(J)

Temp, degF

Porosity, sigma

Hole diameter, inches

Faceplate thickness, inches

Cavity depth, inches
Mach number

Boundary layer displacement thickness, inches

Number of frequencies

Frequency, SPL data

Repeat NUMFRQ times

USER WILL BE ASKED TO INTERA C TIVEL Y INP UT FOLLOWING DATA:

'FLNM' Output data path/filename (max 30 char, put in single quotes)

IENDC Option for mass reactance end correction model

(=1 to use exact model)

(=2 to use empirical model)

RECF,XMECF Resistance and mass reactance end correction factors (0 to 1)

(= 1 for full end correction, = 0 for no end correction)

ICD Index for CD calculation option.

(= 1 to use internal Keith and John model)

(=2 to input externally as a constant value)

CDINP Value of CD when ICD = 2
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The input datamust be stored in the ASCII file ppz4.datin the same directory as the

executable file ppz4.exe prior to each run. To save particular input data files, they must be saved

under a separate name before modification.

A listing for a sample data case stored in ppz4.dat follows. The data is based on Test

Panel 3.4 as measured by Rohr over the low frequency range.

70.

0 O8

0 02

0 012

O5

O4

0 O5

46

824,125.834

944,122.925

1064,123 975

1184,126 484

1304,130 644

1424,136 971

1544,135 971

1664,131 857

1784,129 459

1904,129 094

2024,130 403

2144,135 184

2264,134 177

2384, 128 174

2504, 126 563

2624, 125 286

2744,124 826

2864,127 515

2984,127 354

3104,121 868

3224,118 916

3344,118 555

3464,121 384

3584,124 6

3704,120.94

3824,117 268

3944,115 699

4064,116 38

4184,119 565

4304,119 024

4424,115 358

4544,112 89

4664,113 604

4784,116 457

4904,118 153

5024,115 759

5144,113 636
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5264, 114.565

5384,118.426

5504,122.641

5624,119 858

5744,116 987

5864,115 722

5984, 119 026

6104,123 642

6224,119 725

The output data for this case follows. The output was stored in the file named sample.out.

PROGRAM PPZ4

IMPEDANCE OF PERFORATED PLATE SDOF LINER

USES EXACT CRANDALL MODEL FOR LINEAR IMPEDANCE

USES KIETH & JOHN MODEL FOR VARIABLE Cd

USES OVERALL rms ACOUSTIC VELOCITY IN RESISTANCE

POROSITY = .0800

FACEPLATE THICKNESS = .0120 in .0305 cm

HOLE DIAM = .0200 in .0508 cm

DEPTH = .5000 in 1.2700 cm

MACH # = .4000

B.L. DISPL THICKNESS = .050000 in

TEMP = 70.0000 deg F 294.2611 degK

.127000 cm

SPEED OF SOUND = 34393.8500 cm/sec

AMBIENT PRESSURE = 14.7000 psi

AIR DENSITY = .00119958 g/cm^3

RHO*C = 41.2583 cgs Rayls

INITIAL Cd = .7600

ABSOLUTE VISCOSITY = .000181 poise

KINEMATIC VISCOSITY = .151076 cm^2/SEC

EFFECTIVE KINEMATIC VISCOSITY = .329346 cm^2/SEC

OUTPUT FILE = sample.out

USING EXACT MODEL FOR MASS REACTANCE END CORRECTION

RESISTANCE END CORRECTION FACTOR = .250

REACTANCE END CORRECTION FACTOR = .250

GRAZING FLOW RESISTANCE/RHOC = .9728

IMPEDANCE BASED ON NARROWBAND SPL VALUES

FREQ SPL RESIS REACT VELOC

824.0 125.83 1.115 -4.937 1.874963

944.0 122.93 1.121 -4.221 1.554515

1064.0 123.97 1.120 -3.678 1.992273

1184.0 126.48 1.119 -3.250 2.975610

1304.0 130.64 1.120 -2.908 5.298336

1424.0 136.97 1.135 -2.629 11.941670

1544.0 135.97 1.137 -2.361 11.631460

Red

1.8797E+01

1.6709E+01

1.9543E+01

2.5536E+01

3.8731E+01

7.4230E+01

7.2600E+01

Cd

5105

4928

5164

5557

6132

6881

6859

8]



1664.

1784.

1904.

2024.

2144.

2264.

2384.0

2504.0

2624.0

2744.0

2864.0

2984.0

3104.0

3224.0

3344.0

3464.0

3584.0

3704.0

3824.0

3944 0

4064 0

4184 0

4304 0

4424 0

4544 0

4664 0

4784 0

4904 0

5024 0

5144 0

5264 0

5384 0

5504 0

5624 0

5744 0

5864 0

5984 0

6104 0

6224 0

0 131.86

0 129.46

0 129.09

0 130.40

0 135.18

0 134.18

128.17

126.56

125.29

124.83

127.51

127 35

121 87

118 92

118 56

121 38

124 60

120 94

117 27

115 70

116 38

119 57

119 02

115 36

112 89

113 60

116 46

118 15

11576

113 64

114 57

118 43

122 64

119.86

116.99

115.72

119.03

123.64

119.72

1.132

1.132

1.135

1.140

1.158

1.158

1.146

1.147

1.149

1.151

i. 156

1.158

1.158

1.163

1.166

1.165

1.166

1.169

1 177

1 183

1 184

1 180

1 183

1 195

1 207

1 207

1 2OO

1 197

1 208

1 220

1 219

1.207

1.199

1.208

1.220

1.229

1.218

1.208

1.221

-2.111

-i • 893

-1.709

-1.554

-1.433

-i .293

-i. 129

-1.000

-.880

-.774

-.703

-. 611

-.466

-.342

-.255

- 217

- 185

- 062

073

177

235

241

319

470

606

656

646

667

799

933

970

915

863

998

1 151

1 260

1 208

1 129

1 308

7.927899

6.533078

6.735298

8.333391

15.103490

14.276960

7.722819

6.783287

6.157930

6.093249

8.508214

8.631233

4.814629

3.528707

3.438740

4.797457

6.970667

4.612730

3.000811

2.469299

2.647301

3.829983

3.536964

2.212574

1.583519

1.689655

2.366266

2.859355

2.054720

1.517942

1.665215

2.670427

4.447734

3.044653

2.043254

1.683529

2.526214

4.460852

2.625728

5.2988E+01

4.5480E+01

4.6575E+01

5.5154E+01

9.0795E+01

8.6472E+01

5.1890E+01

4.6834E+01

4.3442E+01

4.3089E+01

5.6086E+01

5.6741E+01

3.6050E+01

2.8768E+01

2.8247E+01

3.5954E+01

4.7846E+01

3.4923E+01

2.5685E+01

2.2500E+01

2.3578E+01

3.0498E+01

2.8815E+01

2.0922E+01

1.6901E+01

1.7599E+01

2.1870E+01

2.4847E+01

1.9936E+01

1.6465E+01

1.7439E+01

2.3717E+01

3.3998E+01

2.5944E+01

1.9864E+01

!.7559E+01

2.2846E+01

3.4071E+01

2.3448E+01

.6519

.6336

.6365

.6565

.7066

.7024

6495

6372

6279

6269

6585

6598

6037

5727

.5702

6034

6398

5995

5566

5373

5442

5809

5730

5265

4945

5006

5331

5518

5194

4906

4993

5450

5959

5580

5188

5003

5395

5961

5433

URMS = 3.8435E+01 cm/sec

ACOUSTIC REYNOLDS # = 2.1276E+02

DISCHARGE COEFF = .7575

IMPEDANCE VS. FREQUENCY USING OVERALL

FREQ RESIS REACT

824.0 1.209 -5.012

944.0 1.211 -4.316

1064.0 1.213 -3.771

1184.0 1.215 -3.330

1304.0 1.218 -2.964

1424.0 1.220 -2.656

1544.0 1.222 -2.391

1664.0 1.224 -2.159

1784.0 1.227 -1.955

1904.0 1.229 -1.773

2024.0 1.231 -1.610

2144.0 1.233 -1.461

2264.0 1.235 -1.325

2384.0 1.237 -1.199

2504.0 1.239 -1.083

2624.0 1.241 -.975

2744.0 1.243 -.874

2864.0 1.245 -.778

2984.0 1.246 -.688

rms VELOCITY
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3104.0

3224.0

3344.0

3464.0

3584.0

3704.0

3824.0

3944.0

4064.0

4184.0

4304.0

4424.0

4544.0

4664.0

4784.0

4904.0

5024.0

5144.0

5264.0

5384.0

5504 0

5624 0

5744 0

5864 0

5984 0

6104 0

6224 0

1.248

1.250

1.252

1.254

1.255

1.257

1.259

1.260

1.262

1.263

1.265

1.267

1.268

1.270

1.271

1.273

1.274

1.276

1.277

1.279

1.280

1.282

1.283

1.285

1.286

1.288

1.289

REACTANCE COMPONENTS

FREQ WNK

824 0

944 0

1064 0

1184 0

1304 0

1424 0

1544 0

1664 0

1784 0

1904 0

2024 0

2144 0

2264 0

2384 0

2504 0

2624 0

2744.0

2864.0

2984.0

3104.0

3224.0

3344.0

3464.0

3584.0

3704.0

3824.0

3944.0

4064.0

4184.0

4304.0

4424.0

4544.0

4664.0

4784.0

4904.0

5024.0

151

172

194

216

238

260

282

304

326

348

370

392

414

436

457

479

501

523

545

567

589

611

633

655

677

699

721

742

764

786

8O8

83O

852

874

896

918

- 603

- 521

- 444

- 369

- 298

- 229

- 162

- 098

- 036

O25

084

142

198

253

3O8

361

413

464

515

565

614

663

712

760

8O8

855

902

Xm

15496

17645

19769

21871

23952

26015

28061

30092

32110

34115

36110

38094

40069

42036

43996

45949

47897

49838

51775

53707

55634

57558

59477

61394

63307

65217

67124

69028

70930

72830

74726

76621

78514

80404

82293

84179

-cot

-5.16694

-4.49265

-3.96832

-3.54834

-3.20390

-2.91589

-2.67114

-2.46028

-2.27646

-2.11456

-1.97067

-1.84174

-1.72540

-1.61973

-1.52317

-1.43448

-1.35260

-1.27666

-1.20594

-1.13981

-1.07775

-1.01931

-.96410

-.91177

-.86203

-.81463

-.76933

-.72593

-.68425

-.64413

-.60542

-.56799

-.53173

-.49653

-.46229

-.42892

Xtot

-5.01198

-4.31620

-3.77063

-3.32963

-2.96438

-2.65574

-2.39052

-2.15935

-1.95536

-1.77341

-1.60957

-1.46081

-1.32471

-1.19936

-1.08321

-.97499

-.87363

-.77828

-.68819

-.60275

-.52141

-.44374

-.36932

-.29783

-.22897

-.16246

-.09809

-.03564

.02505

.08417

.14185

.19822

.25340

.30751

.36063

.41287
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5144.0

5264.0

5384.0

5504 0

5624 0

5744 0

5864 0

5984 0

6104 0

6224 0

RESISTANCE

FREQ

824.0

944.0

1064.0

1184.0

1304.0

1424.0

1544.0

1664.0

1784.0

1904.0

2024.0

2144.0

2264.0

2384.0

2504.0

2624.0

2744.0

2864.0

2984.0

3104 0

3224 0

3344 0

3464 0

3584 0

3704 0

3824 0

3944 0

4064 0

4184 0

4304 0

4424 0

4544 0

4664 0

4784 0

4904.0

5024.0

5144.0

5264.0

5384.0

5504.0

5624.0

5744.0

5864.0

5984.0

6104.0

6224.0

.940

.962

.984

1.005

1.027

1.049

1.071

1.093

1.115

1.137

COMPONENTS

U

1.8405E+00

1.5143E+00

1.9340E+00

2 8851E+00

5 1514E+00

1 1703E+01

1 1354E+01

7 6474E+00

6 2401E+00

6 4014E+00

7 9246E+00

1.4566E+01

1.3691E+01

7.2103E+00

6.2708E+00

5.6454E+00

5.5620E+00

7.8445E+00

7.9390E+00

4.3361E+00

3.1591E+00

3.0905E+00

4.3502E+00

6.3812E+00

4.2279E+00

2.7890E+00

2.3372E+00

2.5312E+00

3.6485E+00

3.4170E+00

2.2287E+00

1.6656E+00

1.7927E+00

2.4647E+00

2.9623E+00

2.2208E+00

1.7160E+00

1.8826E+00

2.8926E+00

4.6264E+00

3.3042E+00

2.3351E+00

1.9846E+00

2.8534E+00

4.7702E+00

2.9852E+00

.86064

.87947

.89829

.91708

.93586

.95463

.97338

.99212

1.01084

1.02955

RRA/3

9.1342E-05

1.2093E-04

1.5209E-04

1.8859E-04

2 2895E-04

2 7220E-04

3 2092E-04

3 7241E-04

4 2893E-04

4 8886E-04

5 5160E-04

6 1903E-04

6.8927E-04

7.6508E-04

8.4364E-04

9.2648E-04

1.0131E-03

I.I046E-03

1.1989E-03

1.2965E-03

1.3984E-03

1.5050E-03

1.6151E-03

1.7290E-03

1.8464E-03

1.9669E-03

2.0928E-03

2.2224E-03

2.3566E-03

2.4925E-03

2.6336E-03

2.7783E-03

2.9263E-03

3.0794E-03

3.2364E-03

3 3958E-03

3 5604E-03

3 7309E-03

3 9003E-03

4 0760E-03

4 2558E-03

4 4386E-03

4 6258E-03

4 8173E-03

5 0128E-03

5.2128E-03

-.39634

-.36447

-.33324

- 30258

- 27244

- 24275

- 21346

- 18451

- 15586

- 12746

A

8.4745E-02

8.6874E-02

8.9053E-02

9.1258E-02

9.3469E-02

9.5673E-02

9.7858E-02

1.0002E-01

1.0214E-01

1.0423E-01

1.0629E-01

1.0830E-01

I.I027E-01

1.1220E-01

1.1409E-01

1.1594E-01

1.1775E-01

1.1953E-01

1.2128E-01

1.2299E-01

1.2467E-01

1.2632E-01

1.2794E-01

1.2954E-01

1.3111E-01

1 3265E-01

1 3417E-01

1 3567E-01

1 3715E-01

1 3861E-01

1 4005E-01

1 4147E-01

1 4288E-01

1 4426E-01

1 4563E-01

1.4698E-01

1.4832E-01

1.4965E-01

1.5096E-01

1.5225E-01

1.5353E-01

1.5480E-01

1.5606E-01

1.5730E-01

1.5854E-01

1.5976E-01

46430

51500

56505

61450

66342

71188

75992

80760

85498

90209

3.9441E-03

3.9441E-03

3.9441E-03

3.9441E-03

3.9441E-03

3.9441E-03

3.9441E-03

3.9441E-03

3.9441E-03

3.9441E-03

3.9441E-03

3.9441E-03

3.9441E-03

3.9441E-03

3.9441E-03

3.9441E-03

3.9441E-03

3.9441E-03

3.9441E-03

3 9441E-03

3 9441E-03

3 9441E-03

3 9441E-03

3 9441E-03

3 9441E-03

3 9441E-03

3 9441E-03

3.9441E-03

3.9441E-03

3.9441E-03

3.9441E-03

3.9441E-03

3.9441E-03

3.9441E-03

3.9441E-03

3.9441E-03

3.9441E-03

3.9441E-03

3.9441E-03

3.9441E-03

3.9441E-03

3.9441E-03

3.9441E-03

3.9441E-03

3.9441E-03

3.9441E-03

RESIS

1.208808

1.210966

1.213176

1.215418

1.217669

1.219916

1.222150

1.224360

1.226544

1.228694

1.230808

1.232887

1.234928

1.236934

1.238903

1.240838

1.242738

1.244609

1.246447

1.248256

1.250038

1.251795

1.253528

1.255237

1.256924

1.258590

1.260238

1.261868

1.263481

1.265076

1.266656

1.268222

1.269773

1.271312

1.272839

1.274352

1.275855

1.277349

1.278828

1.280299

1.281761

1.283213

1.284657

1.286093

1.287521

1.288942

The first tabulation of output data give the impedance for the narrowband frequencies

assuming the nonlinear resistance and reactance depends only on the SPL value in the

84



narrowband,not on the overall rms value. Theseimpedancesareusedasinitial valuesfor the
overall rms velocity nonlineariteration, which follows. The secondtable of data is the final
resistanceand reactanceat eachfrequency,suitablefor pastinginto a spreadsheetor plotting
program.

The third data set is the detailsof the reactancecomputation,broken down into mass
reactanceandcavity compliancecomponents.Thefinal datasetpresentsthecomponentsof the
resistancecomputation,includingacousticvelocity in the narrowband,the radiation resistance,
andtheA andB coefficientsof the linearandnonlinearresistance.
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8. Appendix B Acoustic Treatment Scaling Chronological Bibliography

.

1930

Johansen, F. C., "Flow Through Pipe Orifices at Low Reynolds Numbers", Proc. Royal

Society, Series A, 126, 1930, pp. 231-245.

1935

1. Sivian, L. J., "Acoustic Impedance of Small Orifices", J. Acoustical Soc America, Vol. 7,
October 1935.

1949

2. Zwikker, C., and Kosten, C. W., Sound Absorbing Materials, Elsevier Publishing Company,
1949.

1950

3. Ingard, U., and Labate, S., "Acoustic Circulation Effects and the Nonlinear Impedance of

Orifices", J. Acoustical Soc America, Vol. 22, No. 2, March 1950

1953

4. Ingard, Uno and Lyon, Richard, "The Impedance of a Resistance Loaded Helmholtz

Resonator", J. Acoustical Soc America, Vol. 25, No. 5, 1953.

5. Ingard, Uno, "The Near Field of a Helmholtz Resonator Exposed to a Plane Wave", J.

Acoustical Soc America, Vol. 25, No. 6, November 1953.

6. Ingard, Uno, "On the Theory and Design of Acoustic Resonators", J. Acoustical Soc

America, Vol. 25, No. 6, November, 1953.

7. Lambert, Robert F., "A Study of the Factors Influencing the Damping of an Acoustical

Cavity Resonator", J. Acoustic Society &America, Volume 25, No. 6, November, 1953.

1957

8. Bies, David A., and Wilson, O. B., "Acoustic Impedance of a Helmholtz Resonator at Very

High Amplitude", J. Acoustical Soc America, Vol. 29, No. 6, June, 1957.

9. Kolodzie, P. A. and Van Winkle, Matthew, "Discharge Coefficients Through Perforated
Plates", AIChE Journal, Vol. 3, No. 3, 1957.
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10. Thurston, George B., Hargrove, Logan E., and Cook, Bill D., "Nonlinear Properties of

Circular Orifices", J. Acoustical Soc America, Vol 29, No. 9, September 1957.

1958

11. Smith, P. L. and Van Winkle, Matthew, "Discharge Coefficients Through Perforated Plates at

Reynolds Numbers of 400 to 3,000", AiChE Journal, Vol. 4, No. 3, 1958.

1967

12. Ingard, Uno,"AcousticNonlineafityofan Orifice",J. Acou_icalSocAmefica, vo142, No. 1,
1967.

1968

13. Ingard, Uno, " Absorption Characteristics of Nonlinear Acoustic Resonators", J. Acoustical

Soc America, Vol.44, No. 4, 1968

14. Zorumski, William E. and Parrott, Tony L., "Nonlinear Acoustic Theory for Thin Porous

Sheets", NASA SP- 189, October, 1968.

1969

15. Groeneweg, John F., "Current Understanding of Helmholtz Resonator Arrays as Duct

Boundary Conditions", NASA SP-207, 1969.

1970

16. Zinn, B. T., "A Theoretical Study of Non-Linear Damping by Helmholtz Resonators", J.

Sound and Vibration, 13(3), 1970.

1971

17. De Mestre, N. J. and Guiney, D. C., "Low Reynolds Number Oscillatory Flow Through a

Hole in a Wall", J. Fluid Mech, Vol. 47, part 4, 1971.

18. Rice, Edward J., "A Model for the Acoustic Impedance of a Perforated Plate Liner with

Multiple Frequency Excitation", NASA TM X-67950, October, 1971.

1972

19. Ronneberger, D., "The Acoustical Impedance of Holes in the Wall of Flow Ducts", J. Sound

and Vibration, 24(1), 1972.
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1973

20. Leppington, F. G. and Levine, H., "Reflexion and Transmission at a Plane Screen with

Periodically Arranged Circular or Elliptical Apertures", J. Fluid Mech., Vol. 61, part 1, 1973.

21. Melling, T. H., "The Acoustic Impedance of Perforates at Medium and High Sound Pressure

Levels", J. Sound and Vibration, 29(1), 1973.

22. Reethof, G. and McDaniel, O.H., "Acoustically Absorbent Materials for Complex Incidence

at High Sound Intensities and with Air Flow", Interagency Symposium on University

Research in Transportation Noise, Proceedings, Vol. III, Stanford Univ., Mar 28-3 0, 1973.

23. Rice, Edward J., "A Model for the Pressure Excitation Spectrum and Acoustic Impedance of

Sound Absorbers in the Presence of Grazing Flow", AIAA 73-995, October 1973.

1975

24. Guess, A. W., "Calculation of Perforated Plate Liner Parameters from Specified Acoustic

Resistance and Reactance", J. Sound and Vibration, 40(1), 1975.

25. Hersh, A S. and Rogers, T., "Fluid Mechanical Model of the Acoustic Impedance of Small

Orifices", AIAA 75-495, March, 1975.

26. Mungur, P. and Whitesides, J. L., "Influence of Grazing Flow on Duct Wall Normal

Impedances", AIAA 75-494, March 1975.

27. Rogers, T. and Hersh, A. S., "The Effect of Grazing Flow on the Steady State Resistance of

Square-Edged Orifices", AIAA 75-493, March, 1975.

28. Tijdeman, H., "On the Propagation of Sound Waves in Cylindrical Tubes", J. Sound &

Vibration, 39(1), 1975, pp. 1-33.

1976

29. Bauer, Andrew, "Impedance Theory and Measurements of Single- and Multi-Layer Liners in
a Duct with Flow", AIAA 76-539, July, 1976.

30. Baumeister, Kenneth J., and Rice, Edward J., "Flow Visualization in Long Neck Helmholtz

Resonators with Grazing Flow", AIAA 76-537, July, 1976.

31. Hersh, A. S. and Walker, B., "The Acoustic Behavior of Helmholtz Resonators Exposed to

High Speed Grazing Flows", AIAA 76-536, July, 1976.
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32. Zorumski,William E. andTester,Brian J., "Predictionof the Acoustic Impedanceof Duct
Liners",NASA TM X-73951,September,1976.

1977

33. Keith, T. G. and John, J. E. A., "Calculated Orifice Plate Discharge Coefficients at Low

Reynolds Numbers", Transactions of the ASME, J. of Fluids Engineering, June, 1977.

34. Hersh, Alan S. and Walker, Bruce, "Fluid Mechanical Model of the Helmholtz Resonator",

NASA CR-2904, September, 1977.

35. Hersh, A. S., and Walker B., "Effects of Grazing Flow on the Steady-State Flow Resistance

and Acoustic Impedance of Thin Porous-Faced Liners", AIAA 77-1335, October, 1977.

36. Hersh, A. S. and Walker, B., "Effect of Grazing Flow on the Acoustic Impedance of

Interacting Cavity-Backed Orifices", AIAA 77-1336, October, 1977.

37. Mattingly, G. E. and Davis, R. W., "Numerical Solutions for Laminar Orifice Flow", ASME,

77-WA/FE- 13, November, 1977.

1978

38. Hersh, A. S., Walker, B., and Bucka, M., "Effect of Grazing Flow on the Acoustic

Impedance of Helrnholtz Resonators Consisting of Single and Clustered Orifices", AIAA 78-
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