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INTRODUCTION

In the United States alone a large number of spacecraft failures and anomalies have occurred (e.g., Galileo,

Hubble, etc.). In addition, more demanding requirements have been causing failures or anomalies to occur during

the qualification testing of future satellites and space platform mechanisms even before they are launched (e.g.,

GOES-NEXT, CERES, Space Station beta joint gimbals, etc.) (ref. l). Worldwide a much greater number of fail-

ures and anomalies of space mechanisms have occurred. In the operation of space mechanisms functional reliability

is, of course, vital. Even a small tribological failure can lead to catastrophic results in a spacecraft (ref. 2).

In this paper a case study is used to review an aspect of a real problem related to vacuum or space tribology

technology and dry-film solid lubrication. To understand the adhesion, friction, wear, and lubrication situation, the

nature of the problem is analyzed and the tribological properties are examined.

CASE STUDY: GALILEO SPACECRAFT AND HIGH-GAIN ANTENNA DEPLOYMENT ANOMALY

Galileo's Partially Unfurled High-Gain Antenna: The Anomaly at 37 Million Miles

The high-gain antenna for the Galileo spacecraft was built in Florida and shipped by ground transportation to

the Jet Propulsion Laboratory (JPL) in California. The antenna was tested and then shipped by ground transportation

to the NASA Kennedy Space Center (KSC) in Florida for launch in May 1986. The Challenger disaster prevented

Galileo from launching in 1986, and so the spacecraft and the antenna were shipped back to JPL and then again
returned to KSC for launch in October 1989.

The Galileo spacecraft and its inertial upper stage booster rocket were deployed from the space shuttle Atlantis

on October 18, 1989. Shortly thereafter, the booster rocket fired and separated, sending Galileo on its six-year jour-

ney to the planet Jupiter.

Figure I shows the locations of many of Galileo's main structural and scientific components. Galileo is a spin-

stabilized spacecraft and has three Earth-to-spacecraft communications antennas for commanding and returning

spacecraft telemetry. Two of the antennas are low gain and the third is high gain. The umbrella-like high-gain an-
tenna is located at the top of the spacecraft and is 4.8 m (16 ft) in diameter. It was designed to transmit data back to

Earth at rates of up to 134 000 bits of information/see (the equivalent of about one television picture each minute).

The antenna, which is made of gold-plated metal mesh, was slowed behind a Sun shield at launch to avoid heal dam-

age from the direct Sun while the spacecraft flew close to the Sun.

On April 11, 1991, when the Sun-to-spacecraft distance was large enough to present no thermal danger to the

antenna, the Galileo spacecraft began to deploy its high-gain antenna under computer-sequence control. Within min-

utes Galileo's flight team, watching spacecraft telemetry 37 million miles away on Earth, could see that something

was wrong: The motors had stalled and something had stuck. The antenna, the 4.8-m mesh paraboloid stretched over

18 umbrella-like ribs, had opened only part way.

Galileo has been in orbit around Jupiter and its moons for the past three years. The spacecraft is operating as it

processes and sends science data to Earth with one of the low-gain antennas. The low-gain and high-gain antennas

are part of the same assembly and face in the same direction. Its primary mission ended in December 1997, and the

spacecraft is currently in the midst of a two-year extension known as the Galileo Europa Mission.

For additional details on Galileo's high-gain antenna deployment anomaly, see references 3 to 5.
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AnomalyInvestigation

Morethan100peoplecontributedtotesting,simulation,analysis,consultation,andreview.Alterathorough
analysisofthetelemetryandgroundtestingandanalysis,theinvestigationattributedtheproblemtothestickingof3
oftheantenna's18ribsinthestowed(orclosed)positionduetohighfrictionbetweentheirstandoffpins(locating
pins)andtheirsockets(fig.2).Theotherribsarepartiallyopen(fig.3).Theanomalyreviewteamisconfidentthat
nothingisbrokenandthatthreeadjacentantennaribsarestucktothecentraltowerbyfrictionintheirpairedstand-
offpins,whicharelikelymisalignedenoughthatonepinbindstheuppersideofitssocketanditsmatethelower
side(fig.4).

Thisattributionled,inturn, to the hypothesis that repeated thermal cycling, warm-cool-warm-cool, could walk

the paired pins out, freeing the ribs. The spacecraft was maneuvered to warm the high-gain antenna by solar heating

and to cool it in the shade. These warming and cooling cycles, unlbrtunately, did not release the stuck ribs.

In addition to thermal cycling, other ideas were developed for loosening the stuck ribs, but the antenna still

remains stuck. After a multiyear campaign until 1996 to try to free the stuck ribs, there is no longer any significant

prospect of deploying the antenna. Although freeing and using the high-gain antenna have not been ruled out,

another option has been taken. By using the low-gain antenna, advanced data-compression processing techniques in

the spacecraft computers, and advanced hardware and techniques on the ground, a significant fraction of the total

planned Jupiter science data has been captured.

Investigation of Adhesion, Friction, Wear, and Cold Welding

Experiment conditions.--To find the causes of stuck antenna ribs in the spacecraft, sliding friction experiments

were conducted using a tribometer (vacuum friction apparatus) with a pin-on-disk configuration in space-like
vacuum environments and in humid air (ref. 6). The materials, loads, and environments (table I) were chosen to

simulate the conditions that the rib-spoke interface of the antenna's locating pins may have experienced.

The contacting surface of the pin specimens was hemispherical with a radius of curvature of 0.5 mm. Two types

of pin specimen were examined: coated titanium, 6 wt% aluminum, 4 wt% vanadium (Ti-6A1-4V) alloy pins and

bare Ti-6AI-4V alloy pins. The surfaces of the coated Ti-6AI-4V pins were first coated with an etectrolytically con-
verted hard coating of titanium, using an all-alkaline bath maintained at room temperature. Then the surfaces of the

pins were coated with an inorganic, bonded dry-film lubricant (25 lam thick) that contained a molybdenum disulfide

(MoS 2) pigment. The coatings gave antigalling and wear-resistance properties to the surfaces of the Ti-6AI-4V pins
(fig. 5). Because the lubricant coating may have failed on the spacecraft, a bare rib-spoke system was also examined
as a reference.

The contacting surface of disk specimens was flat, 25 mm in diameter, and 5 mm thick. The disk specimens

were uncoated, bare, high-nickel-content superalloy (Inconel 718). The average surface roughness of the disks was

34 nm. root mean square.

Sliding friction in vacuum environment.-

Effect ofdly-film lubricant: The coefficient of friction ff)r the dry-film-lubricated Ti-6AI-4V in contact with the

bare high-nickel-content superailoy started at 0.23 but rapidly decreased and reached an equilibrium value of about

0.04 (fig. 6(a)). It remained constant at 0.04 for a long period of time. The friction trace fluctuated slightly with no

evidence of stick-slip behavior. The sliding action finally caused the coefficient of friction to rapidly increase at

172 370 passes. Wear damage (i.e., local removal of the dry-film lubricant and consequent exposure of the substrate

surface), which will be discussed later, caused the high friction at this stage.

The coefficient of friction for the unlubricated, bare Ti-6AI-4V in contact with the bare high-nickel-content

superalloy started at 0.31. The friction force traces for the first few sliding passes were characterized by random

fluctuation, with only occasional evidence of stick-slip behavior. The presence of oxides and contaminants on the

surfaces of the bare Ti-6AI-4V pin and the bare high-nickel-content superalloy disk contributed to the low initial
coefficient of friction. Stick-slip behavior became dominant after a few sliding passes. The coefficient of friction

rapidly increased with an increase in the number of passes. Also, the higher the number of passes, the greater the

stick-slip behavior. At -10 passes and above, the coefficient of friction reached an equilibrium value of about I.l

and remained constant for a long period of time (fig. 6(b)). The traces for I0 passes and above were primarily char-

acterized by a continuous, marked stick-slip behavior. This type of friction is anticipated where strong metallic
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interactions,particularlyadhesion,occurattheinterfacealteroxidesandcontaminantshavebeenremovedfromthe
alloysurfacesbyslidingactioninvacuum.

Comparingfigures6(a)with(b)showsthattheadhesionandfrictioninequilibriumconditionsfordry-film-
lubricatedTi-6AI-4Vwerelessthanthoseforunlubricatcd,bareTi-6A1-4Vbyafactorof28.Thus,thedry-film
lubricantontheTi-6A1-4Vpinsurfacewaseffectiveandgreatlyreducedadhesionandfriction.

Self-healing ofdo,-film lubrqcant.--At 172 370 passes of sliding contact in vacuum (fig. 6(a)) the sliding

motion was stopped because of high friction (0.36 or greater) caused by the wear damage. After holding conditions

for about 18 hr the sliding was restarted. The result is presented in figure 7(a). The coefficient of friction alter restart

became much lower than 0.36, generally decreasing to about 0.05 with increasing number of passes. This result sug-

gests that the wear damage occurring in vacuum, which caused high friction at 172 370 passes, can self-heal when

rerun in vacuum after a period of hold time.

Alter 50 passes of sliding contact in the rerun process, the sliding motion was stopped, and the load was

decreased from 8.5 to 2.5 N. Contact was maintained for 30 sec and then sliding was begun at the new load.

Decreasing the load from 8.5 to 2.5 N did not affect the coefficient of friction, as shown in figure 7(b).

Weakness of MoS 2 Dry-Film Lubricant in Humid Air.--

Sliding friction in humid air : In humid air the coefficient of friction lor an MoS 2 dry-film-lubricated Ti-6AI-4V
pin sliding on a high-nickel-content superalloy disk started high (-0.30) in the first 23 passes but then decreased to

an equilibrium value of about 0.13 (fig. 8). Continued sliding caused the coefficient of friction to increase at

270 passes. When the coefficient of friction then reached an equilibrium value of about 0.32 at 700 passes, the

experiment stopped.

When compared with the coefficients of friction obtained in vacuum (fig. 6(a)), the coefficients of friction obtained

in humid air (fig. 8) were much greater. The coefficient of friction tbr the dry-film lubricant in vacuum was one-third of

the value in humid air. Further, the endurance life of the dry-film lubricant in vacuum (the number of passes before the

onset of a marked increase in friction) was about three orders of magnitude longer than that in humid air.

Seizure when rerun in vacuum: After 700 passes in humid air (fig. 8) the worn surfaces were at rest, and large
wear particles loose on the disk surface were blown off. Then the vacuum chamber was evacuated to 10 -7 Pa. After

-18 hr in contact the sliding motion was restarted. The coefficients of friction, -0.5, as shown in figure 9(a), for the

pin and disk previously worn in humid air were much higher than those (0.05 in fig. 7(a)) for the pin and disk previ-
ously worn in vacuum.

After 50 passes of sliding contact in the rerun process the sliding motion was stopped, and the load was

decreased from 8.5 to 2.5 N. Contact was maintained for 30 sec and then sliding was begun at the new load. The
coefficient of friction continued to increase to 1.4 with increasing number of passes, as shown in figure 9(b). There-

fore, seizure between the pin and disk did occur due to wear damage to the dry-film lubricant (i.e., local removal of

the dry-film lubricant and exposure of the substrate).

Wear Damage.-

Contact between unlubricated Ti-6Al-4V pin and high-nickel-content superalloy disk: Scanning electron

microscopy (SEM) photomicrographs and energy dispersion x-ray analysis (EDX) spectra of the wear damage pro-

duced on an unlubricated Ti-6AI-4V pin and on a high-nickel-content superalloy disk after 100 passes at a load of

2.5 N are presented in figures 10 to 13. Figure 10 shows that substantial plastic deformation occurred on the pin.

Large wear debris particles lk_rmed by plastic deformation and ductile fracture of the Ti-6A1-4V pin are present

around the wear sear. Also, plastically deformed grooves and clogged wear debris are present on the wear scar of the

pin. Closer SEM examination and EDX analysis of the wear debris showed it to be composed primarily of elements
from the Ti-6AI-4V pin (fig. 1] ) and of small amounts of chromium, iron, and nickel from the disk. Note that abnor-

mally high friction (1.45) was observed when relatively large wear debris clogged the sliding interface.

Figures 12 and 13 show Ti-6A1-4V patches on the wear track of the high-nickel-content disk. The transferred

patches occupied a quite large area fraction of the overall wear track. Thus, severe damage, often called scuffing,

scoring, or galling, occurred in the contact between the unlubricated Ti-6A1-4V and the high-nickel-content superal-

loy in vacuum fiefs. 3 to 5).

Contact between dr3'-film-lubricated Ti-rAI-4V pin and high-nickel-content superalloy disk worn in vacuum and

rerun in vacuum: SEM photomicrographs of the worn surfaces of a dry-film-lubricated Ti-6AI-4V pin after sliding

against a high-nickel-content superalloy disk in vacuum and later rerun in vacuum show surface smearing, tearing,

and spalling of the film lubricant (figs. 14 to 17). ]'be wear damage, which resulted from fatigue of the dry-film

lubricant, is often called spalling (refs. 3 to 5).
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Figure14(a)showstherelativelysmoothburnishedsurfacesintheupperandlowerregionsofthewearscarand
theroughersurfaceatthecenterofthewearscar.Closer SEM examination and EDX analysis of the wear damage at

the center of the wear scar showed that the flake-like wear debris (fig. 14(b)) resulted from surface smearing and

tearing of the dry-film lubricant. EDX analysis of the flake-like debris indicated that it mainly contained the ele-

ments of the MoS 2 lubricant. Figure 14(c) shows a crater (dark area) where fragments of the dry-film lubricant were

removed and the Ti-6AI-4V was exposed. The EDX analysis of the crater indicated that it mainly contained ele-

ments of the Ti-6AI-4V pin. Interestingly, even with the spailing the extent of removal and fragmentation of the dry-

film lubricant was minimal, even though flakes of the dry-film lubricant occupied most of the overall wear scar.

Figures 15 and 16 show a tapered cross section of the worn surface of the dry-film-lubricated Ti-6AI-4V pin at

an angle of 45 ° to the worn surface. The cross-section SEM photomicrographs clearly indicate that most of the dry-

film lubricant remained even after -170 000 passes in vacuum. The film thickness of the remaining lubricant was

-15 Hm. Close SEM examination revealed dense, amorphous material in the area right underneath the worn surface
(fig. 16(a)).

Figure 17(a) shows the relatively smooth wear track on the high-nickel-content superalloy disk with transferred

patches of the dry-film lubricant observed (even in the low-magnification view) mainly at the center of the wear

track. Closer SEM examination of the center and upper regions of the track showed the transferred wear particles
and patches to be in the form of flakes and powders (figs. 17(b) and (c)).

Contact between do,-film-lubricated Ti-6AI-4V pin and high-nickel-content superalloy disk wont in humid air

and rerun hi vacuum: SEM photomicrographs and EDX spectra of the worn surfaces of a dry-film-lubricated

Ti-6AI-4V pin and a high-nickel-content superalloy disk run in humid air for 700 passes and then rerun in vacuum
tor 100 passes are shown in figures 18 to 24. Figure 18 shows that both plastic deformation and ductile fracture

occurred in the dry-film-lubricated Ti-6A1-4V pin. The backscatter photomicrograph (fig. 18(b)) reveals three differ-

ent materials: (i) the light areas show where the transferred patches from the disk stayed on the Ti-6A1-4V pin, (2)

the grayer areas show the Ti-6AI-4V substrate with no dry-film lubricant present, and (3) the salt-and-pepper areas
around the edge of the wear scar show the dry-film lubricant. In addition to the major elements of the disk material

the transferred patches also contained elements such as molybdenum and sulfur from the lubricant (fig. 19(a)). On
the other hand, the gray areas contained only the elements of Ti-6AI-4V pin (fig. 19(b)).

The large patches on the disk wear track in figure 20(a) are also apparent in the backscatter photomicrograph of

figure 20(b), which indicated the dark areas to be the transferred patches from the Ti-6AI-4V pin. Further, EDX

analysis (fig. 21 (a)) of the transferred patch showed that it mainly contained elements of the Ti-6A1-4V pin with a

small amount of elements from the MoS 2 dry-film lubricant. The rest of the areas in the wear track contained

relatively smaller amounts of elements from the Ti-6A1-4V pin and the MoS 2 dry-film lubricant (fig. 21(b)).
Closer SEM examination (fig. 22) of the wear track revealed extensive plastic shearing of the high-nickel-content
superalloy disk.

Figure 23, a tapered cross section of the worn surface of the dry-film-lubricated Ti-6AI-4V pin shows clearly

that the dry-film lubricant was not present on the worn surface. Further, in the overview photomicrograph extrusion
out of the wear scar and transferred patches of the disk material are also well defined because of effective atomic

number contrast. In figure 24 plastic deformation of the Ti-6AI-4V pin (extrusion out of the wear scar) and local

solid-state welding (cold welding) between the Ti-6AI-4V pin and transferred patches of the disk material (often

called scuffing or scoring) are well defined in the backscatter photomicrographs.

Thus, the worn surfaces of the pin and disk first run in humid air and then rerun in vacuum were completely

different from the pin and disk surfaces run only in vacuum. The surfaces worn in humid air (figs. 18 and 20) exhib-

ited galling accompanied by severe surface danmge and extensive transfer of the Ti-6AI-4V to the high-nickel-
content supcralloy disk, or vice versa.

SUMMARY OF RESULTS

The peribrmance of the MoS 2 dry-film lubricant in humid air was poor compared with its pertormance in

vacuum. The coefficient of friction for the dry-film-lubricated system in vacuum was about 0.04, while the value in

humid air was 0.13. The endurance life of the dry-film lubricant was about three orders of magnitude longer in
vacuum than in humid air.
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Thewornsurfacesofthedry-film-lubricatedTi-6AI-4Vpinandhigh-nickel-contentsuperalloydiskfirstrunin
humidairandthenreruninvacuumwerecompletelydiff_erentfromthoseofthepinanddiskrunonlyinvacuum.
Gallingoccurredundertheformerconditions,whereasspallingoccurredunderthelatterconditions.

Whengallingoccurredinthecontactbetweenthedry-film-lubricatedTi-6A1-4Vpinandthehigh-nickel-
contentsuperalloydiskfirstruninhumidairandthenreruninvacuum,thecoefficientoffrictionrosetoabout
0.32inhumidair,to0.5at8.5-Nloadinvacuum,andto 1.4at2.5-Nloadinvacuum.Thegallingwasaccompanied
byseveresurfacedamageandextensivetransferoftheTi-6A1-4Vtothehigh-nickel-contentsupcralloy,orvice
versa.

Whenspaflingoccurredin the dry-film-lubricated Ti-6A|-4V pin run against the high-nickel-content superaIloy

disk only in vacuum, the coefficient of friction rose to 0.36 or greater. The wear damage, however, self-healed when

sliding was stopped and then restarted in vacuum, and the coefficient of friction decreased to 0.05.

CONCLUSIONS

The aforementioned tribological results were also constructively reviewed in Johnson's paper (ref. 5). It is inter-

esting to quote Johnson's conclusion here: "The high contact stress on the V-groove pin/socket interfaces destroyed

the integrity of the lubricant film and started the chain of events that led to the deployment anomaly. The use of dry-

film lubricant, specifically molybdenum disulfide, on a mechanism that is going to be operated in an atmosphere

should be careJully evaluated. The wear rate of the MoS 2 in humid air is so much higher than in a vacuum thal any
coatings could be worn out by in-air testing and not provide the desired lubrication when needed. The pins and sock-

ets on the high-gain antenna that received the greatest amount of relative motion due to the shipping method were

the same ones that were exercised most by the vibration testing. These are also the same pins and sockets that are

stuck on the spacecraft. One solution to the problem of ambient testing wearing out the lubricant coating would be to

replace the lubricated components just prior to launch so there is a virgin lubricant surface for the flight operation."

As Just (ref. 2) stated, in the operation of space mechanisms functional reliability is, of course, vital. Even a

small tribological failure can clearly lead to catastrophic results. The absence of the required knowledge of tribology

can act as a severe brake in the development of new technologies. Tribological reliability of mechanical systems in

the highest order will be secured in the operation of many interacting surfaces in relative motion if greater attention

(such as the following examples) will be paid to tribology:

I. The effects of adhesion or cold welding on mechanical problems in deep-space vehicles must be determined
by performing simulation experiments on various adhesion couples in different environments and tempera-

ture ranges.
2. Particular variables contributing to the adhesion process must be scientifically examined before or during

technological development and design.
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TABLE I--EXPERIMENTS

(a) Materials

Contactin_ materials Pretreatment
Pin Disk Pin Disk

Ti-6AI-4V High-nickel-content Bare Bare

superallo_ '_

Ti-6AI--4V High-nickel-content Electrolytically Bare

supemlloy _ converted hard

Ti coatin$

(b) Conditions

Dr),-film lubricant
Pin Disk

None None

Bonded MoS, None

dry-film
lubricant

Load, N ? 5, 4, 8.5

Mean contact pressure. GPa Approx. I to 1.5

Disk rotating speed, rpm 1, 10, and 40
Track diameter, mm 12 to 20

Sliding velocily, mm/s 0.5, 0.9, 8. and 36
Environment:

Air 40 percent relative humidity
Vacuum 10 7 Pa

_Composition, wt% (maximum unless shown as range):
Ni. 50-55; Cr, 17-21: Fe, 12-23: Nb + Ta, 4.75-5.5:

Mo. 2.8-3.3; Co, I; Ti, 0.65-1.15: AI, 0.2-0.8: Si, 0.35;

Mn, 0.35: Cu. 0.3; C, 0.08; S. 0.015; P, 0.015; B, 0.006.

LOW-GAI N
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RADIOISOTOPE
THERMOELECTRIC
GENERATORS (RTG)
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ANTENNA _ /

HIGH-GAIN ANTENNA _ /
(COMMUNICATIONS AND _ /

_ RADIO SCIENCE) _ /

j   2g OMETER

_,_ RTG

_SCAN PLATFORM

JUPITER
ATMOSPHERE
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Figure1.--Galileo spacecraft configuration.
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Figure 2.--Rib-spoke interface on Galileo spacecraft

high-gain antenna.
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I_igure 3.--Ribs of Galileo high-gain antenna, showing
three stuck in stowed position.
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Figure 4.--Standoff pin misaligned in its socket.

N ASA/TM- 1999-209077 8



Dry-film
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Figure 5.--Tapered cross section of dry-film-lubricated
Ti-6AI-4V pin at angle of 45°.
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worn in vacuum of dry-film-lubricated Ti-6AI-4V pin

sliding against high-nickel-content superalloy disk as

function of number of passes when rerun in vacuum.

(a) Load, 8.5 N; rotating speed, 40 rpm. (b) Load, 2.5 N;

rotating speed, 1 rpm.
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Figure 8.--Coefficients of friction for dry-film-lubricated

Ti-6AI-4V pin sliding against high-nickel-content super-

alloy disk at 8.5 N in humid air as function of number of

passes.
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Figure 9.--Coefficients of friction for surfaces previously
worn in humid air of dry-film-lubricated Ti-6AI-4V pin

sliding against high-nickel-content superalloy disk as
function of number of passes when rerun in vacuum.

(a) Load, 8.5 N; rotating speed, 40 rpm. (b) Load, 2.5 N;

rotating speed, 1 rpm.

Figure 10.--Wear scar on unlubricated Ti-6AI-4V pin after

sliding against high-nickel-content superalloy disk at

2.5 N in vacuum.
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Figure 11 .---Clogged wear debris on wear scar on

unlubricated Ti-6AI-4V pin after sliding against high-
nickel-content superalloy disk at 2.5 N in vacuum.
(a) Secondary electron SEM image. (b) Spot EDX
analysis. (Thin gold film used to reduce charging of
mount is responsible for gold signal in spectrum.)
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Figure 12.mWear track on high-nickel-content

superalloy disk after sliding by Ti-6AI-4V pin at
2.5 N in vacuum, showing transferred patches

of Ti-6AI-4V. (a) Secondary electron SEM image.

(b) Backscatter electron SEM image.
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Figure 13.--Large transferred patch of Ti-6AI-4V on high-

nickel-content superalloy disk after sliding by Ti-6AI-4V

pin at 2.5 N in vacuum, showing transferred patches of

Ti-6AI-4V. (a) Secondary electron SEM image. (b) Back-

scatter electron SEM image. (c) EDX spectrum of trans-

ferred film on disk. (Data taken at point indicated in part

(a). Thin gold film used to reduce charging of mount is

responsible for gold signal in spectrum.)

N ASA/TM- 1999-209077 14



_J
lO0p.m lOl_m

10 p.m t

Figure 14.--Wear scar on dry-film-lubricated Ti-6AI-4V pin after sliding against high-nickel-content

superalloy disk in vacuum. (a) Low-magnification overview showing relatively smooth surfaces at

upper and lower areas with spalling and tearing at center. (b) Surface smearing and tearing at center

resulting in particles separating from surface in form of flakes. (c) Spalling at center.
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Figure 15.DTapered cross section of worn surface of

dry-film-lubricated Ti-6AI-4V pin at 45 ° angle to wom

surface. (a) Secondary electron SEM image. (b) Back-

scatter electron SEM image.
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Figure 16.-- Backscatter electron SEM image, showing
comparison of microstructures. (a) Tapered cross
section of worn surface. (b) Tapered cross section of

as-coated area of dry-film lubricant.
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Figure 17.--Wear track on high-nickel-content superalloy disk after sliding by dry-film-lubricated Ti-6AI-4V

pin in vacuum. (a) Low-magnification overview. (b) Detailed view showing transferred patches at center.

(c) Detailed view showing powder-like wear debris of dry-film lubricant.

NASA/TM- 1999-209077 18



Figure 18.mWear scar on dry-film-lubricated Ti-6AI-4V

pin after sliding against high-nickel-content disk in
humid air and then rerun in vacuum.
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Figure 19.--EDX analysis of wear scar on dry-film-

lubricated Ti-6AI-4V pin after sliding against high-

nickel-content superalloy disk in humid air and then

rerun in vacuum. (Thin gold film used to reduce
charging of mount is responsible for gold signal in

spectra.)
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Figure 20._Wear track on high-nickel-content superalloy
disk after sliding by dry-film-lubricated Ti-6AI-4V pin in
humid air and then rerun in vacuum.
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Figure 21 .--EDX analysis of wear track on high-nickel-
content superalloy disk after sliding by dry-film-
lubricated Ti-6AI-4V pin in humid air and then rerun in

vacuum. (Thin gold film used to reduce charging of
mount is responsible for gold signal in spectra.)
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Figure 22.mSEM photomicrograph of wear track showing

extensive plastic shearing in high-nickel-content super-

alloy disk after sliding by dry-film-lubricated Ti-6AI-4V

pin in humid air and then rerun in vacuum.

Figure 23.---Overview (backscatter electron SEM image)
of tapered cross section at 45 ° angle to worn surface of

dry-film-lubricated _-6AI-4V pin after sliding against

high-nickel-content superalloy disk in humid air and

then rerun in vacuum, showing extrusion out of wear

scar, transferred patches of high-nickel-content super-

alloy, and no dry-film lubricant on worn surface.

NASA/TM-1999-209077 23



Figure 24.m Backscatter electron SEM images of tapered

cross section of worn surface of dry-film-lubricated

Ti-6AI-4V pin after sliding against high-nickel-content

superalloy disk in humid air and then rerun in vacuum.

(a) Showing extrusion out of wear scar. (b) Showing

transferred patch of high-nickel-content superalloy on

worn surface of dry-film-lubricated Ti-6AI-4V pin.
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