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ABSTRACT

Estimates of solar normal mode frequencies from helioseismic observations can
be improved by using Multitaper Spectral Analysis (MTSA) to estimate spectra
from the time series, then using wavelet denoising of the log spectra. MTSA leads
to a power spectrum estimate with reduced variance and better leakage properties
than the conventional periodogram. Under the assumption of stationarity and mild
regularity conditions, the log multitaper spectrum has a statistical distribution that is
approximately Gaussian, so wavelet denoising is asymptotically an optimal method to
reduce the noise in the estimated spectra. We find that a single m-v spectrum benefits
greatly from MTSA followed by wavelet denoising, and that wavelet denoising by itself
can be used to improve m-averaged spectra.

We compare estimates using two different 5-taper estimates (Slepian and sine
tapers) and the periodogram estimate, for GONG time series at selected angular
degrees . We compare those three spectra with and without wavelet-denoising, both
visually, and in terms of the mode parameters estimated from the pre-processed spectra
using the GONG peak-fitting algorithm. The two multitaper cstimates give equivalent
results. The number of modes fitted well by the GONG algorithm is 20% to 60% larger
(depending on £ and the temporal frequency) when applied to the multitaper estimates
than when applied to the periodogram. The estimated mode parameters (frequency,
amplitude and width) are comparable for the three power spectrum estimates, except
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for modes with very small mode widths (a few frequency bins), where the multitaper
spectra broaden the modes compared with the periodogram.

At frequencies below 3 mHz, wavelet denoising of the log multitaper power spectra,
tends to increase the number of modes for which the GONG peak fitting algorithm
converges well. Close to 3 mHz, where all modes are resolved, wavelet denoising makes
little difference. At higher frequencies close to the acoustic cut-off frequency, where
modes are blended into ridges, wavelet denoising the multitaper spectra reduces the
number of good fits.

We tested the influence of the number of tapers used and found that narrow modes
at low n values are broadened to the extent that they can no longer be fit if the
number of tapers is too large. For helioseismic time series of this length and temporal
resolution, the optimal number of tapers is less than 10.

Subject headings: Sun: oscillations — Techniques: time series analysis — Techniques:
image processing

1. INTRODUCTION

The primary data products of helioseismology are the mode frequencies of acoustic oscillations,
which are used to infer the structure and kinematics of the solar interior. With the excellent
data available now from instruments such as GONG and SOHO-SOI/MDI, greater accuracy and
reliability of the data processing is required to make substantial progress in the understanding of
the solar interior (for example, the existence of a polar jet, as discussed by Howe et al. 1998).
In addition, other mode parameters such as amplitude, asymmetry, and width are increasingly
interesting. We address the step of converting the observed time series to frequency spectra, and
study the potential benefits of modern time series analysis techniques. We apply Multitaper
Spectral Analysis (MTSA) to the observed time series to derive power spectrum estimates, and
then apply wavelet denoising to the log spectra to further improve the signal-to-noise ratio of
the modes. MTSA has better bias and variance properties than the conventional periodogram
and, under the assumption of stationarity and mild regularity, the log multitaper spectrum has
approximately Gaussian statistics, so wavelet denoising is an asymptotically optimal method to
reduce the noise level in the calculated spectra (cf. Walden, McCoy, & Percival 1995). Other
wavelet-based methods to reduce noise in astronomical data exist, such as Murtagh, Starck, &
Bijaoui (1995) and Fligge & Solanki (1997). We note that we use ‘standard’ multitaper techniques
without special treatment of data gaps. This seems reasonable for GONG or SOHO-SOI/MDI
data which have better than 85% duty ratio, and the gaps are short and more or less randomly
distributed. Additional work (Fodor & Stark 1998) includes the gap structure and constructs
optimal tapers for time series with known gaps. We have put together a ‘pipeline’ to calculate a
multitaper spectral estimate from a given time series, apply wavelet denoising to the log spectra
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and then derive mode parameters using the GONG peak-fitting algorithm of Anderson, Duvall,
Jr., & Jefferies (1990). This pipeline was first applied to a set of simple artificial data to check for
systematic errors and consistency, and then applied to observed time series of different lengths
(daily, monthly, etc.).

We describe the method in detail and compare quantitatively three power spectrum estimates
(5-taper estimates using Slepian or sine tapers, and the periodogram) using GONG month 16
times series for three different values of angular degree £. We also compared each of the three
spectrum estimates with the corresponding wavelet denoised spectrum. Multitapering helps quite
generally, and wavelet denoising gives additional benefits at some frequencies. The new methods
are not biased systematically compared with each other. The single best thing to improve mode
fitting is to use a multitaper spectrum estimate. Wavelet denoising can further improve multitaper
spectrum estimates for mode frequencies below about 3 mHz.

2. MULTITAPER SPECTRAL ANALYSIS

MTSA is an extension of single taper spectral analysis where the time series is
multiplied/apodized with a single window function or data taper before calculating the
power spectrum (Thomson 1982). Compared with the periodogram, a power spectrum estimate
that uses a smooth window function, such as a Hanning window, can reduce spectral leakage
(not to be confused with spatial leakage). The window functions that minimize leakage give less
weight to the ends of the time series. The multitaper approach uses a variety of orthogonal tapers,
some of which give more weight to the ends of the time series, trading off bias and variance. A
multitaper estimate that uses well selected tapers can gain from the bias-variance tradeof, giving
an estimate that has small bias compared with a single taper estimate, but substantially lower
variance. MTSA is described and motivated clearly and in detail by Percival & Walden (1993).
The basic procedure is as follows: The time series {X;} is multiplied by each of I different
data tapers, {ht,k}i‘;?)l. The periodogram of the K resulting series is computed, resulting in K
estimates of the power spectrum, {glsmt)(f) {_(:_01. The multitaper spectrum estimate is the average

of these K power spectrum estimates:

G (m _ 1 —~ (mt
S( t) = I_ X:: | (1)
for
o () N-1
$0(f) = M| Y hor Xe exp (—izmfrar) | 2)
t=0

The tapers {h;k} are normalized so that Eﬁal ix =1, and At is the sampling interval.

The tapers are chosen to be concentrated in the frequency domain, so that their broad band
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bias is as small as possible. If the data tapers are pairwise othogonal, i.e.,

N-1
S hijhgr =0 Vi#k, (3)

t=0

then their corresponding power spectrum estimates, S,(cmt)(f), are approximately uncorrelated

(asymptotically uncorrelated for long time series for a wide variety of processes). The average of
the I power spectrum estimates, S(mt)(f), then has smaller variance than the individual power
spectrum estimates by a factor that approaches 1/K.3 Figure 1 gives an example of orthogonal
tapers and shows the first five 47 Slepian tapers (47 discrete prolate spheroidal sequences) in the
left column. The first taper resembles a conventional data taper such as the Hanning window:
it gives more weight to the center of the time series than to its ends. Tapers for larger & give
increasingly more weight to the ends of the time series. The right column shows the taper energy,
which is the sum of the squared tapers, normalized by the number of tapers, K. It is evident that
the portion of the time series that receives large weight increases as the number of tapers increases.

To ensure good leakage/bias properties, the tapers should be concentrated in the frequency
domain. One way to define a family of ‘optimal’ tapers is as follows: (1) Specify a measure of
concentration in the frequency domain. (2) Among all functions that vanish where there are no
data, find the function for which the concentration is maximal. (3) Among all functions orthogonal
to the first function and that vanish where there are no data, find the function for which the
concentration is maximal. One repeats step (3) insisting that the function sought be orthogonal
to all the previous functions found, until one has the desired number of tapers. For quadratic
measures of spectral concentration, such as the ratio of the power in the band [—W, W] to the total
power, this can be cast as an eigenvalue problem (Slepian 1978, 1983). When observations are
available continuously within an interval, and concentration is measured by the fraction of power
in the band [—W, W], the eigenfunctions are prolate spheroidal wavefunctions. For a discretized
signal with observations available at every sample point within an interval, and concentration is
measured by the fraction of power in the band [—W, W], the eigenfunctions are called time-limited
“discrete prolate spheroidal sequences” (dpss) or Slepian tapers. Figure 2 shows the first 11
eigenvalues, Ar, of nw Slepian tapers for n = 3,4, and 5 with n being a measure of the resolution
bandwidth, 21 = 2n/(N At), which increases with increasing n. The eigenvalues are the fraction
of power in the given frequency interval. The closer Ay is to 1, the less broad-band leakage. The
first (2n) tapers (with index k = 0,...,n — 1) have eigenvalues larger than 1 and the first (2n - 2)
ecigenvalues are extremely close to 1: the tapers are nearly perfectly concentrated to the band
[-W,W]. The last N — 2n tapers have most of their power outside the band [-W, W] and thus
have poor broad-band bias. The number of tapers with good leakage properties increases with
n and with the concentration bandwidth 2W. Typically, n is chosen to be 2,3, or 4 to limit

*However, this does not lead to a proportional reduction in the formal errors of fitted mode parameters, sce
Section 5.2.
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bias caused by the width of the central lobe of the power spectrum of the taper. The trade-off
depends on the length of the time series and the frequency resolution required for subsequent data
processing, among other things.

Riedel & Sidorenko (1995) introduced a different measure of spectral concentration for tapers,
based on an asymptotic expression for the local bias. Their measure again leads to a quadratic
optimization problem that can be cast as an eigenvalue problem. They showed that the optimal
tapers for that definition of spectral concentration were approximated quite well by sine tapers,
which are extremely easy to compute, and are orthogonal (for data without gaps). The k-th sine

2 ki
ko .
vy = ‘/N-}—lsm(N%—l) (4)

with ¢ = 0,..., N — 1. The multiplicative constant makes the tapers orthonormal.

taper is

For stationary Gaussian processes, the distribution of a singly tapered spectrum estimate at
a given frequency is that of a constant times a x% random variable. In contrast, if K orthogonal
tapers are used, the distribution is approximately (asymptotically in the length of the time series)
that of a constant times a x2; random variable. The logarithm of the multitaper spectrum
estimate has a more nearly Gaussian distribution than does the logarithm of a singly tapered
estimate. Indeed, Walden, McCoy, & Percival (1995) find that if five or more tapers are used, the
Gaussian approximation is good, although that result clearly depends on details of the underlying
spectrum and the length of the time series. Wavelet shrinkage denoising is asymptotically an
optimal method to enhance the signal-to-noise ratio of the estimate of a function observed with
additive Gaussian noise (Donoho et al. 1993); Walden, McCoy, & Percival (1995) demonstrate
its application to multitaper spectrum estimates. Wavelet shrinkage denoising is a nonlinear
procedure that does not tend to smear fine-scale features in the data, as linear smoothing does.

3. WAVELET DENOISING

We use the discrete wavelet transform (cf. Donoho & Johnstone 1994 and references therein)
with orthogonal wavelet bases; examples of orthogonal wavelet bases are the original Daubechies
wavelets and the Coiflets and Symmlets, cf. Daubechies (1993). Wavelet denoising works for
many classes of signals because, as reasonable models of real-world phenomena, they usually
have extremely sparse wavelet decompositions: relatively few large coefficients yield an excellent
approximation. On the other hand, Gaussian white noise remains Gaussian with the same
rms-amplitude after a wavelet transform. The basic strategy in wavelet denoising is to define
a thresholding or “shrinkage” scheme that retains the large wavelet coefficients, which are
predominantly signal, and rejects the small coefficients, which are predominantly noise. For a
formal argument see, for example, Donoho (1993).

The discrete wavelet transform maps a signal of N = 27%! discrete data points into the same
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number of wavelet coefficients, wji, with (J + 1) scales or dyads, indexed by j =0, ..., J, and (279)
coefficients per dyad, indexed by k£ = 0, ...,2’ — 1. Figure 3 shows different thresholding schemes
such as hard (keep or kill) and soft (shrink or kill). Hard thresholding keeps all wavelet coefficents
above a certain threshold, and sets all smaller coefficients to zero, while soft thresholding reduces
even the coefficients above the threshold by the amount of the threshold. The threshold, 8 given
by Donoho & Johnstone (1994) is

0 = \/2log(N) o, (5)

where N is the signal length and o; is the noise level in the observations at scale j. In
level-independent shrinkage, o; is estimated by the median absolute deviation (MAD) of the
wavelet coefficients at the finest scale (J), normalized by 0.6745 to correspond to the standard
deviation of a Gaussian distribution:

6; = median(|wgx — median(wy)|)/0.6745. (6)

In level-dependent shrinkage, the standard deviation of the noise level at scale j is estimated by
the median absolute deviation of the coeflicients at scale j; because the coefficients at broad scales
tend to have nontrivial components of the signal, this can over-estimate the noise level at those
scales, resulting in too much shrinkage, attenuating the real signal. In tests on artificial and real
helioseismic data, we found that level-dependent shrinkage distorted the modes unacceptably.
This agrees with Walden, McCoy, & Percival (1995) who found that with the exception of white
noise, scale-independent thresholding leads to better results than scale-dependent thresholding.
Therefore, we use level-independent shrinkage throughout this work.

Hard thresholding recovers the signal well in mean squared error, but tends not to suppress
some noise spikes (spikes do not make a large contribution to mean squared error). Soft
thresholding leaves fewer noise spikes, but tends to attenuate the signal because even the largest
wavelet coefficients are shrunk towards zero. Gao & Bruce (1995) introduced semisoft thresholding
(kill, shrink, or keep) as a compromise between hard and soft thresholding. The two thresholds
defining three ranges bracket ¢ as defined in Equation (5) and are given as a function of N in
Table 1 of their paper.

In tests using artificial and real data, we found that a modified semisoft or “semihard”
thresholding scheme worked best for helioseismic data. The threshold function is shown in
Figure 3. The lower threshold is ¢ as defined in Equation (5), and the upper semisoft threshold
is that of Gao & Bruce (1995). The semihard thresholding scheme reduces the visual roughness
of the estimate more than the semisoft scheme without distorting the signal structure. Hard
thresholding also preserves the mode structure, but gives estimates that are visually too rough,
while soft thresholding gives the smoothest estimates, but broadens the modes unacceptably. We
use the semihard threshold below.

Our ultimate wavelet shrinkage procedure is the following: we wavelet-transform the log
power spectrum, scale the wavelet coefficients by the estimated deviation, &, of the coefficients
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at the finest scale, apply the “semi-hard” threshold to the coefficients, rescale the coeflicients, and
inverse wavelet-transform them to obtain the “denoised” estimate of the log power spectrum.

This denoising scheme can introduce a small systematic frequency shift due to the lack of
translation invariance of the wavelet basis. To eliminate this effect, we used translation-invariant
wavelet denoising (Coifman & Donoho 1995) which efficiently shifts the signal over all positions
and averages the denoised shifted signals (after shifting them back). This procedure also reduces
the influence of the specific wavelet basis chosen. We tried Haar, Daubechies, Coiflet, and Symmlet
bases. We found that for our data, Symmlets of order 8 produced estimates that were visually
preferable, and took the least time to compute.

The denoising procedure can be restricted to a range of scales from the smallest to an upper
limit. It might not be necessary to denoise the largest scales, because they tend to contain primarily
large-scale trends in the signal and not noise. A value of jyin = 4 OF Jmin = int(\/2lo—g(1_V_)) is
a good choice for signals of length N = 2048 or less, while a larger value of jmin > 7 is more
appropriate for long helioseismic data sets, where N is typically about N = 216 or larger.

4. IMPLEMENTATION

To calculate multitaper spectrum estimates from helioseismic time series, we used 37 Slepian
tapers to ensure that the widths of p-modes are not broadened by the resolution bandwidth of the
tapers. We averaged over K = 5 singly tapered spectrum estimates. We also calculated multitaper
spectrum estimates using the first five sine tapers. For MTSA with Slepian tapers, we used
subroutines written in C by Lees & Park (1995). To create the multitaper spectrum estimates, we
averaged the singly tapered spectrum estimates weighted according to their respective eigenvalues.
To wavelet denoise the log-spectra, we used the WaveLab package by Buckheit et al. (1995),
translated to IDL by Graps (1995). We added translation-invariant denoising, which is part of
the current version of WaveLab, to the IDL package and implemented semisoft and semihard
thresholding, which were not in the IDL or WaveLab package. To derive mode parameters from
the resulting spectra, we used the GONG peak-fitting algorithm developed by Anderson, Duvall,
Jr., & Jefferies (1990).

The peak-fitting algorithm uses a maximum-likelihood method assuming x? statistics with
two degrees of freedom, while the multitaper estimate asymptotically drives the analyzed spectra
toward Gaussian statistics (with k tapers leading to x? statistics with 2k degrees of freedom).
General minimization algorithms assume either Gaussian or x? statistics. Anderson, Duvall, Jr.,
& Jefferies (1990) mention that the changes required to fit an average spectrum of k spectra
is to multiply the likelihood function by k and divide the error by k. They compared the
results of fitting 1,000 artificial realizations (of a single spectrum) using their maximum likelihood
method and using a least-squares approach. They found that both techniques yield the same
mode frequency, but that only the maximum likelihood technique yields reliable estimates of mode
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width, amplitude and background in this case. Thus, we proceed using the GONG peak-fitting
algorithm and compare mode parameters derived from the different spectral estimates in order to
check for systematic differences.

We applied the procedures to artificial data to check for systematic frequency shifts. To
test multitaper spectral analysis, we created a set of time series with a known limit spectrum,
following Schou & Brown (1992) to model individual modes as stochastically excited damped
oscillators. We assume that the mode lifetime is small compared to the length of the whole time
series but large compared to the time cadence of observation. The mode is randomly excited many
times over the whole time interval with the time interval between two ‘kicks’ small compared to
the mode lifetime. To simplify the modeling, we excite the mode only at temporal grid points.
Two or more kicks at the same time grid point are considered to be one kick. We compensate
for overlapping kicks by adjusting the sample size of uniformly distributed random numbers.
The amplitude of each kick is scaled to ensure that the average power stays constant. In this
way, we generate noise-free time series of a single mode. Multi-mode time series are generated
by summing several single-mode time series. This ignores coupling in the excitation process or
by nonlinearity. We calculated 1,000 realizations of the n = 10, £ = 50 mode (with a length
of 36 days, one ‘GONG month’). For each time series, we calculated a periodogram, a 5-taper
37 Slepian spectrum estimate, and a 5-sine taper spectrum estimate. We then used the GONG
peak-fitting procedure to estimate mode parameters from the various spectrum estimates. The
average mode frequency differs by 2 nHz with a standard deviation of 226 nHz (periodogram),
1+ 233 nHz (Slepian multitaper), and 1 + 245 nHz (sine multitaper) from the input mode
frequency (v = 3045.5339 pHz). The standard deviation is slightly smaller than one frequency bin.
The rms differences between periodogram and multitaper spectra are 44 nHz (Slepian) and 51 nHz
(sine). The frequency estimates determined from the periodogram and multitaper spectra do not
differ systematically in a statistically significant way.

To evaluate wavelet denoising, we created artificial spectra that contained a single mode
plus realization noise for four different signal-to-noise ratios (S/N = 50, 20, 10, and 5). We
modeled the modes as Lorentzian profiles using a subroutine written by E. Anderson. For each
signal-to-noise ratio, we created 1,000 artificial spectra with a spectral pixel size of 0.2 gHz and
a mode frequency of v = 3045.9 uHz, which is close to but slightly different from the n = 10,

{ = 50 mode. We applied single wavelet denoising and translation-invariant (TI) denoising to
the spectra, using semihard thresholding. For large signal-to-noise ratio (S/N=>50), we find that
the average mode frequency differs by -6 nHz with a standard deviation of 212 nHz (original),
-5+ 214 nHz (denoised), and -8 £+ 212 nHz (TI denoised) from the input mode frequency. The
rms difference between the denoised and original spectra is 13 nHz, compared with only 3 nHz for
TI denoised and original spectra. For small signal-to-noise ratio (S/N=10), the average difference
is ~65 £ 306 nHz for the simple denoising scheme, while it is =10 & 303 nHz for the TI-denoised
spectra and —~12 £ 283 nHz for the original spectra. The rms differences between the denoised
and original spectra increase to 107 nHz (denoised) and to 46 nHz (TI denoised). Simple wavelet
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denoising can introduce a small, systematic shift in frequency, while T1 denoising does not show
this systematic shift. Therefore, we use TI wavelet denoising henceforth in this study.

5. RESULTS
5.1. Helioseismic Data: GONG month 16

We applied MTSA and wavelet denoising to different helioseismic data sets obtained from
South Pole, SOI and GONG. For quantitative comparisons, we use a 36-day GONG time series for
angular degrees £ = 30,65, and 100. A merged GONG month time series is created by combining
36 network days; GONG month 16, used here, begins 28 Oct. 1996 and ends 2 Dec. 1996. GONG
has a one-minute cadence, so the network month time series contains 51,840 data points. For
month 16, the data fill factor is 0.94; short gaps were filled using an autoregressive filter, gaps
larger than 2 minutes are set to zero. The data set for each £ contains the complex time series
for each spherical harmonic, m, from 0 to £, and in addition the gap structure (before and after
gap-filling) as a function of time.

Figure 4 shows three power spectrum estimates of the GONG month 16 velocity time series
(28 Oct 1996 — 2 Dec 1996, 36 days) of £ =100, m = 0 in the left column and the corresponding
wavelet denoised spectra in the right column. For simplicity, we show only a small part of the
spectra; the complete spectra extend over the bins from 0 to 8333 uHz. I'or the MTSA spectrum
estimates, we used five 37 Slepian tapers and five sine tapers. The Slepian multitaper spectrum
is clearly better than the periodogram. It has much smaller variance, and the modes are better
resolved. The sine multitaper spectrum estimate is quite similar to the Slepian estimate except for
some background details.

The right column in Figure 4 shows that wavelet denoising cleans the periodogram, but it
reduces the mode amplitude drastically. The ‘click’ at about 3000 uHz in the upper right panel is
a typical artifact of noise in one wavelet coefficient exceeding the threshold, and thus remaining
unattenuated in the denoised reconstruction. Wavelet denoising works well for the two multitaper
spectra, leaving the principal mode and leaks clearly distinguishable, and smoothing the mode
structure without broadening it.

5.2. Quantitative Comparison

We compared the number of primary modes the GONG peak-fitting algorithm fits successfully
for the different spectrum estimates. The peak-fitting algorithm has two error flags related to the
quality of the fit to a mode. One is based on heuristic assumptions about the modes; the other
indicates numerical difficulties (cf. Hill et al. 1998). The numerical flag indicates how well the
minimization of the likelihood function converges and distinguishes between failure to converge,
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convergence with some difficulty, and strict convergence. Strict convergence is necessary but not
sufficient for a good fit. The top row of Figure 5 shows an example where the fit to a periodogram
fails to converge (left panel), while the fit to the corresponding denoised multitaper spectrum
converges (right panel). The heuristic flag includes, for example, a test to ensure that the fit
has not locked onto the first guess; that the fitted width is within a factor of two of the first
guess width; etc. The bottom row of Figure 5 shows an example where the fit to a periodogram
is rejected by the heuristic flag (left panel) because the fitted frequency error is larger than half
the first guess width. The corresponding denoised multitaper spectrum leads to a good fit (righf
panel). We use only mode fits that are good according to both flags.

The three panels in Figure 6 shows histograms of the number of good fits (solid line) as
a function of frequency for the periodogram, the sine multitaper, and corresponding denoised
multitaper spectrum estimates for angular degree £ = 30. The corresponding histograms of the
Slepian multitaper spectra are very similar and are not shown here. Each bin corresponds to all
modes of a single radial order n averaged over all angular orders m values. The radial orders of
the modes in the data range from n = 4 to n = 25. The total number of fits, good and bad, is
shown by the dotted line. In the frequency range from about 2000 to 4000 xHz, all (2£+ 1) modes
are present in the data. For the periodogram in the top panel, the number of good fits is only
43% of the total number of modes. This fraction increases to 80% for the multitaper spectrum
estimate in the middle panel. With MTSA, the number of good fits increases for all frequency
bins compared to the periodogram results (included as dashed line). The bottom panel shows the
wavelet-denoised multitaper spectrum estimate (solid line) and the multitaper spectrum estimate
(dashed line) for comparison. Wavelet denoising further increases the number of good fits at
frequencies below about 2000 uHz, while it tends to reduce the number of good fits at frequencies
above about 4000 pHz, where modes blend into ridges. In the frequency range of well-resolved
modes around 3000 pxHz, wavelet denoising increases the number of good fits at some n values and
reduces it at others, leading to a small net gain.

Figures 7 and 8 show the same for £ = 65 and ¢ = 100. As in Figure 6, cach bin contains all
modes of a single n value ranging from n = 1 to n = 19 for £ = 65, and from n = 0 to n = 15 for
€ = 100. Figure 7 shows that for £ = 65, multitapering greatly improves the number of good fits
at all frequencies compared to the periodogram, but especially between about 2000 and 4000 pHz,
where almost all possible (2( 4 1) modes can be fitted well to the multitaper spectrum estimates.
Wavelet denoising improves the fits at low n values (below about 2000 pHz). The fit of the n = 1
mode is good only for the denoised spectrum estimate. Denoising makes no difference in the range
of well-resolved modes, where multitapering leads already to good fits at all modes, while at high
frequencies denoising reduces the number of good fits. In Figure 8, the £ = 100 spectra spectrum
estimates show a similar behavior.

Table 1 shows the total number of fitted modes and the number of good fits for angular
degrees £ = 30, 65, and 100 (cf. Figures 6 to 8). The numbers of good fits are separated into
three frequency ranges: (1) v < 2.5mHz, low signal-to-noise modes; (2) 2.5mHz< v < 3.5mHg,
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well-resolved modes; and (3) » > 3.5mHz, blended modes. Not surprisingly, the total number
of primary modes is about the same for all three estimates (cf. dotted line in Figures 6 to 8).
However, the number of good fits increases by about 60% when a multitaper spectrum estimate
is fitted instead of the periodogram. As a function of frequency, the smallest increase is in the
frequency range (2), where the modes are well-resolved (=~ 12% at £ = 65), since there the number
of good fits does not depend strongly on the method used. The largest increase is in the low
frequency range (1) (~ 100% at £ = 65), where the modes have a low signal-to-noise ratio, while
the increase is average in the high frequency range (3) (= 30% at £ = 65), where the modes are
blended into ridges.

Table 2 is the same as Table 1, but for the wavelet-denoised spectrum estimates for angular
degrees £ = 30, 65, and 100. As expected from Figure 4, denoising oversmooths the periodogram
and reduces the number of good fits substantially, for example, to 65% of the value in Table 1 for
¢ = 65. For the multitaper spectrum estimates, the number of good fits increases by 5% at low
and mid frequencies compared to the values in Table 1, while at high frequencies, the number of
good fits increases by 4% for £ = 30 and decreases by 25% at £ = 100.

Figure 9 compares three mode parameter estimates (frequency, full-width at half maximum,
and amplitude) of all good fits common to the three power spectrum estimates for £ = G5,
between 2.5 mHz and 3.5 mHz. At this £ value and frequency range, almost every mode is fitted
in all three spectral estimates (cf. Figure 7). The rows show estimated mode frequency (v),
width (T'), and amplitude (A) from top to bottom. The left column presents scatter plots of
periodogram parameter estimates (x-axis) versus Slepian spectrum parameter estimates (y-axis),
the middle column shows periodogram (x-axis) versus sine multitaper spectrum estimates (y-axis),
and the right shows Slepian (x-axis) versus sine (y-axis) spectrum estimates. The initial guess
was subtracted from the frequencies. The two background parameters, background amplitude
and slope, are closely linked to the mode amplitude, and show a behavior similar to the mode
amplitude. The three parameters show a positive correlation close to one between each pair of
estimates. The scatter is the smallest between the two multitaper estimates in the right column.

To quantify this correlation, we calculated a linear regression between the parameters of any
two spectrum estimates for each of the three mode parameters taking into account the errors in
both data sets. The regression is included in Figure 9 as solid line. The regression parameters
are tabulated in Table 3. For the mode frequency, the regression slope is very close to one and
the intercept is below 10 nHz, determined from all 1285 good fits common to the three spectra.
As a function of frequency, this is also true for modes below 3.5mHz. For modes above 3.5 mHz,
the slope is about 0.84 and the intercept is as large as 32 nHz between multitaper spectra and
periodgram.

For mode width, the slope of the regression line for the multitaper spectra is close to one,
independent of frequency, and between the periodogram and any of the two multitaper spectra
in the range of well-resolved modes (2.5 mHz < v < 3.5 mHz). The intercept is relatively small
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in these cases and consistent with zero. For the low— and high-frequency ranges, regressing
multitaper spectra against the periodogram leads to a slope of about 0.8 and a positive intercept.
At frequencies above 3.5 mHz, the modes are rather broad, and with increasing width, the
scatter increases to the point that the width estimated from the periodogram is no longer linearly
associated with the width estimated from a multitaper spectrum, making a linear regression
meaningless. If the regression is limited to modes where the mode width is smaller than half
the distance to the nearest £ leak (g—'; > 2I'), the slope increases to 0.88 between estimates from
periodogram and from the two multitaper spectrum estimates; the intercept is reduced by a factor
of three. In addition, the corresponding regression slope between the frequencies increases from
0.84 to 0.99 and the intercept is reduced by 10 nHz. The widths of the modes below 2.5 mHz are
less than 1.60 pHz (about six frequency bins), which means that they are comparable in size to
the width of the central lobe of the combined tapers (cf. Section 2). Thus, these narrow modes are
slightly broadened by the multitapering.

For the mode amplitude, the regression does not show a frequency dependence. The slope is
close to one between every pair of power spectrum estimates, and the intercept is zero compared
to the mode amplitudes. The background amplitude and the background slope, not shown here,
give regression results similar to those of the mode amplitude.

Figure 10 shows a comparison of formal parameter fit errors determined from the inverse
of the Hessian matrix at the fitted parameter values (6v: frequency, 6I': width, §A: amplitude)
for the well-resolved modes. It is known that the formal error is an unreliable estimate of the
true uncertainty and reproducibility of the parameter estimates. As in Figure 9, the left column
shows periodogram versus Slepian spectrum, the middle column shows periodogram versus sine
spectrum, and the right shows Slepian versus sine spectrum. The frequency and width errors
are in uHz. The average frequency error is about 0.2 pHz for modes below 3.5 mHz, comparable
to but slightly smaller than a single frequency bin in the spectra, and 0.9 uHz for modes above
3.5 mHz. As with the mode parameters, the mode errors are positively correlated, with a slope
close to one and a small, nearly zero, intercept. The different spectral estimates lead essentially to
the same formal fit errors.

The peak-fitting algorithm converges in fewer iterations for the multitaper spectrum estimates
than for the periodogram. The average number of iterations is 75.1 & 20.8 for the periodogram,
57.04 11.9 for the Slepian and 56.7 + 11.8 for the sine multitaper spectrum. This is a reduction of
24%.

We calculated the difference between parameters from any two power spectrum estimates and
scaled them by the formal error estimate provided by the peak-fitting algorithm, which is another
way to check for systematic offsets. Figure 11 shows histograms of fit parameter differences scaled
by the formal fit errors (v: frequency, I': width, A: amplitude) for well-resolved modes between
2.5 and 3.5mHz. The left column shows Slepian spectrum estimate minus periodogram scaled by
periodogram error, the middle column shows sine spectrum estimate minus periodogram scaled
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by periodogram error, and the right one shows sine minus Slepian spectrum estimates scaled by
Slepian error. The distributions are all well within one formal error bar centered around zero,
and the multitaper spectrum estimates (right column) lead to the narrowest distributions, as in
Figure 9. Offsets are small compared to the fit error and are on the order of percent (2% % 1%)
for all three mode parameters. The same is true for modes at lower and higher frequencies except
for the mode width between periodogram and multitaper spectrum (cf. Table 3), where the offset
is about 20% of the error.

Wavelet denoised spectrum estimates show the same general behavior. A scatterplot of
estimated mode parameters of all good fits common to the periodogram and either of the two
denoised multitaper spectra looks very similar to those shown in Figure 9. We performed a
regression of the parameters estimated for every pair of spectrum estimates. In Table 4, the
regression slopes and intercepts show the same behavior as in Table 3, with regression slopes close
to one and intercepts close to zero. We repeated this analysis for £ = 30 and £ = 100 and found
the same result as for { = 65.

5.3. Number of Tapers

As discussed in Section 2, there is a trade-off between bias and variance in choosing the
number of tapers to use in MTSA. If the number of tapers is too large, detail in the spectrum
estimates is lost, while if it is too small, the variance remains unnecessarily large. Resolving modes
of a given width sets an upper limit for the number of tapers (see mode width for v < 2.5 mHz
in Table 3). To estimate this limit, we calculated multitaper spectrum estimates using up to 50
tapers for £ = 65. Figure 12 shows that the modes broaden with increasing number of tapers. As a
consequence, the number of good fits decreases when more than 10 tapers are used, to about 28%
for K = 50. The decrease is frequency-dependent; modes with small widths are most sensitive to
the broadening. When the number of tapers increases, modes at increasingly higher frequencies
can no longer be fit. For example, all modes at the lowest n value present in the data (n = 1)
disappeared when the number of tapers increased from 5 to 10 and for 50 tapers only modes of
n = 10 and higher can be fit. This test suggests that for helioseismic time series of this length,
frequency resolution, and gap structure, the optimal number of tapers is below 10.

To study in more detail the influence of the number of tapers on the quality of estimated
mode parameters, we repeated the analysis using 4 to 10 tapers and calculated the number of
good fits as a function of n averaged over all m values. For n = 3 to 13, the number of tapers had
a negligible effect on the number of good fits: all spectra led on average to 98% + 2% good fits of
the (2¢+ 1) possible modes. For n = 14 to 18, the number of good fits varies with the number of
tapers, and generally increases with the number of tapers. However, this is the frequency range
where modes are blended into ridges (‘fi—'é < 2T) and the current GONG peakfinding algorithm
should not be applied. For n = 1 and 2, the number of good fits decreases with increasing number
of tapers; using 9 and 10 tapers leads to substantially smaller numbers of good fits. This suggests
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that the number of good fits is nearly constant for kK = 4 to 7. Using a small number of tapers
leaves the computations inexpensive and avoids excessive broadening of modes present for small n.

6. CONCLUSION

(1) Multitapering and wavelet denoising allow the GONG peak-fitting algorithm to fit more
mode parameters successfully, as defined by the error flags in the GONG fitting procedure (cf.
Tables 1 and 2). The improvement depends on the angular degree ¢, the temporal frequency, and
details of the time series. For the time series used in this work, multitapering increases the number
of modes fitted well by 20% to 60% at frequencies below 3.5 mHz. Wavelet denoising adds about
5% more. We have also analyzed multitaper spectra covering £ = 0 to 150 of a 3-month GONG
time series and found that the improvement is 10% on average over all £ values and frequencies
from 1 to 5 mHz with the largest improvement for £ < 70 (cf. Komm et al. 1998).

(2) Multitapering and wavelet denoising do not lead to smaller formal error bars as computed
by the peak-fitting algorithm (cf. Figure 10). Both methods reduce the variance or noise in the
spectrum, making it easier to fit the modes in the spectrum (the peak-fitting algorithm takes fewer
iterations). It is not known whether the effective uncertainty in the mode parameters is smaller
for multitaper spectrum estimates and wavelet-denoised spectrum estimates, because the formal
error bars do not measure the true reproducibility and uncertainty very well.

(3) Multitapering and translation-invariant wavelet denoising do not introduce any obvious
systematic changes in the estimates of mode parameters (cf. Figures 9 and 11). Narrow modes
at low frequencies are broadened by multitapering by about 20%, but these modes are not
well-resolved in the first place. The modes are not broadened by wavelet denoising, as they would
be by a linear filter.

(4) The benefit of multitapering occurs for a small number of tapers. The number of
tapers has to be small in order not to broaden narrow modes at low frequencies excessively. For
well-resolved modes at higher frequencies, the number of good fits does not depend strongly on
the number of tapers (see Section 5.3). The ‘optimal’ number of tapers depends on the length of
the time series. For example, for a 3-month GONG time series, we found that using 7 tapers leads
to the largest number of good mode fits, but increases the mode widths only slightly (by 2.9% +
1.8% on average for £ = 65, n = 3-13).

(56) Considering both techniques discussed here, the largest improvement at the smallest
computational cost results from using multitaper spectrum estimates with sine tapers. Both
multitapering and wavelet denoising improve mode fitting, but the larger improvement results
from multitapering, which requires less computational effort. Because the difference between
spectrum estimates using Slepian tapers and sine tapers is negligible for these data, it is adequate
to use the more easily and inexpensively computed sine tapers. This is also the case for generalized
sine tapers that take the gap structure into account (Fodor & Stark 1998).
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We recommend using multitaper spectrum estimates at all frequencies and applying wavelet
denoising to multitaper spectra at frequencies below 3.0 mHz.

This work was supported by NASA/SOHO/SOI/Stanford and by NSF Grant AST-9504410,
NASA Grant NAG 5-5035, and NASA Grant NAG 5-3941. This work utilizes data obtained by the
Global Oscillation Network Group (GONG) project, managed by the National Solar Observatory,
a Division of the National Optical Astronomy Observatories, which is operated by AURA, Inc.
under a cooperative agreement with the National Science Foundation. The data were acquired by
instruments operated by the Big Bear Solar Observatory, High Altitude Obseratory, Learmonth
Solar Observatory, Udaipur Solar Observatory, Instituto de Astrofisico de Canarias, and Cerro
Tololo Interamerican Observatory. To calculate multitaper spectra, we used subroutines written in
C by Lees & Park (1995) and for the wavelet analysis we used WaveLab by Buckheit et al. (1995)
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Fig. 1.— The first five 47 Slepian tapers (discrete prolate spheroidal sequence data tapers) and
the taper energy as a function of ¢ for different number of tapers (K =1 to 5).

Fig. 2.— The first 11 eigenvalues, Ag, of nx Slepian tapers for n = 3,4, and 5 with n being a
measure of the resolution bandwidth. The resolution bandwidth 2W is defined as W = n/(NAt)
with IV being the signal length and At the temporal resolution.

Fig. 3.— Thresholded wavelet coefficients as a function of wavelet coefficients for four different
thresholding schemes shown for a signal of length N = 2048.

Fig. 4.— Three power spectrum estimates of the GONG month 16 velocity time series (28 Oct
1996 - 2 Dec 1996, 36 days) of £ = 100, m = 0 and the corresponding wavelet denoised spectra.

Fig. 5.— Two examples where the fit to a periodogram fails (left panels) and the corresponding
denoised multitaper spectrum leads to a good fit (right panels). The thick solid lines indicate the
fits of the multitaper spectra and the dotted lines indicate the central frequency of the fitted mode.
Top row: Failure to converge (numerical flag), £ = 65, m = —64, n = 9. Bottom row: Fitted
frequency error is larger than half the first guess width (heuristic flag), £ = 65, m = —61, n = 4.

Fig. 6.— Histograms of the number of good fits (solid line) as a function of frequency for the
periodogram, the sine multitaper sprectrum, and the corresponding denoised multitaper spectrum
of £ = 30. Each bin contains the modes of a single n value summed over all m. The dotted line
represents the total number of fits including the bad ones, and the dashed line represents the good
fits from the panel above.

Fig. 7.— As Figure 6, but for £ = 65.
Fig. 8.— As Figure 6, but for £ = 100.

Fig. 9.— A comparison of fitted mode parameters (v: frequency, I': width, and A: amplitude). The
left column shows periodogram versus Slepian spectrum, the middle column shows periodogram
versus sine spectrum, and the right shows Slepian versus sine spectrum. For nu, the initial guess
value was subtracted.

Fig. 10.— A comparison of fit parameter errors (6v: frequency, 6I": width, 4: amplitude). The
left column shows periodogram versus Slepian spectrum, the middle column shows periodogram
versus sine spectrum, and the right shows Slepian versus sine spectrum.

Fig. 11.— Histograms of fit parameter differences scaled by the fit errors (v: frequency, I': width,
A: amplitude). The left column shows Slepian minus periodogram scaled by periodogram error,
the middle column shows sine minus periodogram scaled by periodogram error, and the right one
shows sine minus Slepian scaled by Slepian error.

Fig. 12.— Iour multitaper power spectra of £ = 65 and m = 0 of the GONG month 16 velocity
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Table 1: Number of modes fitted in three power spectrum estimates of the GONG month 16 velocity
time series of £ = 30, 65, and 100. The table shows the total number of modes and the number of
good fits. The numbers of good fits are separated into three frequency ranges: (1) v < 2.5 mHz, low
S/N modes; (2) 2.5 mHz < v < 3.5 mHz, well-resolved modes; (3) » > 3.5 mHz, blended modes.

£=230 total good

all v allv (1) 2 3
periodogram 1196 516 143 187 186
Slepian 1146 914 277 314 323
Sine 1153 915 274 316 325
£ =65 total good

all v allv (1) (2) (3)
periodogram 2333 1389 215 598 576

Slepian 2260 1880 447 669 764
Sine 2263 1851 436 669 746
€=100 total good

all v allv (1) (2)  (3)
periodogram 3077 837 169 387 281
Slepian 3092 1658 545 535 578
Sine 3108 1628 509 544 575
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Table 2: As Table 1, but for wavelet denoised spectra.

£=30 total good

all v allv (1) (2) (3)
periodogram 783 486 124 246 116
Slepian 1198 956 286 328 342
Sine 1199 959 292 332 335
£=265 total good

all v allv (1) (2) (3)
periodogram 1702 905 125 422 358
Slepian 2231 1677 451 663 563
Sine 2241 1681 457 666 558
£=100 total good

all v allv (1) (2) (3)
periodogram 2498 344 33 83 228
Slepian 3086 1561 567 552 442
Sine 3093 1554 575 550 429




-921 -

Table 3: Linear regression of mode parameters (v: frequency, I': width, and A: amplitude) between
any two power spectrum estimates (cf. Figure 9) for N = 1285 good fits common to all three
power spectra of £ = 65 determined for all frequencies and separately for three frequency ranges:
(1) v < 2.5 mHz, low S/N modes (N = 203); (2) 2.5 mHz < v < 3.5 mHz, well-resolved modes
(N = 593); (3) v > 3.5 mHe, blended modes (N = 489). The table shows slope (a) and intercept
(b). The intercept of frequency and width are in nHz.

£ =65 slepian /periodogram sine taper /periodogram sine /slepian

a b a b a b
v 0.909 £ 0.122 -9 £ 11 0.905 + 0.136 -9+ 11 0.981 + 0.046 1+ 11
(1) 0.982 4+ 0.090 -8 + 21 0.979 £ 0.100 -6 £ 21 1.011 £ 0.090 3 £ 22
(2) 1.006 £ 0.055 -5+ 14 1.007 £ 0.068 -6 + 14 1.011 £+ 0.048 -5+ 14
(3) 0.847 + 0.178 -25 £ 45 0.840 £ 0.187 -32 £ 46 0.961 4 0.069 -11 + 43
r 0.862 + 0.064 304 + 128 0.725 £ 0.106 530 + 221 0.989 + 0.022 10 + 54
(1) 0.802 &+ 0.077 378 £ 97 0.787 £ 0.080 388 + 100 0.989 £ 0.100 9 £ 139
(2) 0.935 4+ 0.044 130 £ 82 0.930 £+ 0.050 1254 93 1.002 + 0.044 -18 4- 82
(3) 0.762 + 0.138 1486 + 1090 0.558 + 0.197 2724 4+ 1767 0.975 &+ 0.055 159 £ 473
A 1.003 £ 0.018 -0.3 + 2.4 0.987 £ 0.020 0.8 £ 2.5 0.983 £ 0.015 1.0+ 2.2

0.954 + 0.074 -3.3+13.7 09424+ 0.075 -3.4£13.7 0989+ 0.069 -0.2+ 11.5
1.011 £ 0.040 4.1 = 95.1 1.002 4+ 0.041 -4.6 £ 97.7 0.994 £ 0.038 -14.1 £+ 93.0
1.002 +£ 0.023 0.0+ 2.6 0.985 £ 0.025 1.3+ 2.8 0979 £ 0.019 1.4+ 24

N N
W N
e




- 9292 —

Table 4: Linear regression of mode parameters (v: frequency, I': width, and A: amplitude)
between the periodogram and the two denoised multitaper spectra (cf. Figure 10) for V = 1226
good fits (bad=0 and ierr=0) common to all three power spectra of £ = 65 determined for all

frequencies and separately for three frequency ranges: (1) v < 2.5mHz, low S/N modes (N = 202)

?

(2) 2.5 mHz < v < 3.5mHz, well-resolved modes (N = 587); (3) v > 3.5mHz, blended modes
(N = 437). The table shows slope (a) and intercept (b). The intercept of frequency and width are

in nHz.

£ =65 slepian /periodogram sine taper /periodogram sine /slepian
a b a b a b

v 0.960 £ 0.097 -12 + 11 0.957 £ 0.110 -9+ 11 0.974 4 0.052 2 + 11
(1) 0.989 £ 0.093 -17 + 21 0.981 £ 0.102 -10 £ 21 0.999 + 0.089 7 4+ 22
(2) 1.007 + 0.060 -8 £+ 14 1.010 £ 0.070 -7 + 14 1.009 £ 0.049 1 £ 14
(3) 0.924 + 0.146 -24 + 45 0.918 £ 0.155 -14 + 45 0.948 £ 0.083 5 + 45
r 0.952 4 0.063 170 + 121 0.953 + 0.071 144 4+ 137 0.989 + 0.022 -4 + 54
(1) 0.828 + 0.080 368 £ 100  0.804 + 0.081 372+ 102 0.975 + 0.097 11 + 136
(2) 0.945 £ 0.046 137 + 86 0.936 £ 0.050 124 + 94 0.995 & 0.044 -20 + 83
(3) 0.929 + 0.148 523 £ 1102 0.930 £ 0.169 506 £ 1262 0.973 + 0.052 179 + 418
A 0.956 £ 0.019 -1.5 £ 3.6 0.959 £ 0.020 -1.0+£ 3.6 1.003 = 0.016 0.3 4+ 3.2
(1) 0.898 £ 0.071 -29+ 134 09124+ 0.073 -3.14+13.7 1.016 + 0.071 -0.2 + 11.6
(2) 0.965 4+ 0.039 1254+ 91.3 0976 + 0.040 -1.4 £ 955 1.013+ 0.038 -16.9 + 91.2
(3) 0.952 &£ 0.025 -0.4 £ 4.0 0.952 + 0.026 -0.3 £ 3.9 0.998 4+ 0.022 0.7+ 3.6
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