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ABSTRACT

Estimates of solar normal mode frequencies from helioseismic observations can

be improved by using Multitaper Spectral Analysis (MTSA) to estimate spectra

from the time series, then using wavelet denoising of the log spectra. MTSA leads

to a power spectrum estimate with reduced variance and better leakage properties

than the conventional periodogram. Under the assumption of stationarity and mild

regularity conditions, the log multitaper spectrum has a statistical distribution that is

approximately Gaussian, so wavelet denoising is asymptotically an optimal method to

reduce the noise in tile estimated spectra. We find that a single rn-v spectrum benefits

greatly from MTSA followed by wavelet denoising, and that wavelet denoising by itself

can be used to improve m-averaged spectra.

We compare estimates using two different 5-taper estimates (Slepian and sine

tapers) and the periodogram estimate, for GONG time series at selected angular

degrees g. We compare those three spectra with and without wavelet-denoising, both

visually, and in terms of the mode parameters estimated from the pre-processed spectra

using the GONG peak-fitting algorithm. The two multitaper estimates give equivalent

results. Tile number of modes fitted well by the GONG algorithm is 20% to 60% larger

(depending on e and the temporal frequency) when applied to the multitaper estimates

than when applied to the periodogram. The estimated mode parameters (frequency,

amplitude and width) are comparable for the three power spectrum estimates, except

'Present Address: NCR Corporation, 2651 Satellite Boulevard, Duluth, GA 30136

2Operated by the Association of Universities for Research in Astronomy, Inc. under cooperative agreement with

the National Science Foundation.



for modes with very small mode widths (a few frequency bins), where the multitaper

spectra broaden the modes compared with the periodogram.

At frequencies below 3 mHz, wavelet denoising of the log multitaper power spectra

tends to increase the number of modes for which the GONG peak fitting algorithm

converges well. Close to 3 mHz, where all modes are resolved, wavelet denoising makes

little difference. At higher frequencies close to the acoustic cut-off frequency, where

modes are blended into ridges, wavelet denoising the multitaper spectra reduces the

numbe_ of good fits.

We tested the influence of the number of tapers used and found that narrow modes

at low n values are broadened to the extent that they can no longer be fit if the

number of tapers is too large. For helioseismic time series of this length and temporal

resolution, the optimal number of tapers is less than 10.

Subject headings: Sun: oscillations -- Techniques: time series analysis -- Techniques:

image processing

1. INTRODUCTION

The primary data products of helioseismology are the mode frequencies of acoustic oscillations,

which are used to infer the structure and kinematics of the solar interior. With the excellent

data available now from instruments such as GONG and SOHO-SOI/MDI, greater accuracy and

reliability of the data processing is required to make substantial progress in the understanding of

the solar interior (for example, the existence of a polar jet, as discussed by Howe et al. 1998).

In addition, other mode parameters such as amplitude, asymmetry, and width are increasingly

interesting. We address the step of converting the observed time series to frequency spectra, and

study tile potential benefits of modern time series analysis techniques. We apply Multitaper

Spectral Analysis (MTSA) to the observed time series to derive power spectrum estimates, and

then apply wavelet denoising to the log spectra to further improve the signal-to-noise ratio of

the modes, h,ITSA has better bias and variance properties than the conventional periodogram

and, tinder the assumption of stationarity and mikl regularity, the log multitaper spectrum has

approximately Gaussian statistics, so wavelet denoising is an asymptotically optimal method to

reduce the noise level in the calculated spectra (cf. Walden, McCoy, & Percival 1995). Other

wavelet-based methods to reduce noise in astronomical data exist, such as Murtagh, Starck, _z

Bijaoui (1995) and Fligge g¢ Solanki (1997). We note that we use 'standard' multitaper techniques

without special treatment of data gaps. This seems reasonable for GONG or SOHO-SOI/MDI

data which have better than 85% duty ratio, and the gaps are short and more or less randomly

distributed. Additional work (Fodor & Stark 1998) includes the gap structure and constructs

optimal tapers for time series with known gaps. We have put together a 'pipeline' to calculate a

multitaper spectral estimate from a given time series, apply wavelet denoising to the log spectra



andthenderivemodeparametersusingthe GONGpeak-fittingalgorithmof Anderson,Duvall,
Jr., & Jefferies(1990).This pipelinewasfirst appliedto asetof simpleartificial data to checkfor
systematicerrorsandconsistency,andthenappliedto observedtime seriesof differentlengths
(daily,monthly,etc.).

Wedescribethe methodin detailandcomparequantitativelythreepowerspectrumestimates
(5-taperestimatesusingSlepianor sinetapers,and the periodogram)usingGONGmonth16
timesseriesfor threedifferentvaluesof angulardegreeg. Wealsocomparedeachof the three
spectrumestimateswith thecorrespondingwaveletdenoisedspectrum.Multitaperinghelpsquite
generally,andwaveletdenoisinggivesadditionalbenefitsat somefrequencies.Thenewmethods
arenot biasedsystematicallycomparedwith eachother. Thesinglebest thing to improvemode
fitting is to usea multitaperspectrumestimate.Waveletdenoisingcanfurther improvemultitaper
spectrumestimatesfor modefrequenciesbelowabout3 mHz.

2. MULTITAPER SPECTRAL ANALYSIS

MTSA is an extensionof single taper spectralanalysiswherethe time seriesis
multiplied/apodizedwith a singlewindowfunction or data taper beforecalculatingthe
powerspectrum(Thomson1982).Comparedwith the periodogram,a powerspectrumestimate
that usesa smoothwindowfunction,suchas a Hanningwindow,can reducespectralleakage
(not to beconfusedwith spatial leakage).The windowfunctionsthat minimizeleakagegive less
weightto theendsof the timeseries.Themultitaperapproachusesavarietyof orthogonaltapers,
someof whichgivemoreweightto the endsof the time series,trading off biasand variance.A
multitaperestimatethat useswellselectedtaperscangainfromthe bias-variancetradeoff,giving
anestimatethat hassmall biascomparedwith a singletaperestimate,but substantiallylower
variance.MTSA is describedand motivatedclearlyandin detail by Percival& Walden(1993).
The basicprocedureis asfollows: The time series{Xt} is multipliedby eachof K different

fh _K-1 The periodogram of the K resulting series is computed, resulting in Kdata tapers, "t t,k/k=0 •

l(3(mt)gf "_'tl<-I The multitaper spectrum estimate is the averageestimates of the power spectrum, t _ t JJk=0 •

of these K power spectrum estimates:

for

1 K-1

_(mt)(f) _ K _ _(mt)(f) (1)
k=O

N-1

_,_mt)(f) =_ At I _ ht,k Xt exp(-i2_rftAt) 2 . (2)
t=O

The tapers {ht,k} are normalized so that _N__l h 2 = 1, and At is the sampling interval.t,k

The tapers are chosen to be concentrated in the frequency domain, so that ttleir broad baz)d
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biasis assmallaspossible.If thedata tapersarepairwiseothogonal,i.e.,

N-I

ht,j ht,k = 0 Vj # k, (3)
t=0

then their corresponding power spectrum estimates, _(mt)(f), are approximately uncorrelated

(asymptotically uneorrelated for long time series for a wide variety of processes). The average of

the K power spectrum estimates, _(mO(f), then has smaller variance than the individual power

spectrum estimates by a factor that approaches 1/K. a Figure 1 gives an example of orthogonal

tapers and shows the first five 4rr Slepian tapers (4re discrete prolate spheroidal sequences) in the

left column. The first taper resembles a conventional data taper such as the Hanning window:

it gives more weight to the center of the time series than to its ends. Tapers for larger k give

increasingly more weight to the ends of the time series. The right column shows the taper energy,

which is the sum of the squared tapers, normalized by the number of tapers, K. It is evident that

the portion of the time series that receives large weight increases as the number of tapers increases.

To ensure good leakage/bias properties, the tapers should be concentrated in the frequency

domain. One way to define a family of 'optimal' tapers is as follows: (1) Specify a measure of

concentration in the frequency domain. (2) Among all functions that vanish where there are no

data, find the function for which the concentration is maximal. (3) Among all functions orthogonat

to the first function and that vanish where there are no data, find the function for which the

concentration is maximal. One repeats step (3) insisting that the function sought be orthogonal

to all the previous functions found, until one has the desired number of tapers. For quadratic

measures of spectral concentration, such as the ratio of the power in the band I-W, W] to the total

power, this can be cast as an eigenvalue problem (Slepian 1978, 1983). When observations are

available continuously within an interval, and concentration is measured by the fraction of power

in the band [-W, W], the eigenfunctions are prolate spheroidal wavefunctions. For a discretized

signal with observations available at every sample point within an interval, and concentration is

measured by the fraction of power in the band [-I4_ W], the eigenfunctions are called time-limited

"discrete prolate spheroidal sequences" (dpss) or Slepian tapers. Figure 2 shows the first 11

eigenvalues, Ak, of nTr Slepian tapers for n = 3, 4, and 5 with n being a measure of the resolution

bandwidth, 2IV = 2n/(NAt), which increases with increasing n. The eigenvalues are the fraction

of power in the given frequency interval. The closer Ak is to 1, the less broad-band leakage. The

first (2n) tapers (with index k = 0, ..., n- 1) have eigenvalues larger than ½ and the first (2n - 2)

eigenvalues are extremely close to 1: the tapers are nearly perfectly concentrated to the band

[-W, W]. The last N - 2n tapers have most of their power outside the band [-W, W] and thus

have poor broad-band bias. The number of tapers with good leakage properties increases with

77 and with the concentration bandwidth 2W. Typically, n is chosen to be 2, 3, or 4 to limit

3IIowevcv, this does noL lead to a proportional reduction in the formal errors of fitted mode parameters, see

Section 5.2.



bias caused by the width of the central lobe of the power spectrum of the taper. The trade-off

depends on the length of the time series and the frequency resolution required for subsequent data

processing, among other things.

Riedel & Sidorenko (1995) introduced a different measure of spectral concentration for tapers,

based on an asymptotic expression for the local bias. Their measure again leads to a quadratic

optimization problem that can be cast as an eigenvalue problem. They showed that the optimal

tapers for that definition of spectral concentration were approximated quite well by sine tapers,

which are extremely easy to compute, and are orthogonal (for data without gaps). The k-th sine

taper is

i 2 . [ r:kiv2 = N + 1 s,n_,_--_) (4)

with i = 0, ..., N - 1. The multiplieative constant makes the tapers orthonormal.

For stationary Gaussian processes, the distribution of a singly tapered spectrum estimate at

a given frequency is that of a constant times a X_ random variable. In contrast, if K orthogonal

tapers are used, the distribution is approximately (asymptotically in the length of the time series)
2that of a constant times a X2K random variable. The logarithm of the multitaper spectrum

estimate has a more nearly Gaussian distribution than does tile logarithm of a singly tapered

estimate. Indeed, Walden, McCoy, & Percival (1995) find that if five or more tapers are used, the

Gaussian approximation is good, although that result clearly depends on details of the underlying

spectrum and the length of the time series. Wavelet shrinkage denoising is asymptotically an

optimal method to enhance tile signal-to-noise ratio of the estimate of a function observed with

additive Gaussian noise (Donoho et al. 1993); Walden, McCoy, _ Percival (1995) demonstrate

its application to multitaper spectrum estimates. Wavelet shrinkage denoising is a nonlinear

procedure that does not tend to smear fine-scale features in the data, as linear smoothing does.

3. WAVELET DENOISING

We use the discrete wavelet transform (cf. Donoho & Johnstone 1994 and references therein)

with orthogonal wavelet bases; examples of orthogona[ wavelet bases are the original Daubechies

wavelets and the Coiflets and Symmlets, of. Daubechies (1993). Wavelet denoising works for

many classes of signals because, as reasonable models of real-world phenomena, they usually

have extremely sparse wavelet decompositions: relatively few large coefficients yield an excellent

approximation. On the other hand, Gaussian white noise remains Gaussian with the same

rms-amplitude after a wavelet transform. The basic strategy in wavelet denoising is to define

a thresholding or "shrinkage" scheme that retains the large wavelet coefficients, which are

predominantly signal, and rejects the small coefficients, which are predominantly noise. For a

formal argument see, for example, Donoho (1993).

The discrete wavelet transform maps a signal of N = 2 "/+1 discrete data points into the same
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numberof waveletcoefficients,wjk, with (J + 1) scales or dyads, indexed by j = 0, ..., J, and (2 J)

coefficients per dyad, indexed by k = 0, ..., 2J - 1. Figure 3 shows different thresholding schemes

such as hard (keep or kill) and soft (shrink or kill). Hard thresholding keeps all wavelet coefficents

above a certain threshold, and sets all smaller coefficients to zero, while soft thresholding reduces

even the coefficients above the threshold by the amount of the threshold. The threshold, 0 given

by Donoho & Johnstone (1994) is

0 _= _/21og(g) as, (5)

where N is the signal length and aj is the noise level in the observations at scale j. In

level-independent shrinkage, crj is estimated by the median absolute deviation (MAD) of the

wavelet coefficients at the finest scale (J), normalized by 0.6745 to correspond to the standard

deviation of a Gaussian distribution:

6j - median(Iwjk - median(wak)l)/0.6745. (6)

In level-dependent shrinkage, the standard deviation of the noise level at scale j is estimated by

the median absolute deviation of the coefficients at scale j; because the coefficients at broad scales

tend to have nontrivial components of the signal, this can over-estimate the noise level at those

scales, resulting in too much shrinkage, attenuating the real signal. In tests on artificial and real

helioseismic data, we found that level-dependent shrinkage distorted the modes unacceptably.

This agrees with Walden, McCoy, & Percival (1995) who found that with the exception of white

noise, scale-independent thresholding leads to better results than scale-dependent thresholding.

Therefore, we use level-independent shrinkage throughout this work.

Hard thresholding recovers the signal well in mean squared error, but tends not to suppress

some noise spikes (spikes do not make a large contribution to mean squared error). Soft

thresholding leaves fewer noise spikes, but tends to attenuate the signal because even the largest

wavelet coefficients are shrunk towards zero. Gao & Bruce (1995) introduced semisoft thresholding

(kill, shrink, or keep) as a compromise between hard and soft thresholding. The two thresholds

defining three ranges bracket 0 as defined in Equation (5) and are given as a function of N in

Table 1 of their paper.

In tests using artificial and real data, we found that a modified semisoft or "semihard"

thresholding scheme worked best for helioseismic data. The threshold function is shown in

Figure 3. The lower threshold is 0 as defined in Equation (5), and the upper semisoft threshold

is that of Gao & Bruce (1995). The semihard thresholding scheme reduces the visual roughness

of the estimate more than the semisoft scheme without distorting the signal structure. Hard

thresholding also preserves the mode structure, but gives estimates that are visually too rough,

while soft thresholding gives the smoothest estimates, but broadens the modes unacceptably. We
use the semihard threshold below.

Out" ultimate wavelet shrinkage procedure is the following: we wavelet-transforln the log

power spectrum, scale the wavelet coefficients by the estimated deviation, £ra, of the coefficients



at the finestscale,apply the "semi-hard"thresholdto thecoefficients,rescalethecoefficients,and
inversewavelet-transformthemto obtainthe "denoised"estimateof the logpowerspectrum.

This denoisingschemecanintroducea smallsystematicfrequencyshift dueto the lack of
translationinvarianceof the waveletbasis.To eliminatethis effect,weusedtranslation-invariant
waveletdenoising(Coifman& Donoho1995)whichefficientlyshifts thesignaloverall positions
andaveragesthe denoisedshiftedsignals(aftershiftingthemback).This procedurealsoreduces
theinfluenceof thespecificwaveletbasischosen.WetriedHaar,Daubechies,Coiflet,andSymmlet
bases.Wefound that for our data,Symmletsof order8 producedestimatesthat werevisually
preferable,andtook the leasttimeto compute.

Thedenoisingprocedurecanbe restrictedto a rangeof scalesfrom the smallestto anupper
limit. It mightnot benecessaryto denoisethelargestscales,becausetheytendto containprimarily
large-scaletrendsin the signaland not noise.A valueof jmin = 4 or jmin = int(x/2 log(N)) is

a good choice for signals of length N = 2048 or less, while a larger value of jmi, ___7 is more

appropriate for long helioseismic data sets, where N is typically about N = 216 or larger.

4. IMPLEMENTATION

To calculate multitaper spectrum estimates from helioseismic time series, we used 37r Slepian

tapers to ensure that the widths of p-modes are not broadened by the resolution bandwidth of the

tapers. We averaged over K = 5 singly tapered spectrum estimates. We also calculated multitaper

spectrum estimates using the first five sine tapers. For MTSA with Slepian tapers, we used

subroutines written in C by Lees & Park (1995). To create the multitaper spectrum estimates, we

averaged the singly tapered spectrum estimates weighted according to their respective eigenvalues.

To wavelet denoise the log-spectra, we used the WaveLab package by Buckheit et al. (1995),

translated to IDL by Graps (1995). We added translation-invariant denoising, which is part of

the current version of WaveLab, to the IDL package and implemented semisoft and semihard

thresholding, which were not in the IDL or WaveLab package. To derive mode parameters from

the resulting spectra, we used the GONG peak-fitting algorithm developed by Anderson, Duvall,

Jr., & Jefferies (1990).

Tile peak-fitting algorithm uses a maximum-likelihood method assuming k'2 statistics with

two degrees of freedom, while the multitaper estimate asymptotically drives the analyzed spectra

toward Gaussian statistics (with k tapers leading to X2 statistics with 2k degrees of freedom).

General minimization algorithms assume either Gaussian or X2 statistics. Anderson, Duvall, Jr.,
& Jefferies (1990) mention that the changes required to fit an average spectrum of k spectra

is to multiply the likelihood function by k and divide the error by _/k. They compared the

results of fitting 1,000 artificial realizations (of a single spectrum) using their maximum likelihood

method and using a least-squares approach. They found that both techniques yield the same

mode frequency, but that only the maximum likelihood technique yields reliable estimates of mode
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width, amplitudeand backgroundin this case.Thus,weproceedusingthe GONGpeak-fitting
algorithmandcomparemodeparametersderivedfrom thedifferentspectralestimatesin orderto
checkfor systematicdifferences.

We appliedthe proceduresto artificial data to checkfor systematicfrequencyshifts. To
test multitaper spectralanalysis,wecreateda set of timeserieswith a knownlimit spectrum,
followingSchou& Brown (1992)to modelindividual modesasstochasticallyexciteddamped
oscillators.We assumethat the modelifetimeis smallcomparedto the lengthof the wholetime
seriesbut largecomparedto thetime cadenceof observation.Themodeis randomlyexcitedmany
timesoverthe wholetime interval¢¢ith the time interval between two 'kicks' small compared to

the mode lifetime. To simplify the modeling, we excite the mode only at temporal grid points.

Two or more kicks at the same time grid point are considered to be one kick. We compensate

for overlapping kicks by adjusting the sample size of uniformly distributed random numbers.

The amplitude of each kick is scaled to ensure that the average power stays constant. In this

way, we generate noise-free time series of a single mode. Multi-mode time series are generated

by summing several single-mode time series. This ignores coupling in the excitation process or

by nonlinearity. We calculated 1,000 realizations of the n = 10, _ = 50 mode (with a length

of 36 days, one 'GONG month'). For each time series, we calculated a periodogram, a 5-taper

37r Slepian spectrum estimate, and a 5-sine taper spectrum estimate. We then used the GONG

peak-fitting procedure to estimate mode parameters from the various spectrum estimates. The

average mode frequency differs by 2 nHz with a standard deviation of 226 nHz (periodogram),

1 + 233 nHz (Slepian multitaper), and 1 4- 245 nHz (sine multitaper) from the input mode

frequency (v = 3045.5339 #Hz). The standard deviation is slightly smaller than one frequency bin.

The rms differences between periodogram and multitaper spectra are 44 nHz (Slepian) and 51 nHz

(sine). The frequency estimates determined from the periodogram and multitaper spectra do not

differ systematically in a statistically significant way.

To evaluate wavelet denoising, we created artificial spectra that contained a single mode

plus realization noise for four different signal-to-noise ratios (S/N = 50, 20, 10, and 5). We

modeled the modes as Lorentzian profiles using a subroutine written by E. Anderson. For each

signal-to-noise ratio, we created 1,000 artificial spectra with a spectral pixel size of 0.2 #Hz and

a mode frequency of v = 3045.9 #Hz, which is close to but slightly different from the n = 10,

C = 50 mode. We applied single wavelet denoising and translation-invariant (TI) denoising to

the spectra, using semihard thresholding. For large signal-to-noise ratio (S/N=50), we find that

the average mode frequency differs by -6 nIh with a standard deviation of 212 nHz (original),

-5 + 214 nHz (denoised), and -8 + 212 nHz (TI denoised) from the input mode frequency. The

rms difference between the denoised and original spectra is 13 nHz, compared with only 3 nHz for

TI denoised and original spectra. For small signal-to-noise ratio (S/N=10), the average difference

is -65 4- 306 nHz for the simple denoising scheme, while it is -10 4- 303 nHz for the TI-denoised

spectra and -12 + 283 nHz for the original spectra. The rms differences between the denoised

and original spectra increase to 107 nHz (denoised) and to 46 nHz (TI denoised). Simple wavelet



denoisingcan introducea small,systematicshift in frequency,whileTI denoisingdoesnot show
this systematicshift. Therefore,weuseTI waveletdenoisinghenceforthin this study.

5. RESULTS

5.1. Helioseismic Data: GONG month 16

We applied MTSA and wavelet denoising to different helioseismic data sets obtained from

South Pole, SOI and GONG. For quantitative comparisons, we use a 36-day GONG time series for

angular degrees g = 30, 65, and 1O0. A merged GONG month time series is created by combining

36 network days; GONG month 16, used here, begins 28 Oct. 1996 and ends 2 Dec. 1996. GONG

has a one-minute cadence, so the network month time series contains 51,840 data points. For

month 16, the data fill factor is 0.94; short gaps were filled using an autoregressive filter, gaps

larger than 2 minutes are set to zero. The data set for each g contains the complex time series

for each spherical harmonic, m, from 0 to g, and in addition the gap structure (before and after

gap-filling) as a function of time.

Figure 4 shows three power spectrum estimates of the GONG month 16 velocity time series

(28 Oct 1996 - 2 Dec 1996, 36 days) of e = 100, m = 0 in the left column and the corresponding

wavelet denoised spectra in the right column. For simplicity, we show only a small part of the

spectra; the complete spectra extend over the bins from 0 to 8333 #Ilz. For tlle MTSA spectrum

estimates, we used five 3rr Slepian tapers and five sine tapers. The Slepian multitaper spectrum

is clearly better than the periodogram. It has much smaller variance, and the modes are better

resolved. The sine multitaper spectrum estimate is quite similar to the Slepian estimate except for

some background details.

The right column in Figure 4 shows that wavelet denoising cleans the periodogram, but it

reduces tile mode amplitude drastically. The 'click' at about 3000 #Itz in tile upper right i)anel is

a typical artifact of noise in one wavelet coefficient exceeding the threshold, and thus remaining

unattenuated in the denoised reconstruction. Wavelet denoising works well for the two multitaper

spectra, leaving tile principal mode and leaks clearly distinguishable, and smoothing tile mode

structure without broadening it.

5.2. Quantitative Comparison

We compared the number of primary modes the GONG peak-fitting algorithm fits successfully

for the different spectrum estimates. The peak-fitting algorithm has two error flags related to the

quality of the fit to a mode. One is based on heuristic assumptions about the modes; tile other

indicates numerical difficulties (cf. Hill et al. 1998). The numerical flag indicates how well the

minimization of the likelihood function converges and distinguishes between failure to converge,
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convergencewith somedifficulty,andstrict convergence.Strict convergenceis necessarybut not
sufficientfor a goodfit. Thetop rowof Figure5showsanexamplewherethefit to a periodogram
fails to converge(left panel),while the fit to the correspondingdenoisedmultitaperspectrum
converges(right panel). The heuristicflag includes,for example,a test to ensurethat the fit
hasnot lockedonto thefirst guess;that the fitted width is within a factor of two of the first
guesswidth; etc.The bottom rowof Figure5 showsanexamplewherethe fit to a periodogram
is rejectedby the heuristicflag (left panel)becausethe fitted frequencyerror is larger than half
the first guesswidth. Thecorrespondingdenoisedmultitaperspectrumleadsto a goodfit (right;
panel).Weuseonly modefits that aregoodaccordingto both flags.

The threepanelsin Figure6 showshistogramsof the numberof goodfits (solid line) as
a functionof frequencyfor the periodogram,the sinemultitaper,andcorrespondingdenoised
multitaperspectrumestimatesfor angulardegree_ -- 30. The correspondinghistogramsof the
Slepianmultitaperspectraareverysimilarand arenot shownhere.Eachbin correspondsto all
modesof a singleradialordern averaged over all angular orders m values. The radial orders of

the modes in the data range from n = 4 to n =- 25. The total number of fits, good and bad, is

shown by the dotted line. In the frequency range from about 2000 to 4000 #Hz, all (2e-t- 1) modes

are present in the data. For the periodogram in the top panel, the number of good fits is only

43% of the total number of modes. This fraction increases to 80% for the multitaper spectrum

estimate in the middle panel. With MTSA, _he number of good fits increases for all frequency

bins compared to the periodogram results (included as dashed line). The bottom panel shows the

wavelet-denoised multitaper spectrum estimate (solid line) and the multitaper spectrum estimate

(dashed line) for comparison. Wavelet denoising further increases the number of good fits at

frequencies below about 2000 #Hz, while it tends to reduce the number of good fits at frequencies

above about 4000 #Hz, where modes blend into ridges. In the frequency range of well-resolved

modes around 3000 #Hz, wavelet denoising increases the number of good fits at some n values and

reduces it at others, leading to a small net gain.

Figures 7 and 8 show tile same for g = 65 and t7= 100. As in Figure 6, each bin contains all

modes of a single n value ranging from n = 1 to n = 19 for _e= 65, and from n = 0 to n = 15 for

/? = 100. Figure 7 shows that for £ = 65, multitapering greatly improves the number of good fits

at all frequencies compared to the periodogram, but especially between about 2000 and 4000 #Hz,

where ahnost all possible (2_ + 1) modes can be fitted well to the multitaper spectrum estimates.

Wavelet denoising improves the fits at low n values (below about 2000 #Hz). The fit of the n = 1

mode is good only for the denoised spectrum estimate. Denoising makes no difference in the range

of well-resolved modes, where multitapering leads already to good fits at all modes, while at high

frequencies denoising reduces the number of good fits. In Figure 8, the _ = 100 spectra spectrum

estimates show a similar behavior.

Table 1 shows the total number of fitted modes and the number of good fits for angular

degrees C = 30, 65, and 100 (cf. Figures 6 to 8). The numbers of good fits are separated into

three frequency ranges: (1) u < 2.5mHz, low signal-to-noise modes; (2) 2.5mHz< v < 3.5mHz,
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well-resolvedmodes;and (3) _, >_ 3.5mHz, blended modes. Not surprisingly, the total number

of primary modes is about the same for all three estimates (cf. dotted line in Figures 6 to 8).

However, the number of good fits increases by about 60% when a multitaper spectrum estimate

is fitted instead of the periodogram. As a function of frequency, the smallest increase is in the

frequency range (2), where the modes are well-resolved (_ 12% at g = 65), since there the number

of good fits does not depend strongly on the method used. The largest increase is in the low

frequency range (1) (_ 100% at e = 65), where the modes have a low signal-to-noise ratio, while

the increase is average in the high frequency range (3) (_ 30% at g = 65), where the modes are

blended into ridges.

Table 2 is the same as Table 1, but for the wavelet-denoised spectrum estimates for angular

degrees g = 30, 65, and 100. As expected from Figure 4, denoising oversmooths the periodogram

and reduces the number of good fits substantially, for example, to 65% of the value in Table 1 for

= 65. For the multitaper spectrum estimates, the number of good fits increases by 5% at low

and mid frequencies compared to the values in Table 1, while at high frequencies, the number of

good fits increases by 4% for g = 30 and decreases by 25% at g = 100.

Figure 9 compares three mode parameter estimates (frequency, full-width at half maximum,

and amplitude) of all good fits common to the three power spectrum estimates for C = 65,

between 2.5 mHz and 3.5 mHz. At this e value and frequency range, almost every mode is fitted

in all three spectral estimates (cf. Figure 7). The rows show estimated mode frequency (_),

width (F), and amplitude (A) from top to bottom. The left column presents scatter plots of

periodogram parameter estimates (x-axis) versus Slepian spectrum parameter estimates (y-axis),

the middle column shows periodogram (x-axis) versus sine multitaper spectrum estimates (y-axis),

and the right shows Slepian (x-axis) versus sine (y-axis) spectrum estimates. The initial guess

was subtracted from the frequencies. The two background parameters, background amplitude

and slope, are closely linked to the mode amplitude, and show a behavior similar to the mode

amplitude. The three parameters show a positive correlation close to one between each pair of

estimates. The scatter is the smallest between the two multitaper estimates in the right column.

To quantify this correlation, we calculated a linear regression between the l)arameters of any

two spectrum estimates for each of the three mode parameters taking into account the errors in

both data sets. The regression is included in Figure 9 as solid line. The regression parameters

are tabulated in Table 3. For the mode frequency, the regression slope is very close to one and

the intercept is below 10 nHz, determined from all 1285 good fits common to the three spectra.

As a function of frequency, this is also true for modes below 3.SmHz. For modes above 3.5 mHz,

the slope is about 0.84 and the intercept is as large as 32 nHz between multitaper spectra and

periodgram.

For mode width, the slope of the regression line for the multitaper spectra is close to one,

independent of frequency, and between the periodogram and any of the two multitaper spectra

in the range of well-resolved modes (2.5 mHz < u < 3.5 mHz). The intercept is relatively small
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in thesecasesandconsistentwith zero. For the low- and high-frequencyranges,regressing
multitaperspectraagainstthe periodogramleadsto a slopeof about0.8anda positiveintercept.
At frequenciesabove3.5 mHz, the modesare ratherbroad,and with increasingwidth, the
scatterincreasesto thepoint that the width estimatedfrom the periodogramis no longerlinearly
associatedwith the width estimatedfrom a multitaperspectrum,makinga linear regression
meaningless.If the regressionis limited to modeswherethe modewidth is smallerthan half
the distanceto the nearestg leak (-_t > 2F), the slope increases to 0.88 between estimates from

periodogram and from the two multitaper spectrum estimates; the intercept is reduced by a factor

of three. In addition, the corresponding regression slope between the frequencies increases from

0.84 to 0.99 and the intercept is reduced by 10 nHz. The widths of the modes below 2.5 mHz are

less than 1.60 #Hz (about six frequency bins), which means that they are comparable in size to

the width of the central lobe of the combined tapers (cf. Section 2). Thus, these narrow modes are

slightly broadened by the multitapering.

For the mode amplitude, the regression does not show a frequency dependence. The slope is

close to one between every pair of power spectrum estimates, and the intercept is zero compared

to the mode amplitudes. The background amplitude and the background slope, not shown here,

give regression results similar to those of the mode amplitude.

Figure 10 shows a comparison of formal parameter fit errors determined from the inverse

of the llessian matrix at the fitted parameter values (_u: frequency, _F: width, _A: amplitude)

for the well-resolved modes. It is known that the formal error is an unreliable estimate of the

true uncertainty and reproducibility of the parameter estimates. As in Figure 9, the left column

shows periodogram versus Slepian spectrum, the middle column shows periodogram versus sine

spectrum, and the right shows Slepian versus sine spectrum. The frequency and width errors

are in #Hz. The average frequency error is about 0.2 #Hz for modes below 3.5 mHz, comparable

to but slightly smaller than a single frequency bin in the spectra, and 0.9 t_Hz for modes above

3.5 mItz. As with the mode parameters, the mode errors are positively correlated, with a slope

close to one and a small, nearly zero, intercept. The different spectral estimates lead essentially to
tile same formal fit errors.

The peak-fitting algorithm converges in fewer iterations for the multitaper spectrum estimates

than for tile periodogram. The average number of iterations is 75.1 -t- 20.8 for the periodogram,

57.0-t- 11.9 for the Slepian and 56.7 d= 11.8 for the sine multitaper spectrum. This is a reduction of

24%.

We calculated the difference between parameters from any two power spectrum estimates and

scaled them by the formal error estimate provided by the peak-fitting algorithm, which is another

way to check for systematic offsets. Figure 11 shows histograms of fit parameter differences scaled

by the formal fit errors (L,: frequency, F: width, A: amplitude) for well-resolved modes between

2.5 and 3.5mHz. The left column shows Slepian spectrum estimate minus periodogram scaled by

periodogram error, the middle column shows sine spectrum estimate minus periodogram scaled
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by periodogramerror,and the right oneshowssineminusSlepianspectrumestimatesscaledby
Slepianerror. The distributionsareall wellwithin oneformalerrorbar centeredaroundzero,
andthe multitaperspectrumestimates(right column)leadto the narrowestdistributions,as in
Figure9. Offsetsaresmallcomparedto the fit errorandareon the orderof percent(2%4- 1%)

for all three mode parameters. The same is true for modes at lower and higher frequencies except

for the mode width between periodogram and multitaper spectrum (cf. Table 3), where the offset

is about 20% of the error.

Wavelet denoised spectrum estimates show the same general behavior. A scatterplot of

estimated mode parameters of all good fits common to the periodogram and either of the two

denoised multitaper spectra looks very similar to those shown in Figure 9. We performed a

regression of the parameters estimated for every pair of spectrum estimates. In Table 4, the

regression slopes and intercepts show the same behavior as in Table 3, with regression slopes close

to one and intercepts close to zero. We repeated this analysis for g = 30 and g = 100 and found

tile same result as for _ = 65.

5.3. Number of Tapers

As discussed in Section 2, there is a trade-off between bias and variance in choosing the

number of tapers to use in MTSA. If the number of tapers is too large, detail in the spectrum

estimates is lost, while if it is too small, the variance remains unnecessarily large. Resolving modes

of a given width sets an upper limit for the number of tapers (see mode width for u _< 2.5 mHz

in Table 3). To estimate this limit, we calculated multitaper spectrum estimates using up to 50

tapers for g = 65. Figure 12 shows that the modes broaden with increasing number of tapers. As a

consequence, the number of good fits decreases when more than 10 tapers are used, to about 28%

for K = 50. The decrease is frequency-dependent; modes with small widths are most sensitive to

the broadening. When the number of tapers increases, modes at increasingly higher frequencies

can no longer be fit. For example, all modes at the lowest n value present in the data (n = 1)

disappeared when the number of tapers increased from 5 to 10 and for 50 tapers only modes of

n = 10 and higher can be fit. This test suggests that for helioseismic time series of this length,

frequency resolution, and gap structure, the optimal number of tapers is below 10.

To study in more detail the influence of the number of tapers on the quality of estimated

mode parameters, we repeated the analysis using 4 to 10 tapers and calculated the number of

good fits as a function of n averaged over all m values. For n = 3 to 13, the number of tapers had

a negligible effect on the number of good fits: all spectra led on average to 98% + 2% good fits of

the (2g + 1) possible modes. For n = 14 to 18, the number of good fits varies with the number of

tapers, and generally increases with the number of tapers. Itowever, this is the frequency range

where modes are blended into ridges (_e < 2p) and the current GONG peakfinding algorithm

should not be applied. For n = 1 and 2, the number of good fits decreases with increasing number

of tapers; using 9 and 10 tapers leads to substantially smaller numbers of good fits. This suggests
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that the numberof goodfits is nearlyconstantfor k = 4 to 7. Using a small number of tapers

leaves the computations inexpensive and avoids excessive broadening of modes present for small n.

6. CONCLUSION

(1) Multitapering and wavelet denoising allow the GONG peak-fitting algorithm to fit more

mode parameters successfully, a:s defined by the error flags in the GONG fitting procedure (cf.

Tables 1 and 2). The improvement depends on the angular degree g, the temporal frequency, and

details of the time series. For the time series used in this work, multitapering increases the number

of modes fitted well by 20% to 60% at frequencies below 3.5 mHz. Wavelet denoising adds about

5% more. We have also analyzed multitaper spectra covering g = 0 to 150 of a 3-month GONG

time series and found that the improvement is 10% on average over all g values and frequencies

from 1 to 5 mHz with the largest improvement for g _< 70 (cf. Komm et al. 1998).

(2) Multitapering and wavelet denoising do not lead to smaller formal error bars as computed

by the peak-fitting algorithm (cf. Figure 10). Both methods reduce the variance or noise in the

spectrum, making it easier to fit the modes in the spectrum (the peak-fitting algorithm takes fewer

iterations). It is not known whether the effective uncertainty in the mode parameters is smaller

for multitaper spectrum estimates and wavelet-denoised spectrum estimates, because the formal

error bars do not measure the true reproducibility and uncertainty very well.

(3) Multitapering and translation-invariant wavelet denoising do not introduce any obvious

systematic changes in the estimates of mode parameters (cf. Figures 9 and 11). Narrow modes

at low frequencies are broadened by multitapering by about 20%, but these modes are not

well-resolved in the first place. The modes are not broadened by wavelet denoising, as they would

be by a linear filter.

(4) The benefit of multitapering occurs for a small number of tapers. The number of

tapers has to be small ill ordcr not to broaden narrow modes at low frequencies excessively. For

well-resoh, ed modes at higher frequencies, the number of good fits does not depend strongly on

the number of tapers (see Section 5.3). The 'optimal' number of tapers depends on the length of

tile time series. For example, for a 3-month GONG time series, we found that using 7 tapers leads

to the largest number of good mode fits, but increases tile mode widths only slightly (by, 2.9% -t-

1.8% on average for g = 65, n = 3-13).

(5) Considering both techniques discussed here, the largest improvement at the smallest

computational cost results from using multitaper spectrum estimates with sine tapers. Both

multitapering and wavelet denoising improve mode fitting, but the larger improvement results

from multitapering, which requires less computational effort. Because tile difference between

spectrum estimates using Slepian tapers and sine tapers is negligible for these data, it is adequate

to use the more easily and inexpensively computed sine tapers. This is also the case for generalized

sine tapers that take the gap structure into account (Fodor &: Stark 1998).
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Werecommendusingmultitaperspectrumestimatesat all frequenciesandapplyingwavelet
denoisingto multitaperspectraat frequenciesbelow3.0mHz.
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Fig. 1.-- The first five 4_r Slepian tapers (discrete prolate spheroidal sequence data tapers) and

the taper energy as a function of t for different number of tapers (K = 1 to 5).

Fig. 2.-- The first 11 eigenvalues, Ak, of nTr Slepian tapers for n = 3,4, and 5 with n being a

measure of the resolution bandwidth. The resolution bandwidth 2W is defined as W = n/(NAt)

with N being the signal length and At the temporal resolution.

Fig. 3.-- Thresholded wavelet coefficients as a function of wavelet coefficients for four different

thresholding schemes shown for a signal of length N = 2048.

Fig. 4.-- Three power spectrum estimates of the GONG month 16 velocity time series (28 Oct

1996 - 2 Dec 1996, 36 days) of g = 100, m = 0 and the corresponding wavelet denoised spectra.

Fig. 5.-- Two examples where the fit to a periodogram fails (left panels) and the corresponding

denoised multitaper spectrum leads to a good fit (right panels). The thick solid lines indicate the

fits of the multitaper spectra and the dotted lines indicate the central frequency of the fitted mode.

Top row: Failure to converge (numerical flag), g = 65, m = -64, n = 9. Bottom row: Fitted

frequency error is larger than half the first guess width (heuristic flag), g = 65, m = -61, n = 4.

Fig. 6.-- Histograms of the number of good fits (solid line) as a function of frequency for the

periodogram, the sine multitaper sprectrum, and the corresponding denoised multitaper spectrum

of g = 30. Each bin contains the modes of a single n value summed over all m. The dotted line

represents the total number of fits including the bad ones, and the dashed line represents the good

fits from the panel above.

Fig. 7.-- As Figure 6, but for g = 65.

Fig. 8.-- As Figure 6, but for g = 100.

Fig. 9.-- A comparison of fitted mode parameters (u: frequency, F: width, and A: amplitude). The

left column shows periodogram versus Slepian spectrum, the middle column shows periodogram

versus sine spectrum, and the right shows Slepian versus sine spectrum. For nu, the initial guess

value was subtracted.

Fig. 10.-- A comparison of fit parameter errors (au: frequellcy, 61': width, aA: amplitude). The

left column shows periodogram versus Slepiau spectrum, the middle column shows periodogram

versus sine spectrum, and the right shows Slepian versus sine spectrum.

Fig. 11.-- Histograms of fit parameter differences scaled by the fit errors (u: frequency, F: width,

A: amplitude). The left column shows Slepian minus periodogram scaled by periodogram error,

the middle column shows sine minus periodogram scaled by periodogram error, and the right one

shows sine minus Slepian scaled by Slepian error.

Fig. 12.-- Four multitaper power spectra of g = 65 and m = 0 of the GONG mouth 16 velocity
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time series(28Oct 1996- 2 Dec1996,36days)for differentnumberof tapers(h"= 5, 10,20,and
50).
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Table1: Numberof modesfitted in threepowerspectrumestimatesof theGONGmonth16velocity
timeseriesof g = 30, 65, and 100. Tile table shows the total number of modes and tile number of

good fits. The numbers of good fits are separated into three frequency ranges: (1) u <_ 2.5 mHz, low

S/N modes; (2) 2.5 mHz < u < 3.5 mHz, well-resolved modes; (3) u >_ 3.5 mHz, blended modes.

= 30 total good

all u all u (1) (2) (3)

periodogram 1196 516 143 187 186

Slepian 1146 914 277 314 323

Sine 1153 915 274 316 325

g = 65 total good

all u all u (1) (2) (3)

periodogram 2333 1389 215 598 576

Slepian 2260 1880 447 669 764

Sine 2263 1851 436 669 746

g = 100 total good

a,ll u all u (1) (2) (3)

periodogram 3077 837 169 387 281

Slepian 3092 1658 545 535 578

Sine 3108 1628 509 544 575
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Table2: As Table1,but for waveletdenoisedspectra.

g = 30 total good

a,, _ all _ (1) (2) (3)

periodogram 783 486 124 246 116

Slepian 1198 956 286 328 342

Sine 1199 959 292 332 335

£ = 65 total good

aH. all. (1) (2) (3)

periodogram 1702 905 125 422 358

Slepian 2231 1677 451 663 563

Sine 2241 1681 457 666 558

t_= 100 total good

all. all. (1) (2) (3)

periodogram 2498 344 33 83 228

Slepian 3086 1561 567 552 442

Sine 3093 1554 575 550 429
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Table3: Linearregressionof modeparameters(u: frequency,F: width, andA: amplitude) between

any two power spectrum estimates (cf. Figure 9) for N = 1285 good fits common to all three

power spectra of _ = 65 determined for all frequencies and separately for three frequency ranges:

(1) u _< 2.5 mHz, low S/N modes (N = 203); (2) 2.5 mHz < u < 3.5 mHz, well-resolved modes

(g = 593); (3) u > 3.5 mHz, blended modes (N = 489). The table shows slope (a) and intercept

(b). The intercept of frequency and width are in nHz.

g = 65 slepian /periodogram sine taper/periodogram sine /slepian

a b a b a b

0.909 + 0.122 -9 -t- 11 0.905 + 0.136 -9 + 11 0.981 + 0.046

(1) 0.982 4- 0.090 -8 + 21 0.979 + 0.100 -6 + 21 1.011 + 0.090

(2) 1.006 4- 0.055 -5 + 14 1.007 + 0.068 -6 + 14 1.011 + 0.048

(3) 0.847 + 0.178 -25 + 45 0.840 + 0.187 -32 + 46 0.961 + 0.069

1±11

3+22

-5 + 14

-11 +43

F 0.862 4- 0.064 304 4- 128 0.725 4- 0.106 530 4- 221 0.989 4- 0.022

(1) 0.802 4- 0.077 378 4- 97 0.787 4- 0.080 388 4- 100 0.989 4- 0.100

(2) 0.935 4- 0.044 130 4- 82 0.930 4- 0.050 125 4- 93 1.002 4- 0.044

(3) 0.762 4- 0.138 1486 4- 1090 0.558 4- 0.197 2724 + 1767 0.975 4- 0.055

10 + 54

9 ± 139

-18 4. 82

159 ± 473

A 1.003 4- 0.018 -0.3 -t- 2.4 0.987 4- 0.020 0.8 4. 2.5 0.983 + 0.015

(1) 0.954 + 0.074 -3.3 + 13.7 0.942 :t: 0.075 -3.4 + 13.7 0.989 ± 0.069

(2) 1.011 4- 0.040 4.1 + 95.1 1.002 4- 0.041 -4.6 4- 97.7 0.994 4- 0.038

(3) 1.002 4- 0.023 0.0 + 2.6 0.985 4- 0.025 1.3 4- 2.8 0.979 4- 0.019

1.0 4- 2.2

-0.2 4- 11.5

-14.1 4- 93.0

1.4 ± 2.4
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Table 4: Linear regressionof modeparameters(u: frequency,F: width, and A: amplitude)

between the periodogram and the two denoised multitaper spectra (cf. Figure 10) for N = 1226

good fits (bad=0 and ±err=0) common to all three power spectra of g -- 65 determined for all

frequencies and separately for three frequency ranges: (1) _ < 2.hmHz, low S/N modes (N -- 202);

(2) 2.5 mHz < _, < 3.hmHz, well-resolved modes (g -- 587); (3) , > 3.5mHz, blended modes

(N = 437). The table shows slope (a) and intercept (b). The intercept of frequency and width are
in nHz.

e = 65 slepian /periodogram sine taper/periodogram sine /slepian

a b a b a

v 0.960 i 0.097 -12 -t- 11 0.957 ± 0.110 -9 ± 11 0.974 ± 0.052 2 i 11

(1) 0.989 ± 0.093 -17 ± 21 0.981 + 0.102 -10 ± 21 0.999 ± 0.089 7 ± 22

(2) 1.007 ± 0.060 -8 ± 14 1.010 ± 0.070 -7 ± 14 1.009 + 0.049 1 ± 14

(3) 0.924 ± 0.146 -24 ± 45 0.918 ± 0.155 -14 ± 45 0.948 ± 0.083 5 :t: 45

F 0.952 ± 0.063 170 ± 121 0.953 ± 0.071 144 ± 137 0.989 4- 0.022 -4 ± 54

(1) 0.828 ± 0.080 368 ± 100 0.804 ± 0.081 372 ± 102 0.975 ± 0.097 11 ± 136

(2) 0.945 ± 0.046 137 ± 86 0.936 ± 0.050 124 ± 94 0.995 + 0.044 -20 ± 83

(3) 0.929 ± 0.148 523 ± 1102 0.930 ± 0.169 506 ± 1262 0.973 ± 0.052 179 ± 418

A 0.956 ± 0.019 -1.5 + 3.6 0.959 ± 0.020 -1.0 + 3.6 1.003 ± 0.016 0.3 ± 3.2

(1) 0.898± 0.071 -2.9± 13.4 0.912± 0.073 -3.1± 13.7 1.016± 0.071 -0.2± 11.6

(2) 0.965± 0.039 12.5± 91.3 (}.976± 0.040 -1.4 ± 95.5 1.013± 0.038 -16.9± 91.2

(3) 0.952 ± 0.025 -0.4 + 4.0 0.952 ± 0.026 -0.3 ± 3.9 0.998 ± 0.022 0.7 ± 3.6
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