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Abstract

This report describes a nonlinear mapping technique where the unknown static or

dynamic system is approximated by a sum of dimensionally increasing functions (one-

dimensional curves, two-dimensional surfaces, etc.). These lower dimensional functions

are synthesized from a set of multi-resolution basis functions, where the resolutions

specify the level of details at which the nonlinear system is approximated. The basis

functions also cause the parameter estimation step to become linear. This feature is taken

advantage of to derive a systematic procedure to determine and eliminate basis functions

that are less significant for the particular system under identification. The number of

unknown parameters that must be estimated is thus reduced and compact models

obtained. The lower dimensional functions (identified curves and surfaces) permit a kind

of"visualization" into the complexity of the nonlinearity itself.

Introduction

It has been widely recognized nonlinear system identification is an important

problem from both theoretical and practical perspectives. Unlike the case of linear

system identification where systematic and extensive results have been achieved within

the unifying framework of linear system theory, there is no such parallel development for
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the caseof nonlinearsystems.In somecases,systemidentificationsimply refersto the

processof usingtheknownstructureof someanalyticalmodelof a systemto estimateits

unknownphysicalparametersfrom measuredinput-outputdata. In othercases,it is not

possibleor practical to derivea physicalmodeldue to the lack of physical insightsor

modelcomplexity. Generationof a black-boxmodel from measureddatamay thenbe

the only option. Parametersin such a black-box model do not have any physical

interpretation.Whetheror notablack-boxmodelcancapturetheunderlyingnonlinearity

of thephysicalsystemdependson (1) theclassof nonlinearsystemsthata particulartype

of black boxmodel is capableof representing,and(2) the "tunability" of theparameters

within the blackbox structure.This assumesof coursethat sufficientamountof datais

availablefor modelidentification.

It is easyto see why identifying a high dimensional nonlinear function of arbitrary

complexity can be quite difficult by examining the amount of data that is needed to

sample to input space versus the amount of data that one normally has available. For 10-

input problem, if the grid size is 10 for each input variable, one would need 101° or 10

billion data points to sample evenly the input space. Obviously, this is beyond any

reasonable amount of data that one may actually have in practice. One hundred thousand

points (a rather large number by today's standard) represents only a tiny fraction

(0.001%) of that amount. Additional assumptions such as smoothness or low

contribution of higher-order terms must be made to bring the problem down to an

intuitively realistic level. Fortunately this is often the case for many physical systems.

Otherwise high dimensional problems can be easily unmanageable.

As far as black-box models are concerned, perhaps the most studied one in the

past is the Volterra series which has found applications in both identification and control

[1]. A common deficiency of this model is the number of higher-order terms that must be

retained for high-fidelity representation can be impracticably large. In recent years, the

neural networks have emerged as the most viable approach for nonlinear system

identification [2]. Theoretically, it has been proven that any nonlinear function can be

represented by a multi-layer feedforward neural network of sufficient complexity [3].



However, knowing such a network exists is not the same as actually finding it. The

standard multi-layer feedforward structure is a cascaded functional, e.g., functions of

functions, each of which contains parameters to be tuned. Due to the network structure,

these parameters relate to the input-output data nonlinearly. Training such a network is

essentially a nonlinear optimization problem. Typically, it is solved using a gradient-

based iterative scheme such as the well-known back propagation algorithm or its variants.

Remarkably, numerous successes with such training schemes have been reported in the

literature. However, it has also been recognized that the network training process may be

very time-consuming, and susceptible to local minima. One may argue that the

feedforward structure that gives the network its strength in the theoretical ability to model

general nonlinear functions is also the source of its weakness in practice. It should be

mentioned that a class of neural networks known as radial basis function networks aims

at making the training problem linear [4]. This type of network models a nonlinear

system as a linear combination of known basis functions (e.g., Gaussian functions) with

unknown coefficients to be determined. In two-dimensional problems where it is easy to

visualize, the nonlinear surface is defined by a number of hills and valleys each of which

can be modeled by a suitably chosen basis function of appropriate size and at appropriate

location. While the "optimal" location of the centers can be handled within the

framework of linear theory, the "width" of the Gaussian basis functions (which

influences into the compactness of the nonlinear model) must be specified in advance.

Optimizing the widths as well as locations will result in a nonlinear optimization

problem, and this will negate much of the primary advantage of the linear structure in the

first place.

In this work, we explore a nonlinear mapping approach where the nonlinear

function is approximated by sum of dimensionally increasing functions. Recently, Ref.

[5] developed a procedure to construct such an expansion where each of the lower-

dimensional functions is expressed in terms of various integrals of the original function.

This construction is significant in that it shows that the lower-dimensional functions are

more significant than the higher-dimensional ones which correspond to the less important

higher-order statistics (e.g., mean and variance are important but variance of variance is
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rarely used). In a systemidentificationproblem,theoriginal function is not known and

needs to be estimated, thus it is not possible to use this expansion directly. Although

Monte Carlo integration may be used to obtain these integrals numerically from input-

output data, the amount of needed data is too large to be practical. A variant of this

expansion involves function evaluation about a reference point as opposed to function

integration over the input domain [6]. To construct such an expansion, however, one

must be able to generate specialized input data by holding most input variables fixed at

the reference values while varying others. In practice, this is not always possible

especially when modeling dynamic systems where some of the "input" variables are

actually time-delayed output values. It also precludes the use of excitation data that

sample the input domain randomly. More importantly, minimizing the prediction error is

not a stated goal in these developments although such a goal is obviously natural from

system identification point of view. Despite these limitations, it has been recently

observed that expansions of this type, involving only first and sometimes second-order

terms, can capture the underlying nonlinear relationship rather well. Two such

applications are found in chemical kinetics [6] and materials design [7]. The notion of

"order" in this context is related to the dimension of the constitutive components of an

expansion the dimension space. It is not related to the "power" in a power series

expansion as in the case of a Taylor series. Even "first-order" terms can have arbitrary

nonlinearity.

Motivated by this observation, we carry this line of thinking one step further by

actually determining the lower-dimensional expansions that minimize the prediction error

of the model itself. Furthermore, it is natural to model each of these first and second-

order expansions by basis functions. In so doing, the parameter identification step

becomes linear while the system remains nonlinear, thus eliminating difficulties inherent

in any nonlinear iterative approaches. We are essentially trading the compactness of the

feedforward neural network structure for linearity in the parameter identification step. In

return, the number of parameters that must be determined can be large. To handle this

problem, we will show how to take advantage of the linear feature to reduce the number

of parameters that must be calculated. This is achieved by eliminating nonsignificant



basis functions. Furthermore,the basisfunctions are arrangedin a multi-resolution

fashionconsistingof dilated(or compressed)andtranslatedversionsof a singlemother

basis function. This is similar to the way waveletsareconstructed[8]. The multi-

resolutionfeatureallowsoneto generateapproximatemodelsat different level of details

andthis canbematchedupwith the availabledata. Furthermore,it is alsonumerically

efficient in that a higherresolutionmodelcanbegeneratedwithout undoingmostof the

calculationsin obtainingthelower resolutionmodel. It shouldalsobementionedhere

that by decomposingtheunknownsystemin termsof curvesandsurfaces,wehaveaway

to "visualize" the nonlinearity itself. This is a feature not found in conventional

nonlinearmappingtechniques.

Dimensionally Increasing Function Expansion

The basic concept is to decompose a real-valued function of several input

variables into a sum of dimensionally increasing functions. Such an expansion for

y = f(xl,x 2..... x,,) has the form

#1 tl-| n

f(x,,x:.....x,)=I0+Ez(x,>+2; 2z.,(x,,x,)+ ...+
i=l l<i<j l<n

,x:.....x,,) (I)

where f0 is a constant, fi(xi)is a function of the input variable x i alone, f_j(x,,x;) is a

function of the input variables xi,x; alone, etc... The last term involves all input

variables thus making (1) an identity and not an approximation. It has been shown in

Ref. [5] that if one imposes the condition that the integral of each of the summands in (1)

with respect to any of their own variables is zero, i.e.,

11 1

II...Iz.:...(x.,x:.....x.l.x,=o,l<k<s (2)
00 0

where every input variable is normalized to fall in the range between 0 and 1, 0 _ xi _ I,
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then it follows that the summandson the right handsideof (1) areorthogonalto each

other. Orthogonalityheremeansthat the integral of the productof any two (different)

summandswith respectto all their ownvariablesis zeroovertherelevantdomain,i.e.,

1 1 1

..... ..... =o,
O0 0

(il,...,is)_:(j I ..... je) (3)

Under these imposed conditions, there exists a unique expansion of (1) for any integrable

function in the domain of interest. Specifically,

1 1 1

O0 0

1 I 1

o o o -_i

I 1 1

= dx

0 0 0 dxidxj

f_(x,)- fj(xj)- fo, etc...

(4)

For simplicity, x is used to denote all input variables. If the original function known then

the lower dimensional functions can be directly derived using (4). If the original function

is not known but data is available then they can be evaluated by Monte Carlo integration

directly from input-output data. From a practical point of view, however, this is not

preferable because of the large amount of data needed. A variant of this expansion

replaces function integration by function evaluation at various cuts about some reference

point,

n n-I n

:(x,,_.....x_)=:o+XZ(x,)+X XL(x,,_,)+ ...+L......(x,,_.....x_)
i=l l<i_j j<n

(5)

where the summands are obtained by varying one or more variables while keeping others

fixed,

7



7o:

.... ..... e,c.

(6)

The above construction does not necessarily minimize the approximation error,

and it also requires special data where certain input variables are varied while others

fixed at the reference values. Despite these limitations, it was still found to be

remarkably effective in modeling many physical phenomena [6,7]. Our present goal is

not in the derivation of analytical expressions that minimize the approximation error

given a known nonlinear function. Instead the nonlinear function is unknown and our

goal is in finding efficient ways to extract the dimensionally increasing functions from

input-output data itself (an identification problem), and to do so in such a way that the

approximating error is minimized for the available identification data record.

Basis Function Representation

Let us now consider a modified version of Eq. (1),

n n n-I n

f(xt,x2 ..... x,)=go+EO_ixi+Egi(xi)+ E Egi,j(xi'xs) +e( xl'x2 ..... x,)
i=l i=l l<iSj j<n

(7)

where e(xl,x 2 ..... X,) denotes the error of the representation to be minimized in the

identification step. We have separated the linear terms from the rest of the expansion.

The reasons for this separation are two-fold. First, it provides for an explicit separation

of the linear and nonlinear terms. Second, the nonlinear terms will be approximated later

by a finite number of basis functions, each of which can have a different but finite

resolution. The linear terms, on the other hand, have "infinite" resolution in the sense

that any linear function is uniquely defined by a constant (bias) and a coefficient (slope).

Each of the nonlinear terms in Eq. (7) will be modeled by basis functions as follows,



N 1

(o X

k=l

N2

(ij)tp X ,X

k=l

Given a set of input-output data of sufficient length, the identification problem then is

f_(') _('J) such that the fitting error e(xl,x 2..... X_) is minimized over thefinding go,tXi,r.k ,_k

entire data record. The input-output equation can be arranged as,

Y = pry + e (9)

where p is a column vector of the unknown parameters containing a constant go, linear

coefficients {t_i}, first-order nonlinear coefficients {13_i)}, and second-order nonlinear

coefficients {T_/J>},

v"=[+o,{++},{+?'},{+?J'}] (lO)

(i) (ij)

where {a,I,{13k },{T+ }consists of

{a;}=[a,,a_ .....a.], {137>} [137>, au, o,n> a,n,1----" "",t"N_,''',_i "",r'NjJ

"_ k f_'_(ij)_ : ['v(12) 'v(12) 'v(n-l'n) "tl(n-l'n)]t|l ..... |N 2 "'"11 ..... IN 2 J

(11)

The corresponding "input" vector is

,,,T:[1,xt.....x,,,{++(x,)+,{,+,,(x,,xj)}](12)

where

{l[_k(Xi) } = [*](X|) ..... +N I (Xt)I+|(X2),_'*',_NI (X2) ..... _)l(Xn) ..... I_)NI (Xn) ]



..... .....

(13)

For clarity, it is noted here that the term "first-order" or "second-order" as used in

the present context refers to the dimension of the associated functions. Even "first-order"

terms can have arbitrary nonlinearity. They are not to be confused with the same

terminology used in a Taylor series expansion where the notion of "order" is attached to

the power of the expansion (e.g., first-order terms are linear, second-order terms are

quadratic, and so on).

Identification of Basis Function Coefficients

Once the unknown parameters are arranged in the form given in (9), the

identification problem is straightforward. The unknown coefficients in p can be

estimated in recursive mode or in batch mode. Recursive computation is appropriate

when the identification is to be carried out in real time for on-line identification. When

the number of unknowns is large, recursive computation is also appropriate because by

operating on one data sample at time, the computation is memory efficient. For recursive

computation, we have at our disposal a rather large number of available algorithms [9].

One obvious choice is the well-known recursive least-squares algorithm,

R(k)_(k) [y(k) - fi(k) r t_(k)]p(k + 1)=
1 + _(k) r R(k)_(k)

R(k + 1) = R(k) - R(k)_(k)_(k)r R(k)
1 + _(k)rR(k)_(k)

(14)

starting with an initial guess /3(0) and any positive definite matrix R(0). The index k

denotes the k-th data sample in y(k) = f(xl(k),x2(k) ..... xn(k)), and /3(k) is the estimated

parameter at the k-th iteration. This algorithm has initial rapid converge at the expense of

additional computation to update the covariance matrix R(k). A slower but much
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simpler algorithm is the projection algorithm (also known as normalizedleast-mean

squaresalgorithm),

)_'v(k) [y(k) -/3(k)r Xl/(k)]
/3(k + 1) =/3(k) + _2 + _(k)r_(k)

(15)

with 0 < _,_ < 2, _'2 > 0. This algorithm involves only scalar product multiplications and

there is no covariance matrix to compute. In terms of memory efficiency, it can handle

large problems. For batch-type calculations, one simply form the following data matrices

for a data record of g samples long,

[y] = [y(O), y(1), y(2) ..... y(g - 1)]

[_]=[v(O), V(1), _(2), ..., _/(e-l)]

(16)

Then the least-squares solution for p that minimizes the approximation error [e] over the

entire data record is simply

= += [yl[v] r ([vl[tl/]r) + (17)

where (.)+ denotes the pseudo-inverse operation. This computation is best handled via

the singular value decomposition of IV] or [v]r[v].

Construction of Multi-Resolution Basis Functions

Next, we address the issue of how the basis functions should be structured for use

in the above calculation. The multi-resolution strategy involves basis functions that are

compressed (or dilated) and translated versions of a single mother basis function here

taken to be a Gaussian function. This strategy is adopted with the following objectives in

mind. First, it allows the identification of the coarse feature of the underlying nonlinear
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relationship first, followed by additional refinement when higher resolution basis

functions are used. Second, when upgrading to a higher resolution model from a lower

resolution one, it avoids the reforming of input vectors associated with the lower

resolution model, thus making the identification numerically efficient. Third, this

arrangement also facilitates more compact models through a model reduction process

where the less relevant basis functions are eliminated and the parameters associated with

them. In the following we describe one such arrangement of the basis functions that meet

the above stated objectives, but other constructions are also possible.

As mentioned, the input variables are normalized so that they fall in the interval

between 0 and 1. Let us now consider the first-order basis functions. At the first

resolution level, we choose 3 basis functions each has a "radius" of 1/2 and centered at 0,

1/2, and 1, respectively

(18)

The resolution for the first level is 1/2. At the second resolution level, 2 additional basis

functions are introduced, each of radius 1/4 and centered at 1/4 and 3/4, i.e.,

¢,(x,):e-<X,-"4,2/<_", _ ' (_5(xi):e-(X,-3'4,2/<,/4fl (19)

With the first two levels, the resolution now is 1/4. The next resolution calls for 4

additional basis functions, each of radius 1/8 and centered at 1/8, 3/8, 5/8, 7/8,

corresponding to a resolution of 1/8. This process continues, each time one level is

added, one doubles the fineness of the division in the interval between 0 and 1.

In the same fashion, we can construct the second-order basis functions (surfaces).

The starting resolution is 1/2, 9 basis surfaces are chosen, each of radius 1/2, and centered

at the intersections of a 2-by-2 grid, i.e.,
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The secondlevel involves16additionalbasissurfaces,eachof radius1/4andcenteredat

the intersectionsof a 4-by-4 grid, and so on. In the construction of both first and second-

order basis functions, both with a starting resolution of 1/2, the basis functions are

centered at the intersections of the grid as opposed to the centers of each grid element.

This is intentionally done so that the nonlinear function can be well approximated at the

boundaries of the input domain.

Elimination of Less Significant Basis Functions

In a typical problem, the nonlinear system has a finite number of primary features,

each of which involves only a certain number of basis functions. Although one casts a

generically large "net" of basis functions, it is expected that only a fraction of them is

relevant for a particular system. It would be advantageous, therefore, to determine and

keep only the relevant basis functions. By identifying only the parameters associated

with them, one now has a smaller identification problem to solve and the resultant model

is more compact. Another benefit of reducing number of unknowns is that it makes the

identification problem becomes better conditioned.

The determination and elimination of less significant basis functions can be

handled in a systematic manner by orthogonalization of the rows of the input matrix [_g],

each of which corresponds to a specific basis function. Note that each row of [_] is made

up of the values of a particular basis function evaluated at the available input data

samples. Because the input data may not span the input space evenly, these rows are not

necessarily orthogonal to each other even if the basis functions are orthogonal. The rows

of [_] can be easily orthogonalized (or orthonormalized for convenience) by a linear

transformation A,
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[_]= A[V ] (21)

such that [_][_]r = I. The procedure can be performed one row at a time by a scheme

such as the well-known Gram-Schmidt orthogonalization. Because orthogonalization

does not change the space spanned by the rows of [_g], the least-squares error associated

with the new coefficients in the new space is identical to the least-squares error

associated with the old coefficients, i.e.,

[-f] = [y][_lr ([_][_]r)-l[_]

= [y][llt] r A r (A[Ig][llI] r At)-' A[III ]

[Yl[vlT([V][V]T)-'[] [91= _1/ =

(22)

m

In the above equation [_] and [_] denote the least-squares fit of [y] using the rows of

[_] and of [Ig], respectively. Furthermore, since the rows of [_] are orthogonal, the

contribution of each row to explaining the data [y] can be easily determined

independently of other rows. Specifically, let _i denote the i-th row of [_] associated

with the i-th basis function then its contribution to explaining the data [y] is

r/= [y]_ r _'_f (23)
[yl[y] r

Note that in the above expression, [yl_r, _,_r, [yl[ylr all are scalar products and can

be easily computed. This ratio can then be used to rank order the basis functions in terms

of their individual contribution to explaining the data. Given a desired tolerance level

specified by the user, the basis functions that must be kept can be easily identified. Let

[_]r denote a new input data matrix where only the significant basis functions are

retained, and pr the corresponding coefficients of the reduced-dimension model, the

reduced least-squares problem to be solved is
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[y]= pr[V] +[er] (24)

Note that the above procedure reduces the number of unknown parameters to be solved

for without reducing the number of data points. Also the parameter reduction step is

performed without having to explicitly solve for the coefficients of the full model first.

We now discuss the issue of the richness of the input data to prevent ill-

conditioning in the identification. This problem can be addressed by examining that the

rank of the "input" data matrix [_] for the full model, or [_]r for the reduced model.

Rank deficiency signals either the input signal is not rich enough, or the problem is over-

parameterized and there is no unique solution. Testing the identification result on an

independent set of data not used for identification will immediately reveal which is the

case. If ill-conditioning is caused by the input data being not sufficiently rich then the

identified model is not valid even though it may reproduce the identification data. If ill-

conditioning is caused by over-parameterization then it just means that there exists more

than one model with similar levels of accuracy. In this case the parameter reduction

scheme presented here will eliminate the less relevant basis functions to produce a better-

conditioned and compact model. If one insists on keeping the full model then numerical

ill-conditioning can be eliminated by discarding the smaller singular values when

computing the pseudo-inverse of [_g] or [_g]r[_].

Relationship to Volterra Series and Neural Networks

In this section we discuss how the proposed mapping procedure is similar to and

different from other well-known basis function approximation methods, notably the

Volterra series which was well studied in the past, and the more recent Radial Basis

Function (RBF) neural networks. We will also discuss how this mapping technique

compares to the feedforward neural networks.
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A Volterraseriesapproximatesamulti-variablenonlinearfunctionin theform,

f(xpx 2..... x,)= f0 + ft(.) + f2(') + f3(') +''" (25)

where

i=1 i=1 j=l i=1 j=l k

(26)

Our expansion is similar to the Volterra expansion in that it also involves a summation of

dimensionally increasing functions. In (5), however, these functions of lower dimensions

can be arbitrary (in principle) whereas as in the Volterra series they are constrained to be

products of the input variables. This distinction is an important one because in many

cases the inefficiency in the Volterra series can be attributed to this a priori specification

of the form of the lower dimensional functions.

A RBF neural network, on the other hand, models a nonlinear function in the

form,

N

f(x,,x2.....x.)= +E  , (IIx-c,II) (27)
i=1

where x =[x_,x 2..... x,] r denotes the input vector, O(.)is an assumed (known) scalar

function of the distance (radius) from the input vector x to a fixed center ci taken from

the input data set itself. Originally the centers are chosen arbitrarily from the input data

set, but later systematic approaches for center selection are developed. One such

procedure uses orthogonalized regression vectors for center selection [4]. However,

since the data themselves are candidate centers in an RBF network, the center selection

procedure starts with as many candidate centers as the number of data points, which can

be very large. In our current approach, we can think of each local basis function as

having its own "center". But these centers are not taken from the input data set as in the
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caseof an RBF network. The numberof thesebasisfunctions dependsonly on the

specifiedresolutionsandnot on thenumberof datapoints. Anotherdistinction is that in

the RBF expansion,each _(.) is a function of all input variables as opposedto an

expansionof functionsof increasingdimensions.In view of this discussion,it is possible

to marry the featuresof the RBF neuralnetwork architecturewith our dimensionally

increasingbasisfunctionexpansion.Thisdevelopmentwill beaddressedin futurework.

We now discuss how the proposedtechnique comparesto the well-known

feedforward neural network. As mentioned,although it is known that a multi-layer

feedforwardnetwork exists to representa genericnonlinearsystemto any degreeof

accuracy, finding such a network is not a trivial matter. The main reasonfor this

difficulty is that the networkparametersarenonlinearlydependenton the input-output

data. Typically, a gradient-basedmethodsuchasthebackpropagationalgorithm is used

to updatethenetworkparameters.Many factorscanpotentiallycausethetraining to fail.

The difficulty may be in the data,the selectednetworksize,or in the training algorithm

itself. Sincea gradientbasediterative methodcanonly producea local solution,one

arrivesat different solutionsfrom different startingpointsof the iteration. Increasingthe

network size will surely aggravate this problem. Network training is often a trial-and-

error process. When the training is unsuccessful one is left with a very unsatisfactory

feeling as to what exactly went wrong. In contrast, a linear identification problem leaves

little or no ambiguity regardless of size. In addition, by eliminating less significant basis

functions, the actual number of parameters that must be solved is typically much smaller

than that of the full model (see numerical example). The proposed strategy is justified

when the definiteness of the linear approach outweighs the uncertainties of a nonlinear

iterative approach. In such cases, one would rather solve a high dimensional linear

problem in a single calculation than a low dimensional nonlinear problem iteratively.

Illustration

Consider a dynamic system characterized by two masses ml, rn2 and three spring

coefficients k_, k 2, k3,
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miJt(t)+(k I + k2)xl(t)-k2x2(t ) =0

m222(t)-k2xt(t)+(k 2 + k3)x2(t)=0
(29)

Suppose we are interested in extracting a relationship between the physical parameters

defining the systems and its two natural frequencies, which are the two positive roots of

(rn,rn2)ol'-{(k , +k:)m 2 +(k 2 + k3)ml}t,o 2 +{(k I +k2)(k 2 +k3)-k_} = 0 (30)

Each mass coefficient is allowed to vary within the interval 1 < m_ < 1000 (Kg),

and each stiffness coefficient 10 < k; < 10,000 (N/m). A data set consisting of 500

uniformly random combinations of the 5 input values (normalized to fall in the interval

between 0 and 1), and the corresponding frequencies is used for identification. Another

independent data set of equal length is used to test the prediction quality of the identified

model. For identification, resolutions of I/8 for the first-order terms and 1/4 for the

second-order terms are chosen. The full model at these resolutions has 301 parameters.

Let us first examine the identification of the full model. An examination of 301 singular

values of the input data matrix reveals that the majority of the singular values are "small"

(202 singular values less than 1 x 10 -9, the largest being 11 x 103). This numerical ill-

conditioning suggests that the model may be over-parameterized. Three options are

available at this point: (1) proceed with the identification of the full model, (2) lower the

resolutions, or (3) keep the specified resolutions but use the parameter reduction

procedure to eliminate non-significant basis functions. To proceed with option (1), we

eliminate the source of the numerical ill-conditioning by discarding the smaller singular

values (say, 202 singular values less than 1 x 10-9). The results are shown in Table 1 for

20 arbitrary out of the 500 random combinations of the input parameters of the testing set

that is not used in the identification of the model. Also shown are results obtained with a

first-order model alone. Overall, the prediction error is about 0.25% for the second-order

model and 2.5% for the first-order model. The identification of these models takes about

1 minute on a desktop PC. Option (2) improves numerical conditioning by lowering
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resolutions,but this may cause reduced accuracy. In view of the fact that the number of

parameters in the full model is still relatively small (301), option (3) is preferred over

option (2) because it allows for model reduction without lowering the specified

resolutions. Figure 1 shows the quality of the prediction error versus the size of the

identification model using the parameter reduction scheme described in this report. The

prediction error is about 18% for a 2-parameter model, 11% for a 4-parameter model,

4.4% for a 17-parameter model, 1.6% for a 47-parameter model, 0.72% for a 65-

parameter model, etc. Recall that the prediction error is 0.25% for the full 301-parameter

model. To identify the coefficients of a reduced model, say for a 17-parameter model, we

only need to invert (or perform a singular value decomposition of) a 17-by-17 matrix as

opposed to working with a 301-by-301 matrix for the full model. Thus the size of the

matrix inversion is significantly reduced through this parameter reduction scheme. This

model consists of 1 constant bias and 5 linear terms (Figure 2), 5 first-order nonlinear

curves (Figure 3), and 10 second-order nonlinear surfaces (Figures 4 and 5).

Conclusions

A data-based nonlinear mapping technique has been described in this report. This

technique draws upon recent results in multi-dimensional function expansion from

mathematical statistics in combination with the classical usage of basis functions for

function approximation. This combination has a number of attractive features. First, it

represents the nonlinear system as a sum of dimensionally increasing functions (curves,

surfaces, etc.) each of which can be visualized so that insights into the underlying

nonlinearities may be developed. Second, the basis expansion makes the parameter

estimation step linear, thus permitting direct application of existing linear estimation tools

to the nonlinear identification problem. The strategy avoids common pitfalls associated

with a nonlinear iterative parameter estimation technique as in the case of training a

multilayer feedforward neural network. Third, the basis functions are constructed in a

multi-resolution fashion that allows the system to be identified at various levels of details.

The upgrade from a lower resolution model to a higher one can be made numerically

efficient with this setup. Fourth, embedded in the identification technique is a procedure
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that determinesandkeepsonly thesignificantbasisfunctions. Thisprocesssubstantially

reducesthe actualnumberof parametersthat mustbe identified, significantly enhances

numericalrobustness,andresultsin compactmodel representation.Whenimplemented

recursively,onehasaway to modelslowly time-varyingnonlinearsystems.

As in the caseof a Volterra seriesor a typical neural network, extension to

dynamicmappingis relativelystraightforwardthroughtheuseof time-delayedinput and

output values. Generallyspeaking,to representa genericnonlineardynamicmodel, it

has been widely recognized that the nonlinear auto-regressive moving-average

(NARMA) model is a goodchoice. This modelstatesthat the currentoutputvalue is a

nonlinearfunctionof a finite numberof pastinput andpastoutputvalues. Treatingeach

of thetime-delayedoutputandinput valuesas x i, all previous results immediately apply.

Another extension involves a scheme where key elements of the proposed technique are

combined with the radial construction of the radial basis function neural networks.

Application of this mapping technique to the control area also represents a natural next

step. In short, the proposed nonlinear mapping method is useful whenever the

definiteness of the linear calculation and the insights it provides outweigh the

uncertainties associated with a nonlinear iterative approach. With rapidly advancing

computing technology, it is expected that nonlinear identification along this direction will

become more and more attractive. -
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Table 1" True and predicted natural frequencies for 20 random

combinations of input parameters not used in the identification step.

Predicted COl Predicted COt Predicted 032 Predicted 032

True _t Second-Order First-Order True 032 Second-Order First-Order

5.1495
2.8783

3.9899
2.8048

2.1946
3.1161
3.1530

2.5076
5.1316
1.3685

2.9791
3.0024

2.2722
2.1947

3.7324
5.0724
3.0573

4.0497
3.1545
2.7503

5.1505

2.8784
3.9901

2.8055
2.1945

3.1172
3.1525
2.5075

5.1307
1.3691
2.9789

3.0020
2.2682

2.1943
3.7326

5.0844
3.0576
4.0498

3.1545
2.7504

5.1286
2.9084

3.9702
3.0582

2.1829
3.0595
3.1559

2.4470
5.1187

1.3976
2.9802
2.9658

2.3759
2.2406

3.7303
5.0745

3.0067
4.0062

3.0680
2.7403

9.3882

5.2538
9.0155

9.0896
4.1396

9.1126
5.8683
4.3700

9.3411
5.2052

5.4013
5.2011

5.4858
3.8903

10.2421
9.1892

5.7638
8.8273
5.4637

4.7712

9.3905

5.2550
9.0138

9.0888
4.1394
9.1126

5.8674
4.3700
9.3391

5.2038
5.3999

5.1997
5.4767

3.8897
10.2354

9.2158
5.7648
8.8308

5.4632
4.7714

9.3489
5.2123

9.1353
8.7835

4.0593
9.1179

5.8742
4.5038
9.3658

4.9504
5.5130

5.2513
5.9023

3.7795
10.1782
9.0430

5.9476
8.8807

5.6371
4.8378
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Figure 1: Prediction error vs. model size.
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Figure 4: Second-order nonlinear surfaces (1,2)_(1,5).
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Figure 5: Second-order nonlinear surfaces (2,3)-(3,4),
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Figure 6: Second-order nonlinear surfaces (3,5)-(4,5).
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