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ABSTRACT

This dissertation develops a new general method of solving Prony's problem. Two

special cases of this new method have been developed previously. They are the

Matrix Pencil and the Osculatory Interpolation. The dissertation shows that they

are instances of a more general solution type which allows a wide ranging class of linear

functional to be used in the solution of the problem. This class provides a continuum

of functionals which provide new methods that can be used to solve Prony's problem.
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CHAPTER 1

INTRODUCTION

Many real-world processesobey constant coefficient differential equations. The

measurable quantities from these processesare described by exponential functions.

Certain of these processes,such as radioactive decay, demand to be modeled using

real decay factors.

The scientist is often presentedwith the task of identifying the material in question

using whatever measurementcapabilities are at his disposal. The rate of radiation

from a mass is one of the measureablequantities available. This leads to the task

of determining the real decay factors from measureddata. The problem then, is to

identify the real coefficientsbk in a real-valued function of the form

P

f(t) = E akeb_t' (1.1)
k=l

from data. In order to make the problem more tractable, the data are acquired at

uniform time intervals. This problem was first considered and a solution presented

by Baron R. deProny, a Parisian engineer, in 1795 [85].

Prony had limited success in solving the problem. This is because the problem is

highly nonlinear. In addition, unlike the problem of identifying a function with sums

of sines and cosines, the basis functions of this problem, the real exponentials, are

not orthogonal [56]. This has resulted in repeated attempts at solving the problem

since Prony [89, 56, 29, 38, 73, 2, 39, 9, 83].

In recent years, this problem has generated considerable interest. Until recently,

the solutions have fallen into two categories: nonlinear gradient descent methods,

and autoregressive methods. The gradient descent methods are very costly and don't

guarantee global convergence. Thus, most interest has focussed on the autoregressive

or AR model. The use of the AR model stems from the observation that functions of

the form (1.1) are, in the case of integer time intervals, solutions to some difference

equation with constant coefficients. Only recently has this type of equation been



called autoregressive. However, a full theory has grown up around the AR problem.

Fundamental to the theory is the assumption that the process is stationary. Distur-

bances, known and unknown, are allowed in the process. Various levels of success

have been reported for the AR approach to the problem.

Recently, Ammar et al. [2] and Hua and Sarkar [39] developed a matrix pencil

method for determining the coefficients bk. The matrix pencil method performs well

at finding the coefficients when noise levels are low, but is not as tolerant of noise as

many of the AR methods. It is, however, directly related to the AR method proposed

by Prony [79].

The pencil method and the osculatory method developed by Martin et al. [65]

are both specialized examples of a new class of methods for solving this problem.

This new class of solutions is termed the linear functional method. By applying a

linear functional to the data, the data are modified in such a way that the inverse of

the functional applied to the eigenvalues of a certain generalized eigenvalue problem

yield the desired coefficients. For the functionals tried so far, the functional method

doesn't perform well with noisy data.

1.1 Background

A time varying quantity is measured in many physical problems, for instance the

temperature of a heated object at room temperature, or the rate of radiation from a

radioactive object.

In the case of a radioactive object, the rate of radiation is determined by the

mixture of materials.

Assumption 1. The miztures of materials are such that the radiation rates remain in

the linear re qion.

r

Each type of radioactive material loses mass at a rate which is different than that of

others. One task of interest then, is the determination of the different rates of decay

of matter in the object.



Assume that the rate of decay of a homogenousmass is related to the amount of

radioactive material in the object. Designate the rate of decay at a particular time, t,

by p(t), the mass of remaining radioactive material by M(t) and let 7 be a constant,

then

p(t) =

and

SO

Thus

_/I(t) = _,M(t).

M(t) = Moe _t, (1.2)

where M0 is the mass of the radioactive material at time t = 0.

Now, if the radioactive object is composed of more than one type of radioactive

material, equation (1.2) is no longer theoretically sound. Assuming that the radiation

from one material does not affect the rate of radiation from another material, the rates

will be additive and the mass of the object at time t becomes

p

M(t) = eke (1.3)
k=l

where the ak's represent the initial mass of each of the component materials, and

the bk's represent the decay rates for each of the materials in the mix. Of course the

assumption that the mixture of materials does not affect the decay rates of the matter

in the mix is false. However, in the mix, new decay rates will exist for each type of

matter and if the constants are adjusted, the formula (1.3) is still representative of

the behaviour of _he object. By differentiation,

p

p(t) -- _ a_e b_t,

k=l

so that the problem is the same whether the mass or radiation is being measured. In

both cases, the desired quantities are the bk's.

3



1.2 Roadmap

The rest of the dissertation is organized as follows. The second chapter presents

some fundamental results. These results establish the basic theory and notation which

is used throughout the dissertation. Chapter 3 presents the linear functional method.

This method is the primary result of the dissertation. Once it is in place, Chapter

4 gives details on some possibilities for using the functional method. Chapter 5

provides some numerical comparisons between some methods based on the functional

technique and some standard methods which appear elsewhere.



CHAPTER 2

FOUNDATION

This chapter presents some basic results and prepares the groundwork for the

rest of the dissertation. Some notational shortcuts are presented to make the later

developments shorter•

2.1 The Vandermonde

Lemma 1. If zl, z2, Z3, • . . , Zp are distinct complez numbers, the Vandermonde matriz

V

is nonsingular.

1 i i

Zl Z2 Z3

z_ 4 .2"3

P - i p--1 p-1
Z-1 Z 2 Z 3

... Zp

2

... Zp

Proof. This standard result can be found in Atkinson [4].

Lemma 2. If zl, z2, za,..., zp are distinct and n >_p, the Vanderrnonde matriz

has full column rank.

V

1 1 1 ... 1

Z 1 Z 2 Z 3 ... Zp

4 4 4

z? z; z2 ... z_

Pro@ This follows from the previous lemma since V has rank p. •

This dissertation focuses on numbers that can be represented by exponentials.

Since any complex number except zero can be represented as an exponential, the z,'s

in the previous two lemmas are restricted to be nonzero complex numbers. Under

this restriction, the lemmas still hold•



2.2 The Difference Equation

Consider the function

P

k=l

Assumption 2. The bk's are distinct•

(2.i)

Lemma 3. The functions f(t) of the form (2.1) satisfy a difference equation of the

forTrt

f(t + n) + ap_lf(t + n- 1) +..• + aof(t + n- p) = O. (2•2)

Furthermore, the roots, Ak, of the polynomial

Ap + ap-lA p-1 + ".. + ao = 9(A) (2.3)

are the ezponential factors in (2.1). In other words,

"_k -- ebb•

Proof• At time t + m,

and (2.1) becomes

f(t) = [1 1

p

f(t + m) = E akeb_teb_m (2.4)
k=l

ebl t

1]
eb2t

For f(t),f(t + 1),..., f(t +p- 1),

f(t)

f(t + 1)

f(t+p-1

1 1

ebl eb2

,b_(p-1) eb_.(p-1)

1

ebp

ebp(p-1)

ebp t

ebl t

" "1
al

a2 ,

:["
• !

.apJ

eb2t

ebp t

(2.5)

al

a2

ap

f(t) =vr(t)a. (2.6)



Note that V is a Vandermonde matrix, and, as a direct result of the assumption,

nonsingular. Thus, the vector a can be expressed as

a = r(t)-lv-lf(t).

Then, according to (2.4) with the notation introduced in (2.6),

f(t + 1)= vr(t + 1)a = Yr(t + 1)r(t)-lv-lf(t).

But using the definition of F(t) as a diagonal matrix,

"ebl

eb2

r(t + 1)r(t)-1 = r(1) =

ebp

SO

f(t + 1)= VF(1)v-lf(t). (2.7)

Indeed, the characteristic equation of the matrix F(1) is given by

p p-1

k=l k=O

Let

(2.8)

A = VF(1)I/"-l.

Then

A _ r(1),

7



and has the samecharacteristic equation. Writing out (2.7):

f(t+ 1)

f(t + 2)

f (t + p)

f(t)

f(t+ 1)
:A

f(t+p-1)

m

0 i

0 0

;

--a o --a 1

O • • • 0

1 ... 0

• •

-a*
p-1

f(t)

f(t+ 1)

f(t+p-1)

(2.9)

Observe that the matrix A is in companion form; thus the factors, a_, in the

matrix A are equal to the coefficients, ak, of its characteristic polynomial. Designate

f(n) = y_, then

Yn + _p-lYn-1 + "" + aoyn-p = O, (2.1o)

which is a difference equation. Thus, the functions (2.1) satisfy the difference equa-

tions (2.10). In addition, from (2.9), the coefficients bk of the function (2.1) are related

to the coefficients, ak, of the difference equation by the relation (2.8). That is, if A_

is a root of the polynomial g(A)_ then

A, = eb_ (2.11)

for one of the bk's.

2.3 The Prony Step

The preceding proof has a few details worth mentioning. First, the step of the

derivation in which (2.6) was solved for a and the result put into (2.7) is very common

in the derivations of this thesis. It is called the "Prony Step" because it effectively

transforms a nonlinear problem into a linear one. The second aspect of the proof worth



noticing is that a diagonalization of the companion matrix is obtained provided the

eigenvalues are distinct. If they are not distinct, then the Vandermonde is singular

and this diagonahzation does not hold.

Lemma 4. Let

G _._

0 1 0 ... 0

0 0 1 ... 0

--OL 0 --OL 1 . . . --Olp_ 1

If the eigenvalues, A1, ,12, . . . , ,1p, o/ G are distinct, then G = VAV -1, where

V __.

1 1 ... 1

,11 ,\2 ... Ap

,1 -1 ,1 -1 ... ag_ 

,11

,12
A=

and the columns of V are eigenvectors of G.

,_p

Proof. Consider GV. Without loss of generality consider the first column of the

result.

0 1 0 ... 0

0 0 1 ... 0

--_0 --_i .-- --_p-i

i

.,11-I]

-_o - _1,11- _2A_ ..... ap-1,1_-I

9



But, since A1 is a root of the characteristic equation of G,

-_0 - _1A1- _2A_..... _p_lA_-_= _f•

Thus

0 1 0 ... 0

0 0 1 ... 0

--_0 --GI "'" --_p--i

1

A1

A_I

,,tl

= _

Then the first column of GV is the first column of Vii.

columns is similar• Thus

1

A1

= AI A_

_-.
.J

The proof for the other

GV= I/'A

2.4 Notation

With these results in place, the standard notation to be used throughout this

dissertation is presented.

2.4.1 Model

The model for the analysis is

P

f(t)--_z-_akeb_ t
k=l

(2.12)

The t are taken to occur at the integers 0, 1, 2, 3, .... Denote the function values at

the times t a by

10



2.4.2 Functionals

In the following, examples will be given in which different functionals are used.

The functionals will typically be given by a rule. In order to shorten the presentation,

wheneverthere is no ambiguity, the valueswhich result from applying the functionals

to the data will be represented by _. For example, if the functional 5r is applied to

the data,

9n=

2.4.3 Hankel Matrices

The following is the template for solution of the inverse problem of determining

the coefficients ak of the difference equation

yn + ap-ly_-i +-.-+ a0y_-p = 0.

Let

_0

YO Yl ... Yp-1

Yl Y2 ... Yp

_lp- t Yp ... Y2p- 2

be the square Hankel matrix formed from the data. Then, according to the difference

equation, if

--O_ 0

--Oq

--O_p_ 1

and

Yp

Yp+l

yp = . ,
:

! Y2p-1

11



then

H0 is always the designation for the Hankel matrix of the data. It will sometimes be

convenient to use H0 for the corresponding nonsquare Hankel matrix when there are

more than 2p data values. When needed, H1 represents the Hankel matrix made of

values other than the data.

For example, the Hankel matrix of data values starting at the second value, yl,

instead of Y0 is

H1 ---

Yl Y2 • .. Yp

Y2 Y3 • • • Yp+l

Yp Yp+l • .. Y2p-1

Now, consider the solution problem which appears repeatedly in this dissertation.

For some matrix H1, solve the equation

HoG = H1, (2.13)

and determine the eigenvalues of the matrix G. To make this process a little clearer,

consider the result of multiplying the equation on the right by an eigenvector of G.

HoGx = Hlx

HoAx = Hlx

(HoA - H1)x = O, (2.14)

which implies that x and A are eigenvector and eigenvalue of the generalized eigenvalue

equation (2.14).

Now suppose that equation (2.14) has been solved for the eigenvalue and eigen-

vector. Then

HoAx = Hlx.

12



If Ho is nonsingular, then this equation has the solution

Ax = HoiHlx.

But, in this case, (2.13) gives

G = HolH1.

Thus, the lemma:

Lemma 5. If the matrix Ho is nonsingular, then (A, x) are an eigenpair of the gener-

alized eigenvalue equation

(Ho_- H1)x = 0 x#o

if and only if (A, x) are an eigenpair of the matrix

G = HolH1.

With this representation, it is obvious that it will not be necessary to determine

the matrix G in order to find its eigenvalues. Similar results can be proven for

the overdetermined case [106]. In that case the appropriate generalized eigenvalue

equation is

(_o_ - H_oH1)_= 0 _ # o.

13



CHAPTER 3

THE LINEAR FUNCTIONAL METHOD

3.1 Introduction

This chapter developsthe main result of the dissertation. The functional method

is a level of abstraction which permits complicated analyses of data with minimal

effort. To make the presentation more straightforward, assume the data perfectly

match the model

p

J(t) = Z
k=l

with the samples taken at integer times. This allows focussing on the problem as

an interpolation problem even though more than 2p data values may be used to

determine 2p unknown parameters. A later section presents methods which permit

relaxing the specification so that the overdetermined inconsistent and the exactly

determined interpolation cases can be solved.

3.2 Theory

Let • be the set of all functions ¢(t) • R _ C\0, of the form

which have the property that _p(t + 1) = ¢(t)_(1). Let S be the space of all finite

linear combinations of elements of O. i.e.

p

f(t) • S _ f(t) = _ ak&k(t) (3.1)

k=l

where p • Z is finite, ak • C, and Ck(t) • _5.

Lemma 6. If Yi • S of the form in (3.1), and _" is a linear functional on $, then

p

_(Yi) = E akCk(i)[_'¢k] (0)
k=l

14



or, in matriz form with [gvCk] (0) = [$'¢k] (i)li=o = Ak

_(y(i)) = [¢i(i) ¢2(i) ... Cp(i)]

Proof• First note that

_2

,_p

all

a21

apl

Yi+l = a1¢_(i)¢_(1) + as¢2(i)¢2(1) +'-" + %¢p(i)¢p(1),

and because Ck(1) is constant,

_(yi) = al [_¢1] (i) + as [_¢s] (i) +..-+ % [_¢p] (i)

implies

.T'(yi+i) = al [_¢1] (i)61 (1) + as [5_02] (i)02(1) +'-• + ap [.T'¢p] (i)¢p(1)•

So that if

7(yi) = [[7¢1](i)

then

7(y_÷_)= [P:¢1](i)

[7¢s](i) ... [7(¢_](i))]

[7<_](i) ... p=¢,](i)]

. o

Cp(1)

- °

al

a2

i .

°

i

ap.

15



Now, induct from i = 0

7(yo) = [[701] (o)

=[hi A2 ...

so that for any i, from the above,

[7¢21(o)

=

all

a21

¢i(I)

62(1)

_'2

I
J

,p

= q

ail

a21

° .

ap I
w

(3.2)

=[¢1(_) ¢2(0 VAi)]
_2

al

a2

• I

_,p

(3.3)

Lemma 7. The matrix

¢1(o)

¢1(1)

¢1(P- I) ¢o(p- I)

Cp(O)

Cp(1)

¢_(p- i)

16



is a Vandermonde matrix and can be represented as

or

i I .•. i

Z 1 Z 2 . . . Zp

p--I Zpp-iZi -I Z 2 •. .

i

ebl

eb_(p-1)

for some zk E C and bk E C.

non2ingular.

° . ° 1

e b2 ... eb_

eb2(p -1) ... ebp(p -1)

Then, provided zk # zj, when k # j, the matrix is

Lemma 8. Ifbl,b2,...,bp are distinct, aII al,a2,...,ap are nonzero, and if

for k = 1, 2,.•., then the matrix

is nonsingular.

Proof. Let

H 0

p

Yk -- _ aj e bjk

j=l

YO Yl

Yl Y2

Yp-1 Yp Y2p-_

Yk

Yk+l
Yk --

Yk+p-1

17



Then, the companion matrix G which relates Yk = GYe-1, is nonsingular. Note that

Yk = GYk-i

implies

Yk = GkYo •

Now, if H0 is singular, one of the columns can be written as a combination of the

remaining columns. Assume that

p-1

Yk = _ ajyj.

j-----O,j_k

Then

p-1

GkYo = E ajGJYo

j=O,j¢k

which, with a_ = - 1, gives

p-1

0 = E aJGJ"

j=O

This last result is a polynomial in G of order less than p which is equal to zero.

According to the Cayley-Hamilton theorem, zero is one of the roots of the character-

istic polynomial for G. But since the eigenvalues of G are {ebl,eb2,... ,ebP}, none of

its eigenvalues are zero. This is a contradiction. Therefore, H0 is nonsingular. •

Theorem 9. Given a set of data Yo, yl, • • •, Y,_, •.., generated at integer times by a sum

of p distinct elements in $, then the matrix

H _._

YO Yl ... Yp-1

Yl Y2 ... Yp

Yp-1 Yp ... Y2p-1

18



is non,singular, and the matrix G, given by

__H--1

_:(yo) f(_l) ... _:(yp-1)

7(yl) f(y2) ... J:(yp)

z(y_-l) _:(_) •.. :_(y2_-1)

has the the eigenvalues {_'(¢1(0)), 9v(¢2(0)),...,_'(¢p(0))}.

Proof. Consider the data vector

Y0

Yl

Y0 --=

Yp-1

From the definition of the function which generated the data Yo, there is a vector

. .

al

a2

a _

• ;

apl

so that

¢i(0) ¢2(0)

¢i(1) ¢2(1)

¢1(p- i) ¢2(p - 1)

¢_(o)

Cp(Z)

Cp(p - i)

al

a2

.ap]

YO

Yl

I

.Yp- I.I

Va - Yo. (3.4)

Then since V is nonsingular,

a = V-lyo .

19



Also, from Lemma 6, if

YO -_

7(vo)

7(yl)

then

V

J:(¢,(o))

J=(¢2(o))
a=Yo

7(v_(o))

(3.5)

Or

V a _-- _.jo.

Ap

Where, as before: Ak = _(¢k(O)). Then substituting in the "Prony Step,"

V
z_2

V-lyo = Yo-

(3.6)

(3.7)

Now, designate

Yi+l IYi = , and Yi =
• I

._(yi)

.r(y_+_)

"_(Yi+p-ll

2O



Claim: (3.7) holds for all i.

Let

and

Then, note

¢1(1)

F=

'A1

A

¢._(I)

Cp(1)

so that,

¢1(i)

¢1(i+ 1)

_h(i + p- 1) ¢_.(i+;- 1)

Cp(i+ 1)

¢_(i+p- 1)

VFia : Yi,

and

l/FiAa = Yi.

Then perform the "Prony Step" again:

VFiAF-iV-Iyi : fli"

But since F i and A are diagonal,

FlAp -i = AFT ./= A,

21



SO

VAV-lY_ = fli.

Let

G = VAI/-_.

Then,

Cryi "- _li

for each i E {0, 1,... ,p - 1}. Now, G takes each column of

H0 --

to the corresponding column of

Yo Yl ... Yp-1

Yl Y2 ... Yp

Yp-1 Yp ... Y2p-1

.r(yo)

.r(yl)
H1 =

SO

7(w) ... 7(y_,__)

_(y_) ... .r(y,)

GHo = H1.

Since G _ A, the eigenvalues of G are the values

{m(¢_(o)),J:(¢2(o)),..., 7(cp(o)) }.

22



Corollary 10. Given a set of data Yo, yl,..., yn,..., generated at integer times by a

sum of p distinct elements in $, the matrix

H

Yo Yl ... Yv-1

Yl Y2 ... Yp

Yp-1 Yp ... Y2p-1

and the matrix

J:(yo)

7(yl)
H1 --

7(yp__)

The generalized eigenvalue problem

7(yl) ... J=(yp-1)

_:(y2) ... 7(yp)
. . .

7(yp) ... 7(y2___)

(HoA - H1)x = 0

has the eigenvalues {_(¢_(0)),:P(¢,.(0)),...,_(¢p(O))}.

23



CHAPTER 4

IMPLEMENTATION

The previous chapter developed a functional theory which may be useful in find-

ing the coefficients of the modei equation. This chapter expands on this theme by

developing some methods for using the functional approach to determine the coeffi-

cients bk of the model equation. The first section describes the three basic categories

of problem: the exact problem in which data are assumed to be perfect, the interpo-

lation problem in which p data values and p functional values are used to determine

an interpolating solution, and the overdetermined case in which there is an overabun-

dance of data and functional values. The second section describes various types of

functionals which have been identified to date. The third section connects some of

the described functionals to methods which have appear elsewhere.

4.1 Eigenvalues

In this section, three different data situations are considered and approaches to

using functionals to solve them are presented. The first situation is the theoretical

one. In that situation, the data are assumed to be generated from the model equation

and the data values are assumed perfect. Thus, it is called the "Perfect Data" case.

Even in the case of perfect data, though, the numerical methods used to determine

the coefficients, bk, may introduce anomalies, so two different methods of using the

data to determine the coefficients are given.

The second situation is the case in which there is "just enough" data to solve the

problem. The developments in this case follow the method presented in Martin et al.

[65]. The difficulty presented in this case is that, for some functionals, the matrices

H0 and H1 "are not full. Some means is needed to fill in the missing information

to provide a complete solution to the problem. The results of this section do not

have theoretical backing, however, the numerical results presented in Martin's article

indicate promise.
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The overdetermined case is presented third. Standard linear least squares ideas are

used to develop methods for coping with excess data. The theoretical foundations for

using linear least squares for this type of approach are shaky however, and numerical

results presented in a later section urge caution.

4.1.1 Perfect Data

Let x be an eigenvector of G T. Then, consider the equation

HoG T = H1,

where H0 and/'/1 are two Hankel matrices related by a linear functional. Apply x on

the right to obtain

(4.1)

or

(HoA - H1) x = 0. (4.2)

Thus, there are two methods of determining the eigenvalues of the matrix G.

Method 1. Solve

GHo = H1

for G and determine the eigenvaIues.

Method 2. Solve the generalized eigenvalue equation

(HoA - H1)x = O.

25



4.1.2 Interpolation

Consider the situation in which there are p data values, Yk, and p functional values,

9r(Y_) = Yk. Then, to form the matrices Ho and H1, p - 1 unknown data values and

p- 1 unknown functional values must be determined. The desired matrices are then

H0 ---

and

Yo Yl .-. yp-2 Yp-1

Yl Y2 ... Yp-1 *

Y2 Y3 • • • * *

• , , • .

Hi --

9o 9_ ... 9;-29p-_

91 92 ..- 9p-1 *

92 93 ... * *
: : : : :

9_-2 _p-1 ... • •

Yp--i * .-. * *

where the • represent unknown values. Then the solutions, A, to the eigenproblem

(H0,_- H1)z = 0,

are the values .T(¢k(0)), as usual. The difficulty lies in determining the unknown

parts of the matrices.

It may be possible to create an iterative method which will converge to the correct

matrices Hi, i = 0, 1. Suppose for a moment that the values yp, yp+_,..., Y_.p-2 and
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Yp, Yv÷l, ..., fJ_p-2 are assumed to be zero• Then let

and

Ho °) =

Yo Yl

Yl Y2

Y2 Y3

• •

..°

Yp-2 Yp-1

Yv-1 0

0 0

0 0

0 0

and solve the eigenproblem

_o _1 ... _-2 _-1

91 z)2 ... _p-1 o

92 93 ... 0 o

: : : : :

_p-2 _p-1 ... 0 0

_p-1 0 ... 0 0

(HoA - H1)x = 0,

for the values A_°). Solve the functional equation

for ¢k(1) = Zk and form the polynomial

P p-1

z(°)(z)= H(_- zk)=z. + Z a#
k=l j=0

and form the companion matrix

.4 (°) =

0 1 0

0 0 1

-ao -al -a2

0

0

-ap_ 1
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Then, since both Yk and Yk are sequences which obey the same difference equation l,

use the matrix A to fill in a first appro.,dmation to the missing values of Ho and

H1. Call the new matrices H_ l) and H_ 1). Repeat the process until convergence is

achieved.

This method has been presented without proof. However, in experiments con-

ducted by Martin et al. [65], the method converged in only 2 or 3 iterations for the

osculatory (derivative) functional. An example of this method in use is shown in

section 5.3.

4.1.3 Approximation

The formulation of the functional approach assumed that there was exactly enough

data to create square matrices which could be inverted. As it happens, if there is

an excess of data, and the matrix G represents a valid relationship between the data

and the transformed data, then its eigenvalues still represent the functional values.

Then the only concern is in determining the eigenvalues of G in a mathematically

valid manner.

However, in the case where the system

OH/=W

is overdetermined and inconsistent, some means must be found which offers a reason-

able approximation of the eigenvalues of the problem. The most obvious method of

determining the eigenvalues is to determine the G which minimizes the norm of

and then to determine the eigenvalues of G. One way to do this is to use linear least

squares to determine the rows of G. The use of the normal equations gives

HTo HoG T = [-[TOHI.

IThe linearfunctionalspass across the differenceequations.
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The solution, G, is unique if the matrix HToHo is nonsingular.

The numerical results reported in a later section, page 37, suggest that this for-

mulation of the problem, for any method of solution, is inconsistent. A much better

formulation of the problem is to use the generalized eigenvalue problem.

Method 3. Let

H0

Yo Yl Y2 ... Yp-1

Yl Y2 Ya ... Yp

Yn-p-r+l Yn-p-r+2 Yn-p-r+3 • • • Yn-p-r

Then solve

H1 --

90 9, 92

91 9a

Yn--p--r+l Yn--p--r+2 _ln--p--r+3

(HVo - H[H1) = o

as a general eigenvalue problem.

Yp-1

Yn--p--r

4.2 Functionals

In this section, three different types of functionals are presented. The shift func-

tionals are seen to be variations on the shift operator. The discussion shows that

there are many different ways to use shifts to obtain solvable linear systems. The

derivative operator is also a linear functional and will be seen to offer a simple way

of determining the coefficients. Finally, the anti-derivative or inte_al operator is

another linear functional which offers some simple solution methods.
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4.2.1 Shift Functionals

Consider the shift operator qy(t) = y(t + 1). Then, it is a small step to create a

linear functional from the shift functional by creating a polynomial of shifts,

.T(y) = (Co + clq + c2q _ +"" + c,.q_)Y.

Let

_,_ = ._(y,_) = (Co + clq + c2q 2 +"" + c,.qr)y,,

Form H0 from the values yn,

At, A2,..., Ap, to

and H1 from the values _,_. Then

(Ho), - H1)z = 0

the solutions,

(4.3)

are such that

_k _ CO 3. C1 eb_ + C2 ebk2 3. " " " 3. Cr eb_r

t"
Ak = Co 3- clzk 3- c2 z2 3- "" + crzk

0 = co - _k + clzk + c_z_ +... + cozy, (4.4)

where bk is one of the true coefficients. The polynomial (4.4) has r roots, of which

there is only a guarantee that at least one is the desired root zk. Thus there is some

ambiguity in choosing the coefficient bk based on the polynomial (4.4). However, there

is some hope. Under the assumption that the coefficients bk are negative real, then

the desired root, zk, must be in the interval (0, 1). Moreover, the following lemma

and corollary show that if A obeys certain easily tested criteria, and the polynomial

is of a certain form, then it is easy to see that there is exactly one root of (4.4) in

(0, 1).

Lemma 11. If 0 < a < r, the polynomial equation

c_ = z 3. z 2 + .. . + z r

has exactly one solution in (0, 1).

3O



Proof. Let

p(z) = z + z 2 +... + z _

then p(O) = O, p(1) = r and z >_ 0 =_ p'(z) > O.

Therefore, p(z)'(O, 1) ---, (O,r) is one-to-one and onto.

Corollary 12. If 1 < a < r + 1,

oL = l + z + z2 +...+ z r

has exactly one solution in (0, 1).

Lemma 11 can be extended to polynomials with all positive coefficients if desired.

This alleviates some of the difficulties associated with the use of shift polynomials for

determining coefficients, but requires certain a priori assumptions to be made about

the nature of the coefficients.

There are certain major advantages of using the shift functionals. Consider a

system with coefficients bl = -0.0202 and b2 = -0.0101 which correspond to 0.98 =

e -°'°2°2 and 0.99 = e -°m°l respectively. Then, if the coefficients are to be determined

from data which is generated by the function

f ( t) = cl e -0"0202t -ff c2 e-O'OlOlt,

the shift functional Y" = 1 + q + q2 +... + q6 provides a characteristic equation with

roots 6.5937 and 6.7935. The solution of this equation is more numerically stable than

the equation with roots 0.98 and 0.99. Since the objective is to solve the generalized

eigenvalue problem

(HoA - Ht)x = 0

for the roots, then the use of the functional to add separation to the roots is beneficial.

The tradeoff is that the polynomial

r

0 = Co - Ak + ClZk + C2Z_ + ... + CrZk
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is hard to solve. If this is a large consideration and enough data is available, then

instead of polynomials of shift, the user can just usea shift of high degree. To seean

example of oneof theseshift functionals in useseepage 26. The functional approach

allows for easyjustification of the resulting method and easycalculation of the inverse

function. For comparison with the above, the functional transformation _'(y) = q12y

yields corresponding eigenvalues of .7847 and .8864.

4.2.2 Differentiation Functionals

Let

d

Then, the eigenvalues of the matrix G are

d b_t t=O7(_k(0)) = _e = bk.

Then, provided the derivatives of the measured data are available, this formulation

presents a very simple method of determining the decay factors. The theoretical

groundwork laid in developing the functional technique, significantly reduces the al-

gebraic overhead in describing the use of derivatives. Compare this to the development

in [65] of osculatory interpolation.

Often the determination of derivatives from data is difficult. Noise in the data

can significantly affect the computed derivatives, it is easier to compute the integral

of the data. The functional technique can be used to justify this approach also.

4.2.3 Integration Functionals

Let

/0 /0.T'(y) - ydT - ydz- = - ydT

The second integral is in place to allow the integrated process to be shifted to satis_"

the stationary assumption of the AR process. Assume that Re bk < 0. Then the
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eigenvaluesof G are

7(¢k(0)) = - eb 'd _ _._.feb_ t .1
t=O k t=O Ok

One possible advantage to using the integration functional is that integration is

an inherently smoothing operation and there may be some beneficial effect on the

noise content of the data by using numerical integration.

4.3 Comparison with Methods from Literature

The functional technique can also be viewed as a unifying theory for various

methods that exist in the hterature. Prony's method and the matrix pencil are

the most obvious apphcations of the functional method. The osculatory method

developed by Martin et al. is another method.

Let q be the standard shift of degree one. Then put

7(y) = qy.

Let H0 and/-/1 be as usual. Solve the matrix equation

OH0 = HI. (4.5)

Then, the matrix, G, is a companion matrix whose last row, [-Co,-cl,...,-Cp], is

precisely the vector which results from Prony's method. The eigenvalues of G are the

eigenvalues resulting from the matrix pencil and are the roots of the characteristic

equation identified by Prony's method. Now, consider the problem as an eigenprob-

lem. The eigenvalues of G are theoretically the same as those from

(H0_ - H1)x = 0, x _ 0.

The only time that a difference might occur in the solutions to the two problems

is when the conditioning of the matrix H0 is such that (4.5) is unstable [30, 106].

Therefore, the simple first order shift, ._(y) = qy, generates Prony's Method and the

matrix pencil. Examples of these methods can be found in [2, 35, 63, 79].
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Let 5V(y) = _y.d Designate the derivative values by yn. Then let H0 be given

as usual for data values Y0, yl,..., Y2p-2 and let H1 be generated from the derivative

values Y0, _)1,-.., _)2p-1. Then the solutions, _, to the eigenproblem

(HoA - H )m = 0, z # 0,

are precisely the coeffcients, bk. This result is the same as that achieved by Martin

et al. [65].

Thus, the standard AR formulation of the problem is the special case of the func-

tional method resulting from the shift functional of order one. The new development

of Martin et al. is the special case of the functional method resulting form the deriva-

tive functional.

4.4 Conclusion

The implementation of the functional method is simple. It only requires that a

linear functional be chosen for which the inverse problem can be solved. Then, the

data is transformed using the functional and the eigenvalue problem solved. Then

the user solves the inverse linear functional problem for the coefficients of the system.

The use of the derivatives in one case showed that if there is data available which is

related to the measurements by some linear functional, that additional data can be

used to aid the process of determining the coefficients.

This chapter showed some simple functionals which are easy to implement with

measured data. In the case of the shift-polynomials, the inverse problem is not neces-

sarily easy to solve, however, the division of difficulty between the eigenvalue problem

and inverse functional problem may prove to be beneficial in certain instances.

The integration technique has promise in the area of reducing the sensitivity of

the method to noise. The comparisons in the next chapter between methods based

on different functionals shows this promise clearly.
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CHAPTER 5

NUMERICAL RESULTS

The last chapter demonstrated some simple linear functionals which can be used

asbasesfor solution methods. This chapter comparessomeof those functional based

extensions of Prony's method to solution methods which are reported in literature.

The results reported here show that the functional methods are not uniformly better

than methods which already exist. However, some of the methods presented here

show promise in certain situations. The lessonto be learned from these examples is

that the functional approach offers the user the ability to try different methods until

he is satisfied with the results. The addition of many new methods can only result in

better analysis capability.

5.1 A Simulation

This section presents the results a simulation comparison of several AR meth-

ods versus several different methods based on linear functionals. First, consider the

problem of identifying the nonlinear coefficients of the function

f(t) = e -t + e -2t + e-3t + e -4t -_- e -St

from data obtained by simulating the function at the evenly spaced times, t_ = ih for

i E {0, 1, ..., 100} and h - 0.01.

Several different methods are used to try to solve this problem. Pisarenko Har-

monic Decomposition (PHD), standard least squares, and Osborne's Objective Re-

weighting Algorithm (ORA) are representative algorithms from the AR class of tech-

niques. Several different methods based on the functional approach are used for the

remainder of the comparison. For the Derivative functional, the actual function was

used to generate derivative values with no added noise. For the inte_ation functional

used in the two examples "Integrate-l" and "Integrate-2", the eigenvalue problems

were HoTHOA - H:H1, and H_H1A - H_H0 respectively. The "Shift-n" functionals
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are the simple shift of order n functionals. These provide easy inverse solution with

no ambiguity in the solution. All of the functional methods were solved as eigenvalue

problems with the QZ algorithm.

Table 5.1 shows the results of the simulation when the level of noise in the data

is strictly a function of the numerical noise in the computer representation. For

Table 5.2, measurement noise was simulated in the data at the level of N(0, .000052).

Certain data values represent a negative root to the AR equation. Some of these values

are easy to spot and are designated with *. Note that for the Shift-18 functional,

17.5 × 18 - 315, which is _r/h within rounding. The same is true for the Shift-21

functional, where 15 x 21 = 315.

5.2 Lanczos' Problem

Lanczos presented an example of using Prony's method [56]. In his example, he

summed the data to create a smaller data set which could be solved directly using

Prony's method. The data was generated by the function

f(t) = 0.0951e -t ÷ 0.8607e -3t + 1.5576e -St

with equal length time intervals h = 0.05. Each data value was rounded to 2 decimal

places to simulate measurement capabilities. The data are reproduced in Table 5.3

for reference.

Both Lanczos and Ruhe [89] report limited success determining the exponential

coefficients. Table 5.4 reports the results obtained by Lanczos, Ruhe, and current ex-

periments using Osborne's Objective-function Reweighting Algorithm(ORA) method,

Linear least Squares Prony method, the Matrix Pencil, and several different functional

methods. The factors, k, represent the model size used in the solution example. Note

that in that table, several of the examples use oversize models. If the user is interested

in only real decay factors, the use of an oversize model can increase accuracy in the

real factors. This is most apparent in the results reported for Yl, k = 11. Outside of

the ORA method of Osborne, this functional returned the best results for this data
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set. In the caseof the linear least squares and matrix pencil methods, some of the

returned coefficients were complex. These discarded answers are represented in the

table by a dash.

The method developed by Osborne and reported in [42] as the ORA method is a

simplification of the Gradient-function Reweighting Algorithm(GRA) which was not

used for these comparisons. The ORA method appears to provide answers which

are significantly better than those available from any other method. These results

can be misleading however. ORA is a nonlinear method which requires a starting

value for the autoregressive parameters. Global convergence is not guaranteed, so

it is customary to start the algorithm with the true parameters. Alas, if the true

parameters are not known, the algorithm may not converge to the correct values.

The result from the functional method F1 with model size k=ll is also good. For

reference, the functionals used in Table 5.4 are listed here.

._'_ = 1+ z.

._2 = l + z + z2 + z 3 +z 4.

The functional 9rl is invertible, but 5r2 is not. For any given solution, A, of the

eigenproblem, the polynomial equation

/_=l+z+z 2+z3+z 4

has 4 solutions. The difficulty of the method is that it must distinguish among these

solutions and report the one which is most likely. The heuristic used in this program

is that the correct solution is the one which is closest to one on the complex plane.

Imaginary parts are then discarded and duplicates merged. The zeros reported in the

table represent failures to find any solution for at least one A which was within 1 unit

distance from 1 on the complex plane.

At then end of the table, results are reported for several different inte_ation

methods. All of the integration methods use the same type of inteoo'ration. That is,
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they add the values in sequence,generating a new data stream of cumulative sums.

The entire sequencethen has the last data value subtracted from it to simulate an

integration from x to infinity (seepage 33). This works well, as can be seen from

the results. The different results stem from the method used to solve the eigenvalue

problem. The problem is overdetermined sothe projection method shown in section

4.1.3 is used. In the first two examples, Integrate-1 and Integrate-2, the eigenvalue

problem is

Hrt HoG = H_H1 Integrate-1

or

(H_HoA - H_rH1)x = 0 x # 0 Integrate-2.

Notice that this differs from the usual projection in that the matrix from the modified

data is used to define the projection space. The results from both solution methods

are shown to be the same to within reported significance. The next two examples are

made from the usual projection.

H[HoG= H1 Integrate-3

and

(HoTHoA- H[H1)z = 0 x ¢ 0 Integrate-4.

In the case reported as Integrate-3, the equation is solved for G and the eigenvalues

are found from G. In Integrate-4, the generalized eigenvalue problem is solved directly

using the QZ algorithm described in [30]. Clearly, using H1 to define the projection

space greatly improves the conditioning of the problem. One possible explanation

for this is that the process of summing the data reduces the influence of rounding

errors. The matrix HrIH1 is thus better conditioned than HorHo. However, the

results for Integrate-3 and Integrate-4 clearly show that solving the eigenproblem
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directly is much more stable than solving the matrix equation first. In the event that

projection onto the spacedefined by H1 is not justified (all the shift functionals), the

eigenproblem should be solved directly to avoid numerical difficulties. The user may

even want to experiment with the more expensive VZ algorithm reported in [106].

5.3 An Interpolation Example

Suppose data were collected from an experiment and due to some difficulty, the

middle part of the data were deemed inadequate. For the sake of definiteness, suppose

the data values Y3, Y4 of a total of 8 data values were missing. Then, the researcher

has only y0, Yl, y2, Yh, Y6, Y7 from which to make a determination of the decay rate of

the experiment. Since the data can be taken in pairs, Yk, Yk+5, the researcher chooses

to use a shift functional of order 5 to determine the coefficients, in this case, the

starting matrices look like

and

HO

yo yl y!]
yl y2

y2 0

H1 ---
Ys Y6 Y_]
Y6 Y7

Y7 0

To see how this example actually performs, test data were generated with

f(t) = e -t + e -3t + e -st,

for the interval [0, 1] at equal length time intervals h = 0.05. No noise was added.

Table 5.5 contains the first ten data values to 4 decimal places. It also has the results

of the interpolation after 6 iterations of the scheme. The data values used in the

experiment were maintained in their full precision in Matlab on a PC. After three

iterations the matrices are

H0

"3.0000 2.5907 2.2522]

2.5907 2.2522 1.9717[

2.2522 1.9709 1.7381J
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and

"1.5377 1.3705 1.2284]

HI= 1.3705 1.2284 I.I070]

1.2284 1.1068 1.0026J

and the coeficients, bk, have been estimated as {-1.2609,-4.5082,-6.4569}. Note

that after three iterations, the matrices are not true Hankel matrices and the proper

values for the interpolated data cannot be determined. After three more iterations,

the matrices are truly Hankel matrices to 4 decimal places and the estimated data

stream is reproduced in the second column of Table 5.5. The values with * be-

side them represent the interpolated values. The estimated coefficients are now

_-1.2638,-3.1055,-4.5049}. Thus the method appears to converge nicely and in-

terpolates the missing data values to within 0.0003. Further iterations result in little

to no improvement. The Matlab program which implements the iteration is listed in

Figure 5.1.

This example shows that the functional method can be useful in interpolating

data. Caution must be used; however, the same procedure was tried with the first

ten values from Table 5.3. The iteration scheme never converged to Hankel matrices

with 4 decimal places of accuracy (to be expected from data with only 2 decimal places

of accuracy), although the returned coefficients were closer to the correct values than

many of the examples in Table 5.4.

A note about implementation is in order. The algorithm in Figure 5.1 specifies

that the columns in the matrices H0 and HI be updated from the preceding columns

in the previous iteration. In other words, if r is the k - Ist column in H_ i), then the

kth column in H_ i+I) should be

G(_)r (5.1)

instead of

(G(i))k-ly (5.2)

4O



where y is the fully known first column of H0. The update method (5.2) results in

all of the coefficients converging to the same number rather than (in this case) three

distinct ones. To gain some insight into why this is so, consider a step of the iteration

using (5.2):

= (G<'>):

and a step of the iteration using (5.1):

It appears that slowing down the convergence rate by using a previous value for

G keeps the algorithm from overconverging. It should also be noted that with the

matrix G in companion form, the known parts of H0 and H1 never change.

41



Table 5.1: Results with no added noise

Method Results

PHD 56 + 230i 56 - 230i -1.09 -2.77 -4.76

Ol=_k -7.75 + 288i 90.9 - 130i -1.08 -2.74 -4.73

Derivative -5.0000 -4.0003 -3.0005 -2.0001 -1.0000

Shift-1 -5.0016 -4.0161 -3.0223 -2.0060 -1.0002

Stand. LLS -5.0016 -4.0163 -3.0226 -2.0060 -1.0002

Shift-3 -4.9995 -3.9952 -2.9929 -1.9981 -.9999

Table 5.2: Results with noise level c _ N(0, 0.000052).

Method Results

PHD -1.56 -5.31 -6.50

ORA -1.08 -4.71 -2.71

Derivative -1.43 -4.21 -0.28

-4.5 + 167i -4.5 - 167i

-5.98 - 308i 111 - 10i

0.0000 0.0000

Integration-1 -1.09 -5.76 -2.25 -173 - 68i -173 + 68i

-1.59 -4.26 0.23 -142 + 52i -142 - 52iIntegration-2

Shift-1 -1.37 -4.18 -60 + 314i*

Stand. LLS -1.37 -4.18 -60 + 314i*

Shift-3 -1.37 -4.17 -102

-1.36 -4.15 -40.8

-47 + 184i -47- 184i

-47 - 184i -47 + 184i

-36 - 56i -36 + 56i

-23.0 - 26ishift-6 -23.0 + 26i

shift-9 -1.36 -4.14 -19.9 -19.0 - 34.9i -44.1 - 34.9i

shift-12 -1.35 -4.13 -32.6 -22.0 + 9.07i -22.0 - 9.07i

shift-15 -1.35 -4.11 -24.6 -14.7- 3.17i -14.7 + 3.17i

shift-18 -1.35 -4.11 -15.5 + 17.5i*

shift-21 -1.34 -4.09 -7.58 + 15.0i*

-8.89 + 16.4i -8.89 - 16.4i

-6.81 + 6.03i -6.81 - 6.03i

shift-24 -1.34 -4.06 -5.44 -3.66 + 2.94i -3.66 - 2.94i
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Table 5.3: Lanczos' data.

Data Values

2.51 1.12 0.53 0.27 0.15 0.09

2.04 0.93 0.45 0.23 0.13 0.08

1.67 0.77 0.38 0.20 0.11 0.07

1.37 0.64 0.32 0.17 0.10 0.06

Table 5.4: Results from various methods.

Method Result

Ruhe (k=2) -1.75 -4.55

Lanczos (k=2) -1.58 -4.45

LLS (k--2) -3.5 -8.5

LLS (k=3) -2.71 -5.1

LLS (k=4) -1.97 -4.6

Matrix Pencil (k=2) -3.53 -8.5

Matrix Pencil (k=3) -2.71 -5.08

ORA (k=2) -1.81 -4.57

ORA (k=3) -0.97 -3.3 -5.1

PHD (k=3) -0.26 -3.92 -16.9

brl (k=3) -2.71 -5.08 0

.7"1 (k=ll) -0.89 -3.35 -5.29

-7"2 (k=2) -2.8 -5.3

.7"2 (k=3) -2.0 -4.7 0

Integrate-1 (k=3) -.72 -3.2 -6.5

Integrate-2 (k=3) -.72 -3.2 -6.5

Integrate-3 (k=3) -.3.3 -16.2 -65.5

Integrate-4 (k=3) -.3 -1.2 -6.0
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Table 5.5: Comparison of true data with interpolated data

Actual Interpolated

3.0000 3.0000

2.5907 2.5907

2.2522 2.2522

1.9707 1.9708"

1.7354 1.7357'

1.5377 1.5377

1.3705 1.3705

1.2284 1.2284

1.1068 1.1068"

1.0023 1.0020"

% assumes the polynomial p and the matrices HO, HI already exist

G=[O 1 0

0 0 1

-p(4:-1:2)];

it is very important to update H0, HI from HO, H1

rather than from y, yl and G

H0=[y G*H0(:,I) G,H0(:,2)]

Hl=[yl G*HI(:,I) G,HI(:,2)]

e=real(eig(nl,H0));

el=log(e)/5; Z assumes yl is shifted 5 from y

p=poly(exp(el));

e2=el/.05 Z only necessary when reporting coefficients

Figure 5.1: Matlab Program for interpolation
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CHAPTER 6

CONCLUSIONS

The functional technique described in this dissertation represents a great leap

forward for the task of solving Prony's Problem. Before this technique was developed,

the available methods depended on either nonlinear techniques or the autoregressive

formulation. The AR formulation has been the method of choice because the problem

is linear and responds to many different techniques. With the introduction of linear

functionals, the arena has become much more vast.

This dissertation showed the theoretical basis for the functional techniques. It

also showed how simple many problems become when the functional techniques are

used. The justification for many different approaches to the problem becomes easier

and the different transformations have been unified with one theory.

However, this dissertation could only scratch the surface of the new functional

technique. There are still many questions to be answered. The iteration technique

introduced in section 4.1.2 needs justification. The limitations on its convergence

need to be identified. Since those convergence properties depend on the functional

which is used, it is impossible to plumb those depths in this dissertation. Addition-

ally, the properties of the overdetermined case need to be investigated. The method

presented there is apparently irreconcilable with the covariance methods presented

by Pisarenko, Osborne and others [83, 73]. Hopefully further research in this area

will result using the functionals to create an orthogonalization technique for these

problems. The existence of such a technique would result in vastly improved compu-

tational performance in these problems.
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