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REDUCTION OF LARGE DYNAMICAL SYSTEMS BY MINIMIZATION OF

EVOLUTION RATE

SHARATH S. GIRIMAJI*

Abstract. Reduction of a large system of equations to a lower-dimensional system of similar dynamics

is investigated. For dynamical systems with disparate timescales, a criterion for determining redundant

dimensions and a general reduction method based on the minimization of evolution rate are proposed.
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1. Introduction. The macroscopic behavior of many complex systems (with a large number of degrees

of freedom or scales) is largely insensitive to the details of the microscopic features. The macroscopic behavior

can then be nearly exactly described by a simpler system with very few degrees of freedom or scales. In

this article, a general method for reducing the description of the macroscopic behavior of large systems

is presented. The two specific examples considered in this paper are of importance in the modeling and

computation of turbulent combustion: the reduction of complex chemical kinetics and algebraic modeling of

Reynolds stresses.

Consider an autonomous dissipative dynamical system with one attracting fixed point:

(1.1) _. ----g(z), where z ---- (zl,z2,..- zn).

It is assumed that z is suitably scaled and nondimesionalized. If the system has disparate timescales, the

solution exhibits a typical three-stage behavior. (i) Initial-condition dependent initial transient stagc which

lasts until all the small-timescale fast processes are exhausted; (ii) the intermediate slow-manifold stage in

which the solutions 'bunch' together in a lower-dimensional phase space as the slow processes dominatc; and

(iii) the final equilibrium state. In the slow-manifold stage, the degrees of freedom of the system can be

reduced if the relationship bctween fast and slow variables can be found. In a nonlinear dynamical system

it is difficult to characterize the slow manifold accurately and the current practice is to locally linearize the

equations. We will use the example of a general two-variable linear system with one large (-1) and one

small (-_) eigenvalue in our analysis:

= -x(cos 2 0 + e sin 2 0) + y sin 0 cos 0(1 - 6),

(1.2) y = x sin 0 cos 0(1 - ¢) - y(sin 2 0 + ¢ cos 2 9).

The directions corresponding to the two eigenvalues are

(1.3) x=--ycot9 forA----1; x-=+ytanO forA------E.

In a linear system, the slow manifold lies in a space spanned by the eigenvectors corresponding to small

(in magnitude) eigenvalues. Maas and Pope [1] determine the slow-manifold by requiring it to be orthogonal

*Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA

23681-2199. This research was supported by the National Aeronautics and Space Administration while the author was in

residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center,

Hampton, VA 23681-2199.



to the principal directions corresponding to the large (negative) eigenvalues of the Jacobian (MP model). In

the example considered the slow-manifold is

(1.4) x(slow-manifold) -- +y tan 9.

The determination of the eigenvalues and eigen-directions of the Jacobian and subsequently the slow manifold

can be prohibitively expensive in a practical nonlinear problem involving several dozen variables. The popular

and inexpensive steady-state approximation (SSA) method of reduction involves setting the rate of change

of fast variables to zero to obtain algebraic relations between fast and slow variables. In the sample problem,

x(slow-manifold) = +y tan _ (1 - _ sec 2 _ + e 2 sec 2 0 tan 2 0 + O(c3)) , if x is fast variable,

(1.5) y(slow-manifold) = +xcot0 (1 - ecsc2e+e2csc2ecot2e+ o(ea)), ify is fast variable.

Judicious choice of the steady state variable is crucial and this is usually made from a priori knowledge.

Even with a proper choice, the error incurred is first order in the eigenvalue ratio. For further details about

these methods and other important developments the reader is referred to [2], [3] and [4].

Our objectives are to (i) devise a general criterion for selecting fast variables and (ii) develop a compu-

tationaily viable reduction procedure of higher (than one) order accuracy in eigenvalue ratio.

2. Characterization of Slow Variables. Fast variables are those whose evolution is dominated by

the large eigenvalues of the Jacobian and the slow variables by the small eigenvalues. In fact, close to the

slow-manifold, fast variable evolution can be slower than that of slow variables rendering evolution rate an

unsuitable selection criterion. A better gauge of the timescale of a variable (zi) is the convergence rate of its

value between two neighboring trajectories. The difference in zi values between two neighboring trajectories,

(fzi, evolves according to

(2.1) d(_zi) - _-'_ _(,fzj).
_- j=l

Based on this, two approximate measures of the dissipativeness of individual variables are proposed for the

selection criterion:

(2.2) D, = Oz--_' j=l \_ ] J

In general, large magnitude of Di implies fast variable and slow variables axe characterized by small magni-

tudes. When the physical and eigen variables coincide, it is easy to see that Di are indeed the eigenvalues.

While the second estimate is likely to be more accurate in general, the first measure may be adequate when

the off-diagonal terms in the Jacobian are relatively small.

3. Reduction of the Dynamical System. Each state in phase-space is associated with a residence

timescale which is proportional to the amount of time a solution trajectory resides in an infinitesimal neigh-

borhood of that point and inversely proportional to the local evolution rate (V = V/_-]_i_l g_g_). Solutions

tend to stagnate near long-timescale states and pass quickly through short-timeseale states. The probability

of finding a solution, of unknown time lapse and arbitrary initial condition, at a given state along its trajec-

tory is proportional to residence timescale of that state. This leads to the premise of our reduction procedure.

Given the values of slow variables, an arbitrary solution trajectory is most likely to be found at the state with

the longest residence time, i.e., smallest evolution rate. This proposal is as valid for non-linear systems as



it is forlinearsystemsandbearssemblanceto themaximumlikelihoodestimatorof mathematicalstatistics
andthenon-equilibriumpotentialconceptof [5]. Whennot conditionedbyanyslow-variablevalues,this
criterionselectstheequilibriumstateasthemostlikelystateof thesystem.If werepresenttheretained
(slow)variablesin z bythevectory andthediscarded(fast)variablesbythevectorx, thestatementofour
proposalcanbewrittenas:

?1

(3.1) x(y) _ m_nF(x : y), where F = v 2 = _gig,.
i:l

In the present example

F(_,y)= _ + ?7

(3.2) = x2 (cos 2 0 + e 2 sin 2 0) + y2(sin2 0 + e 2 cos 2 0) -- 2xy sin0 cos 0(1 - e2).

The value of x that minimizes the evolution rate is

sin 0 cos 0(1 - e 2)
(3.3) x(y) = y cos20 + e2sin20

= ytanO[1 - (1 + tan 2 O)e 2 + O(e4)].

When the eigen and physical variables coincide, there is no error involved; otherwise, it is of order e 2 which

makes this method more accurate than the SSA method. The fast variable selection criterion given above

will ensure that 0 _< 7r/4.

For even better accuracy, minimization of the evolution rates of higher-order derivatives of the variables

is proposed. Differentiation has the effect of separating the timescales so that the timescales of x and y are

farther apart than the those x and y. The higher the order of the derivative, the greater is the separation

between the slow and fast variable (derivatives). In matrix algebra, this fact is the basis of'the power method

of separating small and large eigenvalues. Our proposal for higher-order accuracy is

(3.4) x(y) _ n_nFm(x : y); where Fro(z) =
dm z, d_ zi

dt TM dt m
i:1

In our sample problem,

(3.5)

Fro(x, y) = x2(cos 2 0 + e2m sin 2 0) + y2(sin2 0 + e 2m cos 2 0)

-2xy sin 0 cos 8(1 - e2m),

which leads to

(3.6) x(y) = ytan0[1 -- (1 + tan 2 0)C 2rn -_-O(E4rn)].

In practical problems, minimization of F 1 may be adequate as the error involved in local linearization

may be of order e 2. More than one minima of the evolution rate may be encountered in the proximity of

other (unstable) fixed points. (This will also be the case with SSA method.) Then, the minimum that has all

negative eigenvalues (attractor) must be chosen. The computational effort is still much smaller than the MP

method, where eigenvalues and eigenvectors are evaluated at all points in the fast phase-space as opposed

to eigenvalues only at a handful of minima in the present method.



4. Chemical Kinetics Reduction. The phenomenon of turbulent combustion encompasses a wide

spectrum of length and time scales. Typically, the thermo-chemical timescales representing chemical reactions

span a wider range than those of turbulent advection and molecular diffusion. In the interest of computational

efficiency, it is desirable to eliminate chemical reactions and species whose characteristic timescales are smaller

than the fluid timescales.
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FIG. 4.1. State-space evolution of H and OH as a function of temperature. Different dashed and dotted lines correspond

to results from full kinetics simulations from different initial conditions. The solid line represents the slow-manifold model

prediction with temperature as the only retained variable.

Consider chemical reactions among N8 chemical species involving Nr reactions in an adiabatic, isobaric,

well-stirred reactor. The species (mass fraction Yi) evolve according to

(4.1) OY_ Na fl, i A Tb j ( Ei ) __i ( yn _f_-_
j=l n=l

where: Wi is the molecular weight of species i; /_ijis the stoichiometric coefficientof species i in the j-th

reaction; aj = _-_N__"1f_ij;Aj, bj and Ej are the Arrehenius constants; and, T£ is the universal gas constant.

Temperature and density are obtained from

(4a)

"at  ah,,o -EE'
i=Â

p(p, T, Y_) = _-_ \i=1



We consider the evolution of a H2/O2 mixture, in which the atomic mass fractions of hydrogen and oxygen

are 0.15 and 0.85 respectively, from various initial conditions. The constant total enthalpy is 1.104 × 10 7

KJ and the constant pressure is 2 arm. The detailed 14-step chemical mechanism involves temperature (T)

and six species (02, O, H2, H, OH, and H20). The equilibrium state is given by: T = 3506 K; YH = 0.024;

YH_O -- 0.556; YOH = 0.201; Yo = 0.086; Yn2 = 0.060 and Yo2 = 0.070.
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FIG. 4.2. State-space evolution of H and OH as a function of temperature. Solid line - caseIC5 with full kinetics; dotted
line reduced model with temperature as the only retain'ed variable; dot-dash line - reduced model with temperature and H20
as the retained variables.

Evolution of the species undergoing reactions according to the detailed chemical kinetics from six arbi-

trary initial conditions is calculated numerically using a second-order Runge-Kutta procedure. The evolution

trajectories of H and OH are shown in Figure 4.1. A one-dimensional slow manifold model is constructed

with temperature as the only retained variable:

RiRi + dt dt J "(4.3) Y(T) m_m Li=l

The mass fractions of H and OH predicted by the one-dimensional model is also shown in Figure 4.1. The

agreement is quite adequate. Next we construct a two-dimensional manifold with water mass fraction as

a retained variable along with temperature. Comparison between the two-dimensional model and detailed

kinetics is made for the case IC5 in Figure 4.2. The one-dimensional model values are also shown for

comparison. The agreement between the two-dimensional model and detailed kinetics is, in general, excellent.

These results demonstrate that the present method is an accurate and computationally viable option for



reducingchemicalkinetics.

5. Algebraic Reynolds Stress Modeling. In the field of turbulence modeling, closure of Reynolds

stress transport equations is the lowest level of sophistication at which models can be developed in a sys-

tematic manner from the governing Navier-Stokes equations. This entails solving seven modeled transport

equations for turbulence variables five for Reynolds stress anisotropy components bij and one each for

turbulent kinetic energy K and dissipation E

(5.1)
dbij _
dt

dK

dt

de

dt

o e _ Llbm_S_n)
bij (L 1

+ L2Sij + L3(bikSjk + bjkSik -- Z bm_Sl,_6ij)
3

+La(bikWjk + bjkWik)

-- -- -KbijSij - e

c 2

-- - -C_l ebi _S 0 - C_ -_ .

The Einstein summation convention is used. In the above equations L's and C's are model coefficients, and

S_j and Wij are the mean flow strain and rotation rates. For the sake of brevity, the coefficient values used

are not given here and the reader is referred to [6].
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FIG. 5.1. Homogeneous turbulence. Evolution of b12 and bll as a function of w. Solid line - reduced model with K and e

as the retained variables; dashed and dotted lines - full Reynolds stress model calculations from various initial conditions.



Researchers have long sought to reduce the seven-equation model to a computationally affordable two-

equation (for K and e) model. The Reynolds stress anisotropies are the discarded variables for which we

seek algebraic expressions: hence the name, algebraic stress model. The evolution rate of this system in

state-space is given by,

(5.2) F = V 2 - dbij dbij dK dK cl¢ d_
dt dt + d--t- d-T + d--td-t"

The algebraic stress model assumption for non-equilibrium turbulent flows is

(5.3) b(K, ¢) = min F(b: K, ¢).
b

For two-dimensional mean flows, the minimization is performed in a three-dimensional discarded variable

state space of b11, b12 and b33.

We test the model in homogeneous shear turbulence in which the only non-zcro values of mean strain

and rotation tensor components are

S

(5.4) 812 = S21 : W12 = -W21 = 2'

where S is a constant. The seven-equation model calculations for various S values are shown in Figure 5.1.

Each anisotropy is plotted as a function of the self-similarity (retained) variable e/SK. The equilibrium

values are: w = 0.166; bll = 0.204; b12 = -0.157; b22 = -0.149; and b33 = -0.055. The various solution

trajectories exhibit a well-defined slow manifold behavior. The algebraic model, also shown in the figure,

does an excellent job of reproducing the behavior of the full set. This algebraic model has been tested in a

variety of other homogeneous flows with good success [7].

6. Conclusion. In summary, we have developed a general procedure for reducing dimensionality of

autonomous systems with disparate timescales. The premise of the proposal is that the solution trajectories

from unknown initial conditions are most likely to be found near the 'bottle-necks' in state-space which are

characterized by small evolution rates. The location of these bottle-necks on the path to equilibrium can be

found by simply minimizing the evolution velocity subject to constraints (given values of the slow or retained

variables).
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