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ABSTRACT

Mechanical, thermal, fatigue and stress corrosion properties
were determined for the two lots of Al-Li X2096-T8A3
extruded beams. Based on the test results, the beams were
accepted as the construction material for fabrication of the
Hubble Space Telescope new Solar Array Support Struc-
ture.

1.0 INTRODUCTION

Potential property advantages of Al-Li alloys present an
attractive alternative to the conventional 7075 atloy in
structural design tor aerospace applications. An increase in
weight savings and performance enticed the Hubble Space
Telescope (HST) project team to consider these alloys for
construction of the support frame of the new Solar Array
(SA3) Panels that will replace the existing array during the
next servicing mission.

The HST project team selected the Reynolds Metal Com-
pany (RMC) X2096 alloy as their material ot choice for its
low density, high elastic modulus, high strength, and
toughness. Since the commercial utilization of Al-Li alloys
is still limited, X2096 alloy is not produced on regular basis
and is not part of MIL HDBK 5. Consequently, this alloy
had to be treated as a new product and its properties had to
be tested in order to qualify this material for the space flight
application.

This memorandum provides a detailed account of testing
performed by the Materials Engineering Branch (MEB) to
verity the properties of the RMC X2(096 Al-Li alloy. It also
presents test results obtained by the Reynolds Metal Company
and forwarded to the Goddard Space Flight Center (GSFC).

2.0 APPROACH

The minimum required properties of X2096 Al-Li alloy
specified by the HST project in the Purchase Request issued
to RMC are presented in Table 1. The material was pro-
duced and extruded by RMC and delivered to Goddard in
form of the rectangular and round tubes (beams).

The test program was divided between the GSFC MEB and
RMC as shown in Table 2. The rationale ot deing part of
the tests by RMC was to save time by performing the tests
in parallel. In addition. RMC was to perform some basic
mechanical testing anvway as part of their internal product
release requirements.

The specimens tested by MEB were machined (see Attach-
ment for geometry and dimensional details) from the
extruded rectangular beams representing both lots. Sam-
pling and testing of the round tubes were performed by
RMC. However, due to the fact that the number ot extruded
beams was limited and most of the material was required
for manufacturing of the support structure. only one lot was
tested by RMC.

In addition to the tests listed in Table 2, MEB performed
several tensile tests for verification purposes only. The
information derived from these tests was used to baseline
the properties of the extruded beams.

Table 1. Minimum Properties Specified in Purchase Request

Orientation | Ultimate Tensile | Tensile Yield | Elongation, | Compressive | Stress Corrosion
stress, Stress, % Yield Stress, | Test Stress Level,
i ksi ksi kst % of Tensile Yield
L 76 73 7 69
L-T 75 70 7 75
Table 2. Property Test Program
Test Site Test Type B )
o xestone L i R
Goddard MEB | Bearing Shear Fracture toughness | Fatigue | Thermal | Rivet
| RMC Tensile . Compression Stress Corrosion |

Evaluation of Engineering Properties of
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3.0 AL-LTI ALLOY X2096

In response to PR from GSFC, RMC produced two X2096
Al-Li alloy ingots of 9,000 and 10,000 Ibs. Each ingot was
cut into 30-40 round billets of approximately 10 inches in
diameter and 10 inches in length. A through hole of 5-inch
diameter was drilled in each billet. This was followed by
extrusion of the billets into rectangular and round tubes
(beams). Thus, two lots of beams were produced. All beams
were heat treated to the RMC proprietary T8A3 temper. The
tot that came from the 9,000 lbs ingot was identified as Lot
9 and. likewise. the beams from the 10,000 lbs ingot were
identitied as Lot 10. This lot nomenclature was used for

tracking and quality assurance purposes by GSFC and RMC
and, consequently, will be used as such throughout this
report.

The rectangular beams received by MEB for testing are
shown in Fig. 1.

Wall thickness measurements showed variation in thickness
from 0.080 to 0.100 inches. Samples from each lot were
analyzed for chemical composition. The results of Induc-
tively Coupled Plasma Optical Emission Spectroscopy
analysis are presented in Table 3.

Figure 1. Photographs of various sections of X2096-TA83 Al-Li alloy extruded beams manufactured
at the Reynold’s Al casting facility, Richmond, Virginia.

Table 3 Composition of X2096 Al-Li alloy beams

Nominal composition Lot9 Lot 10
of X2096 alloy * (Wt%) (wt%)
(Wt%)
Copper 23-30 3.1 2.9
Lithium 1.3-1.9 1.7 1.6
Magnesium 0.25 - 0.80 0.31 0.29
Silver 0.25 - 0.60 0.2 0.2
Zirconium 0.04 -0.16 0.14 0.13
Manganese 0.25 max. 0.03 0.01
Zinc 0.25 max. 0.02 0.02
Iron 0.15 max. 0.05 0.06
Silicon 0.12 max. 0.04 0.04
Titanium 0.10 max. 0.02 0.02
Aluminum Remainder Remainder Remainder

* -composition registered with the Aluminum Association.

[2S]
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As one can see, silver content in the extruded beams was
somewhat below the expected range.

Samples from each lot were also metallographically cross
sectioned and polished to reveal their grain structure. Three-
dimensional optical micrograph of the cross section of the
extruded beam wall is shown in Fig.2.

ST

Mag. x 25

Figure 2. Three dimensional optical micrograph at
mid-thickness location in X2096-TA83 extruded beam
(20 sec. Graff-Sargent Reagent, Followed by 15 sec.
Keller Etch).

This micrograph represents typical microstructures obtained
for each lot. In all cases, the alloy X2096 microstructure
shows mostly unrecrystallized pancake-shape grains
elongated in direction of extrusion. An unusual feature was
observed on unetched cross sections of the extruded beams.
Bands of inclusions were present below the surfaces of the
beam walls, as shown in Figure 3.

An attempt to analyze these inclusions was made using
Auger microscopy. Only aluminum and oxygen were
detected in the inclusion material. In addition, a tape lifting
technique was utilized on the tracture surfaces of the
mechanically tested samples later on in the program. Again,
SEM spectroscopy did not reveal the presence of any
elements other than aluminum. It is believed, therefore, that
the inclusions consist ot aluminum oxide trapped into the
beam material during the manufacturing process. It is not
clear, however, why these inclusions were arranged into
subsurface bands. No satisfactory explanation from RMC
was provided on the nature of these inclusion bands.

Evaluation of Engineering Properties of
Al-Li Alloy X2096-T8A3 Extrusion Products
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Figure 3. Low (a) and high (b) magnification optical
micrographs of beams cross sections revealing
inclusion bands. Unetched.



4.0 TEST RESULTS The average value of E was found to be 10.99 Msi, which is

in agreement with the elastic properties determined using
the acoustic resonance technique

4.1 Tensile and Compressive Properties. .
p p A tull range stress-strain behavior of the tensile test

specimens is shown in Figure 5.

RMC measured tensile and compressive properties of the
Lot 9 extruded beams and forwarded their results to GSFC
to be included in this report. Due to the beam size limita-
tion, subsize tensile specimens were used for tension test.
The geometry of the tensile or compression test specimens
or the tests details were not provided to Goddard (see Ref.
1). The test results received from the RMC are summarized
in Table 4.

As one can see, these properties exceed the requirements of
the PR listed in Table 1.

Prior to and independent from the RMC tensile test effort,
MEB also performed a limited number of tensile tests in
order to better understand the properties of the newly
received extruded beams. Full size “‘dog bone™ type speci-
mens were machined from the beams representing both Lots
9 and 10 (see Figure 4). All specimens were oriented in L.
direction.

The test results are presented in Table 5. Modulus of
elasticity E was calculated using the average of three
loading cycles and taken as the slope of the stress strain data
between 0.05% and 0.25% strain. per ASTM E-111.

Figure 4. Standard pin loaded specimens tested per
ASTM E8 and E111. Strain was measured with an
averaging extensometer with a 2-inch gauge length.

Table 4. Tensilc and Compressive Properties of RMC Al-Li alloy X2096-T8A3 Extruded Beams Tested at RMC

TENSILE TEST COMPRESSION
DIRECTION - - - - - TE.ST -
Tensile Yield Ultimate Tensile Elongation Compressive Yield
Stress (ksi) Stress (ksi1) % Stress (ksi)
L 71.5 79.5 9.0 79.4
L 75.8 80.9 9.0 77.1
L 74.9 80.2 9.0
L-T 72.7 77.2 10.0 78.8
L-T 70.4 76.5 8.0 76.1
45 deg. 60.6 67.1 12.0 69.2
45 deg. 61.0 67.5 12.0 71.0
4 Evaluation of Engineering Properties of
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Stress
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Stress versus Strain Curves for HST Al-Li Beam Tensile Specimens
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Figure 3. Stress-strain curves for the *‘dog-bone™ type
specimens machined in L direction from the X2096-T8A3
Al-Li alloy extruded beams.

4.2 Shear and Bearing Properties

4.2.1 Shear Test

The shear strength was measured in L and L-T directions on
Lot 9 and 10 beam specimens. Since no ASTM standard is
available for shear test of thin plate/sheet material. the
double slotted single shear tests were selected (see Fig. 6)
The specimens were EDM machined from the beam sides.
Due to beam wall thickness variation, thickness of the test
specimens measured trom (.082 to (0.100 inches. A typical
shear loading curve is shown in Fig. 7

Table 5. Results of tensile test of X2096-T8A3

USA 2

Figure 6. Double slotted single shear test specimens used to
measure shear strength of Al-Li extruded beams. A complete
description of these tests can be found in Ref. 2.

An Instron 1125 universal testing machine was used to load
the specimens to failure at a crosshead speed of 0.05 inches
per minute.

The results of the double slotted single shear tests are given
in Table 6.

Al-Li alloy extrusion beam specimens in L direction.

The tests were performed at Goddard

ID Thickness | Width Yield Ultimate | Young's* | Elongation
(lot/spec.#) (in) (in) Strength | Strength | Modulus | at Failure
(ksi) (ksi) (Msi) (%)
9-1 0.0950 0.5015 78.30 82.66 10.96 8.8
9-2 0.0940 0.5015 78.72 82.86 11.11 8.1
10-1 0.0996 0.5015 71.06 76.00 10.88 9.1
10-2 0.0974 0.4995 74.95 79.14 10.99 9.6

* Taken as chord between (.05 and 0.25% strain

Evaluation of Engineering Properties of
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Shear Specimen 9 L-1
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Figure 7. Load vs. crosshead displacement curve for one of the shear test specimens.

An Instron 1125 universal testing machine was used to load
the specimens to failure at a crosshead speed of (.05 inches
per minute.

The results of the double slotted single shear tests are given
n Table 6.

The average shear strength was found to be 47.50 £ 0.77
ksi. The L-T specimens tend to be slightly stronger than the

L specimens. Specimens representing Lot 9 seem to be
somewhat stronger than the specimens from Lot 10.

4.2.2 Bearing Test

The bearing properties of the Al-Li alloy were measured in
accordance with ASTM E 238 for edge distance-to-
diameter ratios (/D) of 1.5 and 2. Specimens were loaded

Table 6. Shear Strength of X2096-T8A3 Al-Li Extruded Beams

Specimen ID Thickness | Ligament | Maximum | Uliimate Shear
(lot, orientation, spec.#) (in) Length Load Stress F.,

(in) (Ibs) (ksi)

9L-1 0.0925 0.1854 817.7 47.68
9L-2 0.0960 0.1865 852.1 47.59
9L-3 0.0925 0.1865 §22.0 47.65
9LT-1 0.0865 0.1874 793.6 48.96
9LT-2 0.0830 0.1866 745.0 48.10
9LT-3 0.0825 0.1865 737.7 47.95
10L-1 0.0990 0.1867 846.7 45.81

10 L-2 0.0930 0.1866 824.7 47.52

10 L-3 0.0930 0.1865 812.3 46.83
10L4 0.0935 0.1858 811.3 46.70
10LT-1 0.0875 0.1842 758.7 47.07
10LT-2 0.0900 0.1854 795.2 47.66
10LT-3 0.0890 0.1863 796.2 48.02
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to failure in Instron 1125 universal test machine at cross-
head speed of 0.05 inches per minute. The results of bearing
test are presented in Table 7.

Specimens 10-L-5 through 8 in Table 7 have somewhat

lower values of the bearing ultimate stress. The rest of the
specimens exhibited quite consistent behavior and showed
no difference in bearing properties between Lot 9 and Lot
10. Also, specimen orientation did not seem to affect their

4.3 Elastic Properties

The elastic properties of the Reynolds X2096-T8A3 Al-Li
alloy extruded beams were measured in L and L-T direc-
tions using acoustic resonance technique in accordance with
ASTM standard C 1259-94. More detailed description of
this technique can be found in Reference 3.

bearing properties.

Table 7. Bearing Properties of X2096-T8A3 Al-Li alloy

The test results are presented in Table 8.

Specimen ID | Thickness| Pin e/D | Yield Max Bearing Bearing
(lot, orientation, (in) Diameter Load Load |Yield Stress| Ultimate Stress
spec.#) (in) (1bs) (Ibs) Fyy . (ksi) Fyn, . (ksi)
9L-1 0.097 0.249 2 2867 3635 118.2 149.9
9L-2* 0.097 0.249 2 3582 148.8
9L-3 0.096 0.249 2 2830 3605 118.1 150.4
9L-5 0.097 0248 | 1.5 2167 2767 90.5 115.5
9L-6 0.097 0249 | 1.5 2378 2740 98.7 113.7
9L-7 0.097 0249 | 15 2394 2774 99.3 115.0
9LT-1 0.089 0.249 2 2662 3335 120.0 150.3
9LT-2 0.090 0.249 2 2569 3366 114.4 149.9
9 LT-3* 0.090 0.249 2 3368 150.6
9LT4 0.089 0.250 | 1.5 2194 2547 98.5 114.3
9LT-5 0.089 0249 | 1.5 | 2106 2559 95.0 115.4
9LT-6 0.089 0.249 | 1.5 2154 2515 96.8 113.0
10L-1 0.094 0.247 2 2774 3431 119.5 147.8
10L-2 0.092 0.249 2 2588 3304 113.0 144.3
10L-3 0.091 0.245 2 2643 3246 118.0 145.0
10L-4 0.091 0.248 2 2681 3389 118.3 149.6
10L-5 0.094 0.249 | 1.5 2202 2601 93.9 110.9
10L-6 0.094 0249 | 1.5 2074 2522 88.6 107.8
10L-7 0.100 0248 | 1.5 2266 2658 91.8 107.7
10L-8 0.092 0.248 | 1.5 2170 2537 95.5 111.6
10 LT-1 0.087 0.249 2 2569 3182 118.7 147.1
10LT-2 0.085 0.249 2 2364 3144 111.4 148.2
10LT-1 0.091 0.250 2 2715 3372 118.8 147.5
10LT-2 0.091 0.247 2 2755 3430 123.2 153.4
10LT-3 0.087 0249 | 1.5 2061 2394 95.5 111.0
10LT-4 0.088 0249 | 1.5 2089 2460 95.8 112.8
10LT-3 0.081 0.248 | 1.5 1928 2301 96.6 115.3
10LT-4 0.090 0249 | 1.5 2219 2653 99.1 118.5
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Bearing Test of AI-Li Specimens from Lot 9
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Figure 8. Load vs. displacement curves for the bearing test. There is no noticeable difference in the behavior between
Lot 10 (view A) and Lot 9 (view B) specimens.
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Table 8. Results of acoustic resonance testing of the Reynolds X2096-T8A3 Al-Li alloy specimens
machined from extruded beams

ID |Length [Thickness|Width| Dens. {POISSON| R[FLEX]| RILONG]} R[TORS]| Flexural| In Plane| Shear
(in) (in) (in) [(g/cm3)| Ratio kHz kHz kHz |Modulus|Modulus{Modutus

Msi Msi Msi

10-L-1 | 4.002 0095 |1.501} 2.59 043 1.281 26.66 1.972 10.81 11.19 379
10-L-2 | 4.002 0091 {1.502| 261 040 1.239 26.64 1.926 10.98 11.25 392
10-LT-1{ 4.000 0090 |1.500] 2.64 0.40 1.219 26.55 1.895 10.97 11.30 391
10-LT-2] 4000 | 0090 |[1500| 2.64 0.40 1.220 26.55 1.898 10.98 11.29 392
10-LT-3| 4.001 0091 |1501| 260 0.40 1.219 26.55 1.894 10.57 11.15 377
10-LT-4| 4000 | 009 {1502} 2.63 0.40 1.217 26.55 1.891 10.84 11.25 3.87
9-L-1 | 4.002 0.098 |1502| 260 042 1.338 26.68 2.060 11.00 11.26 387
9-L-2 | 4.002 0095 |[1.502] 260 042 1.288 26.68 1.985 10.96 11.26 385
9-L-3 | 4.002 0099 |1502| 260 042 1.341 26.68 2.065 10.96 11.25 385
9-LT-1 | 4.001 0085 |1502] 2.60 041 1.140 26.67 1.768 10.68 11.22 378
9-LT-2 | 4.002 0085 |1.505| 259 040 1.138 26.67 1.767 10.68 1119 3.80
9-LT-3 | 4.002 0084 |1.502| 262 043 1.143 26.68 1.765 11.14 11.34 391

The average in-plane elastic modulus or Modulus of Elastic
E was found to be 11.25+0.05 Msi. Scatter in density and
elastic properties measurements is most likely due to non-

uniform thickness and flatness of the extruded beams.

4.4  Fracture Properties.

Crack extension resistance curve (R-Curve) and plane-
stress fracture toughness K_tests were performed on the
specimens machined from the Lots 9 and 10 of the

Reynolds X2096-T8A3 Al-Li alloy extruded beams. Due to
the beam size limitations, the specimens were machined

only in L direction. The tests were conducted in accordance
with ASTM E-561 and B-646 standards as applied for sheet
products. The center crack plate configuration (M(T)) of the
test specimens is shown in Figure 9. The tests were per

Figure 9. One of the M(T) center crack specimen used
for the R-curve and K _ tests.
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formed on computer controlled Instron Model 1350
dynamic testing system equipped with the Instron Fast-
Track™ software.

The thickness of the test specimens ranged from 0.082 to
0.095 inch due to variations in the beam wall thickness. The
center notch was EDM machined as per the specimen
drawing in the Attachment. Each specimen was
precrackedin axial tensile-tensile fatigue to the nominal
initial crack length (2a ) of 1 inch.

A total of five specimens were tested. Table 9 lists the K_
values obtained. Figure 10 shows R-curve, a plot of crack-
extension resistance as a function of slow-stable crack
extension, obtained for each specimen. The effective crack
length was determined by using the compliance method.
The effective crack growth was primarily due to plastic
zone correction. The fracture surfaces of the test specimens
show mostly V-slant morphology (see Figurell), which
indicates that the specimens were tested in plane-stress
condition.

Table 9. K values for X2096-T8A3

Sample ID Kc, ksi * in05

9-L1 41.3

9-L2 46.6

9-L3 50.6

10-L1 47.2

10-L2 43.3 |
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Figure 10. R curves of the tested Al-Li X2096-T8A3 extruded beam specimens. Specimen ID contains the Lot , orientation
and specimen number.

4.5 Fatigue Properties

Fatigue crack growth rate and the endurance limit measure-
ments were performed using tension-tension and bending
fatigue test methods as described below.

4.5.1 Fatigue Crack Growth Rate

The center crack plate M(T) configuration test specimens
were machined from the extruded beams in L (longitudinal)
and LT (long transverse) directions. Two specimen widths
were used, 1.5- and 3.0-inch, with the nominal precrack
length (2a) of 0.27- and 1-inch respectively. The
specimen’s thickness varied from 0.075 to 0.095 inch.The
complete specimen geometry is given in the drawings in the
Appendix. Due to the extruded beam size, the 3 x 12 inch
specimens could only be machined in L direction.

The tests were conducted in accordance with the ASTM E-
647 standard. The constant load method was used and the
stress ratio R was maintained at 0.1 for the entire test.
Fatigue crack lengths was measured using the compliance
method. In this method, the compliance data were used to
fit into the initial and final crack lengths to obtain the crack
length data for every incremental crack growth by adjusting

the apparent modulus and the Crack Opening Displacement.

The data were then compared with those using optical

10

measurement for each specimen. The correlation between
these two methods was found to be very good, as can be
seen in Figure 12 showing a typical plot of crack length vs.
number of cycles.

The next figure shows a plot of the fatigue crack growth
rate (da/dN) vs. stress intensity factor amplitude AK. Crack
growth rate for the 7075-T7351 alloy is also shown on the
same plot for comparison.

Figure 11. Fracture surfaces of the test specimens
showing V-slant morphology. Arrows point to the
fatigue precracked ends of the initial crack length 2a,.
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Figure 12. A typical crack length vs. cycle number plot obtained by compliance method and optical measurements.
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Figure 13. Shows a plot of da/dN vs. AK for the test specimens machined from the extruded beams of X2096-T8A3
Al-Li alloy. Specimens ID indicates the lot, orientation, and the specimen number.
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The nomenclature L-T and T-L is more convenient in this case
since it better identifies the loading direction (the first letter)
and the direction of crack propagation (the second letter).

4.5.2 Bending Fatigue Life

The bending fatigue endurance limit of the extruded beams
was measured in L and LT directions per ASTM B 593 using
subsized cantilever beam specimen geometry. The geometry
allows for a constant stress to be maintained along the entire
gauge length of the test specimen (see Figure 14).

The specimens were tested on Satec SF-2U constant force
fatigue machine. Although reliable and quite simple in
operation, this machine does not allow for an active and
precise control of the applied load. The load can only be
changed by varying the moment arm on a weight that spins
beneath the loading yoke. This type of loading is difficult to
calibrate. Therefore, a strain gauge was employed to measure
the strains and calculate the stresses on the test specimens.

Figure 14. A cantilever beam specimen used for
bending fatigue test.

Table 10. Stress calculations using four different methods

Specimen | Cycles to | Maximum stress values obtained using four methods (ksi) | Average | Standard
ID failure Stress Deviation
. Applied Theoretical Measured Measured
Load, Slope, Slope, Strain,
o = 18P/’ | 6 =Eyh/5.0625 | ¢ = Eym o =Ee
10-LT-1 46000 |  36.36 32.68 29.83 31.90 32.69 2.73
10-LT-2 73000 34.04 26.78 31.24 30.69 3.66
10-LT-3 115000 | 28.74 24.27 20.89 22.66 24.14 336
9.L.T-1 265000 24.82 23.21 17.66 18.48 21.04 351
9-LT-2 735000 |  21.11 19.09 17.31 17.05 18.64 1.88
9-LT-3 1615000 |  18.29 17.04 13.98 14.19 15.88 2.13
9.LT-4 10933000 |  15.56 15.18 12.25 12.76 13.93 1.67
9-L-1 119000 32.48 28.65 31.24 30.79 1.95
91-2 153000 34.99 27.74 29.81 30.85 373
10-L-1 199000 | 3043 28.81 26.44 26.62 28.07 1.90
10-L-2 256000 29.14 25.30 20.67 2343 24.63 355
10-L-3 439000 |  22.96 24.03 20.17 21.34 22.12 i
9.1-3 444000 25.52 24.79 19.96 21.34 22.90 2.68
10-L-4 545000 27.22 28.46 2243 24.86 25.74 2.66
10-L-5 962000 17.87 14.82 15.62 16.10 1.58
9.1 -4 14740000 18.33 15.20 12.23 11.66 14.36 3.07
10-L-6 24896000 |  15.61 15.03 1295 13.31 14.22 1.30
10-L-7 25379000 18.73 17.58 14.91 15.62 16.71 1.76

Note: P —applied load, y — observed deflection, m — calibrated slope, e- observed strain, h— specimen thickness, E — elastic modulus
taken to be 11 Msi.
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There were a total of four methods employed to calculate
stresses in each test specimen. These stresses are presented in
Table 10. The average and standard deviation values were
calculated using the maximum stresses from the various
calculation methods. This assumes that the failure was
initiated on the surface with the higher stress.

4.6 Stress-Corrosion Cracking

Stress-corrosion testing was performed by RMC at their
Corporate Research and Development facility in Chester,

Virginia.

The fatigue life is represented by the stress vs. cycles to

failure plot as shown in Fig. 15.

Due to the insufficient amount of the beam material
available, only the Lot 9 specimens were tested. The test
was conducted per ASTM G39-90 procedure using double
bent beam setup. The results of the test are given below.

The error bars represent the difference observed in the
calculation of the stress values. The lower bound to the
curves could be used to generate a conservative fatigue life
prediction. Regardless of the problems associated with the
stress calculations, the LT specimens clearly have a slightly
lower fatigue life. This observation is consistent with the
da/dN results described in section 4.4. As one can see in
Figure 13, the T-L specimens displayed higher crack

Specimen| Stress | Test Duration | No. Specimens | Failures Time to)
D (ksi) (days) Tested Failure
0220-09| 50 30 4 0 —

growth rate than the L-T ones.
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Figure 15. Fatigue life curves for the X2096-TA83 Al-Li alloy extruded beams measured in L and LT orientation.
Specimen nomenclature L-T and T-L is the same as defined in section 4.4.
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Specimens were machined from the X2096-T8A3 Al-Li
extruded beams. Their thickness was 0.090 and the length
was 4.25 inch. They were all oriented in LT direction. The
test environment was 3.5% NaCl alternate immersion, as
per ASTM Standard G44. Moderate pitting was observed at
the end of the test.

This is the extent of information supplied by RMC (see
Reference 1).

4.7 Thermal Properties

4.7.1 Specific Heat Capacity

Six specimens of the Reynolds X2096-T8A3 Al-Li alloy
were used to measure specific heat capacity C_ between —
100°C and 100°C. These specimens represented Lot 9 and
10.

The specimens were tested using differential scanning
calorimetry (DSC) according to ASTM E-1269. The
specimens were heated at 20°C/minute in a helium atmo-
sphere. Each specimen was tested five times and the
average results calculated for each temperature.

The plot in Figure 16 details the specific heat values
between 50°C and 100°C. Below 50°C the DSC instrument
behaved erratically, and the data obtained below 50°C could
not be considered valid. Consequently, these data are not
reported in this memorandum.

4.7.2 Thermal Conductivity

Thermal conductivity was calculated from thermal
diffusivity (y), specific heat (Cp), and density (d) using the
following equation:

q=vCd (see Ref. 4).

Thermal diffusivity was measured using the Angstrom’s
temperature wave method. A peltier junction was used to
generate a periodic heat wave along a specimen. Two
thermocouples were used to measure the decay in amplitude
and phase shift of the heat wave as it traveled along the
specimen. These two parameters were used to calculate
thermal diffusivity (see Ref. 4 for a detailed discussion).

Specific Heat Capacity
Al-Li Alloy X2096-T8A3, Lot 9 and 10

0.95

0.90

Cp, Jig*C

085

—&— Lot 9 AVG and STD DEV
—— Lot 10 AVG and STD DEV
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70 80 90 100 110

Temperature, °C

Figure 16. Specific heat capacity for the Reynolds X2096-T8A3 Al-Li alloy extruded beams.
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Figure 17. Thermal diffusivity as a function of temperature for the Reynolds X2096-T8A3 Al-Li alloy extruded beams.
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The specimens were nominally 10.2 ¢cm in length and had a
cross-section of 0.23 cm by 0.64 cm (see Appendix). The
spacing between the thermocouples was nominally 4.5 cm
and the frequency of the heat wave was 0.025 Hz. The
measured values of thermal diffusivity from the six speci-
mens did not vary much and were compiled together (see
Figure 17). Thermal diffusivity measurements could only be
made up to about +70 °C. The density of this material was
measured to be 2.57+ 0.01 g/cm?. A plot of the thermal
conductivity is shown in Figure 18.

4.7.3 Coefficient of Thermal Expansion

Thermal expansion measurements were made on 12 51-mm
long (2.0 inches) bars with rectangular cross-sections of ~
6.4 x 2.3 mm (0.25 x 0.09 inches). The CTE measurements
were made with a fused silica, push-rod dilatometer
manufactured by The Edward Orton Jr. Ceramic Founda-
tion. The Orton dilatometer uses an open-tube specimen
holder and a push rod to transfer displacement outside of
the thermal chamber to a linear variable-displacement
transducer (LVDT). The specimen holder and push rod are
made of fused silica. Thus the measured displacement is of
the differential expansion of the material compared to that
of fused silica (this is accounted for via instrument soft-
ware). This test was conducted in accordance with ASTM
E228-85 Standard Test Method for Linear Thermal Expan-
sion of Solid Materials With a Vitreous Silica Dilatometer.

The operation of the instrument was validated with the
measurement of a copper standard (NIST SRM 736) at the
conclusion of the aluminum-lithium measurements.

The test specimens were heated from -171°C to 103°C at
the rate of 3°C/min. The thermal expansion data was
binned into 50° segments and fitted to a first-order polyno-
mial. By definition, the derivative with respect to tempera-
ture of the thermal expansion curve is termed the “instanta-
neous” coefficient of thermal expansion. Hence the
coefficient for the first-order term obtained from the linear
fit is the measured CTE of the material. An average CTE at
a given temperature was computed for the three specimens
of one set of material, and the standard deviation incorpo-
rated into the estimated error of the measurement. A
second component of the estimated error comes from the
measurement of the copper standard and comparison with
NIST CTE data. The average data for each set of speci-
mens are provided in Table 11.

The results of thermal expansion measurements are shown
in Figure 19. The CTE from these measurements is shown
as a function of temperature in Figure 20. At first glance,
there appears to be an apparent “drop” in CTE at +25°.
Given that the drop is comparable in magnitude to the
estimated uncertainty in that temperature range, it should
not be presumed that the CTE does, in fact, decline with
temperature near +25°C.

Table 11. Coefficient of Thermal Expansion vs. Temperature for X2096 Al-Li alloy

Temperature Coefficient of Thermal Expansion (CTE), ppm/°C é\';'(ﬁ}
°K °c AVG | STD AVG STD AVG STD AVG STD Lot9,
9L-1 | DEV | 9LT-1 { DEV | 10L-1 DEV 10LT-1 | DEV Lot 10,
9L-2 9LT-2 10L-2 10LT-2 LandLT
9L-3 9LT-3 10L-3 10LT-3
148 |[-125| 20.5| 2.9 | 20.2 | 29 | 20.8 2.9 20.4 2.9 20.5
173 {-100 | 20.7 | 1.7 | 20.5 1.6 | 211 1.6 20.9 1.6 20.8
248 | -25 | 222 | 1.0 | 22.5 | 0.4 | 23.0 0.5 22.3 0.4 22.5
273 0 222, 09 | 223 | 0.3 | 21.6 0.1 22.0 0.3 22.0
298 | 25 | 21.7 | 0.8 | 21.8 | 0.8 | 22.7 0.8 21.8 0.8 22.0
323 50 | 23.8| 0.6 | 24.2 | 0.8 | 24.3 0.7 24.4 0.5 24.2
348 | 75 | 245 0.5 | 25.1 1.2 | 24.2 0.6 24.7 0.6 24.6
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Figure 19. Linear expansion of the Reynolds X2096-T8A3 Al-Li alloy extruded beam specimens
testing in L and LT directions.
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4.8 Rivet Test

The Solar Array Support Structure is designed as a frame
constructed of Al-Li extruded beams joined by rivets. A
special test was conducted at GSFC in order to verify that
riveting does not cause surface cracking in Al-Li X2096
alloy.

A total of four blanks were machined from the extruded
beams. These blanks were assembled into two pairs and
riveted together using NAS 1921-06 A-286 blind rivets.
Exact geometry of the blank specimens is described in
Appendix.

The riveted joints were cross sectioned and metallographi-
cally polished to examine the Al-Li surfaces which were in
contact with the rivets. Figure 21 shows one of the cross
sections taken along the rivet axis.

Inspection of all riveted specimens revealed no surface
cracks in X2096-T8A3 Al-Li alloy, which indicates that
riveting operation does not cause cracking in this alloy.

5.0 DISCUSSION

The X2096 alloy was offered for commercial use by the
Reynolds Metals Company in mid-nineties (ref.5). Being
one of the Weldalite 049 family of Al-Li alloys introduced
by Martin Marietta around 1989 and early 1990, this alloy
was developed to replace 7075-T6 for aircraft structural
applications and featured a combination of low density,
high strength and toughness (Ref. 6).

Despite the commercial availability of X2096, its mechani-
cal properties are not readily available for the design
purposes. Apparently, use of this alloy is still limited and, it
has not been used in any production programs. Conse-
quently, RMC did not produce sufficient quantity of this
alloy to generate design database. Therefore, this alloy is
yet to find its way into the industrial or government
specifications and/or design data bases such as MILL
HDBK 5, Aerospace Structural Metals Handbook, ASTM
Standards or The Aluminum Standards and Data from the
Aluminum Association, Inc., Aluminum Design Manual,
etc.

Figure 21 Longitudinal cross section of the riveted joint. White arrows point to the surfaces of the Al-Li alloy that
were inspected for cracks.
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Following the selection of X2096 alloy as a material of
choice for HST SA3 structure, RMC produced two lots of
the extruded beams. These beams were supposed to meet or
exceed the requirements of the Goddard Specification LN-
002297 (Ref 7).

This work was undertaken to verify that the Al-Li beams
could meet the tensile and stress corrosion requirements and
to evaluate shear, bearing, fracture, fatigue, and thermal
properties of the X2096 alloy.

Due to small wall thickness of the extruded beams, all test
loads were in-plane (normal to the product thickness). The
total quantity of the extruded beams was marginal enough
to support fabrication of the HST-SA3 structure. Conse-
quently, the amount of beams available for machining of
the test specimens was also very limited.

Since the HST-SA3 structure is fabricated from the mixed
beams from both lots and an amount of beam material
available for testing was limited, an assessment of the lot-
to-lot variation of the mechanical properties of these beams
was not practical within the scope of this effort. Neverthe-
less, the lot identity of each test specimen was maintained
for the purpose of test record and in case a substantial
difference in the measured properties between each lot was
encountered, however unlikely.

In order to determine the minimum design values of the
mechanical properties of the extruded beams, the direct
computation procedure for the normal distribution (Ref. 8)
was found to be most practical to handle statistical analysis
of the results obtained in this work (see Table 12). How-
ever, due to the limited amount of material available for
testing, the MIL-HDBK-5 requirements for sample size
could not be met.

Table 12. Statistical Analysis of Results

PROPERTY MEASURED AVG STD Ty T
VALUES DEV
Ultimate Tensile 82.66, 82.86, 76.00, 79.14, 80.18 | 2.34 69.32 72.74
Strength, TUS(L),ksi 79.5, 80.9, 80.2
* Ultimate Tensile 77.2, 76.5 76.85
Strength, TUS(LT).ksi
Tensile Yield Stress, 78.3, 78.72, 71.06, 74.95, 7503 | 298 61.22 65.97
TYS(L), ksi 71.5, 758, 74.9
* Tensile Yield Stress, 72.7, 70.4 71.55
TYS(LT), ksi
* Compression Yield 79.4, 77.1 78.25
Stress, CYS(L), ksi
* Compression Yield 78.8, 76.1 77.45
Stress, CYS(LT), ksi
Shear Ultimate Strength, SUS(L), | 47.68, 47.59, 47.65, 45.81, 47.11 0.70 43.86 44.70
ksi 47.52, 46.83, 46.70
Shear Ultimate Strength, 48.96, 48.1, 47.95, 47.07 4796 | 0.62 44.84 46.15
SUS(LT), ksi 47.66, 48.02
Bearing Ultimate Strength, 149.9, 148.8, 150.4, 147.8, 147.97 | 2.43 136.71 140.21
BRU(L), ksi, e/d =2 144.3, 145, 149.6
Bearing Ultimate Strength, 150.3, 149.9, 150.6, 147.1 149.57 | 2.18 139.43 143.41
BRU(LT), ksi, e/d =2 148.2, 147.5, 153 .4
Bearing Ultimate Strength, 115.5, 113.7, 115, 110.9, 111.74 | 3.19 96.92 101.98
BRU(L), ksi, e/d =1.5 107.8, 107.7, 111.6
Bearing Ultimate Strength, 114.3, 115.4, 113, 111, 112.8 | 11433 | 2.40 103.17 107.45
BRU(LT), ksi, e/d =1.5 115.3, 118.5
Modulus, E, ksi x 10° 10.96, 11.11, 10.88, 10.99 11.18 | 0.13 10.74 10.93
11.19, 11.25, 11.3, 11.29
11.15, 11.25, 11.26, 11.26
11.25, 11.22, 11.19, 11.34
11.25

Displayed in italic are the values received from RMC. Values of the properties marked by asterisk could not be statisti-

cally analyzed due to small sample size.
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The following equations were used to derive lower tolerance
bounds T values (Ref. 8):

T,;= X— (k,+0.0338 - 0.202g,,)xS,
and
T,o= X— kXS,

where T, and T, are lower tolerance bounds, X is the average
value of the properties measured, Kk, and k, are the one-sided
tolerance —timit factors corresponding to Ty or T, accordingly and
S is the standard deviation. Other quantities present in the equation
for T, and the term q,, are empirical factors defined in Section
9.2.7, ref. 8, and are used to avoid “anticonservatism” in estimating
lower tolerance bounds.

If these quantities were not used, the T, bounds would be slightly
higher. Table 9.6.4.1 in Ref. 8 was used to obtain k values.

The T,,, indicates that at least 90% of the population of values of
the beam properties is expected to equal or exceed the lower
tolerance bound T, with a confidence of 95%.

Likewise, the T, means that at least 99% of the population of
values is expected to equal or exceed the lower tolerance bound T
with a confidence of 95%.

Lower tolerance bound T, values for A-basis was estimated
without anticonservative correction. Anticonservative correction
was not necessary, since the limited sample size resulted in the T,
values already too low to be used as design allowables for HST-
SA3.

Based on the risk analysis and design calculations, the project
selected T, values as design allowables for the HST SA3 structure.

6.0 CONCLUSIONS

In comparison to aluminum alloy 7075 in T6 and T73 tempers, the
X2096-T8A3 Al-Li extruded beams displayed higher stiffness,
shear and bearing strength values. Tensile properties of the tested
beams did not appear to be superior to 7075-T6 extrusions, but
much better than the ones for the T73 temper (Ref. 9). It should be
realized, however, that an exact comparison is difficult to make,
since no statistically significant values (such as A- or B-basis, for
example, Ref, 8) were obtained in this work for X2096 alloy.

20

Crack growth rates for the X2096 extruded beams compared
favorably with 7075-T6,T73. Al-Li alloy had a higher threshold
stress concentration value than 7075. This means that X2096
material is more resistant to crack initiation. Fatigue life of X2096
in fully reversed bending shows endurance limit around 15 ksi. The
fatigue behavior of 7075-T6 (Ref. 10) is very similar to X2096 in
the range between 500,000 and 30,000 cycles.

The X2096 extruded beams display very good resistance to stress-
corrosion cracking as evidenced by no failures during the 30-day
alternative immersion stress-corrosion test performed by RMC.
This is a significant factor if compared with 7075-T6, known for its
low resistance to stress corrosion cracking (Ref. 11).

In-plane anisotropy observed in the X2096-T8A3 extrusions in the
course of this work was very moderate and no worse than that of
7075 extrusions.

Overall, considerable weight savings due to lower density (2.63 g/
cm?’ as compared to 2.8 g/em? for 7075) and good in-plane
mechanical properties of the RMC X2096 Al-Li alloy made it very
attractive material for the HST SA3 application.

A word of caution, however, should be said about the out-of-plane
properties of the X2096 extrusions. Although direct measurements
of the mechanical properties in short transverse direction could not
be performed due to small wall thickness of the extruded beams, a
clear indication of the heavily laminated structure of the beams was
evidenced in this work during the test specimen preparation (see
Figures 22 and 23) It is not recommended, therefore, to use this
material in applications where short-transverse properties are
critical.

Finally, it is important to understand that this test program
measured the properties specific only to the two isolated
ingots of X2096 Al-Li alloy, from which Lot 9 and Lot 10
extrusions were made. The results of this work can not be
used as a general design property reference for the X2096-
T6A3 extrusions. Instead, the data obtained can serve as a
bench mark specific to an isolated quantity of this material.
Furthermore, the data should be treated as representing a
single production run by RMC. The properties of the future
production runs must be verified via either lot release tests
provided by the manufacture or an independent tests by the
customer or any combination of them.

Evaluation of Engineering Properties of
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Figure 22. Fracture surface of the broken strip machined from the X2096-T8A3 extrusion. Note severe delamination.

AAKRON 1 MADE IN U.S.A. 2 3

Figure 23. Behavior of the X2096-T8A3 strip machined from the extruded beam in transverse (a) and longitudinal (b)
bending. Note delamination in longitudinal bend.
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