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SUMMARY

This document in large part is based on the Masters Thesis of Cole Stephens. The
document encompasses a variety of technical and practical issues involved when using
the STARS codes for Aeroservoelastic analysis of vehicles. The document covers in
great detail a number of technical issues and step-by-step details involved in the
simulation of a system where aerodynamics, structures and controls are tightly coupled.
Comparisons are made to a benchmark experimental program conducted at NASA
Langley.

One of the significant advantages of the methodology detailed is that as a result of
the technique used to accelerate the CFD-based simulation, a systems model is produced
which is very useful for developing the control law strategy, and subsequent high-speed
simulations.

In summary, the document details the following areas:

Literature review of previous methods used for analysis

A discussion and comparison of methods used for modeling surface deformations
Details of the surface transpiration concept

Summary of the appropriate STARS modules used

Implementation of the benchmark test case including detailed discussion and
sensitivity studies in the following arcas:

Mode Shape calculation and definition

CFD geometry specification

Boundary condition specifications

Effects of dissipation parameters on the unsteady CFD solution
Steady-State solution convergence criteria

Uncertainty estimation

Time-step issues

Modal and system identification issues

Control law development

VVYVYYY
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> Results including:

Steady State

Steady state with control surface deflections

Comparisons between actual deflection, simulated deflection
using transpiration, and experimental results.

Acroelastic results and comparisons with experiment
Aecroservoelastic results illustrating control law development
and flutter suppression.
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CHAPTER 1
INTRODUCTION
1.1 Background

An efficient method of predicting the aeroservoelastic characteristics of modern
high-speed aircraft is crucial to aircraft design and flight testing. It is therefore essential
that the flight envelope be well defined prior to flight test operations. Without accurate
insight into an aircraft’s aeroelastic tendencies, flight testing becomes a serious threat
both for the aircraft and its pilot.

Aeroelastic solutions are characterized by two main disciplines:  structural
dynamics and computational fluid dynamics. Aeroservoelastic solutions include the
additional complexities introduced by forced control surface deflections during the
simulation. The structural dynamics portion of the code predicts a structures natural
response, or mode shapes. Any arbitrary deflection can therefore be described as a
superposition of a number of these natural mode shapes [Dowell, 1995]. Given an
arbitrary applied load, an aerodynamic load for example, the structural dynamics and
resulting deformations can be determined. The CFD solver uses the resulting
displacements and velocities that arise from the elastic structure and deflecting control

surfaces, and calculates new aerodynamic loads.



In the case of an aerodynamic body, these deflections have a great impact on the
flow field surrounding the body. Changes in this flow impact the lift, drag, and moment
experienced. This variation in loading is accompanied by a corresponding change in
structural deflections, which cause aerodynamic changes, which cause structural
deformations, and the cycle is repeated until one of two possibilities occur. One
possibility is that the changing aerodynamic loads and structural vibrations will
peacefully coexist and not result in a structural instability. The other possibility is that
the loads and deflections will coalesce and produce an unstable fluid-structure
interaction, also known as aerodynamic flutter. It is this flutter phenomenon that poses
the greatest threat to aircraft traveling at speeds ranging from high subsonic to
hypersonic. Allowed to progress, flutter has the definite possibility of causing structural
failure, and has the distinct probability of seriously injuring its pilot.

As described above, in the absence of forced control inputs, the classical
aeroelastic system simply reacts to the unsteady aerodynamics. In general, however,
aeroservoelastic systems have control surfaces such as ailerons and flaps that complicate
an aeroelastic analysis. Deflecting an aileron, for example, not only produces the
differential lift required to roll an aircraft, but also alters the twist of the wing itself. This
twist causes an effective increase or decrease, depending on how the aileron is deflected,
in the effective angle of attack seen by the entire wing. As a result, the effectiveness of a
deflected control surface decreases with increasing Mach number until the resulting
change in angle of attack exactly counteracts the increase or decrease in lift produced by
the aileron such that the aircraft does not roll. This aeroservoelastic phenomenon is

known as control surface reversal. In the case of flutter, control surfaces can serve as a



the case of flutter, control surfaces can serve as a means by which to actively control
aeroelastic response, falling under the category of active flutter suppression.

Application of these solution techniques in an operational environment means that
the time it takes to complete a complete aeroelastic or aeroservoelastic simulation be kept
to a minimum without sacrificing solution accuracy. The structural solver requires far
less time, by several orders of magnitude, than does the CFD solution. Emphasis should
be given, therefore, to those means which improve the speed and efficiency of the CFD

solution.

1.2 Problem Definition

For current research, the STARS computer programs developed at NASA Dryden
Flight Research Center have been the primary means of a full ASE prediction [Gupta,
1997]. STARS is an highly integrated, finite-element based code for multidisciplinary
analysis of flight vehicles including static and structural dynamics, computational fluid
dynamics, heat transfer, and aeroservoelasticity capability.

Mentioned eérlier, it is the CFD portion of the total simulation that requires the
vast majority of the solution time. Within each time step, structural deflections are
determined due to the predicted aerodynamic loads. Compared to the solution time
required by the CFD module, determination of the structural dynamics is essentially
instantaneous. This means that at each intermittent time step, it is the structural dynamics
solver that ends up waiting for the aerodynamic loads from the CFD portion of the code.
This computational time is substantially increased if the solution must be paused at each
time step to deform the mesh based on a structural change due to modified aerodynamic

loads. Further difficulty is encountered if the mesh must be deformed in such a way as to



account for discontinuous motions such as leading and trailing edge control surface
deflections. Accounting for these control surface deflections in a CFD grid presents
particular difficulty due the very close proximity of the control surface and adjacent wing
surfaces. In most cases, control surface deflections result in the exposure of surfaces not
previously seen by the CFD solver. These overlapping surfaces prove to be a significant

hindrance to flow computation.

1.3 Research Objective

In practical transonic and supersonic aeroservoelastic applications, thin,
lightweight wings and control surfaces lend themselves to the susceptibility of flutter.
Along with continuing improvements in computational speed, there are more
sophisticated solution algorithms that take advantage of the additional speed and memory
capabilities. These advances in solution techniques continue to push the limits of even
the most powerful computers. In order to more fully appreciate advances in the state-of-
the-art, ASE simulations must incorporate means which reduce the amount of
computational effort required to produce an accurate prediction. With the computational
overhead involved with time-dependent deforming meshes, it is necessary to cultivate an
efficient means by which continuous surface deformations as well as control surface
deflections are accounted for in the ASE simulation as a means of actively controlling the

response of a system.



CHAPTER 2
LITERATURE REVIEW

Regardless of the' solution methodology used, a full ASE simulation requires a
means of coping with the structural dynamics and the determination of the natural mode
shapes, the unsteady aerodynamics, control inputs, and a means of incorporating these
structural and control surface deformations onto the CFD grid. Certainly, there will be
other differences within each simulation method, but at a minimum, the above items will

be common to virtually all ASE solutions.

2.1 Structural Dynamics

For the types of problems that are commonly encountered, the structural dynamics
portion of the solution is already much faster than the aerodynamics. The determination
of the structural mode shapes are generally determined one of two ways. First, the mode
shapes, pitch and plunge for example, could be known prior to the ASE simulation and
specified throughout the solution. A more general ASE simulation uses some sort of
structural dynamics solver, finite elements etc, to determine the structural characteristics
of the system. This type of solver computes arbitrary structural displacements based on
the aerodynamic loads. However, no matter how one chooses to solve for the structural
dynamics of the system, a significant amount of forethought must be given as to how

these structural deformations are related to a corresponding CFD grid. This point is



discussed in more detail later. STARS incorporates the finite element method to solve

for the structural response of the system.

22 Unsteady Aerodynamics Solver

The next issue is still the subject of a great many research papers. The question of
exactly how to model the unsteady aerodynamics is very often subject to computational
availability, time, and personal preference. Possibilities include, but are not limited to,
transonic small disturbance (TSD), and full potential equations (FPE), and more recently
Euler and Navier-Stokes equations. Historically, TSD and the full potential method were
most commonly used due to their compatibility with the computers of the time. With
advances in computer speed and memory, higher equation models such as the Euler and

Navier-Stokes have become more tractable.

2.2.1 Transonic Small Disturbance & Full Potential Equations

For three dimensional configurations, the transonic small disturbance equations
have been a popular choice for aeroelastic analysis and flutter prediction. The transonic
speed range is of primary interest because the flutter dynamic pressure is typically lower
there [Cunningham, Batina, & Bennett, 1988]. For the computational capability of the
day, the TSD and FPE equations were a popular choice because of their relatively low
computational cost and ease of implementation. Migration to more sophisticated models
is due mainly to the fact that these equations are not adequate in the presence of strong

shocks [Ruo & Sankar, 1987].



2.2.2  Euler and Navier-Stokes Equations

Advances in computational speed and memory have allowed the practical
implementation of Euler and Navier-Stokes solution algorithms to complex two and three
dimensional problems. These equations allow for the analysis of a wider variety of
problems at broader Mach number range than can be done with TSD or FPE equations.
The Navier-Stokes equations, with an adequate choice of turbulence model, are limited
only by the assumption that the fluid is a continuum. Take the viscous terms out of the
Navier-Stokes equations, and the Euler equations are obtained. For sufficiently high
Reynolds numbers, the inviscid flow assumption makes good physical sense, as is shown

by the following equation:

pUL _ pU?

Re, =
You o uU/L

2-1)

The above equation expresses the Reynolds number as a ratio of the inertial forces to
viscous forces. It is apparent, therefore, that as the Reynolds number increases, inertial
forces become more dominant than the viscous terms. The dominance of the inertial
terms in high-speed flows, such as those encountered during flutter, show that the
inviscid flow assumption made in the Euler equations are a valid means of aerodynamic
prediction. As one would expect, the Euler solutions are more limited in solutions where
there are significant boundary layer effects, boundary-layer/shock-interactions, and
regions of separated flow.

Substantial work has demonstrated the effectiveness of the Euler solution for
problems of practical interest. Free from the burden of determining a turbulence model

and constructing a mesh capable of resolving the boundary layer, an Euler solution is an



extremely attractive alternative to a code using the Navier-Stokes equations. Introduced
in section 1.2, STARS makes use of the Euler equations on an unstructured mesh for its

CFD prediction.

2.3 Modeling Surface Deformations

As with the choice of flow solvers, there are several popular methods of applying
a resulting surface deflection to a CFD grid. Many mesh deformation techniques use a
body-fitted mesh which generally requires that the mesh move rigidly or shear as the
body deforms. These assumptions consequently limit the ASE analysis to rigid-body or
small amplitude motions [Batina, 1989]. Again, not an exhaustive collection of methods,
but a presentation of a few practical grid deformation techniques follows in the next few

sections.

2.3.1 Body-Fitted Coordinate Systems

One popular method of accounting for structural deformations in the CFD mesh is
the use of a body-fitted coordinate system. With this coordinate system, the wing surface
becomes a coordinate surface. This method involves a coordinate map from this physical
space to computational space [Malone, Sankar, & Sotomayer, 1984]. The relationship
between the physical and computational coordinate system can be visualized by
unwrapping the physical grid about a line, or axis, which lies within the wing surface.
Then, in the computational grid, the wing surface, as well as any assumed wake shape,
becomes a coordinate surface [Malone & Sankar, 1985]. Figure 2-1 shows the body

fitted coordinate system in the physical coordinate system. Note that key points are



labeled with letters. Figure 2-2 shows the transformed physical coordinate system in the

computational coordinate system.
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Figure 2-2: Computational Coordinate System



The above figures were obtained from a paper on the unsteady modeling of a fighter wing
in transonic flow [Malone, Sankar, & Sotomayer, 1984].

Resulting surface deformations must be related from physical to computational
space through a series of matrix transformations. These matrix transformations must be
calculated and implemented at each time step in an ASE solution. Although
implementation presents relatively few problems, the computational expense of these
transformations can be significant on complicated three-dimensional geometries.
Additionally, this author has not seen this method implemented on a case involving a
discontinuous surface deflection such as those due to flaps or ailerons. As was discussed
earlier, the use of these meshes often require the assumption of small-amplitude, rigid-

body deformations.

2.3.2 Dynamic Meshes

Possibly the most intuitive of methods is the concept of a moving mesh. It simply
makes sense that one could deform the mesh in accordance to that predicted by a
structural dynamics sblver. Work done by Batina has demonstrated the effectiveness of
such a method using an unstructured finite-difference mesh with an Euler solver [Batina,
1989].

Though the concept is simple, implementation comes at a price. What this type of
mesh boils down to is a large network of nodes connected by a series of springs whose
stiffness is inversely proportional to the length of its edge. At each time step, specified
boundary nodes are displaced by an amount corresponding to that of the aeroelastic
response of the body. The displacement of the rest of the computational domain is

therefore solved iteratively using static equilibrium equations in the x and y directions.
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This results in x and y displacements for each of the interior nodes inside the
computational domain. This iterative procedure is accomplished by a predictor-corrector
method that first predicts the displacements due to linear extrapolation and corrects these
displacements with several Jacobi iterations of the static equilibrium equations.

Given in Figure 2-3, Figure 2-4, and Figure 2-5 are the original reference grid, the
deformed grid at maximum o and the deformed grid at minimum o, respectively, for a

wing oscillating about its quarter chord.

Figure 2-3: Reference Grid for Deforming Mesh Algorithm

Mentioned previously, the grid points on the outer boundary are fixed and the grid points
on the airfoil are fixed relative to the airfoil. From a maximum pitch oscillation of 15° to
a minimum pitch angle of -15°, the mesh smoothly transitions from one state to another

using the procedure described above.
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Figure 2-4: Maximum Pitch Angle (a=15°) Using a Deforming Mesh Algorithm

Figure 2-5: Minimum Pitch Angle (a=-15°) Using a Deforming Mesh Algorithm

The above figures were taken from a paper by J. T. Batina [Batina, 1989].
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As one can imagine, the use of this type of mesh results in elements that have
been deformed from their original shape. These deformations lead to volumetric changes
within each element inside the computational domain. It is therefore necessary to add a
geometric conservation law to account for the changing cell areas at each time step. As
will be discussed later, deforming meshes also encounter difficulty in areas of surface
discontinuities.

Recently, an improved spring analogy was presented as an alternative to the
method proposed by Batina [Farhat, Degand, Koobus, and Lesoinne, 1998]. In addition
to the linear springs between nodes, torsional springs at each node were also included to
further deal with the difficulties involved with volumetric changes during mesh
deformation. Results were presented for a wing with a full-length flap. Although related
to the problem of discontinuous surface deformations, the full-length flap is more
amiable to this type of problem since moving surfaces never separate from one another.
Common to any dynamic mesh algorithm, substantial computational effort was involved
with deforming the mesh at each time-step. An estimate was made that the
computational overhead involved in the implementation of this dynamic mesh accounted

for roughly 20% of the CPU time involved in a complete solution.

2.3.3 Re-Meshing

Perhaps the most versatile option is the re-meshing approach. Using this method,
the entire computational domain is re-meshed at each time-step to account for structural
deformations and velocities. This method does not involve a complicated mesh-

deforming algorithm, it simply re-defines the surface geometry and generates a new
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computational mesh. Of course, with current hardware, the re-meshing approach is still
by far the most computationally expensive.

The problem with discontinuous surface deformations still exists with this
method. Even though the grid is re-defined at each step and there is no mesh-shearing to
speak of, the varying intersection points at the interface of the wing and control surface
must still be calculated in order to model the geometry exactly. This calculation involves
specific knowledge about the geometry and would be difficult to implement in a general-
purpose CFD code. Often, when a mesh is re-generated to account for control surface
deflections, additional surfaces are required to fill structural voids resulting from the
displacement. In an unsteady ASE simulation where the solution involves both wing and
control surface deflections, maintaining these varying intersection points would be
complicated at best and would most likely involve a substantial amount of user

intervention. This point is further illustrated in section 2.4.2.

2.3.4 Surface Transpiration

Though both the body fitted coordinate system and the dynamic mesh algorithms
have demonstrated their efficacy for solving aeroelastic problems, both require a
substantial amount of computational effort in between mesh deformations. As was seen
with the body fitted coordinate system, the resulting deformed grid must be mapped to a
computational system at each intermediate time-step. Even more so with the dynamic
mesh algorithms, consequential structural deformations result in a modification of the
entire computational domain.

In an environment where speed, without sacrificed accuracy, is of primary

concern, surface transpiration has shown itself as a viable tool to the aeroelastician. The
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concept of surface transpiration is simple. With known structural displacements and
velocities, a simple modification to the nodal boundary conditions on the existing CFD
grid is capable of altering the displacements and velocities used in the flow solver.

With this method, no modifications are made to the existing CFD grid except for
a slight boundary condition modification to nodes on a deformable surface. As was
encountered with the previously discussed methods of grid modification, there are no
other complications associated with the transpiration method. With the transpiration
method there is no mapping from one coordinate system to another, no relative nodal
displacements, no elemental volume changes, no changes to the computational domain,
no need to iteratively solve for new nodal boundary conditions, etc. Stated again, the
only changes necessary are to nodal boundary conditions on deformable surfaces. Unlike
previous methods, deformations are accounted for only on those surfaces that require it.

What exactly is this change in existing boundary conditions? Generally it is quite
simply a change in the flow tangency boundary condition on an element. To attain the
no-flow normal to the surface boundary condition, the flow solver computes a surface

normal for each surface element. Observe Figure 2-6 below.
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Figure 2-6: Slight Surface Element Rotation

This figure shows an arbitrary surface element undergoing a slight change in orientation.
It is important to keep the word slight in mind because it stands to reason that any

approximate method will loose effectiveness for /large deformations. The figure shows a
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single structural element with surface normal #, being modified so its new surface

normal is 7,. Transpiration therefore assumes that there is no significant stretching or
volumetric change within the element so that the area of each element remains constant.
For a typical wing undergoing small amplitude structural deformations and control
surface deflections, this is a very reasonable assumption.

Assuming that a normal has an x, y, and z component, a change in orientation is
accomplished by changing the velocity boundary condition on the affected nodes. This
change in boundary condition comes in the form of an additional fluid velocity outside of
the existing surface elements. This additional velocity effects the way the unsteady flow

solver resolves the flow tangency boundary condition, see Figure 2-7 below:
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Figure 2-7: Illustration of the Transpiration Concept

In the above figure, Vorigina is the original tangential fluid velocity with normal, Pisyigina -
Through an aeroelastic or control surface deformation, for example, the it is desired that
the surface be deformed in such a way that it now has normal, #,,,. For the steady and

unsteady cases, the flow tangency boundary condition is represented by equation (2-2)
and (2-3), respectively.

V-h=0 (2-2)
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Equation (2-2) simply states that the velocity normal to the body must be zero Only
slightly more complicated, equation (2-3) states that the fluid velocity normal to the
surface must be equal to the velocity of the body normal to itself. In other words, no flow
can move through a solid surface. It is necessary to point out that the ¥, mentioned here
is not the same as Vtranspiration Shown in Figure 2-7.

In summary, each surface element that is to undergo a change in orientation acts
as a source sheet. The Strength of the source is determined by the extent of the simulated
deflection. Now, expand this procedure to an entire surface discretized into a large
number of elements. With a known surface deformation, perhaps from a finite element
solver e.g., it is desired that a surface be distorted from its original position. Within
reasonable limits, this arbitrary surface deformation can be simulated with an appropriate
change in the direction of the surface normal on each element making up the surface.
Since the flow solver is concerned with maintaining the flow tangency boundary
condition at each CFD node, the solution obtained on the simulated deformation should

closely approximate that of the actual deformation.

2.4  Transpiration Concept

Of the three methods of incorporating mesh modifications into the ASE solution
described in the previous section, the transpiration method shows the greatest potential
for accounting for mesh deformations with the least computational overhead. Its
simplicity is its greatest asset. Although the dynamics solver must still waif for the CFD
solver to predict the new aerodynamic loads, transferring the predicted deformations to
the CFD mesh is extremely fast. Since only the surfaces affected by the deflection are

affected, the rest of the computational domain remains untouched for the duration of the
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ASE simulation. Surface normals on walls, far-fields, and interior element surfaces are
also not modified. Appreciable time savings are realized due to the fact that a
modification to only those normals on the surface of a wing or fuselage, for example,

must be modified.

2.4.1 Origins of Transpiration

Transpiration can trace its origins back to the late 1950’s in a paper entitled On
Displacement Thickness which describes the “method of equivalent sources” for
modeling the influence of the boundary layer on the inviscid flow outside them [Lighthill,
1958]. Rather than thickening an actual airfoil, the boundary layer effect could be
accounted for by an equivalent surface distribution of sources. This is done by specifying
the necessary inflow or outflow boundary conditions on the original surface and solving
for the inviscid flow. As was described in Section 2.3.4, this method requires no
modification to the existing grid.

Simplicity, speed, and accuracy are the transpiration concepts greatest advantages.
As has been developed, the use of the transpiration boundary condition can be
implemented on an existing CFD grid with a minimal amount of computational effort.
The time it takes to simulate a deformed mesh is minimized due to the fact that no actual
grid deformation takes place, the computational volume is not modified, and only those
surfaces that require a boundary condition modification are affected. It’s accuracy has
been effectively demonstrated over time through work done by Fisher, 1996, Raj &

Harris, 1993, Bharadvaj, 1990.
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2.42 Application to Current Research

Past research has demonstrated the effectiveness of the transpiration method when
applied to aeroelastic problems [Fisher and Arena, 1996]. For a variety of problems
covering a wide range of Mach numbers, the transpiration method proved to be a viable
tool in the prediction of aeroelastic responses. Here two specific examples are covered in
more detail. The first is a'2><l plate case, the second is the AGARD wing.

The 2x1 plate consists of a flexible plate surrounded by a rigid support, see Figure
2-8 below. To evaluate the usefulness of the transpiration method on this case, the CFD

mesh was deformed through a superposition of the first six natural modes, see Figure 2-9.

Figure 2-8: 2x1 Plate CFD Mesh

il

Figure 2-9: Actual 2x1 Plate Deformation
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The transpiration method was used to simulate the actual deflection seen in the figure
above. For this case, at Mach 0.95, relatively large surface deformations at this transonic

Mach number produce strong discontinuities on the pressures along the plate.
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Figure 2-10: Steady Pressure Contours on the Deformed 2x1 Plate at Mach 0.95

As can be seen in Figure 2-10, the transpiration method does an excellent job of
modeling the flow dynamics on the surface of the plate. In the figure above, three
lengthwise pressure cuts show the pressure distribution along each cut. In each section,
agreement between actual and simulated deflections are very good.

Another example of the application of the transpiration method is with the
AGARD 445.6 wing. This standard aeroelastic test case serves as a good reference for
application of the transpiration method to simulate surface deformations on a lifting
surface. Figure 2-11 shows two views of the AGARD wing. The leftmost figure shows

the undeformed mesh that will be used to simulate the figure on the right which is
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actually deformed. This case serves to demonstrate the effectiveness of the transpiration
boundary condition when applied to relatively large surface deflection. As one can tell
from the figure, there are significant deformations resulting from both bending and

torsional modes.

e e o)

Figure 2-11: AGARD 445.6 Wing, Undeflected and Deflected CFD Meshes

As was done with the 2x1 Plate case, comparison is made between the simulated
and actually deformed mesh by means of chordwise pressure cuts at several points along

the span of the wing. For a Mach number of 0.678, we get Figure 2-12, below.
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Figure 2-12: Steady Pressure Contours for the AGARD Wing at Mach 0.678

For three chordwise pressure cuts through different spanwise locations along the wing we
once again see excellent agreement between the simulated and actual surface
deformation.

What was lacking from the above two examples was a moving control surface.
Relatively smooth mesh deformations, as typically occur in aeroelastic problems, are
much more simple to deal with than are discontinuous surface deformations. For the
scope of the current research, the appealing characteristic about the transpiration method
is, oddly enough, the fact that the mesh does not move. Deflected control surfaces
provide several inherent difficulties for CFD solvers. When attempting to model a
control surface displacement, there are several factors that affect a CFD codes ability to

handle these difficult surface transitions.
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First is the very close proximity of control surface edges to adjacent parts of the
airframe.  Especially when using an Euler solver, these Very narrow gaps present
significant computational difficulties. The flow through these gaps, along surfaces which
are parallel to the flow direction, will result in very high flow gradients and will
effectively wash out other, more significant, flow physics.

The second difficulty arises from the fact that even if one assumes that there is no
gap, the varying size of the face along the wing-flap intersection would be terribly
difficult to account for, even in a dynamic mesh. Figure 2-13 below helps illustrate this

problem.
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Figure 2-13: Variable Wing-Flap Intersection Example

Notice the area in the circled region in the above figure. For any change in flap angle, the
intersecting surfaces and the points of intersection change. Also observe that as the flap
changes position, the size and shape of the newly exposed surface changes. These
surfaces, specifically the lines defining the surfaces, must be modified with each different
flap angle. The addition of these surfaces is necessary do keep the solution domain
closed. For the case of a wing with a finite-span flap, for example, deflection of the flap
requires the definition of 4 new surfaces with each new deflection. In either a dynamic
mesh or re-meshing algorithm, for example, this variation in surface definition would be

difficult to account for.
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Related to the second problem, is again the difficulty encountered in the
immediate vicinity of the flap during a control surface deflection. With the flap in its
stowed position, there is essentially a smooth, continuous surface over the entire wing.
Assume that this flap, or control surface in general, is deployed several degrees. One
must consider what happens to the grid in the vicinity of the flap. With a dynamic grid,
the mesh must stretch to account for this displacement. The problem encountered with
this mesh deformation is the amount of mesh shearing that must be endured for the flap
to deflect.

Shown in Figure 2-15 is an example of this mesh shearing. For a simple wing
with a flap lying within the span of the wing, a flap deflection similar to that of Figure 2-
13 would produce surface discontinuities in the surrounding area of the flap. Figure 2-14
shows the desired 10° flap deflection. The next figure, Figure 2-15, shows how a mesh

deforming algorithm might deform the existing mesh.
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Figure 2-14: Desired Flap Deflection

Mesh shearing has the consequence of degrading the flow solution quality.
Notice that in the region of the flap, mesh shearing results in the elongation of elements
surrounding the wing-flap intersection. Due to this shearing effect, there now exists poor

grid resolution around an area with high flow gradients, an area actually in need of grid

enhancement.
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Figure 2-15: Mesh-Shearing Example
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Figure 2-16: Equivalent Mesh for Transpiration
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Using the concept of surface transpiration, there is no mesh deformation
necessary, hence no mesh to shear. Figure 2-16 shows the only mesh needed for the
application of a reasonably arbitrary flap deflection. With the above mesh, any arbitrary
flap deflection can be accounted for by simply rotating the elemental normals on the flap
by the desired flap deflection angle. Once again, one can see the speed at which this

method may be applied.

2.5  Benchmark Models Program

The Structures Division of NASA Langley Research Center (LaRC) initiated the
Benchmark Models Program (BMP) to obtain experimental data for the validation of
unsteady CFD codes. A variety of models were tested in the NASA Langley Transonic
Dynamics Tunnel (TDT) [Scott, Hoadley, Wieseman, & Durham, 1997]. In the BMP
program, two specific models are of interest. Each model has a rectangular planform
with a NACA 0012 cross-section, 16 inch chord, and 32 inch span. The first model was
simply a rigid rectangular wing fitted with pressure transducers over the surface of the
wing. The second model is referred to as the BACT, standing for Benchmark Active
Controls Technology. Though different models, each shares identical model dimensions,
and instrumentation. The only practical difference between the two models is the
presence of three control surfaces. These three control surfaces, two of which can be

seen in Figure 2-17, are a trailing edge control surface, and upper and lower spoilers.

27



A -

Figure 2-17: BACT Wing Model Dimensions

The control surfaces are centered along the models 60% span (19.2 in), and has a length
equal to 30% (9.6 in) of the wing’s span. The trailing edge control surface has a width of
25% (4 in) model chord while the spoilers have a width of 15% (2.4 in) model chord.

The first model, the NACA 0012 wing, was tested in air and provided a large
experimental database. This database included steady pressure measurements, unsteady
pressure measurements during flutter, and flutter boundaries over a wide Mach number
range. Tested in R-12, the BACT model’s primary purpose was to provide additional
data for the purposes of evaluating a CFD code’s effectiveness in modeling the control
surfaces illustrated above.

Both models were mounted inside the TDT on a device known as the Pitch and
Plunge Apparatus (PAPA) [Farmer, 1982]. Shown below in Figure 2-18, the BACT

model is seen mounted to the flexible PAPA mount system.
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Figure 2-18: BACT Model on Flexible PAPA Mount

This mount system is simple and possesses dynamic properties that are easily obtained by
analytical means. It is important to note that the PAPA mount shown above is slightly
different than that described in the paper by Farmer, but these differences are primarily
cosmetic.

The mount basically consists of a model mounted to a “Chevron” bracket. Seen
on the Chevron mount are adjustable masses that allow adjustments to the models center
of gravity location. This Chevron mount is connected to a turn table by four steel rods
and a rectangular drag strut. The mount is designed such that it allows only two degrees
of freedom: rigid body pitch and plunge. The turntable allows an arbitrary choice in
angle of attack. The Chevron mount, rods, drag strut, and turntable are hidden behind a
large splitter plate such that only the model is seen in the tunnel test section. For steady
pressure tests, this mount can be rigidiﬁed by replacing the Chevron mount, rods, and
drag strut by a large diameter (~6 in) rod.

With the quality and amount of experimental data available, these models serve as

the primary experimental benchmark to which all computational results obtained from the
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current research are compared. Efforts presented within this paper illustrate the
implementation of the transpiration method within the STARS computer codes on:
steady pressure measurements, steady control surface deflections, conventional flutter,

and control inputs for purposes of flutter suppression.
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CHAPTER 3
METHODOLOGY & PROCEDURE

The primary research tools for the current effort are the STARS codes developed
at NASA Dryden Flight Research Center [Gupta, 1997]. The current version of STARS
is the result of the evolution of the original STARS (STructural Analysis RoutineS)
computer code into an highly-integrated multidisciplinary tool for the analysis of a wide
variety of 2D and 3D structures. This evolution involves the addition of several modules
to the original STARS code. Each individual module, general by design, is integrated
into an effective tool for the prediction of complicated aeroelastic and aeroservoelastic
problems. These modules include: structures, heat transfer, linear aerodynamics, CFD,

controls engineering, and others.

3.1 STARS Modules

The scope of the current research is primarily involved with two of the modules
within the STARS computer programs. For a general ASE simulation, the user is
typically concerned with the structural dynamics of the system and the steady and
unsteady aerodynamic characteristics. The modules used for the current effort are the

structures and CFD modules, which are in turn integrated into the full ASE simulation.
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3.1.1 SOLIDS Module

The SOLIDS module has a large solution bandwidth, but for problems pertinent
to current research, we are concerned with the determination of the free and forced
response. The free response comes from the solution of the following equation:

[M [ii}+ [k Ju} =0 (3-1)
where [M] and [K] are the inertial and stiffness matrices, respectively. Generally, once a
solids model is generated, STARS solves the above equation for the natural frequencies
(o) and mode shapes (¢). If, however, the natural frequencies and structural mode shapes
are known a priori, one can bypass this solution and manually create the generalized

mass and stiffness values.

3.1.2 CFD Module

The STARS flow solver is an Euler-based code that applies finite-element CFD
on an unstructured grid. The implementation of an unstructured grid is a significant
feature of the STARS computer codes. For the general three-dimensional case, the
computational mesh consists of an assemblage of tetrahedra. These tetrahedra are
oriented to form to the geometry being considered, thus making possible the treatment of
complicated shapes.

The unstructured grid shape is assembled using the advancing front technique.
This procedure consists of dividing a boundary into a finite number of points (nodes)
such that the external surface is sufficiently represented. Adapted from a figure by Peiré,
Peraire, and Morgan, Figure 3-1 shows how these triangles, or tetrahedra in three

dimensions, are arranged beginning at these outer nodes [Peird, Peraire, and Morgan,
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1993]. Additional tetrahedra are added in such a manner that the surface Jront collapses

upon itself until the entire domain is filled with tetrahedra.
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Figure 3-1: Stages of Advancing Front Technique
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The CFD module, in general, consists of four major parts:
e SURFACE: Generates the two-dimensional front
e VOLUME: Generates the three-dimensional computational domain

e SETBND: Defines the boundary conditions in the domain
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e EULER: Steady or unsteady Euler flow solver
Each one of the above steps, as one would surmise, need to be done in that particular
order.

The user is able to specify certain parameters pertaining to the density of the CFD
surface and volumetric mesh. For regions such as leading and trailing edges of wings, for
example, the user may wish to define regions of higher mesh density, while maintaining
low mesh density in the far-field. STARS also has the capability of adaptive re-meshing.
Once a flow solution is obtained, the user has the option of letting STARS automatically
adjust the existing computational grid such that regions of high gradients receive a more

dense arrangement of elements.

3.1.3 Aeroelastic and Aeroservoelastic Solver

In general, the equations of motion for the coupled, time-marched ASE solution
involves the solution of (3-2), which is a matrix equation of motion for an arbitrary
structure in generalized coordinates.

MY} + [C i+ [k} = £(0) (3-2)
In the above equation: ~ [M] = generalized mass matrix
[C] = generalized damping matrix
[K] = generalized stiffness matrix
{u} = generalized displacement vector
f(t) = generalized aerodynamic force vector
The general procedure, therefore, for solving aeroelastic and aeroservoelastic problems is

as follows. A steady CFD solution serves as the initial conditions for the structural
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dynamics solver. A perturbation about this steady CFD flow will cause a change i