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Abstract 

The relative effectiveness in simulating aircraft maneuvers with both current and 

newly developed motion cueing algorithms was assessed with an eleven-subject piloted 

performance evaluation conducted on the NASA Langley Visual Motion Simulator 

(VMS).  In addition to the current NASA adaptive algorithm, two new cueing algorithms 

were evaluated: the optimal algorithm and the nonlinear algorithm.  The test maneuvers 

included a straight-in approach with a rotating wind vector, an offset approach with 

severe turbulence and an on/off lateral gust that occurs as the aircraft approaches the 

runway threshold, and a takeoff both with and without engine failure after liftoff.  The 

maneuvers were executed with each cueing algorithm with added visual display delay 

conditions ranging from zero to 200 msec.   

Two methods, the quasi-objective NASA Task Load Index (TLX), and power 

spectral density analysis of pilot control, were used to assess pilot workload.  Piloted 

performance parameters for the approach maneuvers, the vertical velocity upon 

touchdown and the runway touchdown position, were also analyzed but did not show any 

noticeable difference among the cueing algorithms.  TLX analysis reveals, in most cases, 

less workload and variation among pilots with the nonlinear algorithm.  Control input 

analysis shows pilot-induced oscillations on a straight-in approach were less prevalent 

compared to the optimal algorithm.  The augmented turbulence cues increased workload 

on an offset approach that the pilots deemed more realistic compared to the NASA 

adaptive algorithm.  The takeoff with engine failure showed the least roll activity for the 

nonlinear algorithm, with the least rudder pedal activity for the optimal algorithm. 
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1. Introduction 

The relative effectiveness in simulating aircraft maneuvers with various motion 

cueing algorithms was assessed with piloted behavior.  Three motion cueing algorithms 

were evaluated: the current NASA adaptive algorithm [1], and the new optimal and 

nonlinear motion cueing algorithms.  The new algorithms are described in the next 

section, with the theory and development discussed in greater detail in a separate report 

[2].  The optimal and nonlinear algorithms are also augmented with a vertical motion cue 

that is driven by the turbulence and is described in Section 2.6.  The nonlinear gains for 

each degree-of-freedom were tuned with a simulator pilot executing a series of simulated 

maneuvers on the NASA Langley Visual Motion Simulator (VMS) described in Section 

2.1.  The outcome of this tuning process is discussed in Section 2.7.       

A preliminary performance study of the adaptive and optimal algorithms was 

previously conducted on the VMS with a group of three pilots executing a set of 

simulated aircraft maneuvers [3].  The purpose of this current study is to assess the 

piloted behavior for a larger group of eleven pilots executing maneuvers under various 

flight conditions such as in-flight turbulence and engine failure with all three cueing 

algorithms on the VMS.  In addition, each maneuver included additional test runs with 

varying computer image generator (visual) delay.  A description of the maneuvers and 

test procedure is given in Section 3.     

While most prior motion cueing evaluations have been based solely on the pilot’s 

subjective evaluation of handling qualities, the pilot performance and workload in these 

tests were assessed with both a quasi-objective evaluation, the NASA Task Load Index 

(TLX) [4], and the objective analysis of pilot control inputs with the application of power 
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spectral density (PSD) frequency analysis.  These evaluation techniques are discussed in 

greater detail in Section 4.  In addition, other performance parameters such as the vertical 

velocity at touchdown and runway touchdown position relative to the runway centerline 

were investigated for the approach maneuvers.  Analysis results for each maneuver 

showing pilot performance and workload as a function of both the cueing algorithm and 

the visual display delay are presented in Section 5.   

The assumption here is that, in general, the lower the pilot workload for a given 

maneuver among cueing algorithms, the greater the information being transmitted by the 

simulator to the pilot.  This holds true for aircraft maneuvers without disturbance inputs, 

where workload increases with increased maneuver complexity.  However, with the 

addition of a disturbance (e.g., turbulence) and/or visual display delay to a maneuver, an 

increase in the pilot’s workload is a function of increased, more realistic information 

transmitted from the motion cues to the pilot.   
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2. Background Information 

2.1. NASA Langley Visual Motion Simulator (VMS) 

The NASA Langley Visual Motion Simulator (VMS), shown in Figure 2.1, is a 

general-purpose flight simulator consisting of a two-crewmember cockpit mounted on a 

60-inch stroke six-degree-of-freedom synergistic motion base [5], [6]. 

 

Figure 2.1.  NASA Langley Visual Motion Simulator (VMS).   NASA Langley 
Research Center, Hampton, Virginia. 

 
Motion cues are provided in the simulator by the relative extension or retraction 

of the six hydraulic actuators of the motion base.  The NASA adaptive algorithm and the 

new optimal and nonlinear algorithms were used to drive the motion base during the 

tuning of the new algorithms and the piloted test evaluation. 

The cockpit of the VMS, shown in Figure 2.2, is designed to accommodate a 

generic transport aircraft configuration on the left side and a generic fighter or rotorcraft 

configuration on the right side.  Both sides of the cockpit are outfitted with three heads-

down CRT displays (primary flight display, navigation/map display, and engine display), 

a number of small standard electromechanical circular instruments and a landing gear 

handle mounted in the instrument panel.  The left side contains a two-axis side stick 

control loader, and the right side contains a control loaded two-axis center stick.  Both 
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sides contain control loaded rudder systems.  The center aisle stand is outfitted with a 

control display unit, a four-lever throttle quadrant, a flap handle, a speed brake handle, 

and a slats handle.  The cockpit is outfitted with four collimated window display systems 

to provide an out-the-window visual scene.  During the piloted evaluations, the test 

subject flew from the left seat of the cockpit, while an observer/test conductor rode in the 

right seat. 

 

Figure 2.2.  Visual Motion Simulator Cockpit.   NASA Langley Research Center, 
Hampton, Virginia. 

 
The simulator includes a high fidelity, highly nonlinear mathematical model of a 

Boeing 757-200 aircraft, complete with landing gear dynamics, gust and wind models, 

flight management systems, and flight control computer systems.  For this study, the test 

subjects flew the simulated aircraft in the manual control mode (without the autopilot), 

and with manual throttle control (without the autothrottle). 

The out-the window visual scene is driven by an Evans and Sutherland ESIG 

3000/GT computer generated image system.  The visual database represented the 

Dallas/Fort Worth airport and its surrounding terrain.  The study utilized runways 18L 

and 18R for approach maneuvers and runway 18R for takeoff maneuvers.  The runways 

were equipped with approach lights, precision approach path indicator lights, runway 
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markings, and signage.  The database included all runways and taxiways, and all airport 

structures and buildings.  All tests were conducted in a daylight environment with full 

visibility. 

2.2. Coordinated Adaptive Washout Algorithm 

The intent of the NASA adaptive algorithm [1] is to adjust the response of the 

simulator washout filters in real time according to the current state of the simulator.  The 

block diagram for this algorithm is shown in Figure 2.3.  There are separate filtering 

channels for the translational and rotational degrees of freedom with a cross-feed path to 

provide the steady-state tilt coordination cues. 

 

Figure 2.3.  Coordinated Adaptive Washout (NASA Adaptive) Algorithm. 

 
The aircraft acceleration vector A

Aa  is first transformed from the center of gravity 

of the aircraft to the motion base centroid.  After nonlinear scaling and limiting, the 

gravity vector is subtracted to produce a simulator frame specific force vector.  The 

simulator specific force is transformed from the simulator frame FrS into the inertial 
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frame FrI, resulting in the inertial specific force command I
Af .  The specific force 

command I
Af  is passed through a translational channel with a time-varying gain λ  to 

produce a simulator translational acceleration command IS�� . This acceleration is 

integrated to produce the velocity IS� , which is then integrated to produce the simulator 

translational position command IS .  Both the velocity and position commands are 

employed as feedback. 

The aircraft angular velocity vector A
Aω  is limited and scaled similar to the 

translational channel, with the resulting vector being transformed to the Euler angular 

rate vector Aβ
� .  This vector is passed through the rotational channel with a time-varying 

gain δ  to produce the vector SRβ� .  The tilt coordination rate STβ�  is formed from the 

acceleration I
Aa  being passed through the cross-feed channel with a fixed gain γ.  The 

summation of STβ�  and SRβ�  yields Sβ
� , which is then integrated to generate Sβ , the 

simulator angular position command.   

The control law for the longitudinal mode is given by the following expressions: 

 
,

I I I I
x x Ax x x x x

I
S x Ax x A

S f d S e S

a

λ
θ γ δ θ

= − −

= +

�� �

� �
 (2.1) 

where xd , xe , and xγ  are fixed parameters, and xλ  and xδ  are the time-varying 

parameters that are continuously adjusted by steepest descent in an attempt to minimize 

the instantaneous value of the cost function.  The cost function is defined as 

 ( ) ( ) ( ) ( )2 2 221
,

2 2 2 2
I I I Ix xX

x Ax x A S x x

b CW
J f S S Sθ θ= − + − + +�� � � �  (2.2) 
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where XW , xb , and xC  are constant weights that penalize the difference in response 

between the aircraft and simulator, as well as restraining the translational velocity and 

displacement in the simulator. 

2.3. Optimal Algorithm 

The theory and development of the optimal algorithm is well discussed by Telban 

and Cardullo [2].  The problem is to determine a transfer function matrix W(s) that 

relates the desired simulator motion input to the aircraft input such that a cost function 

constraining the pilot sensation error (between simulator and aircraft) is minimized.  A 

mathematical model of the human vestibular system [2] is used in the filter development.  

The optimal algorithm generates the desired transfer functions W(s) by an off-line 

program [2], which are then implemented on-line.  W(s) will relate the simulator 

commands to the aircraft states by uS = W(s) × uA.  The block diagram for the on-line 

algorithm implementation is shown in Figure 2.4.  Similar to the NASA adaptive 

algorithm [1], there are separate filtering channels for the translational and rotational 

degrees of freedom with the cross-feed path providing the tilt coordination cues. 
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Figure 2.4.  Optimal Algorithm Implementation. 

 
The aircraft acceleration input vector is first transformed from the aircraft body 

frame FrA to the inertial frame FrI.  Nonlinear scaling in combination with limiting as 

described in Section 2.5 is then applied to scale the aircraft inputs.  The scaled inertial 

acceleration I
Aa  is then filtered through the translational filter W22 to produce a simulator 

translational acceleration command IS�� .  This acceleration is integrated twice to produce 

the simulator translational position command IS . 

The aircraft angular velocity input A
Aω  is transformed to the Euler angular rate 

vector Aβ
� , and is limited and scaled similar to the translational channel.  This input is 

then passed through the rotational filter W11 to produce the vector SRβ� .  The tilt 

coordination rate STβ�  is formed from the acceleration I
Aa  being passed through the tilt 

coordination filter W12.  The summation of STβ�  and SRβ�  yields Sβ
� , which is then 

integrated to generate Sβ , the simulator angular position command. 
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2.4. Nonlinear Algorithm 

The theory and development of the nonlinear algorithm is well discussed by 

Telban and Cardullo [2].  The algorithm is formulated as a linear optimal control problem 

similar to the optimal algorithm, but is also updated in real time with a nonlinear control 

law.  Furthermore, it incorporates models of the human vestibular sensation system along 

with an integrated visual-vestibular perception model [2].  The block diagram for the on-

line implementation is shown in Figure 2.5.  Similar to the optimal algorithm, there are 

separate filtering channels for the translational and rotational degrees of freedom with the 

cross-feed path providing the tilt coordination cues.  Telban and Cardullo [2] reported 

that for the pitch and roll rotational channels, no benefit resulted from updating the 

Riccati equation in real time; thus the nonlinear filters are replaced with unity-gain filters. 

Figure 2.5.  Nonlinear Algorithm Implementation with Unity-Gain Pitch Filter. 

 
A nonlinear control law is implemented to generate a scalar coefficient α that is a 

function of the simulator motion system states: 

  ,α = T
d 2 dx Q x  (2.3) 
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where Q2 is a weighting matrix that is at least positive semi-definite.  As the computed 

system states increase in magnitude, i.e., with large commanded platform displacements 

and velocities, α increases, resulting in faster control action to quickly wash out the 

platform to its neutral state.  For small commands there will be limited control action, 

resulting in motion cues sustained for longer durations. 

 The solution of the algebraic Riccati equation is given as [2] 

 ( ) ( ) ( )( ) ( ) ( ) ,α α α α α α′ ′ ′+ + + − + =T -1 T
2 1A I P P A I P BR B P R 0  (2.4) 

where ′A and B are system matrices and ′1R  and 2R  are the standard optimal control 

weighting matrices defined by Telban and Cardullo [2] in the algorithm development.  

The system matrix ′A is augmented with α times the identity matrix I.  The solution of 

Eq. (2.4) from the linear optimal algorithm that was computed off-line in MATLAB is 

used as the initial solution for the first time step.  The Riccati equation of Eq. (2.4) is then 

updated in real time with a structured neural network developed by Ham and Collins [7] 

that is discussed in more detail by Telban and Cardullo [2]. 

The Riccati equation solution ( )αP  and the feedback matrix ( )αK  are 

partitioned corresponding to the partition of the state vector x [2]: 

 

( )
( )
( ) ,

α

α

α

 = + + 

 = + 

 = + 

-1 T T T
1 2 V 11 d 21 V V

-1 T T
2 2 V 12 d 22

-1 T T T
3 2 V 13 d 23 V V

K R B P B P D QC

K R B P B P

K R B P B P - D QC

 (2.5) 

where the matrices VB , dB , and V VD QC  are defined by Telban and Cardullo [2], and by 

symmetry, T
12 21P = P .  The resulting state equations are then computed in real time: 
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( ) ( )

( ) ( )
( )( )

( )
,

αα α
α α α

     
= +      

        

V 3V V 1 V 2e e
A

d 1 d d 2d d d 3

-B I + KA - B K -B Kx x
u

-B K A - B Kx x -B K

�

�
 (2.6) 

with the matrices VA  and dA  defined by Telban and Cardullo [2].   

For each motion cueing algorithm, the simulator translational position IS  and the 

angular position Sβ  are used to transform the simulator motion from degree-of-freedom 

space to actuator space [2], generating the actuator commands required to achieve the 

desired platform motion. 

2.5. Nonlinear Input Scaling 

Limiting and scaling are applied to both aircraft translational input signals A
Aa  and 

rotational input signals A
Aω .  Limiting and scaling modify the amplitude of the input 

uniformly across all frequencies.  Limiting is a nonlinear process that clips the signal so 

that it is limited to be less than a given magnitude.  Limiting and scaling can be used to 

reduce the motion response of a flight simulator.  A third-order polynomial scaling was 

developed [8] and has been implemented in the new simulator motion cueing algorithms. 

When the magnitude of the input to the simulator motion system is small, the gain 

is desired to be relatively high, or the output will be below the pilot’s perception 

threshold.  When the magnitude of input is high, the gain is desired to be relatively low or 

the simulator may attempt to go beyond the hardware limits.  Let us define the input as x 

and the output as y.  Now define maxx as the expected maximum input and maxy  as the 

maximum output, and 0s and 1s  as the slopes at x = 0 and x = maxx respectively.  Four 

desired characteristics for the nonlinear scaling are expressed as: 
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 A third-order polynomial is then employed to provide functions with all 

the desired characteristics.  This polynomial will be of the form 

 3 2
3 2 1 0y c x c x c x c= + + +  (2.7) 

where 

( )
( )

0

1 0

2
2 max max 0 max 1 max

3
3 max 0 max max 1 max

0,

,

3 2 ,

2 .

c

c s

c x y s x s x

c x s x y s x

−

−

=
=

= − −

= − +

 

One example of this polynomial gain is shown in Figure 2.6, with parameters set as 

maxx = 10, maxy = 6, 0s = 1.0, 1s = 0.1. 
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t 

Y
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Figure 2.6.  Nonlinear Input Scaling. 
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2.6. Augmented Turbulence Cue 

Reid and Robinson [9] first addressed the problem of producing acceptable 

motion cues to turbulent gust inputs.  They noted that heave is the most critical cue in 

representing turbulence, but is also the most restricted cue when constraining motion 

within the platform geometry.  To overcome this limitation, they developed an approach 

in which a second set of aircraft equations of motion driven only by the turbulence inputs 

is employed.  The output from this augmented channel is then added to the output from 

the primary flight equations, being driven by both turbulence and the pilot control inputs, 

before serving as input to the motion system.  A similar approach to that developed by 

Reid and Robinson [9] has been implemented and is shown in Figure 2.7. 

Figure 2.7.  Optimal Algorithm Vertical Mode with Augmented Turbulence 
Channel. 

 
The input to the augmented channel is the z-axis component wG of the turbulence 

vector G.  Reid and Robinson showed that wG is the dominant turbulence component 

needed in producing vertical acceleration due to turbulence.  The secondary equations of 

motion can then be represented by a transfer function HG(s).  The secondary acceleration 

I
Ga  is then scaled with a constant gain KG.  Both the primary and secondary signals are 

then combined before input to the vertical motion cueing filter W22. 
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From a simulated Being 757-200 aircraft test run, a system identification of 

aircraft vertical accelerations in response to turbulence was performed.  The transfer 

function HG(s) was then created to not only represent the acceleration, but also 

incorporate some desired motion cueing characteristics, i.e., attenuated low-frequency 

content and increased high-frequency content.  The following second-order transfer 

function was obtained for HG(s): 

 ( ) ( )( )
( )( )
2.4 1 2.4 1

0.1 .
0.4 1 0.1 1G

s s
H s

s s

+ +
=

+ +
 (2.8) 

For the optimal algorithm, a gain of KG equal to 0.8 was chosen to maximize the 

desired sensation of turbulence while sustaining the actuator extensions within the motion 

limits.  A similar implementation to that shown in Figure 2.7 was applied for the 

nonlinear algorithm.  In this approach, the linear cueing filter W22 was replaced with the 

nonlinear heave filter, with the gain KG set equal to 1.2. 

2.7. Pilot Tuning of the Cueing Algorithms 

A computer program [10] was developed for the purpose of driving the NASA 

Langley Visual Motion Simulator (VMS) described in Section 2.1.  This program 

includes both the optimal algorithm and the nonlinear algorithm.  A general description 

of the program is given along with a description and flow charts of each cueing 

algorithm.  Common block variable listings and a program listing are also provided.  

Procedures for tuning the nonlinear gain coefficients are also given. 

In order to determine the nonlinear scaling (gain) coefficients for each degree-of-

freedom that resulted in the most desired pilot performance, a trained simulator pilot 

executed a series of pilot controlled maneuvers with the optimal algorithm on the VMS.  

A series of maneuvers were first executed with the coefficients determined prior to 
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testing.  Coefficients for each degree-of-freedom were then adjusted until the simulator 

pilot subjectively felt the desired perception and performance were reached, while 

ensuring that the simulator motion platform limits were not exceeded.  The following 

maneuvers were executed for both algorithms: 

  Straight Approach and Landing (with varying wind from head to tail) 
  Offset Approach and Landing (with and without turbulence) 
  Pitch, Roll, and Yaw Doublets 
  Throttle Increase and Decrease 
  Coordinated Turn 
  Ground Maneuvers (taxiing, effect of aircraft brakes) 
  Takeoff from Full Stop. 
 

The optimal algorithm resulted in motion cues with which the simulator pilot 

commented he had more control and confidence in comparison to the NASA adaptive 

algorithm.  For both pitch and roll doublets, a fast response was observed when changing 

directions.  On takeoffs, the optimal algorithm was found to be easier to pitch up to the 

desired attitude and control the aircraft.  A noticeably large side force was observed with 

the coordinated turn maneuver.  By reducing the gains for the roll degree-of-freedom, this 

side force was reduced to a minimal sensation.  The pitch gains were decreased to reduce 

the likelihood of entering the braking region or exceeding the actuator limits.  Reducing 

the gains for both roll and pitch degrees-of-freedom still yielded acceptable motion cues. 

The severe turbulence effects that were included with the offset approach and 

landing maneuver were hardly noticeable.   An increase of the vertical gain coefficients 

resulted in increased cues, but still less than satisfactory.  This increase in the vertical 

gains (coupled with an increase of the surge gains) resulted in forward surge cues that are 

more coordinated with the pitch cues, and a larger aft surge cue (initially, the aft cue was 
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noticeably smaller than the forward cue).  The unsatisfactory turbulence cues resulted in 

the inclusion of the augmented motion cue driven by the vertical gust. 

A second pilot tuning evaluation was later performed on the VMS with both the 

optimal and nonlinear algorithms, with augmented turbulence cues implemented for both 

algorithms.  A series of maneuvers were first executed with the polynomial gain 

coefficients determined prior to testing.  Coefficients for each degree-of-freedom were 

then adjusted until the simulator pilot subjectively felt the desired perception and 

performance were reached, while ensuring that the simulator motion platform limits were 

not exceeded.  The following maneuvers were executed for both algorithms: 

  Straight Approach and Landing (with varying wind from head to tail) 
  Offset Approach and Landing (with and without turbulence) 
  Takeoff from Full Stop (with and without engine failure) 
  Ground Maneuvers (taxiing, effect of aircraft brakes). 
 

No additional tuning was needed for either the straight-in or offset approach 

maneuvers.  However, both algorithms showed a tendency to exceed the actuator limits 

of the motion system with the takeoff maneuver.  Reducing the surge gains for the 

optimal algorithm and both the surge and pitch gains for the nonlinear algorithm resulted 

in platform motion within the actuator limits during the takeoff maneuvers.  The 

augmented turbulence gain terms for the optimal and nonlinear algorithms discussed in 

Section 2.6 were adjusted to produce the desired turbulence cues. 

Table 2.1 lists the resulting nonlinear gains by degree-of-freedom implemented 

for each algorithm.  From Eq. (2.7), the coefficients c1, c2, and c3 are given for each 

degree-of-freedom. 
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Table 2.1.  Nonlinear Gain Coefficients for the Cueing Algorithms. 

Degree-of-
Freedom 

Optimal Algorithm Nonlinear Algorithm 

 C1 C2 C3 C1 C2 C3 
Surge (X) 0.6 -0.055 0.002 0.5 -0.05 0.002 
Sway (Y) 0.5 -0.055 0.002 0.4 -0.035 0.001 
In-Air (Z) 0.6 -0.082 0.0038 0.6 -0.082 0.0038 
On-Ground (Z) 1.3 -0.0375 0.0003 2.0 -0.05 0.0 
Roll (p) 0.3 -0.3 0.1 0.3 -0.3 0.1 
Pitch (q) 0.4 -0.54 0.26 0.3 -0.3 0.1 
Yaw (r) 1.1 -1.46 0.64 1.1 -1.46 0.64 
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3. Test Procedure 

The study consisted of four flight scenarios: (1) a straight-in approach, (2) an 

offset approach, (3) a normal takeoff, and (4) a takeoff with engine failure.  The details of 

the flight scenarios are described below. 

(1) Straight-in Approach 

Altitude - 1300 ft BARO, 697 ft AGL 

Airspeed - 135 kts 

Heading - 180 deg 

Distance to runway - 2 nm 

Flaps - Full, Gear - Down  

EPR - 1.19 

On Glideslope, On Localizer 

Wind Conditions - 10 kts, Begins as a head wind, swings around to a 90 deg wind 

from the left at 1 nm, and continues to swing around to a tail wind as the aircraft crosses 

the threshold. 

Procedure –  

Visual approach, 

PAPI lights available on Runway 18R, 

Glideslope and Localizer needles available on Primary Flight Display 

(2) Offset Approach 

Altitude - 1300 ft BARO, 697 ft AGL 

Airspeed - 135 kts 

Heading - 180 deg, aligned with Runway 18L 
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Distance to runway - 2 nm 

Flaps - Full, Gear - Down 

EPR - 1.19 

On Glideslope 

Wind Conditions - Severe Turbulence. Lateral gust from the left, 90 deg to 

runway centerline, turns on at 3000 ft from runway threshold, turns off at the runway 

threshold. 

Procedure –  

When the red light on instrument panel illuminates (7500 ft from threshold), 

realign approach and land on Runway 18R, 

Visual approach, PAPI lights available on Runway 18R,  

Glideslope and Localizer needles available on Primary Flight Display. 

Flight Path

Runway 18L Runway 18R

 

Figure 3.1.  Schematic Diagram of Offset Approach Maneuver Flight Path. 
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 (3) Takeoff - With or without engine failure 

Runway 18R 

Flaps - 5 deg 

Takeoff EPR - 1.70 

VR - 135 kts, V1 - 130 kts, V2 - 140 kts 

Procedure - 

Advance throttles from idle to Takeoff EPR 

At VR, rotate to 15 deg pitch-up attitude 

Climb to 2000 ft BARO while accelerating to 200 kts 

Retract gear and flaps as appropriate 

Maintain runway heading of 180 deg during takeoff  

A set of 96 test runs was executed by each pilot and consisted of three maneuvers: 

24 for the straight-in approach, 24 for the offset approach, 24 for the normal takeoff, and 

24 for the takeoff with engine failure.   

The 24 runs for each of the two approach maneuvers resulted from the 

enumeration of three simulation conditions: four computer image generator (visual 

display) time delays, both with and without delay compensation: (0, 50, 100, and 200 

msec), and three motion cueing algorithms (NASA adaptive, optimal, and nonlinear).  

This accounted for 4 × 2 × 3 = 24 test runs per maneuver.  For the takeoff maneuver, 

there were twice as many cases (48) because of an additional test condition, i.e., the case 

with engine failure.  Each maneuver included two test runs with zero delay; for zero 

delay, the “compensated” run was effectively the same as the uncompensated run.  The 

order of the test runs for each maneuver was randomized, i.e. a zero delay case is not 
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necessarily the first run, and one cueing algorithm does not necessarily follow another.  

In addition, the 24 engine failure cases occurred equally distributed at altitudes of 200, 

400, 600, and 800 feet above ground level, with either the right or left engine failing.  

These cases occurred randomly and not necessarily following each other or a case 

without engine failure. 

Appendix A lists the matrix of test runs for each maneuver.  With the exception of 

the first pilot, each pilot first executed the straight-in approach (runs 1 to 24), next the 

first set of takeoff runs (runs 49 to 72), then the offset approach (runs 25 to 48), followed 

by the second set of takeoffs (runs 73 to 96).  The first pilot executed all runs in order 

from 1 to 96, commenting that executing 48 takeoffs in a row became difficult to separate 

one run from another.  For each test run, 66 variables were sampled and recorded.  The 

simulation time step was 16 msec.  Every fourth sample was recorded, which resulted in 

a sampling period of 64 msec.  For a single test run, about 1000 data points were 

collected for each variable.  These sampled variables are listed in Appendix A.  

Following execution of each maneuver, each pilot rated the maneuver using the NASA 

TLX method discussed in the next section. 

Eleven pilots took part in the test, with each pilot executing the 96 test runs over 

one or two days.  The pilots had varying aircraft and flight experience.   
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4. Methods of Analysis 

4.1. NASA Task Load Index (TLX) 

The NASA Task Load Index (TLX) [4] is a quasi-objective rating procedure that 

provides an overall workload metric based on a weighted average of six subscale ratings.  

Three of these subscales relate to the demands imposed on the test subject (mental, 

physical, temporal) and three to the interaction of the subject with the task (effort, 

frustration, performance).  In addition to the six subscales, an overall weighted measure 

of the task load is calculated on the basis of the scales.  The TLX can be used for any 

human-system interaction, and has been tested in experimental tasks such as flight 

simulation and supervisory control. 

The NASA TLX is a two-part evaluation procedure consisting of both ratings and 

weightings.  The first part of the procedure involves obtaining a numerical rating for each 

subscale that reflects the magnitude of the workload for a given task.  The rating 

definitions for each subscale are given in Appendix A.  For each test run, the pilot rates 

each subscale by placing a mark on the desired location on a scaled recording sheet.  

The second part of the procedure requires the test subject to evaluate the 

contribution of each workload subscale to the total workload of a specific task.  The 

weighting reflects the importance of each workload subscale relative to the other 

subscales, accounting for both the subjects’ definition of workload within a task, and 

differences in the workload sources between tasks.  The degree to which each factor 

contributes to the workload of a specific task is determined by the subject’s response to a 

pair-wise comparison among the six factors.  For six subscales, there are 15 pair-wise 

comparisons.  Subjects select a subscale from each pair that contributed more to the 
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workload of that task.  The weighted contribution of each subscale can range from 0 to 5.  

These weighted workload subscales are then combined to produce a weighted TLX rating 

for each test run.  A high TLX rating implies the pilot is exerting a high workload. 

4.2. Pilot Control Input Analysis 

Guo, et al. [3] further demonstrated the application of analyzing power spectral 

density (PSD) of the pilot control inputs for two motion cueing algorithms (adaptive and 

optimal) at various time delays, both with and without compensation.  Guo, et al. 

computed the PSD using the smoothed periodogram to eliminate noise artifacts and 

enhance the microscopic characteristics of the frequency process.  The Hamming window 

[Porat, 1997 #108] using 4096 points was chosen, and zero padding was applied to the 

time signal to enhance the resolution of adjacent peaks.  The average of the signal was 

subtracted from itself before the PSD was computed to remove any artificial peaks at zero 

Hz. 

An individual PSD for each control input (pitch stick, roll stick, rudder pedal) was 

first computed for each pilot for a given test condition. Guo, et al. [3] reported that the 

effect of the test condition, i.e. the cueing algorithm or the delay, had little effect on the 

throttle, and thus, is not discussed further in this report.  These individual PSDs were then 

averaged at each computed frequency for a given pilot group to produce an average PSD 

for each cueing algorithm.  In the preliminary test, Guo, et al. reported that almost all of 

the integral power occurs in the frequency range from 0 to 1 Hz.  This frequency range is 

consistent with the human-machine control bandwidth.  In computing the integral power, 

Euler integration is used to calculate the area of the PSD from 0 to 1 Hz.  The average 
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integral power and its standard deviation are then computed for a group of pilots so that 

the effect of both the motion cueing algorithm and the delay can be assessed. 

4.3. Simulator Coherence Analysis 

Levison, et al. [11] reported that both Levison and Elkind and McRuer, et al. 

defined the remnant as the portion of the controller output that is not related to the system 

input by an input/output describing function.  They noted that McRuer, et al. concluded 

that the PSD of the controller remnant is a smooth function of frequency, the remnant is 

strongly dependent upon the order of the controller dynamics, and can be represented by 

an equivalent “observation noise” disturbance at the controller input.  Levison, et al. [11] 

developed a model for human controller remnant based upon the assumption that the 

remnant can be represented as a single vector observation noise process. 

A single-degree-of-freedom representation of this model is given in Figure 4.1.  

The information presented to the human controller is contained in the display vector x.  

This display vector is perturbed by an additional observation noise process Rx, yielding x’ 

as the total input to the controller.  The controller input x’ is then processed by the 

controller’s describing function H to yield the control signal u that is applied to the 

vehicle dynamics V.  In order to simplify analysis of the human-vehicle system, Levison, 

et al. assumed that the controller’s perceptual and response activities are limited to the 

estimation of the system error and error rate, along with the explicit control of the output 

variable and its rate of change.  These assumptions imply that the task is compensatory, 

with a single display presented to the controller from which both the error and rate of 

error can be obtained. 
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Figure 4.1.  Single-Degree-of-Freedom Manual Control System with Remnant. 

 
Levison, et al. [11] developed an expression for the observation noise spectrum 

that is a function of the input noise spectrum, and noted that since the input spectrum can 

only be obtained at the input frequencies, the observation noise spectrum can only be 

specified at those same frequencies.  Their use of the sum of sinusoidal inputs also 

facilitated the separation and estimation of remnant-induced signals, since the signal 

power at frequencies other than the inputs were assumed to arise solely from the remnant. 

In a human-vehicle system such as an aircraft, both the system inputs, e.g. the 

aircraft states, and the pilot control output responses are normally wide-band processes 

with peak power magnitudes at varying frequencies.  One means of quantifying the 

effects of the observation noise is by computing the coherency spectrum yuκ  between the 

system input and its response [12]: 
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where ( )y ωΦ and ( )u ωΦ  are the power spectral densities for the system output and 

input respectively, and ( )yu ωΦ  is the cross-spectral density between the input and 

output.  Ljung [12] noted that the coherency function yuκ  can be viewed as a frequency-

dependent correlation coefficient between the input and output frequencies, with 

0 1yuκ≤ ≤ .  A coefficient of 1 at a given frequency means that there is perfect correlation 

between the input and output, with no observation noise.  Decreasing values of coherence 

indicate an increasing effect of the observation noise. 

From the experimental data, coherence will be computed using either the 

simulator motion platform or the simulated aircraft attitude (pitch or roll) as input, and 

the corresponding control stick response (pitch or roll) as output.  Average PSD of the 

aircraft and simulator attitudes will also be computed in order to reveal any differences 

among the three motion cueing algorithms. 
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5. Analysis Results 

During each pilot test, an experienced simulator pilot rode in the simulator in the 

first officer’s seat and observed the control technique and instrument scan patterns of the 

pilot.  In addition, any atypical or unusual behavior when executing maneuvers was 

noted.  From these observations, the pilots can be aggregated into groups in Table 5.1 

based upon their control technique and instrument scanning behavior.  The most 

disciplined scan pattern was observed for Pilot Group 1, and was less disciplined for Pilot 

Group 2.  Pilot Group 3 showed the most erratic scanning and control behavior, with 

individual problems noted for each pilot.  By original observation, Group 3 was 

aggregated into two subgroups (Pilots 2 and 9 and Pilots 3 and 5) that showed the most 

erratic scanning and control behavior; however Pilot 9 showed less erratic behavior from 

both the pilot comments and data analysis and was placed in Group 2.  Pilot 11, for 

reasons discussed below, was re-categorized from Group 2 to Group 3. 

Table 5.1.  Pilot Groups by Control Technique and Instrument Scan Pattern. 

Pilot Group 1 Pilot 1, Pilot 4, Pilot 7, Pilot 10 
Pilot Group 2 Pilot 6, Pilot 8, Pilot 9 
Pilot Group 3 Pilot 2, Pilot 3, Pilot 5, Pilot 11 
 

Pilot 2 encountered difficulty on the approach maneuvers as a result of flying 

predominantly with the instruments and then suddenly transitioning to the visual scene 

200 feet above the runway.  Pilot 3, a pilot more experienced with small aircraft, had no 

experience with large transport aircraft, which was manifested predominantly with the 

takeoff maneuvers.  Pilot 5, an experienced military aircraft pilot, exceeded the motion 

system actuator limits on several optimal algorithm test runs due to aggressive liftoff 

rotations that resulted in a very high rate of climb and large heave displacement.  By 
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comparison, the liftoff technique of Pilot 4 showed about one-half the rate of climb, with 

much smaller heave displacements.  Pilot 11 showed very erratic control behavior during 

the final phase of the approach.  This resulted in a number of approach runs ending with 

pilot-induced oscillation (PIO) at the landing flare. 

The aggregated pilot groups were used in the NASA TLX analysis discussed in 

the next section.  Appendix B provides a control input analysis for Pilot Groups 1 and 2 

for each of the four test maneuvers.  For each pilot group, this control analysis consists of 

the average PSD (of all pilots in the group) as a function of frequency for uncompensated 

delay conditions of 0, 100, and 200 msec.  The 50 msec delay condition was not analyzed 

since its effect on pilot performance and workload was expected to be insignificant.  The 

pitch stick and roll stick were analyzed for all maneuvers, with the rudder pedal also 

analyzed for the takeoff maneuver with engine failure.  With the exception of the takeoff 

with engine failure, the rudder PSD is much less than either the pitch stick or roll stick 

PSD. 

5.1. NASA Task Load Index 

Due to differences in hardware, the visual system image generator transport delay 

varies among different simulators.  Some researchers have opined that the effects of the 

image generator delay may be mitigated by the addition of motion cues.  For this reason, 

it becomes important to understand the motion cueing algorithm performance as a 

function of the uncompensated delay, and its subsequent effect on the pilot’s workload.  

In order to investigate the variations among the algorithms by pilot group, the NASA 

Task Load Index (TLX) analysis was first performed for the zero delay case.  The 
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analysis was then performed among the cueing algorithms at delays of 0, 100, and 200 

msec. 

Figure 5.1 compares the average weighted TLX ratings for the straight-in and 

offset approach maneuvers with no delay for each aggregated pilot group.  For the 

straight-in approach, the results for each algorithm were not significantly different, 

although the nonlinear algorithm tends to show a slightly higher workload.  Pilot Groups 

1 and 2 were about the same, while Group 3 showed a small increase for all algorithms.  

The standard deviation did not vary much among either the algorithms or the pilot 

groups.  For Pilot Groups 1 and 2, the offset approach did not show significant 

differences among the cueing algorithms, with Group 2 showing a slightly higher TLX 

for all algorithms.  Group 3 showed a much more noticeable increase for all algorithms, 

with no noticeable difference among the algorithms. 
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Figure 5.1.  TLX for Approach Maneuvers by Pilot Group with No Delay. 
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Figure 5.2 shows the average weighted TLX for the takeoff maneuver (with and 

without engine failure) with no delay.  For the case without engine failure, Groups 1 and 

2 do not reveal any significant differences in workload among the algorithms, with Group 

2 showing a slightly higher TLX for each algorithm.  Pilot Group 3 shows larger standard 

deviations for all algorithms, with a much higher average rating and variation occurring 

with the optimal algorithm.  The standard deviation of the nonlinear algorithm was about 

the same as the adaptive algorithm for each pilot group.  The case with engine failure 

shows an increase in both the average rating and standard deviation by pilot group, Group 

1 having the lowest ratings and variation and Group 3 showing much higher ratings and 

variation.  Note that the nonlinear algorithm shows the lowest ratings and variation for 

each pilot group. 

1 2 3
0

10

20

30

40

50

A
ve

ra
ge

 W
ei

gh
te

d 
TL

X

Takeoff w/o Engine Failure (Delay=0 sec)

1 2 3
0

10

20

30

40

50

Pilot Group

A
ve

ra
ge

 W
ei

gh
te

d 
TL

X

Takeoff with Engine Failure (Delay=0 sec)

Adaptive Algorithm
Optimal Algorithm
Nonlinear Algorithm

 

Figure 5.2.  TLX for Takeoff Maneuvers by Pilot Group with No Delay. 



 33

Figure 5.3 shows the average weighted TLX ratings for the straight-in and offset 

approach maneuvers as a function of delay.  The average TLX for each cueing algorithm 

is computed for Pilot Groups 1 and 2 combined.  Pilot Group 3 is removed from this 

analysis due to its increased workload and variability observed among the cueing 

algorithms.  For the straight-in approach, the results for each algorithm are not 

significantly different.  With zero delay, the nonlinear algorithm produced the highest 

TLX, but showed a lower rating for the 100 msec case compared to the optimal 

algorithm, and the lowest rating for 200 msec delay among all algorithms.  For this 

maneuver, the cueing algorithms do not reveal a consistent trend with increasing delay. 
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Figure 5.3.  TLX for Approach Maneuvers with Delay, Pilot Groups 1 and 2. 

 
  The offset approach also did not reveal any significant differences among the 

cueing algorithms.  A small increase in the TLX was observed as a function of delay; the 
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nonlinear algorithm resulted in the lowest workload for both 100 and 200 ms delay cases, 

while the optimal algorithm showed the highest workload for all delay cases. 

Figure 5.4 shows the average weighted TLX for the takeoff maneuver (with and 

without engine failure) for Pilot Groups 1 and 2 as a function of delay.  For the case 

without engine failure, the TLX was almost the same for each algorithm with the absence 

of delay.  With delay, the optimal algorithm produced a higher TLX, while the adaptive 

and nonlinear algorithms showed no significant change with delay.  The standard 

deviation was about the same for all algorithms.  The case with engine failure resulted in 

the nonlinear algorithm having a slightly lower rating with zero delay.  Increasing the 

delay resulted in higher ratings (with the same standard deviation) for all algorithms, with 

the nonlinear algorithm having a lower TLX among all algorithms at 100 msec, and a 

lower rating at 200 msec compared to the optimal algorithm. 
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Figure 5.4.  TLX for Takeoff Maneuvers with Delay, Pilot Groups 1 and 2. 
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5.2. PSD Analysis 

5.2.1. Straight-In Approach 

Figure 5.5 shows the control input integral power for Pilot Group 1.  The 

conditions with both zero and 100 msec delay showed insignificant differences among 

the cueing algorithms for both the pitch stick and roll stick.  For 200 ms delay, the 

adaptive algorithm had the largest power increase for the roll stick. The nonlinear 

algorithm remains almost unchanged as a function of delay, with the least amount of roll 

stick power variation among the three algorithms.  The average PSD for the zero delay 

condition is shown in Appendix B, Figure B.1.  Note that there was only a small variation 

among the cueing algorithms for either the pitch stick or roll stick PSD.  Increased 

control activity with delay is observed in the average PSD for 100 and 200 msec delay 

conditions shown in Figures B.2 and B.3 of Appendix B. 
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Figure 5.5.  Straight-In Approach, Control Input Integral Power, Pilot Group 1. 
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Figure 5.6 shows the average PSD for the aircraft roll and pitch angles for Pilot 

Group 1 with zero delay.  The pitch angle PSD is similar to the pitch stick PSD of Figure 

B.1, with the aircraft PSD about the same for all three cueing algorithms.  The roll angle 

PSD revealed a low-frequency peak between 0.02 and 0.03 Hz for all algorithms, with 

the optimal algorithm having the largest peak magnitude. 
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Figure 5.6.  Straight-In Approach, Aircraft Angle Average PSD with Zero Delay, 
Pilot Group 1. 

 
Figure 5.7 shows the control input integral power for Pilot Group 2.  Both the 

pitch stick and roll stick produced increased power and standard deviation for each 

cueing algorithm over Group 1.  The zero delay condition showed an increase in power 

from the adaptive to the nonlinear algorithm.  In Figure B.4, the average PSD for zero 

delay showed a large peak near 0.45 to 0.5 Hz for the nonlinear algorithm, which is due 

to reported incidents of pilot-induced oscillation (PIO) for Pilots 6 and 8.  The optimal 



 37

algorithm resulted in significantly large integral power and variation at both 100 and 200 

msec delay, which is due to repeated incidents of PIO for Pilot 6.  These PIO incidents 

were evident in the average PSD in Figures B.5 and B.6.  For the nonlinear algorithm, 

while the pitch stick power remained unchanged with delay, the roll stick power 

decreased, with no incidents of PIO observed. 
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Figure 5.7.  Straight-In Approach, Control Input Integral Power, Pilot Group 2. 

 
Figure 5.8 shows the average PSD for the aircraft roll and pitch angles for Pilot 

Group 2 with zero delay.  The increased PSD for both the pitch and roll angle reflects the 

increased control input power shown in Figure 5.7.  The pitch angle magnitude is highest 

for the nonlinear algorithm.  The optimal algorithm showed the largest low-frequency 

peak for the roll angle, with the variation among the algorithms being more significant in 
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comparison to Pilot Group 1.  The roll stick PIO illustrated in Figure B.6 is observed in 

the roll angle PSD at about the same frequency. 
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Figure 5.8.  Straight-In Approach, Aircraft Angle Average PSD with Zero Delay, 
Pilot Group 2. 

 
The vertical rate of the aircraft upon touchdown can be considered as a measure 

of performance.  A small touchdown rate would indicate that the pilot has more control of 

the aircraft, while a higher rate results from the pilot having less control.  Figure 5.9 

shows the average vertical rate at the touchdown for both Pilot Group 1 and Pilot Group 

2.  Note that the vertical rates for Pilot Group 1 are low (less than 2 ft/sec), with the 

adaptive algorithm producing the lowest rates.  For Pilot Group 2, the vertical rates 

increased for all cueing algorithms, with no significant difference among the algorithms 

for either pilot group. 
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Figure 5.9.  Straight-In Approach, Vertical Rate at Touchdown. 

 
The x- and y- coordinates of the aircraft at touchdown; i.e. the distance from the 

runway threshold (the start of the runway), and the distance from the runway centerline 

were investigated.  These results are shown in Figure 5.10 and Figure 5.11.  No 

noticeable or significant trends were observed with either coordinate among the motion 

cueing algorithms, although the pilots in Group 1 tended to land an average of about 300 

feet further down the runway.  The longer landing may also account for a lower vertical 

rate at touchdown, indicating that the aircraft was “floating” as the pilot attempted to 

land. 
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Figure 5.10.  Touchdown Coordinates, Straight-In Approach, Pilot Group 1. 
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Figure 5.11.  Touchdown Coordinates, Straight-In Approach, Pilot Group 2. 
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5.2.2. Offset Approach 

Figure 5.12 shows the control input integral power for Pilot Group 1.  The zero 

delay condition shows increasing pitch stick power from the adaptive to the nonlinear 

algorithm.  The nonlinear algorithm produced slightly more roll stick power than either 

optimal or adaptive.  With delay, the roll stick power increased for both the optimal and 

nonlinear algorithms, but only at 200 msec delay for the pitch stick power. 
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Figure 5.12.  Offset Approach, Control Input Integral Power, Pilot Group 1. 

 
Figure B.7 of Appendix B shows the average PSD for the zero delay condition for 

Pilot Group 1.  Note that the nonlinear algorithm produced a higher low-frequency PSD 

for the pitch stick and higher mid-frequency (0.2 to 0.5 Hz) PSD for the roll stick.  

Increased control activity with delay is observed in the average PSD for 100 and 200 

msec delay conditions shown in Figures B.8 and B.9 of Appendix B.  An increase in PSD 
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is observed in the frequency range from 0.1 to 0.4 Hz.  For the 100 ms condition, Pilot 1 

reported that the delay was noticeable and the controls were less responsive for both the 

optimal and nonlinear algorithms. 

 Figure 5.13 shows the average PSD for the aircraft roll and pitch angles for Pilot 

Group 1 with zero delay.  The pitch angle PSD is similar to the pitch stick PSD of Figure 

B.7, with the nonlinear algorithm showing the largest pitch angle activity.  The roll angle 

produced a large peak at about 0.028 Hz for all algorithms, which was also reported by 

Guo, et al. [3] in the preliminary test.  This frequency corresponds to a period of about 34 

seconds, the duration of the offset approach.  The nonlinear algorithm produced a slightly 

larger peak magnitude that corresponds to the larger control input integral power in 

Figure 5.12 as well as the higher low-frequency peak in the average PSD in Figure B.7. 
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Figure 5.13.  Offset Approach, Aircraft Angle Average PSD, Pilot Group 1 with 
Zero Delay. 
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For the offset approach, the control input integral power for Pilot Group 2 was 

about the same as Pilot Group 1, with the optimal algorithm showing less power with the 

100 and 200 msec delay conditions.  These results are shown in Figure 5.14.  The average 

PSD for Group 2 are given in Figures B.10 to B.12. 
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Figure 5.14.  Offset Approach, Control Input Integral Power, Pilot Group 2. 

 

Figure 5.15 shows the average vertical rate at the touchdown for both Pilot Group 

1 and Pilot Group 2.  The vertical rates are higher as compared to the straight-in 

approach, which would indicate the pilots having less control of the aircraft upon 

touchdown.   There was no significant difference in magnitude between the two groups.  

While the nonlinear algorithm produced the lowest vertical rates for Pilot Group 1, no 

significant difference among algorithms was revealed for either pilot group.  Also, 

investigation of the runway touchdown coordinates shown in Figures 5.16 and 5.17, did 
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not yield any significant or noticeable difference among the cueing algorithms, although 

similar to the straight-in approach the pilots in Group 1 tended to land about an average 

of 300 feet further down the runway. 
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Figure 5.15.  Offset Approach, Vertical Rate at Touchdown. 
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Figure 5.16.  Touchdown Coordinates, Offset Approach, Pilot Group 1. 
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Figure 5.17.  Touchdown Coordinates, Offset Approach, Pilot Group 2.   
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A number of pilots noticed and commented on the different sensed levels of 

turbulence between the adaptive and the optimal/nonlinear algorithms with the 

augmented turbulence channel [2].  In general, they felt that the new algorithms produced 

a more realistic feel of turbulence, while the adaptive algorithm produced a high-

frequency “washboard” effect that was uncharacteristic of severe turbulence in aircraft. 

Figure 5.18 shows the average PSD of the simulator z-axis displacement for both 

approach maneuvers with zero delay for Pilot Group 1.  For the offset approach, the 

nonlinear algorithm produced a high peak at about 0.06 Hz that is more than twice as 

high as the optimal algorithm, and significantly higher than the adaptive algorithm.   This 

additional vertical aircraft motion produced by the turbulence will increase the pilot’s 

workload in controlling the aircraft. 
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Figure 5.18.  Simulator Z-Axis Average PSD for Approach Maneuvers, Pilot Group 
1. 
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The straight-in approach (without turbulence) showed a similar trend; however 

the average PSD for the nonlinear algorithm is much lower, with a less significant 

increase in magnitude compared to the offset approach with severe turbulence.  Pilot 

Group 2 produced very similar results for both maneuvers.     

5.2.3. Takeoff without Engine Failure 

The PSD and control input integral power for takeoff maneuvers include the 

liftoff portion of the maneuver from the point the aircraft leaves the runway up to an 

altitude of 2000 feet, and does not include the initial “throttle-up” and takeoff roll portion 

of the maneuver.  Figure 5.19 shows the control input integral power for Pilot Group 1.  

The pitch stick power is invariant among either the cueing algorithms or the delay, with 

the standard deviations small.  
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Figure 5.19.  Takeoff without Engine Failure, Control Input Integral Power, Pilot 
Group 1. 
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Without engine failure, the roll stick power is low.  For delay conditions of zero 

and 100 msec, the power was not significantly different among the cueing algorithms, 

while with 200 msec delay the optimal and nonlinear algorithms are slightly higher. 

Figure 5.20 shows the control input integral power for Pilot Group 2.  The pitch 

stick power was almost unchanged for all cases as compared to Pilot Group 1.  For the 

zero delay condition, the optimal and nonlinear algorithms showed a slight increase in the 

roll stick magnitude.  With delay, the power tends to be higher, in particular with the 

optimal algorithm with 100 ms delay. 
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Figure 5.20.  Takeoff without Engine Failure, Control Input Integral Power, Pilot 
Group 2. 

 
The average PSD for Pilot Group 1 in Figures B.13 to B.15 revealed that most of 

the roll stick control activity is below 0.4 Hz.  Similar results occurred for Pilot Group 2 

as shown in Figures B.16 to B.18.  Increases in PSD usually occurred in the same 
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frequency range.  The exception is the optimal algorithm with 100 msec delay.  In this 

case a large peak occurred between 0.35 and 0.45 Hz that may have been the result of an 

unnoticed pilot-induced oscillation for Pilot 6. 

Figure 5.21 shows the average PSD of the aircraft roll and track angles for Pilot 

Group 1 with zero delay.  The track angle is the angle between the nose and velocity 

vector of the aircraft.  Note that the roll angle magnitude is small and does not vary much 

among algorithms.  The track angle magnitude is also small, but showed some variation 

among the cueing algorithms.  However, this will have little influence on the pilot 

workload since without engine failure, the rudder pedal activity was negligible.   
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Figure 5.21.  Takeoff without Engine Failure, Aircraft Roll and Track Angle 
Average PSD, Pilot Group 1. 
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5.2.4. Takeoff with Engine Failure 

Figure 5.22 shows the pitch stick and roll stick control input integral power for 

Pilot Group 1.  For delay conditions of zero and 100 msec, the pitch stick power was 

noticeably higher for the adaptive algorithm, with both the optimal and nonlinear 

algorithms yielding similar results.  For the zero delay condition, the roll stick power was 

about the same for all three algorithms, while for 100 msec delay the nonlinear algorithm 

remained unchanged and both the adaptive and optimal algorithms noticeably increased.  

The 200 msec delay condition shows unexpected reductions in the pitch and roll stick 

power for both the adaptive and optimal algorithms, while the nonlinear algorithm power 

remained about the same as the zero and 100 msec delay conditions. 
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Figure 5.22.  Takeoff with Engine Failure, Control Input Integral Power, Pilot 
Group 1. 
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The control input integral power for Pilot Group 2, shown in Figure 5.23, yielded 

similar results for the pitch stick for zero and 100 msec delay conditions.  The roll stick 

showed higher power for the adaptive and optimal algorithms with zero delay, and the 

nonlinear algorithm power about the same as for Pilot Group 1.  Figure B.22 shows the 

average PSD for the zero delay condition for Pilot Group 2.  Note that the adaptive 

algorithm produced the highest low-frequency PSD for both the pitch stick and the roll 

stick.  The nonlinear algorithm resulted in the lowest low-frequency roll stick PSD.  

Similar behavior compared to Pilot Group 1 for the 200 msec delay condition was also 

observed for both the pitch and roll stick power. 
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Figure 5.23.  Takeoff with Engine Failure, Control Input Integral Power, Pilot 
Group 2. 

 
The average PSD for Pilot Group 1 in Figures B.19 to B.21 revealed that most of 

the pitch stick activity is at low frequencies.  For zero and 100 msec delay cases, the 
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adaptive algorithm has the highest low-frequency peak, while for 200 msec delay the 

peak is highest for the nonlinear algorithm.  These results correspond to the control input 

integral power shown in Figure 5.22.  The roll stick average PSD, in relation to the 

control input integral power, is also apparent, with the nonlinear algorithm showing the 

lowest peak among the algorithms for 100 msec delay, and the highest peak for 200 msec 

delay.  Similar observations from Figures B.22 to B.24 can be made for Pilot Group 2 in 

relation to Figure 5.23.   

The rudder pedal control input integral power for Pilot Groups 1 and 2 is shown 

in Figure 5.24.  Note that the condition with zero delay showed much larger power with 

the adaptive algorithm, with the nonlinear algorithm being slightly higher compared to 

the optimal algorithm for both pilot groups.   
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Figure 5.24.  Takeoff with Engine Failure, Rudder Pedal Integral Power. 
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Increasing the delay to 100 msec showed the rudder pedal power for both the 

optimal and nonlinear algorithms unchanged for both pilot groups, with a reduction 

observed for the adaptive algorithm with Pilot Group 1.  For the 200 msec delay 

condition, both pilot groups yielded a reduction with the rudder pedal power for the 

adaptive and optimal algorithms, while the nonlinear algorithm increased slightly 

compared to the zero and 100 msec conditions. 

The average PSD for the rudder pedal, shown in Figures B.25 to B.27, showed the 

PSD to be predominantly low frequency content.  The peak was noticeably higher for the 

adaptive algorithm for both pilot groups with zero and 100 msec delay, and lowest for the 

optimal algorithm.  With 200 msec delay, the nonlinear algorithm shows the highest 

peak.  These results compare to the control input integral power shown in Figure 5.24.     

Figure 5.25 shows the average PSD of the roll angle and track angle for Pilot 

Group 1 with zero delay.  Note that with the addition of an engine failure, both the roll 

and track angles significantly increase for all algorithms.  The roll angle for the adaptive 

algorithm is about twice the magnitude at low frequencies compared to the optimal and 

nonlinear algorithms.  The track angle showed a more significant increase in low-

frequency content for the adaptive algorithm by a factor of seven, with the optimal and 

nonlinear algorithms yielding similar results.  Pilot Group 2 yielded similar results for the 

aircraft roll and track angles. 
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Figure 5.25.  Takeoff with Engine Failure, Aircraft Roll and Track Angle Average 
PSD, Pilot Group 1.  

 
5.3. Simulator Attitude Coherence 

Figure 5.26 shows the average simulator pitch and roll angle PSD for Pilot Group 

1 for the offset approach with zero delay.  The optimal and nonlinear algorithms resulted 

in increased PSD for both the pitch and roll angles compared to the adaptive algorithm.  

The simulator roll angle PSD increase was more significant, with a peak near the same 

frequency as the aircraft roll angle PSD shown in Figure 5.13. 

Figure 5.27 shows the average simulator pitch and roll angle coherence defined in 

Section 5.1 and Eq. (4.1).  In Figure 5.27, the optimal and nonlinear algorithms showed 

significantly less coherence for the low frequency range near the roll angle peak 

frequency.  One reason for this may be the augmented turbulence cue implemented for 

both algorithms.  The increased heave cues shown in Figure 5.18 may be producing 
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additional "observation noise" in the pilot's roll stick response that is uncorrelated with 

the simulator roll cues.  The pitch angle shows increased coherence for both the optimal 

and nonlinear algorithms up to 0.1 Hz followed by reduced coherence at mid-frequencies 

up to 0.4 Hz.  Figure 5.28 shows the average simulator pitch and roll angle PSD for Pilot 

Group 1 for the takeoff with engine failure and zero delay.  The simulator roll angle PSD 

for the adaptive algorithm was about twice as large at low frequencies compared to the 

adaptive and nonlinear algorithms.  

In Figure 5.29, the nonlinear algorithm showed less coherence at low frequencies 

compared to the adaptive algorithm.  Less coherence may indicate that the pilot is more 

effectively sensing the disturbance, i.e. the engine failure as observation noise not 

correlated with the simulator roll cues.  The pitch angle PSD is larger for the optimal 

algorithm compared to the adaptive algorithm, but with a reduced coherence. 
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Figure 5.26.  Simulator Attitude Average PSD for Offset Approach, Pilot Group 1 
with Zero Delay. 
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Figure 5.27.  Simulator Average Coherence for Offset Approach, Pilot Group 1 with 
Zero Delay. 
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Figure 5.28.  Simulator Attitude Average PSD for Takeoff with Engine Failure, Pilot 
Group 1 with Zero Delay. 
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Figure 5.29.  Simulator Average Coherence for Takeoff with Engine Failure, Pilot 
Group 1 with Zero Delay. 



 58

 
Both the straight-in approach and the takeoff without engine failure resulted in 

simulator roll angles of relatively small magnitude compared to the pitch angles.  The 

average simulator attitude PSD and coherence for the straight-in approach are shown in 

Appendix B, Figures B.28 and B.29.  The average coherence was about the same for all 

three cueing algorithms for both pitch and roll.  The pitch angle PSD was the highest for 

the nonlinear algorithm, with the roll PSD for both the optimal and nonlinear algorithms 

being twice as large as the adaptive algorithm.    The average simulator attitude PSD and 

coherence for the takeoff without engine failure is shown in Appendix B, Figures B.30 

and B.31.  The average coherence for the pitch angle was about the same for all three 

algorithms, but for the roll angle the optimal and nonlinear algorithms resulted in less 

coherence compared to the adaptive algorithm.  The nonlinear algorithm resulted in the 

largest roll angle PSD with a peak of about 0.16 Hz. 

The coherence based upon the aircraft attitude for each of the four maneuvers for 

Pilot Group 1 (with zero delay) is given in Figures B.32 to B.35.  In each case the 

coherence was about the same for all algorithms.  The roll stick was well correlated to the 

aircraft roll angle at frequencies from 0.1 to 0.5 Hz, then gradually decreased. 
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6. Summary of Results 

By aggregating pilots into groups with similar control technique and instrument 

scan pattern, NASA TLX ratings revealed differences in workload and behavior among 

the pilot groups.  Pilot Group 3 resulted in the highest workload for all maneuvers, most 

noticeably with the offset approach and the takeoff with engine failure.   By analyzing the 

pilot ratings in this manner, the pilots with the most erratic and outlying behavior (Pilot 

Group 3) could be identified.  Pilot Group 2 showed a small, insignificant TLX increase 

compared to Pilot Group 1.  The large standard deviations shown for each maneuver 

illustrate that even with aggregation, the pilot behavior remains non-homogeneous within 

each pilot group. 

Analysis of the TLX ratings with delay conditions reveals some noticeable trends 

among the cueing algorithms.  For the straight-in approach, offset approach, and takeoff 

maneuver without engine failure, the nonlinear algorithm produces about the same or 

higher workload compared to the adaptive algorithm for zero delay, but less workload 

with 100 and 200 msec delay.  The optimal algorithm results in the highest workload for 

these maneuvers in the presence of delay.  For the takeoff with engine failure, the 

nonlinear algorithm produces the lowest workload for both zero and 100 msec delay. 

By analyzing the integral power and the average PSD separately for Pilot Groups 

1 and 2, differences among either pilot groups or cueing algorithms become more 

noticeable.  For the straight-in approach, Pilot Group 1 showed less power and only small 

differences among the cueing algorithms.  Pilot Group 2 resulted in increased pitch stick 

power for all algorithms that tended to be larger for the optimal and nonlinear algorithms.  

The roll stick power also increased for Pilot Group 2, with pilot-induced oscillations 
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contributing to increased power and pilot variability for the optimal and nonlinear 

algorithms.  Similarly, the roll stick power for the takeoff without engine failure showed 

less control input integral power and variation among the cueing algorithms for Pilot 

Group 1, while Pilot Group 2 resulted in increased power and variability, most noticeably 

for the optimal algorithm. 

Differences in control input integral power among the pilot groups were less 

noticeable with the offset approach.  Both the optimal and nonlinear algorithms showed 

an increase in power compared to the adaptive algorithm.  A major contributor to the 

integral power resulted from the augmented vertical cues due to turbulence.  In response 

to realistic turbulence, the pilot will increase his workload and generate more roll and 

pitch stick activity.  A significant increase in the simulator roll angle PSD is also 

observed for both algorithms, but is less correlated with the control response of the roll 

stick due to the disturbance effects of the turbulence. 

Analysis of the piloted performance for both the straight and offset approaches 

with both the vertical velocity upon touchdown and the runway position did not yield any 

noticeable difference among the cueing algorithms.  Pilot Group 1 tended to “float” 

further down the runway and land with a lower vertical velocity in comparison to Pilot 

Group 2.  Two additional performance parameters, the glide slope error and localizer 

error, were also investigated.  These parameters did not show any noticeable difference 

among either the cueing algorithms or the pilot groups. 

The takeoff with engine failure maneuver showed a reduction in control activity 

for the optimal and nonlinear algorithms with both zero and 100 msec delay conditions.  

The nonlinear algorithm produced the least amount of roll stick power, and is less 
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correlated with the simulator roll angle.  The optimal algorithm resulted in less rudder 

pedal power for both conditions.  With the 200 msec delay condition, the nonlinear 

algorithm produced an expected increase in control activity, indicating the pilots are 

detecting the engine failure and increasing their workload to correct the aircraft motion.  

The reduced workloads for the adaptive and optimal algorithms for this condition indicate 

the pilots may be getting less of the sensory information needed to completely correct the 

engine failure disturbance. 
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7. Conclusions 

Piloted performance tests revealed some noticeable differences between the 

cueing algorithms, but these differences were not always statistically significant.  From 

the NASA TLX ratings, the group of pilots observed to have the most erratic control 

behavior resulted in the largest rated workload.  Further analysis of the TLX ratings with 

the remaining pilots shows, in most cases, less workload and variation among pilots with 

the nonlinear algorithm.  Performance variations among the algorithms were better 

observed from power spectral density (PSD) and control input integral power analysis.  

For the simpler maneuvers, the straight-in approach and the takeoff without engine 

failure, the pilots with the “best” control technique showed similar performance for each 

algorithm.  Differences among algorithms become more apparent for the pilots with more 

erratic control behavior, especially with pilot-induced oscillations for both the optimal 

and nonlinear algorithms.   

Both of the complex maneuvers, the offset approach with turbulence and the 

takeoff with engine failure, showed more uniform performance among pilots with 

varying control technique.  Increased control input integral power for the optimal and 

nonlinear algorithms, observed for the offset approach, resulted from additional vertical 

turbulence cues that some pilots felt were more realistic compared to the adaptive 

algorithm.  Lower workload, for zero and 100 ms delay conditions, compared to the 

adaptive algorithm was observed for the takeoff with engine failure, with the optimal 

algorithm showing the least amount of rudder pedal and the nonlinear algorithm showing 

the least amount of roll stick activity. 
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The piloted test results yielded a large amount of variability in pilot workload and 

performance that was a consequence of the availability of only a small population of 

eleven pilots having a wide range of flight experience.  The aggregation of pilot groups 

by observed similarities in control technique and instrument scan pattern given in Table 

5.1 revealed noticeable trends among both pilot groups and cueing algorithms.  However, 

large variations in pilot performance within each pilot group persisted, resulting in the 

differences among cueing algorithms appearing ambiguous and insignificant.  Analysis of 

two pilots with Boeing 757-200 experience (from the most disciplined group) showed a 

reduction in the variation in pilot behavior, most noticeably with the takeoff with engine 

failure.  Such an improvement to pilot testing was suggested by Go, et al. [13].  The 

NASA/FAA Boeing 747-400 motion system tests conducted by Go, et al. utilized a large, 

homogenous population of forty pilots, all of whom were current Boeing 747-400 

captains and first officers. 

Reducing the nonlinear gains for the optimal algorithm (surge) and the nonlinear 

algorithm (surge and pitch) was necessary so that the takeoff could be flown within the 

60-inch actuator extension limits and low bandwidth (2-Hz) of the Langley Visual 

Motion Simulator (VMS).  However, gain reductions contribute to degradation in pilot 

performance that was observed most frequently with the straight-in approach.  

Implementation of the optimal and nonlinear algorithms on a platform with increased 

actuator extensions would allow for increased gains, thus resulting in improved pilot 

performance.  One such motion platform is located in the Cockpit Motion Facility (CMF) 

[14], shown in Figure 7.1, presently being erected at the NASA Langley Research Center. 
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Figure 7.1.  NASA Langley Cockpit Motion Facility (CMF). 

 
The Cockpit Motion Facility is made up of one motion system site and four fixed-

base sites. The motion system site contains a six-degree-of-freedom state-of-the-art 

synergistic motion base with 76-inch actuator extensions.  The four fixed-base sites 

provide homes for the simulator cockpits when they are not resident on the motion 

system.  Each cockpit has its own visual display system and all cockpits share Evans and 

Sutherland ESIG 3000 image generators. 

Both the optimal and nonlinear algorithms along with the NASA adaptive 

algorithm will be implemented on the CMF.  Pilot tuning of the nonlinear gains, similar 

to that previously done for the new algorithms on the VMS, will be performed. 

The use of signal processing and power spectral density (PSD) techniques to 

analyze pilot performance and workload proved to be quite beneficial.  Variations in pilot 
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performance that were less noticeable with the quasi-objective NASA TLX method, e.g. 

pilot-induced oscillations, could be better discriminated from PSD and control input 

integral power analysis.    These analyses revealed a noticeable improvement in workload 

on the takeoff with engine failure with reduced roll stick activity for the nonlinear 

algorithm.  This improvement is due to the improved lateral motion cues transmitting 

more information from the simulator to the pilot.  Pilots with more erratic control 

behavior also showed some tendency to generate pilot-induced oscillations on straight 

landings for the nonlinear algorithm, but noticeably less compared to the optimal 

algorithm.  The pilot-induced oscillations are a function of the reduced surge and pitch 

gains needed to keep the simulator within its hardware limits.  These results are expected 

to improve with implementation of the nonlinear algorithm on the Cockpit Motion 

Facility that will allow increased surge and pitch gains. 
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Appendix A.  Pilot Test Runs and Conditions 

Nomenclature:  
 Cueing Algorithm: 0 Adaptive, 2 Optimal, 3 Nonlinear 
 Compensation: 0 without Compensation, 1 with Compensation 
 Engine Failure: 0 without Failure, 1 with Failure 
 

Table A.1.  Straight-In Approach Runs 1 to 24 

Run Delay (msec) 
Cueing 

Algorithm Compensation 

1 100 2 0 

2 100 3 1 

3 50 3 1 

4 200 3 0 

5 0 3 1 

6 50 3 0 

7 200 0 0 

8 200 2 0 

9 0 2 0 

10 50 0 0 

11 0 0 0 

12 0 3 0 

13 100 3 0 

14 200 3 1 

15 0 2 1 

16 100 0 0 

17 50 0 1 

18 50 2 0 

19 200 0 1 

20 100 2 1 

21 200 2 1 

22 50 2 1 

23 100 0 1 

24 0 0 1 
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Table A.2.  Offset Approach Runs 25 to 48 

Run Delay (msec) 
Cueing 

Algorithm Compensation 

25 200 2 1 

26 200 3 1 

27 200 2 0 

28 50 0 0 

29 0 3 1 

30 100 3 1 

31 100 2 0 

32 200 3 0 

33 50 3 1 

34 0 2 0 

35 50 3 0 

36 50 2 1 

37 0 2 1 

38 0 3 0 

39 50 0 1 

40 100 0 1 

41 100 3 0 

42 200 0 1 

43 200 0 0 

44 50 2 0 

45 100 0 0 

46 0 0 0 

47 0 0 1 

48 100 3 1 
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Table A.3.  Takeoff Test Runs 49 to 72 

Run Delay (msec) 
Cueing 

Algorithm Compensation Failure Altitude (ft) 

49 100 3 1 0 0 

50 200 2 1 0 0 

51 0 2 0 1 800 

52 100 2 0 0 0 

53 100 2 0 2 400 

54 50 2 1 2 600 

55 100 0 0 1 200 

56 0 2 0 0 0 

57 100 0 1 2 800 

58 100 0 1 0 0 

59 50 3 0 2 600 

60 200 2 1 2 200 

61 50 2 1 0 0 

62 100 0 0 0 0 

63 50 0 0 0 0 

64 0 3 1 1 400 

65 200 2 0 1 800 

66 50 0 0 2 400 

67 50 3 1 0 0 

68 0 0 0 0 0 

69 200 3 0 1 200 

70 0 3 1 0 0 

71 0 2 1 2 600 

72 0 0 0 1 200 
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Table A.4.  Takeoff Test Runs 73 to 96 

Run Delay (msec) 
Cueing 

Algorithm Compensation Failure Altitude (ft) 

73 200 2 0 0 0 

74 100 2 1 0 0 

75 200 0 0 0 0 

76 100 3 1 1 400 

77 50 0 1 1 600 

78 50 0 1 0 0 

79 0 0 1 2 400 

80 50 3 1 1 800 

81 50 2 0 0 0 

82 100 2 1 2 200 

83 200 0 0 2 800 

84 100 3 0 0 0 

85 200 0 1 0 0 

86 200 3 1 0 0 

87 0 2 1 0 0 

88 200 0 1 1 600 

89 200 3 1 2 200 

90 0 3 0 0 0 

91 0 0 1 0 0 

92 50 3 0 0 0 

93 100 3 0 1 400 

94 50 2 0 1 600 

95 0 3 0 2 800 

96 200 3 0 0 0 
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Table A.5.  Pilot Test Evaluation Sampled Variables. 

Variable Units Description 
   
time sec time 
pitch_stic, roll_stick, rudder_ped, 
throttle 

% pilot control inputs 

altitude ft altitude 
altitude_d ft/sec change in altitude 
ias ft/sec indicated air speed 
p, q, r rad/sec aircraft angular velocity 
pdot, qdot, rdot  rad/sec/sec aircraft angular acceleration 
u, v, w m/sec aircraft linear velocity 
udot, vdot, wdot m/sec/sec aircraft linear acceleration 
track, theta, phi deg aircraft Euler angles and track 

angle 
nx_ps, ny_ps, nz_ps g aircraft normal force at pilot 

station 
sx, sy, sz ft Earth-frame positions (x,y,z) 

with respect to runway threshold 
gs_error deg glide slope error 
loc_error deg localizer error 
volt_leg_[1:6] volts commanded leg lengths 
lin_accel[1:6] g linear accelerometers (six) 
pitchincl, rollincl deg inclinometer angles (roll and pitch) 
com2_[xdd, ydd, zdd] (optimal) m/sec/sec commanded platform accelerations 
comint2_[phid, thed, psid] (optimal) rad/sec commanded platform Euler rates 
m1c_ssi(1:3) (optimal) m desired platform positions 
m_betas(1:3) (optimal) rad desired platform Euler angles 
[x, y, z]_motion (standard) m desired platform positions 
[phi, the, psi]_motion (standard) rad desired platform Euler angles 
u_gust, v_gust, w_gust  gust – magnitude & direction 
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Table A.6.  NASA TLX Subscale Rating Definitions. 

Title  Endpoints Descriptions  

MENTAL DEMAND Low/High 

How much mental and perceptual activity was required (e.g., 
thinking, deciding, calculating, remembering, looking, searching, 
etc.)? Was the task easy or demanding, simple or complex, 
exacting or forgiving? 

PHYSICAL DEMAND Low/High 
How much physical activity was required (e.g., pushing, pulling, 
turning, controlling, activating, etc.)? Was the task easy or 
demanding, slow or brisk, slack or strenuous, restful or laborious? 

TEMPORAL DEMAND Low/High 
How much time pressure did you feel due to the rate or pace at 
which the tasks or task elements occurred? Was the pace slow and 
leisurely or rapid and frantic? 

EFFORT Low/High 
How hard did you have to work (mentally and physically) to 
accomplish your level of performance? 

PERFORMANCE Good/Poor 
How successful do you think you were in accomplishing the goals 
of the task set by the experimenter (or yourself)? How satisfied 
were you with your performance in accomplishing these goals? 

FRUSTRATION LEVEL Low/High 
How insecure, discouraged, irritated, stressed and annoyed versus 
secure, gratified, content, relaxed and complacent did you feel 
during the task? 
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Appendix B.  Pilot Group Average PSD and Coherence 
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Figure B.1.  Straight-In Approach Average PSD, Pilot Group 1, No Delay. 
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Figure B.2.  Straight-In Approach Average PSD, Pilot Group 1, Delay 100 msec. 
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Figure B.3.  Straight-In Approach Average PSD, Pilot Group 1, Delay 200 msec. 
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Figure B.4.  Straight-In Approach Average PSD, Pilot Group 2, No Delay. 
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Figure B.5.  Straight-In Approach Average PSD, Pilot Group 2, Delay 100 msec. 
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Figure B.6.  Straight-In Approach Average PSD, Pilot Group 2, Delay 200 msec. 
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Figure B.7.  Offset Approach Average PSD, Pilot Group 1, No Delay. 
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Figure B.8.  Offset Approach Average PSD, Pilot Group 1, Delay 100 msec. 
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Figure B.9.  Offset Approach Average PSD, Pilot Group 1, Delay 200 msec. 
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Figure B.10.  Offset Approach Average PSD, Pilot Group 2, No Delay. 
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Figure B.11.  Offset Approach Average PSD, Pilot Group 2, Delay 100 msec. 
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Figure B.12.  Offset Approach Average PSD, Pilot Group 2, Delay 200 msec. 
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Figure B.13.  Takeoff w/o Engine Failure Average PSD, Pilot Group 1, No Delay. 
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Figure B.14.  Takeoff w/o Engine Failure Average PSD, Pilot Group 1, Delay 100 
msec. 
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Figure B.15.  Takeoff w/o Engine Failure Average PSD, Pilot Group 1, Delay 200 
msec. 
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Figure B.16.  Takeoff w/o Engine Failure Average PSD, Pilot Group 2, No Delay. 
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Figure B.17.  Takeoff w/o Engine Failure Average PSD, Pilot Group 2, Delay 100 
msec. 
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Figure B.18.  Takeoff w/o Engine Failure Average PSD, Pilot Group 2, Delay 200 
msec. 
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Figure B.19.  Takeoff with Engine Failure Average PSD, Pilot Group 1, No Delay. 
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Figure B.20.  Takeoff with Engine Failure Average PSD, Pilot Group 1, Delay 100 
msec. 
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Figure B.21.  Takeoff with Engine Failure Average PSD, Pilot Group 1, Delay 200 
msec.   
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Figure B.22.  Takeoff with Engine Failure Average PSD, Pilot Group 2, No Delay. 
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Figure B.23.  Takeoff with Engine Failure Average PSD, Pilot Group 2, Delay 100 
msec. 
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Figure B.24.  Takeoff with Engine Failure Average PSD, Pilot Group 2, Delay 200 
msec.   
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Figure B.25.  Takeoff with Engine Failure Average PSD, Rudder Pedal, No Delay. 
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Figure B.26.  Takeoff with Engine Failure Average PSD, Rudder Pedal, Delay 100 
msec. 
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Figure B.27.  Takeoff with Engine Failure Average PSD, Rudder Pedal, Delay 200 
msec.  
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Figure B.28.  Straight-In Approach, Simulator Attitude Average PSD, Pilot Group 
1. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

S
im

 P
itc

h 
C

oh
er

en
ce

Straight-In Approach, Pilot Group 1 (Delay=0 sec)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

S
im

 R
ol

l C
oh

er
en

ce

Frequency (Hz)

Adaptive Algorithm
Optimal Algorithm
Nonlinear Algorithm

 

Figure B.29.  Straight-In Approach, Average Simulator Coherence, Pilot Group 1. 
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Figure B.30.  Takeoff w/o Engine Failure, Simulator Attitude Average PSD, Pilot 
Group 1. 
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 Figure B.31.  Takeoff w/o Engine Failure, Average Simulator Coherence, Pilot 
Group 1. 
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Figure B.32.  Straight-In Approach, Average Aircraft Coherence, Pilot Group 1. 
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Figure B.33.  Offset Approach, Average Aircraft Coherence, Pilot Group 1. 
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Figure B.34.  Takeoff w/o Engine Failure, Average Aircraft Coherence, Pilot Group 
1. 
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Figure B.35.  Takeoff with Engine Failure, Average Aircraft Coherence, Pilot 
Group 1. 
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