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Multidisciplinary Multiobjective Optimal Design for Turbomachinery 
Using Evolutionary Algorithm 

This report summarizes Dr. Lian’s efforts toward developing a robust and efficient tool for 
multidisciplinary and multi-objective optimal design for turbomachinery using evolutionary 
algorithms. This work consisted of two stages. The first stage (from July 2003 to June 2004) 
Dr. Lian focused on building essential capabilities required for the project. More specifically, 
Dr. Lian worked on two subjects: an enhanced genetic algorithm (GA) and an integrated 
optimization system with a GA and a surrogate model. The second stage (from July 2004 to 
February 2005) Dr. Lian formulated aerodynamic optimization and structural optimization into a 
multi-objective optimization problem and performed multidisciplinary and multi-objective 
optimizations on a transonic compressor blade based on the proposed model. Dr. Lian’s 
numerical results showed that the proposed approach can effectively reduce the blade weight and 
increase the stage pressure ratio in an efficient manner. In addition, the new design was 
structurally safer than the original design. Five conference papers and three journal papers were 
published on this topic by Dr. Lian. 

Introduction 

This project aims at conducting multi-objective optimal design for turbomachinery using 
evolutionary algorithms (EAs). Dr. Lian’s goal was to consider both aerodynamic performance 
and structural requirements in redesign of the turbomachinery . In aerodynamic optimization 
areas, Oyama et al. (2004) performed an aerodynamic optimization of transonic compressor 
blades with a GA. In their work, a three-dimensional Navier-Stokes code, TRAF3D, which was 
developed at NASA Glenn Research Center, was used for aerodynamic analysis of blade design. 
A real-coded adaptive-range GA was used because its ease of use and global optimization 
properties. Their work was conducted on a SGI Origin2OOO cluster machine. For the rotor67 
design, each iteration (generation) takes about seven wall-clock hours with 64 processing 
elements. With a generation of 200, a total 1,400 wall-clock hours was required. Even if the user 
can use all the processors 24 hours a day, it still takes about two months to finish a design cycle. 
This is a serious impediment to any practical application of a GA in aerodynamic design 
optimizations. Needless to say, it will take longer once we put structural requirement as another 
objective in the design. It is worthwhile to pause and seek more efficient approaches before we 
embark on the multi-objective design. This motivates us to improve the performance of a GA to 
expedite the design cycle. We propose three approaches for this purpose. In the first one, we 
hybridize a GA with a gradient-based method to improve the local convergence rate. In the 
second one, we perform data mining to analyze the generated data fiom genetic computation. By 
doing this we can recover certain patterns and further improve the existing design with marginal 
cost. In the third one we apply a GA to optimize a surrogate model in lieu to the computationally 
expensive functions. We will describe our efforts in the following. 
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Progress from July 2003-June 2004 

Enhanced Genetic Algorithm 

In this work we propose an enhanced evolutionary algorithm (EA) to solve computationally 
expensive design optimization problems. Our strategy is to enhance the performance of EAs by 
coupling a standard EA with a gradient-based method for multi-objective optimization problems 
(MOOPs). The gradient-based method is a sequential quadratic programming (SQP) solver. In 
our approach, an EA is first used to generate a population of data by evaluating the exact model, 
then surrogate models are constructed based on the generated data. After that, we conduct a local 
search with a SQP solver based on the surrogate models. These two methods are alternately used 
under a trust-region framework until an optimum is found. By hybridizing an EA and a gradient- 
based method under a trust-region framework, the local search and global search properties are 
maintained. The local search determines a faster convergence. The global search assures that 
iterates produced by an optimization algorithm working with the approximation models, started 
at an arbitrary initial value, will converge to a stationary point or local optimum for the original 
problem. Key elements of this approach include an evolutionary algorithm, a SQP solver, and a 
surrogate model based on thin plate spline (TPS) interpolation. The coupling is fulfilled with a 
trust region management. Numerical tests on three problems with different numbers of design 
variables ranging from 2 to 20 demonstrate that our method can greatly increase the convergence 
rate and reduce the required CPU time (Lian et al., 2004). 

Data Mining with Supervised Learning 

Usually evolutionary computation produces enormous amount of data that contains rich 
information, of which only a tiny fraction is generally utilized throughout the design 
optimization. Tremendous profit can be taken from the generated data if a systematic analysis of 
the data is performed. This motivates us to employ the data to the maximum extend possible to 
help designers to further improve the design or expedite the design process. 

However, those data are not only massive in volume but also highly multidimensional in space. 
It is very difficult to analyze and root out distinctive features of the underlying physics. Data 
mining is a powerful new technology to extract hidden predictive information from large 
databases with great potential to help designers focus on the most important information in 
design problems. We propose to use statistical approaches to analyze the generated data from 
evolutionary computations in our multi-objective optimization problems. Now we are working at 
(1) providing a robust, automatic, physics-based systematic approach to obtain global 
optimization to a complex engineering system, and (2) discovering underlying prevalent causal 
relationships between objective functions and design variables at the end of optimization. In 
other words, the end result is to provide a capability to yield a better design in much reduced 
time/cost, by delegating the complex searching process to machine, while freeing scientists and 
engineers to focus on creative tbinking/formulations. The second goal is to gain succinct 
knowledge for future problems by a systematic analysis of enormous complex data set. The 
proposed application examples include design of turbo pump used in the space launch vehicle 
and the technologies derived herein shall have a direct relevance to not only earth-bound but also 
space-traveling machines. The lessons and tools learned from this project should also provide 
experience in establishing cause and effect relationships distilled from random, scattered data. 



The proposed technique is applied on the optimization of cryogenic rocket engines turbo pumps. 
Our preliminary results demonstrate that these techniques can greatly expedite the design 
process, further improve the existing design, and effectively extract the hidden underlying 
physics (Lian and Liou, 2004a). 

Progress from June 2004 to February 2005 

Coupled Optimization with RSM and GA 

In the work of Oyama and Liou (2002) and Oyama et al. (2004), they use genetic algorithm to 
sample a population of individuals by evaluating real functions. In the rotor67 optimization, it 
takes about seven hours to perform one analysis based on Navier-Stokes equations. It takes about 
two months for one optimization design. Today, powerful parallel computers are increasingly 
made available in many institutes and universities; however, designers still want to significantly 
shorten the design cycle for engineering and economic considerations. 

Response surface methodology (RSM) provides an efficient tool for this purpose. RSM is a 
collection of statistical and mathematical techniques useful for developing, improving, and 
optimizing progresses. It is a popular surrogate model built to approximate computationally 
expensive simulation codes with low-order polynomials using least-square regression. Instead of 
solving the problem directly, RSM constructs approximation models for the functional 
relationships between the performance characteristics and design parameters. A regular 
optimization procedure is then employed to optimize the constructed approximation model. 
Usually, the second-order model is widely used in response surface methodology due to its 
flexibility and easy of use. 

Based on this we propose to perform multi-objective optimization using an integrated system 
coupling RSM with a GA. In this approach, a surrogate model is first constructed based on 
design of experiment. Then a standard GA is used to optimize the surrogate model. The found 
optimal solutions are then validated on the real problem. In the turbo pump design, Oyama and 
Liou (2002) performed 3,600 function evaluations before they terminated the searching; we 
achieve similar solution with only 233 function evaluations, including 133 to construct the 
surrogate model and the left 100 to validate. It saves more than 90% CPU time compared to the 
standard approach (Lian and Liou, 2004b). 

Aero-structure Optimization of Rot067 

With the advancement of computational power and computational methods, researchers used 
optimization techniques to improve the performance of complex system, such as aircraft engine. 
In this instance, Oyama et al. (2004) minimized the entropy generation of the NASA rotor67 
blade, Benini (2004) improved the total pressure ratio and the adiabatic efficiency of the NASA 
rotor37 blade, Mengistu and Ghaly (2004) performed multi-point design of different compressor 
rotors to improve their aerodynamic performance, Lian and Liou (2004b) carried out multi- 
objective optimization of the NASA rotor67 blade. These analyses were focused on a single- 
discipline response, namely the aerodynamic aspect. However, compressor design is inherently 
multidisciplinary, and a successful design should involve a combination of a variety of 
disciplines including aerodynamics, structure dynamics, acoustics and control theory (Chamis, 
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1999). In addition, the present design procedures are usually based on sequential discipline 
optimization, which may not be insufficient to provide a satisfactory result. The resulting 
solution may satisfy some, but not all the requirements. In that case, the coupled 
multidisciplinary optimization (MDO) design technique is required. 

The applications of MDO to compressor designs give rise to considerate challenges. First, the 
computational expense associated with MDO is usually much higher than the sum of the costs 
associated with each single-discipline optimization. Secondly, organizational complexity 
hposes another challenge (Sobieszczanski-Sobieski and Haftka, 1997). For example, different 
analysis codes may run on different machines at different sites. For these two reasons, a direct 
coupling of an optimizer with multidisciplinary analysis tools may be practically difficult, 
especially when a large number of design variables and computationally intensive tools are 
involved. Thirdly, noisy or jagged response from some disciplines deteriorates the coupling 
effect and may lead to local optimal design solutions. Lastly, in our multi-objective compressor 
design problem, the objectives are competing (Lian and Liou, 2004b). Instead of having a single 
optimal solution, our studied problems have a set of compromised solutions (Pareto-optimal 
solutions) in which none of the solution is better than the other with respect to all objectives. 
Traditional optimization methods usually convert such a multi-objective optimization problem 
into a single objective problem by introducing additional parameters which favor a specific 
Pareto-optimal solution. To find more Pareto-optimal solutions, we need to start over by 
changing the values of parameters. 

Response surface technique is particularly suitable for MDO. This technique usually 
approximates the objective and constraint functions with low-order polynomials, which are fitted 
to a set of preselected design points. With the approximation models, the computational cost is 
greatly reduced. Moreover, because response surface technique preselects the design points, it 
provides a simple way to connect different codes from various disciplines (Sobieszczanski- 
Sobieski and Haftka, 1997). Consequently, this reduces the organizational complexity and 
facilitates a loose coupling among different modules. 

Our objectives are to maximize the compressor stage pressure ratio and to minimize the 
compressor weight of a transonic compressor blade under a set of real-world constraints (Lian 
and Liou, 2005). To faithfully represent a variety of nonlinear phenomena in the compressor 
blade study, such as shock waves and boundary layer separation, which are crucial to accurately 
evaluate the blade aerodynamic performam%, we use high-fidelity computational fluid dynamics 
(CFD) analysis tools. Early aero-structural optimization, mainly due to the availability of 
computing resources, largely relies on empirical or simple one-dimensional models with a small 
number of design variables, which is true especially at the conceptual design level and 
preliminary design level. With the recent advancement in optimization methods and affordable 
computing power, such rudimentary models need to be improved, and high-fidelity modeling 
represents the trend in MDO applications. In our work we use a three-dimensional Navier-Stokes 
solver to analyze the aerodynamic performance of the compressor blade. A commercial software 
ANSYS is adopted as the computational structure dynamics (CSD) solver to perform static 
aeroelastic analysis. Each objective function is approximated with a computationally cheap 
surrogate model. A real-coded genetic algorithm is then applied on the surrogate models for a set 



of Pareto-optimal solutions. At last, representative solutions are chosen from the Pareto-optimal 
front and validated by the high-fidelity tools. 
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