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Executive Summary 
In this grant, experimental, numerical and analytical studies of heat transfer in a thin 
liquid film flowing over a rotating disk have been conducted. Heat transfer coefficients 
were measured experimentally in a rotating disk heat transfer apparatus where the disk 
was heated from below with electrical resistance heaters. The heat transfer 
measurements were supplemented by experimental characterization of the liquid film 
thickness using a novel laser based technique. The heat transfer measurements show that 
the disk rotation plays an important role on enhancement of heat transfer primarily 
through the thinning of the liquid film. Experiments covered both momentum and 
rotation dominated regimes of the flow and heat transfer in this apparatus. Heat transfer 
measurements have been extended to include evaporation and nucleate boiling and these 
experiments are continuing in our laboratory. Empirical correlations have also been 
developed to provide useful information for design of compact high efficiency heat 
transfer devices. The experimental work has been supplemented by numerical and 
analytical analyses of the same problem. Both numerical and analytical results have been 
found to agree reasonably well with the experimental results on liquid film thickness and 
heat transfer CoefficientslNusselt numbers. The numerical simulations include the free 
surface liquid film flow and heat transfer under disk rotation including the conjugate 
effects. The analytical analysis utilizes an integral boundary layer approach from which 
semi-analytical and/or analytical expressions for the Nusselt number were obtained. 

From this research following articles have come out in chronological order: 
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over a horizontal stationary and rotating disk surface," Experiments in Fbids,  Vol. 34, 
pp. 556-565,2003 (see attached) 

Ozar, B., Cetegen, B. M. and Faghri, A., "Experiments on heat transfer in a thin liquid 
film flowing over a rotating disk," ASME Journal of Heat Transfer, Vol. 126, pp. 184 - 
192, April 2004 (see attached) 

Rice, J., Faghri, A., Cetegen, B. M., "Analysis of a free surface film from a controlled 
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evaporation", submitted to International Journal of Heat and Mass Transfer, December 
2004 (also to be presented at ASME Summer Heat Transfer Conference, San Francisco, 
CA, July 17-22,2005) (see attached) 

Basu, S. and Cetegen, B. M., "Analysis of hydrodynamics and heat transfer in a thin 
liquid film flowing over a rotating disk by integral method," submitted to ASME J. Heat 
Transfer, April 2005 (see attached) 
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Abstract 
A detailed analysis of the liquid film characteristics 

and the accompanying heat transfer of a free surface controlled 
liquid impinging jet onto a rotating disk are presented. The 
computations were run on a two-dimensional axi-symmetric 
Eulerian mesh while the free surface was calculated with the 
volume of fluid method. Flow rates between 3 and 15 Ipm with 
rotational speeds between 50 and 200 rpm are analyzed. The 
effects of inlet temperature on the film thickness and heat 
transfer are characterized as well as evaporative effects. The 
conjugate heating effect is modeled, and was found to effect the 
heat transfer results the most at both the inner and outer edges 
of the heated surface. The heat transfer was enhanced with 
both increasing flow rate and increasing rotational speeds. 
When evaporative effects were modeled, the evaporation was 
found to increase the heat transfer at the lower flow rates the 
most because of a M y  developed thermal field that was 
achieved. The evaporative effects did not significantly enhance 
the heat transfer at the higher flow rates. 
1 Introduction 

Impinging jets on rotating surfaces have received a lot 
of attention lately because of the high potential of heat transfer 
rates that can be achieved. There are two major classes of 
impinging jets useful for engineering applications; they are the 
submerged jet and the free jet. A submerged jet is one that 
flows into a stagnant fluid of similar properties, whereas a free 
jet is a liquid that flows from a nozzle into a gaseous region, 
and is virtually unaffected by gas, hence the term free. There 
are numerous applications of impinging jets, which include 
material processing, turbine blade cooling and cooling of 
electronics. In the present study, a controlled liquid impinging 
jet is studied. A controlled liquid impinging jet flows onto a 
planar disk; near the center of the disk there is another smaller 
coaxial disk (collar), which controls the entrance free film 
thickness and entrance radius of the free film. The present 
study is motivated because of the envisioned potential of 
rotating thin film fluids in an absorber unit for a spacecraft 
vapor-absorption heat pump system. This unit will work in a 
micro-gravity environment, where the disk can be rotated to 
apply an additional force to thin the fluid and enhance the heat 
transfer. 
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Watson [l] first studied a free liquid jet impinging 
normally to a planar surface. He assumed that a substantial 
portion of the flow near the stagnation point was inviscid and 
was not affected by the planar surface. He used a similarity 
solution with a boundary layer approximation to determine the 
film thickness. Chaudhury [2] studied the heat transfer to 
Watson’s analysis in a similar manner. Craik et al. [3] studied 
the hydraulic jump formed by an impinging jet of liquid onto a 
planar surface. They took film thickness measurements with a 
light absorption technique and also did flow visualization. 
They found a presence of an eddy just downstream of the 
hydraulic jump. Tong [4] numerically studied a planar liquid 
jet impinging obliquely to a planar surface. He used the 
volume of fluid method to track the free surface. The study 
focused on heat transfer near the stagnation region, and where 
the maximum heat transfer occurs. 

Rahman et al. [SI developed a finite difference 
solution using boundary-fitted curvilinear coordinates to locate 
the free surface. In this technique the free surface conformed to 
one of the computational boundaries. They studied a falling 
film down a vertical wall; they also studied plane and radial 
film flows with and without gravity. Faghri et ai. [6] later used 
this numerical technique to model heat transfer from a 
controlled impinging jet onto a stationary disk with the 
conjugate heating effects included. The numerical data were 
compared to the experimental data, and if the conjugate heating 
effects were not included, an error as large as 100 percent was 
seen. Thomas et al. [7] experimentally studied the film 
thickness of a controlled impinging jet on a stationary and 
rotating disk. The film thickness measurements were taken 
using a capacitance technique. The research found that the film 
thickness on the rotating disk was affected by the inertial and 
frictional forces on the fluid near the center of the disk, and 
centrifugal forces near the outer edge of the disk. Also the 
hydraulic jump was found to “wash off” the disk in the 
presence of a rotational field. Thomas et al. [8] performed a 
one-dimensional analysis of the hydrodynamic and thermal 
characteristics of thin film flows with and without rotation with 
the MacCormack predictor-corrector method. The hydraulic 
jump was not present in the absence of gravitational forces. 
However, when the disk was rotated the film thickness was 



unaffected by gravitational forces. The heat transfer was found 
to be much greater with rotation because the liquid film is 
much thinner and is moving with a higher velocity. 

Rahman and Faghri [9] solved a three dimensional 
slice of the flow over a rotating disk using boundary-fitted 
coordinates; also they improved on Thomas et al.3 [SI model 
by better approximating the frictional resistance in the 
azimuthal direction exerted by the solid wall on the flow. They 
ran cases with heating as well as with evaporation and found 
that increased flow rate and rotational speed both increased the 
rate of heat transfer. Most recently, Ozar et al. [IO] 
experimentally studied the heat transfer effects of a thin liquid 
film from a controlled impinging jet on both a stationary and 
rotating disk. The fluid mechanics and the heat transfer 
characteristics were examined simultaneously. Semi-empirical 
correlations were found to characterize both the local Nusselt 
number and the average Nusselt number. 

From the above literature review, previous numerical 
models solving liquid jet impingement on a rotating disk 
mainly involve trial and error methods, which require guessing 
at the fkee surface location in some systematic incremental 
sequence. In the present study, the volume of fluid method is 
used to track the free surface. This technique requires a single 
domain, time-dependent solution, which directly locates the 
free surface once a steady-state solution is achieved, resulting 
in a highly accurate computation. Furthermore, the fiee surface 
has surface tension effects included, which have not previously 
been modeled properly. The present analysis also includes a 
conjugate heating effect in the disk, which is sparse in the 
previous computational work as a single domain problem, and 
helps to draw better correlations with existing experimental 
data. Effects of inlet temperatures and flow conditions are 
studied, which affect both the flow and thermal characteristics 
of the system. The present analysis also include evaporative 
cases, or purely heating cases when evaporation is considered 
negligible. Whether evaporation is important or not is 
determined by the inlet temperature of the fluid. 

Nomenclature 
A: Heater area z(rhomZ-r,,i,') (m') 
C: 
C: Specific heat Cjouleskg-K) 
dd: Disk thickness (m) 
F: 
g: Gravity ( d s ' )  
h: Enthalpy aouleskg) 
k: Thermal conductivity (W/m-k) 
m : Mass flow rate (kgh) 
f i  : Normal unit vector 
Nu: Local Nusselt number at the diskkquid interface 

Discharge coefficient for impinging jets 

Body force due to surface tension (N/m3) 

[fi) 
- 
NU : Average Nusselt number 

P: Pressure (Pa) 
4" : Heat flux, Q/A, (W/m2) 

Q: Heater power, (W) 
r: Radial coordinate (m) 
r,: Laminar-turbulent transition radius (m) 
rt*: Dimensionless laminar-turbulent transition radius 

r, 

Re: Reynolds number 

Re*: Reynolds number used by Azuma and Hoshino (1984) 

t: Time (s) 
t : Tangential unit vector 
T: Temperature (K) 
AT: Temperature difference, T,-Ti, (K) 
u: Axial velocity (m/s) 
v: Radial velocity ( d s )  

P : Velocity vector (m/s) 

Fi : 
w: Swirl velocity ( d s )  
X: Axial coordinate (m) 

Greek Symbols: 
a: Volume fraction of liquid 
6 : Film thickness (m) 
4 : 
K : Total curvature (m-') 
p : Dynamic viscosity (kg/m-s) 
P: Density (kg/m3) 
0 : Surface tension (N/m) 
OI : Angular velocity (rads) 

- 

Volumetric flow rate (lpm) 

General volume weighted fluid property 

Subscripts: 
hin: Inner radius of heater 
hout: Outer radius of heater 
1: Counting index 
in: Inlet 
1: Liquid 
ref: Reference 
t: Laminar-turbulent transition 
V: Vapor 
W: Disk surface 

2 Analysis 
Figure 1 shows a schematic of the system being 

modeled. Flow enters the disk between two circular plates, one 
being the collar, and the other being the disk. The spacing 
between the collar and the disk is 6,". After the flow leaves the 
entrance region between the collar and the disk at rh,", the flow 
turns from an internal fully developed flow to a free surface 
flow. The heater provides a constant heat flux at this point, 
from the bottom of the aluminum disk. The heat is conducted 
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through the disk to the fluid. The basic assumptions of the 
problem at hand are that the flow field is incompressible, the 
fluid is considered to be in the laminar flow regime while all of 
the fluid properties are constant. When evaporation is being 
modeled, no mass transfer is modeled and the effects are only 
considered in the energy equation, because the evaporation rate 
of the liquid is much less than the inlet mass flow rate of the 
liquid. The Navier-Stokes equations are solved to compute the 
fluid flow. The continuity, and momentum equations are as 
follows: 

p - - = - V p + V - & V P ) + p g + F  DV , (2) 
Dt 

Since the flow field is assumed to be independent of the 
temperature field, a steady-state energy equation is solved in 
the fluid region, once the flow field has been resolved. 

In the solid region, only conduction is solved. 

V 2 T  = 0 ( 5 )  

The free surface is tracked by the Volume of Fluid (VOF) 
method developed by Hirt and Nichols [ 1 I], where the volume 
fraction, a, of the fluid is tracked through each computational 
cell. The VOF equation is: 

The interface between fluids is represented by a piecewise 
linear approach, similar to the work of Youngs [12], to greatly 
limit numerical diffusion of the interface. Surface tension 
effects are modeled in the present numerical simulations. The 
surface tension forces are represented by the "F" term in 

Equation 2. A continuum surface force method proposed by 
Brackbill [I31 is used to model surface tension. 

The curvature, K, is defined as: 

(7) 

The fluid properties are calculated by the volume weighted 
average. 

The general fluid property, 4 , represents density, viscosity and 
thermal conductivity. The enthalpy is calculated using a mass- 
weighted average, instead of a volume-weighted average. 

The boundary conditions are as follows: 
At the inlet (r = q n )  

(O<x<d,,): v=v, , , ,  T = T n  
dT 
dr 

( -dd <x<O): -=o  

At the collar (x = d,,, , r, < r < rhln ) 

dT 
dX 

u = v = O ,  w = w r , - = O  

Ar the disk surface (x = 0, r, < r < r,, ) 

u = v = Q ,  w = w r ,  

At the disk bottom (X = -dd )  

(10) 

(1 I-a) 

(1 1-b) 

(12) 

(13) 

(1 4-a) 

( 14-b) 
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The above variation in heat flux is used to simulate the 
experimental prediction of Ozar et al. [lo]. 
At the outer boundaries 

(r=r,,,",6,,, <x<100a,, ,) ,(r , , ,~ < r < r  X = ~ O O S , ~ ) ,  
(r = r,,, ,fiin < x < I OOS,, ) 

P = Pwf (15-a) 

dT 
ij- Q fi  > 0) - = o else T = T,,, an' (1 5-b) 

At the liquid-vapor interface 

(I  6-C) 
heating: k l ~ l ,  dT = k v z l  dT , 

1' 

evaporation: T = T,,, (16-d) 

Air was used as the vapor for all of the simulations. The 
viscosity and thermal conductivity of air were lessened by an 
order of magnitude for selective cases, and were found not to 
change the results; therefore, the boundary condition at the 
interface is essentially a zero shear stress for all cases, and an 
insulated boundary for the heating cases. 

As was noted before, the flow field is considered to be 
independent of the thermal field; therefore the flow field is first 
solved as a time-dependent solution, until a steady state 
solution has been reached. Once a steady-state solution has 
been reached, the energy equation is solved for both the fluid 
and solid regions, as a steady-state solution. The criteria used 
to determine a steady-state solution was when the mass flow 
rate out of the domain was within 0.05% of the mass flow rate 
into the domain for 0.05 seconds. The flow field was solved 
using the following procedure: 

1. Solve momentum equations 
2. Solve continuity (pressure correction) equation, 

update pressure and face mass flow rate 
3. Repeat steps 1 and 2 until converged, for each time 

step 
A co-located finite volume computational scheme, where both 
the flow-field variables and the pressure are stored in the cell 
centers, is used to solve the governing equations. The pressure 
is discretized in a manner similar to a staggered-grid scheme, 
while the pressure and velocity are coupled using the SIMPLE 
algorithm, described by Patankar [14]. All of the convective 
terms in the governing equations are discretized using a 
second-order upwind scheme. 

The grid used for the numerical simulations consisted 
of rectangular shaped cells, which were produced in four axial 
layers in the liquid region, and one axial layer in the solid 
region. In the fluid region in the first layer, spanning from the 
disk surface to SI,, there were 25 cell rows, with a growth rate 
of 1.01. The second layer, spanning from ti,, to 3S,,, consisted 
of 30 cell rows with a growth rate of 1.02. The third layer, 
spanning from 3S,, to IOS,,, consisted of 25 cell rows, and had a 
growth rate of 1.05. In the final layer, spanning from lOS,, to 
lOOS,,, there were 20 cell rows, with a growth rate of 1.2. In 
the solid region, there were 15 evenly spaced cell rows. In the 
radial direction, there were 15 evenly spaced cell columns 
between r,, and rh,", and 75 evenly spaced cell columns between 
rhln and rout. The grid spans such a great distance in the axial 
direction (lOOS,,), because convergence is greatly increased 
with the added cells, so the computation actually runs more 
rapidly. A grid study was performed on a mesh that had 35 cell 
rows growing at a rate of 1.01 in the first layer of the liquid. 
The second layer had 40 cell rows with an aspect ratio of 1.02. 
The third layer had 25 cell rows with an aspect ratio of 1.075, 
and the fourth layer had 20 cells with an aspect ratio of 1.2. In 
the solid region there were 25 evenly spaced cell rows. In the 
radial direction, there were 15 cell columns between r,, and rh,,, 
and 100 evenly spaced cell columns between rh,, and rm+ The 
film thicknesses as well as the Nusselt numbers for both 
computational grids were within 0.1 percent of each other for 
all radial locations, for the 7 Ipm, 100 rpm, 40'C case. 

3 Results and Discussion 
The disk has the same dimensions for all of the cases 

to simulate the experimental data of Ozar et al. (2004). The 
inner radius of the disk, r,,, is 0.0254 m. The inner radius of the 
heater, and the exit of the collar, rh,, is 0.0508 m, while the 
outer radius of the heater, rhout, is 0.18 m. The outer radius of 
the disk, rout, is 0.2032 rn. The aluminum disk thickness is 
0.00635 m unless otherwise noted. The working fluid for all of 
the simulations is water. The thermal conductivity of 
aluminum is 202.4 W/m-K for all of the cases. This set-up is 
used to examine film thickness and heat transfer measurements 
for flow rates ranging from 3 to 15 Ipm, and disk rotational 
speeds of 50 to 200 rpm. The effects of inlet temperature are 
considered by varying the inlet temperature between 20°C and 
IOO'C. The effects of purely heating and evaporation are also 
presented. The purely heating boundary condition is used for 
the cases with inlet temperatures of 20°C and 40"C, and the 
evaporation boundary condition is used for cases with an inlet 
temperature of 100°C. 

3.1 Film Dynamics 
A prelude to the heat transfer characteristics of a 

controlled liquid impinging jet on a rotating surface is the fluid 
mechanics. In order to validate the present numerical schemes, 
the film thickness measurements are compared with 
experimental data obtained by two different techniques. The 
first technique, used by Thomas et al. [7], used a capacitance 
sensor. The present numerical results and the experimental 
results using the capacitance technique for the cases that 
matched the previously published data are presented in Figure 
2. Since there were waves present on the surface of the liquid 
film in the experimental study, data were sampled at a rate of 

. 
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(b) 
Figure 2: Comparison of Numerical and Experimental results of the film 

thickness vs. radial distance at an inlet temp of 20'C,6, = 0.254 mm (Num.) 
and 0.267 mm (exp.), and flow rates of (a) 7 Ipm and (b) 15 Ipm 

one every two seconds, for every radial location, to obtain a 
repeatable average measurement. The maximum difference 
between the numerical and the experimental data for the 7 Ipm, 
100 and 200 rpm cases, and the 15 Ipm, 100 and 200 rpm cases 
are 8 .8 ,3 .9 ,  22.0 and 13.3 percent, respectively. 

are also compared with experimental data obtained by Ozar et 
al. [ 151, in Figure 3. These experimental data were gathered by 
a laser light reflection technique, and images of the reflections 
of the dry and wet disk surfaces were digitally combined to 
obtain an image, which was post-processed to extract the center 
points of the reflections to determine the liquid film thickness. 
The slight wobbling of the disk was accounted for by triggering 
the camera at the same angular location. The final data points 
were fit with a least squares fourth-order polynomial. There is 
no mention of the repeatability of the published data, or 
variation with angular position. The numerical prediction tends 
to capture a thicker film thickness than the experimental 
predictions for the 3 and 7 Ipm cases, for all of the presented 
rotational speeds. The opposite effect was observed for the 15 
Ipm cases. The differences may arise from modeling the flow 
as an axisymmetric geometry, which cannot capture surface 
waves. 

The effects of flow rate, rotational speed and inlet 
temperature are displayed in Figure 4. The physical parameters 
that affect the flow are the inlet inertia of the impinging jet and 
the viscous interaction with the fluid and the disk. The viscous 

The present numerical film thickness measurements 
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(4 
Figure 3: Comparison of Numerical and Experimental film thickness 

measurements vs. radial distance at 40'C inlet temperature, 6, = 0.254 mm at 
flow rates of (a) 3 Ipm (b) 7 Ipm (c) I5 Ipm 

interaction between the disk and the liquid both retards the flow 
in the radial direction, and adds a centrihgal force because of 
the rotation of the disk. The film thickness generally increases 
due to the frictional losses of the fluid, and then decreases due 
to the centrifugal forces. The film thickness decreases with 
increasing rotational speed. Also the point where the maximum 
film thickness is located moves closer to the collar with 
increasing rotational speed. These two observed behaviors 
occur because the centrifugal force has an increased magnitude 
with increased rotational speed. The point of maximum film 
thickness moves closer to the outer edge of the disk as the flow 
rate is increased because the inertia of the fluid is greater, 
therefore taking a greater distance for the fiictional forces of 
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Figure 4 Numerical Film Thickness data vs. radial distance with S,.=0.254 

mm at various temperatures and flow rates of (a) 3 Ipm (b) 7 Ipm (c) 12 Ipm (d) 
15 Iprn 

the disk to retard the flow. A better indicator of when the 
centrifugal forces begin to influence the film thickness is to 
look at where the film thickness heights for the same flow rate 

C 

(6- 

Figure 5: (a) Numerical Film Thickness data vs. radial distance including edge 
effects and (b) experimental flow visualization with 6,,,=0.254 mm, 7 Ipm and 

40'C inlet temperature [IS] 
begin to vary with rotational speed. For the lower flow rates, 
rates there is a large amount of overlapping of the film 
thicknesses over the disk surface, and the distinction between 
the different rotational speeds is not realized until hrther out on 
the disk. The effects of increasing temperature tend to reduce 
the film thickness because the frictional losses are less due to 
the decrease in viscosity. Also, the point where the maximum 
film thickness occurs moves radially outward with increasing 
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temperature because the rotational effects from the rotation of 
the disk do not diffuse as readily to the bulk fluid movement 
with the decrease in viscosity. 

Figure 5 illustrates the free surface shape when the 
edge effects are included in this analysis. The edge effects 
come from the fluid flowing over the edge of the disk, therefore 
causing a surface curvature. This surface curvature, raises the 
pressure because of the surface tension, and causes the fluid to 
make a lip at the disk's edge. This lip is commonly referred to 
as a "hydraulic jump". The film thickness of the model with 
the edge effects is within 2 percent of the model without the 
edge effects being modeled before a value of r/rhln of 3.5. 
There is a hydraulic jump at the edge of the disk that decreases 
in magnitude as the rotational speed is increased. This result is 
qualitatively consistent with the edge effects observed by Ozar 
et al. [15]. The hydraulic jump at the edge of the disk is caused 
by the surface tension of the fluid. As the fluid flows over the 
edge, the surface curvature increases, therefore increasing the 
pressure. This increased pressure retards the flow and causes a 
jump. When rotational speeds are increased, the centrifugal 
forces increase, therefore making the edge effects have a 
relatively weaker resistance to the flow and washing off the 
hydraulic jump. It is important to note that there are surface 
waves present on the liquid film in the experiment that are not 
captured in the numerical model because of the axisymmetric 
assumption. 

3.2 Thermal Characteristics 
Now that an understanding of the liquid film flow 

characteristics is established, the heat transfer from the disk to 
the fluid can be investigated. Even though the conjugate effect 
is modeled, the Nusselt numbers are defined by the applied heat 
flux Qf the heater (Q/A), not the actual heat flux at the disk 
surface, and the temperature difference between the disk 
surface and the inlet temperature. This definition is used so 
that comparisons can be made with experimental data, in which 
only the heat flux at the heater is known. Figure 6 shows a 
comparison of local Nusselt numbers for various rotational 
speeds and flow rates of the present numerical simulation with 
the experimental data taken by Ozar et al. [lo]. The numerical 
and experimental results correlate well at the larger radii, and 
increasingly poor at inner radii with increasing flow rate. The 
experimental Nusselt numbers at the inner radii are always 
lower than of the numerical results meaning that the surface 
temperatures at these locations are higher in the experiments. 
The differences may arise from non-uniform heating of the disk 
in the experiments because of the varying contact pressure of 
the heater. The contact pressure may vary because of the 
difference in coefficients of thermal expansion in the aluminum 
disk and the ceramic insulating layer. 

The local Nusselt number versus radial location for 
various flow rates and rotational speeds are presented in Figure 
7. The only variable in the definition of the local Nusselt 
number is the inverse of the temperature difference between the 
disk surface and the fluid inlet. The heater power for these 
cases is 4500 watts. The wall temperature starts off at the 
lowest value at the inlet of the impinging jet because the mean 
temperature of the fluid is the lowest at this point. As the mean 
temperature of the fluid increases as it flows and heats up over 
the disk, so does the disk's surface temperature. The conjugate 
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Figure 6: Comparison ofNumerica1 and Experimental Local Nusselt Numbers 
vs. radial distance based on inlet temperature and radius with 6i,, = 0.254 mm, 
and an inlet temperature of 4O'C for flow rates of (a) 3 Ipm (b) 7 Ipm (c) 15 

IPm 

heating effect is noticeable because the surface temperature 
actually decreases towards the end of the heater. The outer 
decrease in temperature occurs because of radial conduction 
within the disk. A more quantitative look at conjugate heating 
is discussed in the latter part of the thermal effects. 

The surface temperature is also a function of the inlet 
flow rate, rotational speed, and inlet temperature. As the 
rotational speed increases, the surface temperature decreases, 
because the liquid film thickness decreases, which increases the 
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Figure 7: Local Nusselt Number vs. radial distance of liquid impinging jet on a 
rotating disk, kO.254 mm, and a heating power of4500 watts (a) 3 Ipm (b) 7 

Ipm (c) 12 Ipm (d) 15 Ipm 

mean fluid velocity at each radial location. The surface 
temperature goes down with increasing flow rate, because the 
mean fluid temperature is lower. The increased inlet 
temperature decreases the viscosity, which thins the film. The 
fluid velocity is higher because of the thinner film, 
consequently decreasing the temperature difference between 
the disk and the inlet. 

For the lower flow rates, the 20°C and 40°C inlet 
temperature cases show minima; difference in local Nusselt 
number, the differences are mainly seen with the increase in 
rotation. This result occurs because the fluid film 
characteristics are more strongly a function of rotational speed 
and than the liquid properties examined. At higher flow rates, 
the Nusselt Number distribution is affected more by 
temperature at the inner radii and more strongly by rotational 
speed at the outer radii. This trend physically occurs because 
the film characteristics vary more significantly with rotational 
speed at outer radii and vary more significantly with 
temperature at inner radii. 

The effects of evaporation can be seen in the 1OO'C 
inlet temperature cases. The enhancement of heat transfer 
because of the evaporative effects are the most significant in 
the lower flow rate cases, and increase rapidly in these cases 
with rotational speed. This trend comes about because the 
thermal characteristics of the fluid resemble a fully developed 
thermal field at lesser radii for lower flow rates; therefore 
temperature profile throughout the film thickness is nearly 
linear. When the film thickness decreases, the surface 
temperature also decreases because temperature gradient 
throughout the liquid film remains constant. At higher flow 
rates, the flow is thermally developing throughout the heated 
region and has more of a parabolic temperature profile 
throughout the film thickness for most of the radii that are 
heated. Therefore, the evaporative cooling effects are less 
significant at higher flow rates. Heater powers of 2000 and 
9000 watts were used to check the impact heater power had on 
the results. Even though the film temperature rose 
significantly, the Nusselt number remained within 0.5 percent 
for all of the evaporative cases that were run. The heater 
powers that are presently used are low enough that no nucleate 
boiling is expected to occur. The purely evaporative mode of 
mass transfer is observed in rotational cases under similar 
heating loads in experiments that are currently being run to 
observe the effects of boiling/evaporation. 

The effects of inlet temperature, flow rate and 
rotational speed have been characterized for their affects on 
local Nusselt numbers. Now the overall heat transfer 
performance of the disk used in these numerical simulations are 
displayed by means of average Nusselt number versus flow rate 
in Figure 8. The data points are fit with a fourth order 
polynomial. It is very clear the overall heat transfer is 
increased with flow rate and with rotational speed. The overall 
heat transfer changes very little in the 20'C and 40°C inlet 
temperature cases, but increases significantly with the IOO'C, 
evaporative case. The average Nusselt number increases nearly 
linearly with flow rate for the purely heating cases. For the 
evaporative case, this trend is different; the average Nusselt 
number is linear versus inlet flow rate for the low rotational 
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Figure 8: Average Nusselt number vs. flow rate at various inlet temperatures, 
6,=0.254 mm, and a heating power of 4500 watts (a) 20'C (b) 40'C (c) L O O T  

speed cases and when the rotational speed is increased, a 
minimum overall heat transfer rate is observed at a slightly 
higher flow rate. The heat transfer is enhanced the most due to 
evaporative cooling at the lowest flow rates because of the 
nearly M y  developed thermal field that exists. 

The effects of the initial film thickness on the liquid 
film hydro and thermo characteristics are compared in Figure 9. 
The gap height used for all of the previous simulations was 
doubled and halved. The liquid film thickness behaves 
differently for the different gap heights in the inner inertia 
dominated region, and then the liquid film starts to behave 
similarly in the centrifugal dominated region. At the inner 
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Figure 9: Effects of initial film thickness on (a) film thickness (b) local Nusselt 
number vs. radial location, for 7 Ipm, I 0 0  rpm, at 40'C inlet temperature case 

and 4500 watts. 

radii, near the liquid impingement, the film thickness initially 
increases with the tighter gap height and decreases with the 
looser gap height. This effect is because the fluid velocity is 
higher for the tighter gap height, and also the characteristic 
length for the viscous.difhsion is less, therefore making the 
frictional losses much greater, which decelerates the flow much 
more rapidly than the greater gap height. Once the initial 
inertia effects are lost due to friction and the centrifugal effects 
are gained, due to rotation, the film characteristics become 
independent of the initial thickness of the liquid and just a 
function of the flow rate and the rotational speed. The local 
Nusselt number shows a very similar trend to the initial film 
thickness. Initially, the local Nusselt number is greater for the 
tighter collar gap height, because the film velocity is greater. 
The opposite effect is seen for a looser gap height. The local 
Nusselt numbers tend to the same line at greater radii because 
the liquid film characteristics become very similar in this 
region. 

The conjugate heating effect is quantified in Figure 10. 
The same cases were run with heating applied at the disk 
surface and at the bottom of the disk. The Nusselt numbers are 
within 10 percent with and without the conjugate effect for 
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40'C inlet, 4500 watts at 100 rpm for various flow rates. 

about 80 percent of the disk. The conjugate effects are the 
greatest at the inner and outer radii, because of radial 
conduction through the disk. It is important .to note that the 
average Nusselt numbers presented in this paper include the 
conjugate effect, and will be altered if the conjugate effect is 
not included. Also when the edge effects are modeled, the 
Nusselt number is within two percent of the model without the 
edge effects being modeled. The maximum difference in 
Nusselt number is at the outer edge of the heater because of the 
increased conjugate effect due to the convection heat transfer at 
the edge of the disk. 

Doubling and halving the disk thickness examines the 
conjugate effect further. The effect of varying the disk 
thickness on Nusselt number is presented in Figure 11. The 
thicker the disk is, the more of an impact the conjugate effects 
has because of the increased cross-sectional area that allows 
radial conduction away from the heater. The Nusselt number is 
lower with increased disk thickness at the inner radii and higher 
at the outer radii. This happens because the fluid is being 
heated before the heater with conjugate heating, which 
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Figure 11: Conjugate effect on Nusselt number vs. radial location for various 
disk thickness at 7 lpm, 100 rpm, 6, = 0.254 mm, and 40'C inlet, and 4500 

watts. 

increases the film temperature, and heated less at the end of the 
heater because heating power is lost at the outer radii of the 
disk. 

The effect of surface tension was also studied in these 
numerical simulations, which could not be done with 
experiments, as there is no control of such physical parameters 
with any given fluid. The film thickness and local Nusselt 
numbers varied by less than 0.1 percent for all of the cases 
when the surface tension was reduced by half or doubled. The 
results are not presented because of redundancy. 

3.3 Laminar to Turbulent transition 
Since the flow field was considered to be in a laminar regime 
for all of the present cases, a discussion of this assumption is 
needed. Azuma and Hoshino [16] and Azuma [17] studied the 
laminar to turbulent transition characteristics on a stationary 
and rotating disk, respectively, of an impinging jet. In these 
studies the inlet Reynolds number, the nozzle height and radius 
were varied to examine the effects on the laminar to turbulent 
transition. These studies looked at the surface waves and made 
conclusions relating the classification of surface waves to the 
turbulence intensities. The first class of waves are 'D' waves, 
which form concentric circles on the disk, then the increased 
disturbance of the fluid changes these waves into lattice-shaped 
(LS) waves. Finally, these waves are disturbed even further 
and become sandpaper-like (SL) waves. The transition from a 
laminar film to a turbulent film is characterized when the LS 
waves turn into SL waves, and the SL waves cover more than 
50 percent of the disk in the circumferential direction. Azuma 
and Hoshino [16] found in the stationary cases, a critical 
discharge Reynolds number, Re*, of 7 .4~10~ .  The discharge 
Reynolds number takes into account a discharge coeficient, c, 
which is a function of flow rate, density, nozzle diameter and 
nozzle gap height from the disk. The critical discharge 
Reynolds number only changed slightly with the rotational 
rates presently investigated and is why the stationary cases 
were used for comparison [17]. This Reynolds number is 
different from the Reynolds number, Re, defined by Ozar et al. 
[ 151, which incorporates the mass flow rate and inlet radius of 
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Table 1: Reynolds numbers, and laminar-turbulent transition radius 
from Amma and Hoshino’s (1984) analysis for the conditions considered in the 

present analysis. 

Temp. 
(Celsius) 

20 

20 
20 

20 
40 
40 
40 

40 
100 
100 
100 
100 

e 
(I ,,,) 

3 0.61 

7 0.61 
12 0.61 

15 0.61 
3 0.61 
7 0.61 
12 0.61 

15 0.61 
3 0.61 
7 0.61 
12 0.61 
15 0.61 

Re 

156 

364 
624 

779 
246 
574 
904 

1230 
540 
1270 
2190 

’ 2730 
7 - 

the impinging jet. 
The flow is considered laminar when the discharge 

Reynolds number is below the critical value. When the 
discharge Reynolds number is greater than the critical value, 
there is a radius of transition from laminar to turbulent flow at 
some radial location on the disk. There is a non-dimensional 
radius of transition, r,*, which is a function of the discharge 
Reynolds number, and the gap height and diameter of the 
nozzle. The Reynolds number, the discharge coefficient and 
the radius of transition, when applicable, are presented in Table 
1. From this table, turbulence is only expected to influence the 
results of the higher flow rates and higher inlet fluid 
temperatures. Azuma [ 171 illustrated that the rotation tended to 
suppress the turbulent intensity when rotation was small 
(similar to rotational speeds used is this study), therefore 
pushing the transitional radius outward, and increase the 
turbulent intensity at higher rotational speed (rotational speeds 
greater than used in this study). It is important to note that the 
experiments were performed on a smooth glass disk, while the 
present numerical simulations are run on as laminar flow on an 
aluminum disk. Although laminar to turbulence transition is 
not considered in this numerical analysis, it is an area of 
interest for future research. 

4 Conclusions 
The liquid film characteristics studied in the range of 3 

to 15 Ipm, with disk rotational speeds of 50 to 200 rpm, and 
inlet temperatures varying from 20’C to 1OO’C are presented. 
The inertia of the fluid, the frictional losses as the liquid film 
flows over the disk and the centrifugal forces due to the 
rotation of the disk were all found to affect the film thickness. 
Some conclusions can be made about the fluid mechanics: 

The film thickness was found to decrease with 
increasing rotational speed. The transition point from 
the frictional loss dominated flow to the centrifugal 
force dominated flow was pushed radially outward 
with increasing flow rate. 

The increased inlet fluid temperature was found to 
decrease the film thickness because the frictional 
losses were less due to the decreased viscosity. 
The effect of the inlet gap height was found to effect 
the film thickness trend in the inner frictional loss 
dominated region but the film characteristics became 
similar once the centrifugal forces dominated the flow. 

The heat transfer results were directly affected by the 
liquid film characteristics. Therefore, the heat transfer was 
affected by inlet temperature, inlet flow rate and the rotational 
speed. The conclusions that can be made about the heat 
transfer characteristics are: 

The heat transfer was enhanced with both increased 
rotational speed and increased flow rate. The 
enhancement of the heat transfer for the higher flow 
rate under increased rotational speed was not 
significant at inner radial distances. 
The increased temperature was found to increase the 
heat transfer because of the decreased film thickness. 
Evaporative effects were found to enhance the heat 
transfer more greatly at the lower flow rates, because 
the thermal field in the liquid film had fully developed 
characteristics closer the collar, therefore increasing 
the temperature gradient at the fkee surface, which 
enhances evaporative cooling. 
A reduced initial film thickness enhances the heat 
transfer at inner radial locations, but becomes less 
dependent on the inlet gap height radially outward on 
the disk, similar to the film characteristics. 
The conjugate effects made less than 10 percent 
difference in the local Nusselt in the middle of the 
heated section of the disk. However, the difference 
increased higher than 10 percent at the inner and outer 
15 percent of the heated section of the disk. 

From the above observations, when designing a system to 
utilize a controlled liquid impinging jet over a rotating surface, 
the point at which rotation starts to enhance the heat transfer 
varies with the inlet flow rate and rotational speed; this point is 
generally radially outward for the increase of these two 
parameters. From these observations, it is thought that for 
lower flow rates, smaller disks can be used, and still have the 
advantageous effects of rotation. On the other hand, for the 
higher flow rates and rotational speeds considered, a larger disk 
should be used to utilize the heat transfer enhancement due to 
rotation. 
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Abstract 

An integral analysis of hydrodynamics and heat transfer in a thin liquid film flowing over 

a rotating disk surface is presented for both constant temperature and constant heat flux 

boundary conditions. The model is found to capture the correct trends of the liquid film 

thickness variation over the disk surface and compare reasonably well with experimental 

results over the range of Reynolds and Rossby numbers covering both inertia and rotation 

dominated regimes. Nusselt number variation over the disk surface shows two types of 

behavior. At low rotation rates, the Nusselt number exhibits a radial decay with Nusselt 

number magnitudes increasing with higher inlet Reynolds number for both constant wall 

temperature and heat flux cases. At high rotation rates, the Nusselt number profiles 

exhibit a peak whose location advances radially outward with increasing film Reynolds 

number or inertia. The results also compare favorably with the full numerical simulation 

results from an earlier study as well as with the reported experimental results. 

Introduction 
Many investigations have been performed in the past on flow and heat transfer 

characteristics in thin liquid films due to the fact that high heat transfer rates can be 

obtained in thin films as reviewed by Webb and Ma [l]. Hydrodynamic characteristics of 

thin liquid films flowing over stationary and rotating disk surfaces are important in 

understanding the major factors affecting the heat transfer performance. A better 

* Corresponding author, Phone (860)486-2966, E-mail cetegen@engr.uconn.edu 
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understanding of the fluid mechanics of the liquid film flow allows better design and 

optimization of high performance compact heat transfer systems such as those employed 

in space applications, where considerations on efficiency, size, and weight are of critical 

importance. Study of rotating thin-film fluid physics and heat transfer is a!so of 

fkndamental interest in the development of compact vapor absorption systems. 

Watson [2] was first to analyze a free-falling jet impinging on a horizontal 

stationary plate. The film flow was divided into four regions. The first region was the 

impingement zone, followed by a second region of a growing boundary layer in the liquid 

film which eventually reaches to the film surface. Third region comprised of the 

transition to a fully developed film flow followed by a fully developed flow regime 

identified as the fourth region. For stationary and rotating liquid films at low flow rates 

and rotation speeds, a hydraulic jump could exist that has been studied both 

computationally and experimentally under normal and zero gravity conditions by Faghri 

and coworkers [3,4] and Avedisian and Zhao [5]. The hydraulic jump phenomenon was 

found to disappear at zero gravity conditions. Labus and Dewitt [6] conducted a 

combined numerical and experimental study to determine the free surface of a circular jet 

impinging on a flat plate in microgravity. The governing potential flow equations were 

solved numerically. The experimental study was performed using a drop-tower. The flow 

patterns of the free surface were examined experimentally, concluding that the surface 

tension and inertia were the dominant forces acting on the liquid. The experimental 

results were found to be in a good agreement with the numerical results. Thomas et al. 

[3] performed a useful one-dimensional analysis of the film thickness including the 

hydraulic jump phenomenon. They predicted significant thinning of the film with 

increased levels of rotation. They neglected inertia in their analysis. 

Miyasaka [7] performed a similar theoretical and experimental study of the 

thickness of a thin viscous liquid film on a rotating disk. He obtained the film thickness 

by solving the governing equations of motion in the inviscid and viscous limits, with the 

latter utilizing the boundary layer approximation. Miyasaka also carried out experiments 

by using a liquid jet falling onto the center of a rotating disk. He deduced the film height 

from the electrical resistance of the liquid on the disk by comparing it to the electrical 

resistance of a standard thickness of the fluid. The computed values were found to agree 
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with the experimental results. Rahman et al. [4] was the first to report a full numerical 

solution of the momentum equations using a finite difference scheme. The method 

utilized a boundary-fitted coordinate gridding scheme with a k-E model for turbulence 

closure and an iterative technique to define the free surface. They predicted the liquid- 

film thickness in the vicinity hydraulic jump reasonably well and evaluated the effects at 

the outer edge of the disk. Rahman and Faghri [8] investigated the hydrodynamic 

behavior of a thin liquid film flowing over a rotating disk. They used a three-dimensional 

boundary-fitted coordinate system to perform the calculations. The computed film 

thickness agreed well with existing experimental measurements. It was also concluded 

that the flow was dominated by inertia near the entrance and by centrifugal force near the 

outer edge the disk. The hydrodynamic characteristics of a radially spreading liquid jet 

on a horizontal plate were also predicted numerically by Buyevich and Ustinov [9]. 

However they reported no comparison with other studies. 

Rao and Arakeri [ 101 performed an analytical study of free liquid jets on surfaces 

including circular plates, cones, and spheres. They used a boundary layer approximation 

and a third order polynomial for the velocity profile. The equations were solved by the 

integral method. Their work however did not include heat transfer in the film. 

Nevertheless, they were the first to use the integral approach to predict relevant 

parameters like film thickness. They also did not present any experimental validation of 

their data. 

Azuma and Hoshino [ 1 13 examined the laminar-turbulent transition, liquid-film 

thickness, velocity profile, stability, and wall pressure fluctuations of thin liquid films on 

a stationary horizontal disk. The laminar-turbulent transition was determined as a 

function of the nozzle inside diameter, the gap height, and the volumetric flow rate. The 

liquid-film thickness measurements were performed using a needle probe. More recently, 

Ozar et al. [12] measured the liquid film thickness by a laser light reflection technique 

with which the spatial distributions of film thickness were captured including the 

hydraulic jump. 

Heat transfer in liquid films was first analyzed by Chaudury [13] who 

incorporated Watson’s results into the heat transfer analysis. Wang et al. [ 141 developed 

a two-domain solution in which the heat transfer at the liquid film and the solid disk were 
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treated separately and matched at the liquid-disk interface. Rahman and Faghri [SI used 

mixed numerical and analytical methods to predict the heat transfer. For developing flow 

and heat transfer, a three dimensional numerical model was utilized. Also, a two 

dimensional ar,alytical solution was formlated for developing heat transfer 2nd fully 

developed flow assuming solid body rotation. For the case of fully developed heat 

transfer and fluid flow, a closed form solution was developed. This solution predicted 

that the Nusselt number, based on film thickness, approached a constant value in the fully 

developed regime. Carper et al. [ 151 evaluated the convective heat transfer from a jet of 

cooling oil to an approximately isothermal rotating disk. Correlations were presented for 

the average Nusselt number as influenced by rotational Reynolds number, jet Reynolds 

number and radius of impingement. Carper et al. [I61 later extended their study to 

include the effect of Prandtl numbers. Vader et al. [17] studied the effects of jet velocity 

and temperature on the heat transfer between a planar water jet and a stationary heated 

plate. They concluded that the heat transfer performance was affected by the free stream 

turbulence intensity and the Prandtl number. A similar study was presented by Stevens 

and Webb [ 181 where the influence of jet Reynolds number, nozzle to plate, spacing and 

jet diameter were evaluated. Empirical correlations were developed for stagnation point, 

local and average Nusselt numbers. Faghri et al. [I91 presented heat transfer results for a 

controlled liquid impinging jet on a stationary disk. They presented a numerical study 

showing good agreement between heat transfer predictions and experimental data. 

Auone and Ramshaw [20] performed heat and mass transfer experiments on a liquid 

flowing over a rotating disk. They predicted the heat transfer coefficients analytically by 

adapting the solution that Nusselt [2 11 used for the film condensation under the influence 

of gravity. Ozar et al. [22] published an experimental study of heat transfer and reported 

the local and disk surface averaged Nusselt number over a range of flow rates and 

rotation speeds for water. Recently, Rice et al. 1231 published fill numerical computation 

of heat transfer in a thin liquid film over a rotating disk simulating the experimental 

conditions of Ozar et al. [22]. 

Review of the literature indicates that the analysis of the problem has progressed 

along two main themes. One theme has been numerical solution of the full problem 

taking into account its salient features. The other is of analytical nature utilizing 
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simplifying assumptions to obtain simple analytical results. In between lies the studies 

that utilize the Karman-Pohlhausen type integral analyses. This type of analysis is 

capable of capturing sufficient details of the solution while avoiding oversimplifications 

needed in analytical studies. For example, many of the analytical analyses had not 

considered the liquid film inertia effects in the presence of rotation. It was thus the 

objective of this study to present a comprehensive integral analysis of the thin liquid film 

flowing radially outward on a circular disk including effects of inertia and rotation. 

Capability of the integral method to predict the flow and heat transfer is demonstrated by 

comparisons with experimental and numerical results for the same problem. 

Problem Formulation 
The rotating disk is schematically shown in Fig. 1 which resembles the 

experimental set-up that has been utilized by Thomas et a1 [3] and Ozar et aZ[12,22] in a 

series of experimental studies. In the experiments, the flow is introduced from a central 

collar that directs the liquid radially outward over a gap height of h,. The liquid flows 

over the rotating disk while being heated from underneath by an electric resistance heater. 

In these experimental studies, the liquid film thickness and heat transfer coefficients were 

measured. Liquid film thickness measurements were made by either a capacitance probe 

[3] or an optical technique [ 121. The heat transfer coefficients were determined from the 

difference between the measured disk surface temperature and the liquid inlet 

temperatures and the constant heat flux supplied to the disk. 

The problem is considered in the radial (r)  and axial (2) coordinates assuming 

azimuthal symmetry. For this situation, the governing equations in cylindrical coordinate 

system over a rotating circular disk are: 

- 0  - - (Tu,) + - - i a  
r ar az 

Continuity: 

i a  
r ar 

r-momentum: - - (ru,u,) + 

Energy: -- r -  +- 1 a (  ar\ dZT] 
r ar\ & I  dzz 

Defining non-dimensional parameters as, 
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where r, is the inlet radius of the disk, u,is the inlet velocity of the liquid jet, ho is the 

collar height, 8, is the nondimensional temperature for the constant wall temperature and 

Oqis its counterpart for constant wall heat flux. To is the temperature of the disk surface 

for constant wall temperature case, IT is the inlet temperature of the liquid jet, qo is the 

heat flux supplied to the disk for the constant wall heat flux case. Non-dimensionalizing 

the governing equations we obtain, 

i a  
ar 

where Reynolds, Rossby and Peclet numbers are defined as 

Re = - , R o = + , P e = -  UOr, U 2  uoro 
Y 0'0 a 

where Y is the kinematic viscosity and a is the thermal diffusivity, both of which are 

assumed to be constant in the context of this analysis. 

Since r, > h,, then, 5 >> 1 , we can infer that rz  

h0 

Hence the momentum and energy equations take the form 

r" ar 
2 

- ( 5 )  - - 
Pe h, 

(7) 
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Liquid Film Hydrodynamics 

Integrating the momentum equation with respect to Z from 0 to 8 = -, we get, 
6 
h0 

From continuity equation, we can write 

A parabolic radial velocity profile is assumed as, 

iir = a, + q ~ " +  a2Z2 (1 1) 

subject to the boundary conditions of no slip at the wall G r ( Z  = 0) = 0 and no shear at the 

free surface ~ ( 2  = S )  = 0 .  In addition, the total volume flow at any cross-section 

perpendicular to r has to be equal to the inlet flow rate for the case of no vaporization or 

mass loss, these conditions allow determination of coefficients in the velocity profile 

leading to, 

a i r  
az 

Substituting this profile into the integral momentum equation and integrating with respect 

to z , one gets 

In this equation, the first two terms are due to advection, the third term is a result of 

rotation and the term on the right side represents the viscous shear. Equation 13 subject 

to the initial condition s"(? = 1) = 1 was numerically integrated to determine the film 

thickness over the disk surface. Equation (1 3) becomes an algebraic equation for the case 

of negligible inertia in which case the first two terms disappear. The film thickness can 

be written in exact form as, 
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This result is identical to that obtained based on the falling film analysis with gravity 

being replaced by the centrifugal force. Having the liquid film hydrodynamics 

established, we now proceed with the heat transfer analysis in the film. 

Heat Transfer in the Liquid Film 
The heat transfer in the liquid film is analyzed by considering the two cases of 

constant disk surface temperature and constant disk surface heat flux. In either case, 

there is a thermal entry region where the thermal boundary layer lies below the film 

surface as shown in Fig. 1. As it is shown in Appendix A for constant disk surface 

temperature case, the thermal entry region length scales as, 

r*= - [ 1+- :( - ;:j2]'2 
For moderate Peclet numbers, E - 1 (or r* =: r,) since h, << r,, thus allowing us to neglect 

the entry length. 

Constant disk surface temperature case 

For this case, the temperature profile can be constructed as a second order polynomial 

given by, 

de  
dz 

which has to satisfj. the boundary conditions: 8 = 0 at z = 0, - = 0 at z = 8 ~ .  The 

profile satisfying these conditions is, 

Substituting this profile along with the velocity profile into the integral energy equation, 

one obtains, 

Integrating and applying the condition that O m ( ?  = 6 )  = I ,  we get 
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Defining the Nusselt number as, Nu, I - = --- 
k 5 d.? 

1 2 
1 ?& 5 - - [ Pe r. 6 4 

Nu, =27exp r0 -- - -Jy+-(6 -a*) 
hod 

The area-averaged Nusselt number can be defined as 
1 7  
I N U ,  = JNur 2JrrdF 

n(F2 -1) , 
Constant heatflux case: 

The temperature profile for the constant heat flux case is subject to 

31 = 0 ,  i.e., prescribed heat flux at the wall, qo and adiabatic free surface. With these 
dZ -8 

conditions, the temperature profile becomes, 

where u0 is a parameter which is a function of r. Substituting this temperature profile 

into the integral form of the energy equation and integrating, one gets, 

d8 2 d 8  8d8  
d? 

subject to the initial value of a,(? = 1). While this value can be taken as ao( i )  = 1 based 

on Oq (i‘ = 1) = 1 in eqn. (22), a better estimate is provided by integrating the energy flux at 

i‘ = 1 , 1; [ + l]di = 1 , yielding a, (? = 1) = 1 / 3 . For the case of negligible inertia, an 

analytical solution for a, can be obtained as described in Appendix B, 

Nusselt number for the case of constant disk surface heat flux can be found from, 

9 



r, 
E- 

Nu, - hr, = q o c  
k k[T("zO)-?] a,h, 

For the case of negligible inertia, 

The averaged Nusselt number is obtained by integrating the local Nusselt number over 

the disk surface based on eqn. (21). In the following, the results obtained from this 

analysis are presented and discussed. 

Results and Discussion 

The calculation of the liquid film thickness and Nusselt numbers for constant wall 

temperature and constant heat flux cases were performed for a range of inlet Reynolds 

numbers Re = and Rossby numbers Ro = +. The range of parameters were U2 

V r, 
chosen to cover those reported in the experiments of Ozar et al [12,22] and the recent 

numerical simulations of Rice et a1 [23]. The value of the geometric parameter 2 was 

taken to be same as in the experiments with a value of 200. In the following, the 

computed results are presented and compared with numerical and experimental results 

mentioned above. 

r 

ho 

Figure 2 shows the variation of the film thickness over the disk surface with 

Reynolds number for two values of Rossby number. At low rotation speeds (Ro = lOOO), 
the film thickness initially increases along the disk radius and then begins to thin out at 

outer radii due to effect of rotation as seen in Fig. 2a. The film thickness decreases with 

increasing inlet velocity or Reynolds number and the peak film thickness location shifts 

to larger radii with increasing Re. The analytical result given by eqn. (14) is also shown 

in Fig. 2a for Re = lo4. It is seen that the two results agree at large radii where the 

inertial effects are diminished and the negligible inertia result agrees with the full 

solution. At high rotation rates (Ro = 0.5), film thickness exhibits a radial decay with the 

film thickness still decreasing with increasing inertia as shown in Fig. 2b. The variation 
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of the film thickness for high levels of rotation is well represented by eqn. (14) as seen by 

the agreement at Re = lo4. The effect of varying the rotation speed on the film thickness 

at a constant value of inlet velocity or Reynolds number is depicted in Fig. 3. With 

increasing rotation speed (i.e. decreasing Ro), the film thickness decreases. The trend at 

high Roy which exhibits a maximum in the film thickness, gradually changes to a radially 

decaying film thickness at high rotation speeds (Le. low Ro). This change appears to 

happen at around Ro = 10 for this case. The computed results are in reasonably good 

agreement with the experimental results reported by Ozar et a1 [22] as shown in Fig. 4. 

The integral model captures the trend of liquid film thickness variation at different 

Reynolds and Rossby numbers. Due to the uncertainties in the experimentally measured 

film thickness, a closer agreement can not be expected. 

Figure 5 shows the variation of the Nusselt number over the disk surface for the 

case of constant wall temperature. At low rotation rates (Ro = lOOO), shown in Fig. 5a, 

the Nusselt number decreases continuously with increasing radial distance. The 

magnitude of Nusselt number is highest at the entrance since the temperature gradient, 

and heat flux is the highest there at the liquid-disk interface. With increasing radial 

distance, the liquid film temperature increases and consequently the heat flux diminishes 

leading to a decrease in the heat transfer coefficient and Nusselt number. The value of 

Nusselt number approaches a constant value at large radii. Nusselt number increases 

with increasing inlet velocity or Reynolds number as expected. At high rotation speeds, 

shown in Fig. 5b, the trend of Nusselt number is quite different in that it increases from 

the inlet to a maximum value and decreases from that point on. The magnitude of 

Nusselt number increases with increasing Reynolds number with the peak Nusselt 

number location shifting radially outward. This prounounced increase in Nusselt number 

is due to the thinning of the liquid film due to inertia and rotation. The decrease at larger 

radii is due to the effect of heating of the liquid film reducing the temperature gradient 

and heat flux. At high rotation rates, Nusselt number increases significantly above the 

values for low rotation rates suggesting the strong enhancement of heat transfer due to 

rotation. 

To better visualize the effects of rotation at a fixed value of inlet velocity or 

Reynolds number, Figure 6 shows the effect of Rossby number on Nusselt number 
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variation. At low rotation speeds (i.e. high Ro), the Nusselt number is highest at the 

entrance and decreases with increasing radial distance. At about Ro = 1, the trend 

exhibits an increase of Nusselt number from the inlet reaching a maximum value 

followed by a decay. At higher rotation rates (Ro = 0.5), this trend of Nusselt number 

becomes more pronounced with the maximum values of Nusselt number being an order 

of magnitude higher. The peak Nusselt number location shifts to smaller radii indicating 

that the rotational effects are felt at smaller radii with increasing rotation speed. 

In Figure 7, the results are shown for the constant heat flux case at two values of 

Rossby number. At low rotation rates (i.e. high Ro), the Nusselt number variation is 

similar to that of constant wall temperature case (shown in Fig. Sa) except that the 

Nusselt number magnitude is higher than that for the constant wall temperature. The 

increase in Nusselt number is expected since the heat flux at the disk surface is 

maintained in this case. For the high rotation speed (Ro = 0.5), Nusselt number exhibits a 

decay with increasing radial distance at low Reynolds number as the temperature of the 

liquid at the disk surface increases with increasing radial distance, similar to the constant 

wall temperature case. With increasing Reynolds number, the Nusselt number magnitude 

increases and it exhibits a maximum. 

Figure 8 illustrates the influence of rotation on the Nusselt number variation with 

at a fixed value of inlet velocity or Reynolds number. It is found that rotation enhances 

the heat transfer into the liquid film very significantly. As the rotation rate reduces, the 

maximum in the Nusselt number variation disappears and it decays continuously with 

increasing radial distance. The location of the peak shifts to smaller radii with increasing 

rotation rate (i.e. decreasing Ro) since the effects of rotation are felt fiu-ther in with 

increasing rotation. 

Figure 9 shows the comparison of the integral method results with the full 

numerical simulation results of Rice et aZ[23]. The comparisons are shown for Re = 1.42 

lo4 and 2.84 lo4 for two rotation speeds of 50 and 100 rpm. The agreement between the 

integral model and numerical simulations appears to be good with maximum deviations 

of about 20 %. It is conceivable that the differences are due to variable fluid properties 

not accounted for in the integral model as well as the more detailed treatment afforded in 

the numerical model, such as conjugate heat transfer, evaporation effects etc. Figure 10 
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displays the comparison of experimental results with the integral model for two cases. It 

is found that the experimental results good agreement with the model for these two cases 

with the radial variation of experimental Nusselt number being slightly less. Considering 

the uncertainty of the experimental data and the simplifications employed in the model, 

the level of agreement is remarkable. 

The area averaged Nusselt numbers over the disk surface are shown in Figs. 11 

and 12 respectively for the cases of constant wall temperature and constant heat flux. 

The trend of average Nusselt number is approximately linear for both cases with slightly 

decreasing curvature for the constant wall heat flux at low rotation rates (Le. high Ro). 

The influence of Rossby number is nonlinear however and the average Nusselt number is 

found to scale as %xRo-"'where m-0.55 for constant wall temperature and 

rn = 0.18 for constant heat flux. The stronger dependence for constant wall temperature 

can be rationalized based on the fact that heat transfer into the film is enhanced more for 

the constant wall temperature case in contrast to the constant wall heat flux. 

Finally, Figure 13 shows the comparison of the analytical solution given by eqn. 

(26) for the negligible inertia case with the full solution for Re = lo4 and Ro = 0.5. It is 

seen that the two solutions differ substantially near the entrance region, but merge at 

large radii where the inertial effects have diminished. 

Concluding Remarks 
A detailed integral analysis of flow and heat transfer in a thin liquid film flowing 

over a rotating disk was formulated to determine the liquid film thickness and Nusselt 

numbers for both constant wall temperature and heat flux cases. The results are 

presented for a range of inlet liquid flow rates or Reynolds numbers and Rossby numbers. 

It is found that the integral model captures the variation of film thickness over the disk 

radius for a range of parameters representing both inertia and rotation dominated regimes. 

At low rotation rates corresponding to high Rossby numbers, the film thickness grows 

radially until the centrifugal effect becomes sufficiently strong at large radii. For high 

inlet flow rates or Reynolds numbers, the film thickness decreases radially with decay 

being stronger with increasing inertia. For low inertia, the film thickness increases 

radially due to significant retardation of the film flow by viscosity. In cases where both 
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inertial and rotational effects come into play, the film thickness first increases reaching a 

maximum followed by radial decay. The location of maximum film thickness changes 

based on the values of Reynolds and Rossby numbers. For cases dominated either by 

high rotation or low inertia, the film thickness is well represented by the analytical 

expression obtained for negligible inertia. 

The analysis of the heat transfer in the liquid film indicate that the Nusselt number 

exhibits a radial decay at low rotation rates (Le. high Ro) for both cases of constant wall 

temperature and constant heat flux. The magnitude of Nusselt number is linearly 

dependent on inlet Reynolds number for both cases. However, the Nusselt number 

values for constant wall heat flux are greater than those for the constant wall temperature. 

At high rotation speeds and inlet Reynolds numbers, the Nusselt number first increases, 

reaches a peak and then displays a radial decay. The radial location of the peak Nusselt 

number shifts to larger radii with increasing Reynolds number and this is due to the 

competing effects of inertia and rotation on the film thickness and heat transfer 

characteristics. Effect of Rossby number appears to be significantly non-linear and high 

rotation rates can produce significant enhancement in heat transfer for both cases of 

constant wall temperature and heat flux. In addition to local Nusselt number variation, 

the disk surface area averaged Nusselt numbers were computed for both cases. They also 

show an approximately linear variation with respect to inlet flow rate or Reynolds 

number and inverse power law dependence on Rossby number. Rossby number 

dependence is stronger for the constant wall temperature case. 

The results obtained from this integral analysis were compared with those from a 

recent numerical study of Rice et aZ[23] as well as the experiments of Ozar et aZ[21,22]. 

Both comparisons indicate good agreement with the integral model. Finally, the integral 

analysis provided analytical and semi-analytical expressions for the local Nusselt number 

in the limit of negligible inertia for the cases of constant wall heat flux and constant wall 

temperature respectively. 

14 



Acknowledgments 
The work presented in this article was funded by NASA Microgravity Fluid Physics 

Program under Grant No. NCC3-789 with Dr. S. Sankaran as the grant monitor. 

References 

1. Webb, B. W. and Ma, C. F., 1995, “Single phase liquid impingement heat transfer,” 
Adv. Heat Transfer, 26, pp. 105-217. 

2. Watson, E. J.,1964, “The radial spread of a liquid jet over a horizontal plane,” J.  
Fluid Mech., 20, pp. 48 1-499 

3. Thomas, S., Hankey, W., Faghri, A., Swanson, T. ,1990, “One-dimensional analysis 
of the hydrodynamic and thermal characteristics of thin film flows including 
hydraulic jump and rotation,” ASME J.  Heat Transfer 112:728-735 

4. Rahman, M.M., Faghri, A., Hankey, W., 1991, “Computation of turbulent flow in a 
thin liquid layer of fluid involving a hydraulic jump,” J. Fluids Engr. 113 pp. 
411-418 

5 .  Avedisian, C. T. and Zhao, Z, 2000, “The circular hydraulic jump in low gravity,” 
Proc. Roy. SOC. London, 456 pp. 2127-2151 

6. Labus, T.L. and DeWitt, K.J., 1978, “Liquid jet impingement normal to a disk in zero 
gravity,” J. Fluids Engr. 100, pp. 204-209 

7. Miyasaka, Y.,1974, “On the flow of a viscous free boundary jet on a rotating disk,” 
Bull J. SOC. Mech. Eng. ,17, pp. 1469-1475 

8. Rahman, M.M. and Faghri, A.,1992, “Numerical simulation of fluid flow and heat 
transfer in a thin liquid film over a rotating disk,” Int. J.  Heat Mass Transfer, 35, pp. 

9. Buyevich, Y.A. and Ustinov, V.A., 1994, “Hydrodynamic conditions of transfer 
processes through a radial jet spreading over a flat surface,” Int. J. Heat Mass 
Transfer, 37, pp. 165-1 73 

1441-1453 

10. Rao, A. and Arakeri, J.H., 1998, “Integral analysis applied to radial film flows,” Int. 

11, Azuma, T .  and Hoshino, T. ,1984, The radial flow of a thin liquid film, lst-4th 

J.  Heat Mass Transfer, 41, pp. 2757-2767 

Reports. Bull. J.  SOC. Mech. Eng., 27, pp. 2739-2770 

12. Ozar, B., Cetegen, B. M. and Faghri, A., 2003, “Experiments on the flow of a thin 
liquid film over a horizontal stationary and rotating disk surface,” Exp. Fluids, 34, pp. 

13. Chadhury, Z. H., 1964, “Heat Transfer in a Radial Liquid Jet,” J. Fluid Mech., 20, 

556-565 

pp. 501-511. 

15 



14. Wang, X. S., Dagan, Z., and Jiji, L. M., 1989, “Heat Transfer Between a Circular 
Free Impinging Jet and a Solid Surface with Non-Uniform Wall Temperature of Wall 
Heat Flux: 1 : Solution for the Stagnation Region, ” Znt. J. Heat Mass Transfer, 32, pp. 
1351-1360. 

15. Carper, H. J., and Defenbaugh, D. M., 1978, “Heat Tramfer from a Rotating Disk 
with Liquid Jet Impingement,” Proceedings of 6th Int. Heat Transfer Conference, 
Toronto, pp. 113-1 18. 

16.CarperY Jr., H. J., Saavedra, J. J., and Suwanprateep, T., 1986, “Liquid Jet 
Impingement Cooling of a Rotating Disk,’’ ASME J, Heat Transfer, 108, pp. 
540-546. 

17.VaderY D. T., Incropera, F. P., and Viskanta, R., 1991, “Local Convective Heat 
Transfer From a Heated Surface to an Impinging, Planar Jet of Water,” Znt. J. Heat 
Mass Transfer, 34, pp. 61 1-623. 

18. Stevens, J., and Webb, B. W., 1991, “Local Heat Transfer Coefficients Under and 
Axisymmetric, Single-phase Liquid Jet, ”ASMEJ. Heat Transfer, 113, pp. 71-78. 

19. Faghri, A., Thomas, S., and Rahman, M. M., 1993, “Conjugate Heat Transfer from a 
Heated Disk to a Thin Liquid Film Formed by a Controlled Impinging Jet,” ASME J. 
Heat Transfer, 115, pp. 116-123. 

20. Aoune, A., and Ramshaw, C., 1999, “Process Intensification: Heat and Mass 
Transfer Characteristics of Liquid Films on Rotating Discs,” Int. J. Heat Mass 
Transfer, 42, pp. 2543-2556. 

21. Nusselt WZ (1 9 16) Die Oberflachenkondensation des Wasserdampfes. 2. Ver Deut. 
Ig., 60, pp. 541-546 

22. Ozar, B., Cetegen, B. M., Faghri, A., “Experiments on Heat Transfer in a Thin Liquid 
Film Flowing Over a Rotating Disk,”ASMEJ. Heat Transfer, 126, pp. 184-192 

23. Rice, J., Faghri, A., Cetegen, B. M., “Analysis of a free surface film from a 
controlled liquid impingement jet over a rotating disk including conjugate effects 
with and without evaporation”, Paper No. HT2005-72103, Proc. HT 2005 ASME 
Summer Heat Transfer Conference, July 17-22, 2005, San Francisco, CA, U.S.A. - 
(also submitted to Int. J .  Heat Mass Transfer) 

16 



APPENDIX A 

For determining the thermal entry length for the constant disk surface temperature case, 

the temperature profile in this region is taken as, 

2 6, 
4 s Introducing, i E 7 and /3 = - , the previously determined velocity profile and the 

nondimensional temperature profiles become, 

substituting into the integral energy equation and integrating to 2 = 1 ,  one gets 

sincep < l,p3 << p2 , the equation governing becomes, 

with the condition that f?(F = 1) = 0 .  The solution is obtained by direct integration as, 

-, 
If we assume that 6 = 1 ,  then the integral can be evaluated as, 

(A51 

Since h, << v,, then, E = 1 or vt =: v,. The smallness of the entry region length is utilized 
in the heat transfer analysis presented in the main body of the paper. 
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APPENDIX B 
Considering the integral momentum equation given by eqn. (9), neglecting the inertial 

terms on the left hand side allows the direct integration between 2 = 0 and ,f = 8 to yield 

the velocity profile, 

The corresponding film thickness can be obtained upon integration for the total 

volumetric flow rate of liquid at any radius leading to the expression for 8 given by eqn. 

(14). Substitution of this velocity profile into the energy integral equation leads to the 
following differential equation for a,, 

2 113 213 113 113 

- da, L ( L )  + -(-) 3ll37 Ro (t) 
dF RePr h, 30 Re -$( (E) a,?-8'3 (B2) 

Since r, =. h, , the last term on the right hand side is small compared to the others. If 

neglected, eqn. (B2), becomes directly integrable. Applying the condition 

a,(?' = 1) = 1/3,  we get, 

18 



I 
I 

I 
I 

Fig 1: Schematics of the thin film over a rotating disk 
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