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Path Integral Monte Carlo was used to calculate the Bose-Einstein condensate fraction at the
surface of a helium film at T = 0.77 K, as a function of density[1]. Moving from the center of the
slab to the surface, the condensate fraction was found to initially increase with decreasing density
to a maximum value of 0.9, before decreasing. Long wavelength density correlations were observed
in the static structure factor at the surface of the slab. A surface dispersion relation was calculated
from imaginary-time density-density correlations.

Similar calculations of the superfluid density throughout 4He droplets doped with linear impurities
(HCN)n are presented[2]. After deriving a local estimator for the superfluid density distribution, we
find a decreased superfluid response in the first solvation layer. This effective normal fluid exhibits
temperature dependence similar to that of a two-dimensional helium system.

I. BOSE CONDENSATION AT A FREE 4HE
SURFACE

It has been suggested[9] that the condensate fraction in
the low density region near a 4He surface is significantly
larger than the value in bulk helium of 0.1[7]. Varia-
tional Monte Carlo (VMC) simulations by Lewart and
Pandharipande[8] of small (N = 70) 4He droplets using
a Jastrow one-body (JOB) trial wave function give evi-
dence for a condensate fraction which approaches unity
as the density goes to zero in the helium surface. How-
ever, subsequent calculations by Galli and Reatto[10]
have shown that the condensate fraction throughout a
helium surface computed using VMC is highly sensitive
to the choice of trial wave function. They found that cal-
culations performed using a shadow wave function with
a glue term (G-SWF) have enhanced density-density cor-
relations at long wavelengths[11], and a maximum con-
densate fraction of only 0.5. Significant ripplon excita-
tions are expected to reduce the condensate fraction at
the surface, as fewer atoms are able to occupy the zero-
momentum state. Quantum evaporation experiments[6]
can be interpreted as providing evidence of an enhanced
condensate fraction.

To avoid the problem of trial function bias and to in-
clude finite-temperature effects, we have used Path Inte-
gral Monte Carlo (PIMC) to calculate the density-density
correlation functions and condensate fraction at the sur-
face of liquid 4He. We have also used imaginary-time cor-
relation functions to calculate the dispersion relation of
surface excitations in a free helium surface, and find good
agreement with experimental thin film measurements.

II. PIMC SIMULATION

Our simulation system consisted of 4He atoms, inter-
acting pair-wise with a very accurate potential[12]. Peri-

odic boundary conditions were used with a box size and
initial conditions chosen to favor a double-sided film ori-
ented perpendicular to the z-axis. To maintain a stable
film and minimize finite size effects, we added an exter-
nal potential determined from the long-ranged part of
the interaction potential and the missing atoms from the
other side of the slab, so that atoms on each of the two
surfaces saw a potential as if they were at the surface of
a semi-infinite slab[13].
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FIG. 1: PIMC density distribution, for an N = 432, T =
0.77 K semi-infinite 4He slab. The N = 216 results are in-
distinguishable. The dashed line shows the effective helium
density felt by atoms at z > 0.

Most of the calculations were performed with T =
0.77 K, with an imaginary time step of τ = 1/20 K−1. We
performed simulations of helium slabs containing N =
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216 and N = 432 atoms, with dimensions 24× 24× 17 Å
and 34× 34× 17 Å, respectively. Lower temperature cal-
culations were also done to determine the temperature
dependence.

III. THE STATIC STRUCTURE FACTOR

In order to determine the extent to which ripplons are
present in a free helium surface, we estimated density-
density correlations at the surface[11] with the static
structure factor defined as:

S(k||; z, z′) = 〈ρk||(z)ρk||(z
′)〉 (3.1)

where ρk(z) ≡ 1√
N(z)

∑
i

eik·riδ(zi−z), N(z) is the num-
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FIG. 2: S(k||, z, z) vs. k|| throughout the surface region in an

N = 432 4He slab, calculated with PIMC, for T = 0.77 K.

ber of particles in the bin at position z and k|| is the wave
vector parallel to the surface. This measures the correla-
tion between density fluctuations at vertical positions z
and z′.

Fig. 2 shows S(k||, z, z) curves as a function of density
(z). Each curve is the average of both sides of the slab
of eight identical simulations (a total of 7 × 105 Monte
Carlo passes). At densities of ρ(z) = 0.015 Å−3 and
below there is a small enhancement of long-wavelength
density-density correlations at k|| = 2π/L = 0.18 Å−1,
which is evidence for ripplons. However, the curves are
closer to the VMC calculations of Galli and Reatto which
used a JOB trial wave function than those which used
the G-SWF form. This does not imply that the JOB
trial wave function is well-suited to representing an in-
homogeneous helium system such as a helium slab, but

rather the degree to which the G-SWF significantly over-
estimates the effect of ripplons in a free helium surface.
Calculations at N = 216 and T = 0.77 K agree with the
results of Fig. 2 within statistical error, indicating that
finite-size effects are negligible. At T = 0.38 K, we find a
measurable decrease in the long-wavelength correlations.
Further studies are needed to establish the temperature
dependence.

IV. THE EXCITATION SPECTRUM

The excitation spectrum can be estimated with path
integrals using imaginary-time correlation functions[14].
The dynamic structure factor is related to the imaginary-
time density-density correlation function by:

F (k, t) =
∞∫
−∞

dω e−tω S(k, ω) (4.1)

= 1
N 〈ρk(t)ρk(0)〉 . (4.2)

To select out the excitations at the free surface, we want
to calculate the imaginary-time correlation function of
propagating surface modes. W. F. Saam[15] proposed
that the lowest quantized hydrodynamic mode (capillary
wave) at a free helium surface will have the form

φk0(r, t) = φk0(z) eik·r|| e−iωk0t (4.3)

where

φk0(z) ∝ e−κ(k)z (4.4)

and the decay constant κ(k) is defined as

κ(k) = −bk + (k2 + b2
k)1/2 (4.5)

bk ≡ σ0k2

2ρ0s2 (4.6)

where σ0 is the zero-temperature surface tension, ρ0 is
the bulk density, and s is the zero-temperature sound
velocity. To calculate the dispersion relations for excita-
tions of this form, we use ρ̃k in Eq. (4.2), defined as

ρ̃k =
∑

i

eik||·ri|| φk(zi) (4.7)

where

φk(z) = e−κ(k)(z−zc) (4.8)

and κ(k) is defined by Eq. (4.5). We defined zc as the
point in the surface at which the average density was
equal to 10% of the bulk density.

Extracting the dynamic structure factor by inverting
Eq. (4.1) is ill-conditioned in the presence of statistical
noise. It has been shown[16] that a maximum entropy
method greatly increases the numerical stability. In the
maximum entropy method, S(k, ω) is calculated by min-
imizing the function

F(S, α) =
e−(1/2)Q(S)

ZQ
× eα ζ(S)

Zζ
(4.9)
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where Q(S) is the ”likelihood” of the PIMC data given
an S and ζ(S) is the entropy of a given S(k, ω) defined
with respect to some default model, with α an adjustable
parameter (also optimized).
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FIG. 3: Dispersion relation of free surface excitations. The re-
sults calculated from PIMC and maximum-entropy inversion
(filled diamonds) for an N = 216, T = 0.77 K 4He slab are
compared with the experimental thin film data (open circles)
of Lauter et al. and the DFT results (solid line) of Lastri et
al. Also shown is the dispersion relation of bulk 4He at SVP
(dashed line).

The dispersion energy for a given value of k can be
determined from the position of the maximum value of
S(k, ω). Boninsegni and Ceperley[17] found that the po-
sition of the main S(k, ω) peaks for liquid helium agree
quite well with experiment, despite significant broaden-
ing of the excitation spectrum caused by the maximum
entropy procedure. The dispersion energy of the surface
excitations as estimated using this procedure are shown
in Fig. 3. The two lowest data points, at k < 0.5 Å, had
significant fitting error and are only qualitatively reliable.
Otherwise, we see excellent agreement with the experi-
mental thin film data of [3], including the curvature of
the ripplon branch toward the roton minimum, proposed
as evidence for roton-ripplon hybridization[18, 19].

V. THE BOSE-EINSTEIN CONDENSATE
FRACTION

We define the condensate fraction in the slab geometry
by the fraction of atoms at a given value of z having pre-
cisely k|| = 0. (Because [k||, z] = 0, we can measure the
momentum parallel to the surface simultaneously with
the z-position.) The momentum distribution at a dis-

tance z0 from the center of the slab is given by

nk||(z0) =
1

(2π)2

∫
dr|| e−ik||·r|| n(r||; z0) (5.1)

where the off-diagonal single particle density matrix is:

n(r; z) =
1

ρ(z)Z

∫
dr1 · · · drN ρ(r1, r2, · · · rN , r1+r, r2, · · · rN ;β).

(5.2)
and ρ is the many-body density matrix, Z = Tr(ρ) is the
partition function, and r|| ≡ |r||− r′|||. This function can
be calculated from PIMC[20] by performing simulations
with a single open path. We fix the endpoints of the
open path at z = z0, and calculate the distribution of
end-to-end distance n(r||; z0). The condensate fraction
at a given point in the surface is:

n0(z0) =
n(r|| →∞; z0)
n(r|| → 0; z0)

. (5.3)

Using PIMC, we calculated n(r||, z) throughout the
slab. Nonlinear least-squares fitting was used in the re-
gion of r|| < 1.5 Å to get an estimate of n(r|| = 0, z),
and n(r|| → ∞, z) was calculated by averaging over the
region at large r|| where n(r||, z) is flat. At the low-
est densities, it is not clear whether the n(r)’s have
reached their asymptotic limit within the finite simula-
tion box. Thus, for those densities, ( for N = 216 below
ρ(z) = 0.001 Å−3) our results are upper bounds to the
condensate fraction.

The condensate fraction n0(z) is plotted as a function
of average density ρ(z) in Fig. 5, for both N = 216 and
N = 432 helium slabs. As one moves through the surface,
the condensate fraction initially increases with decreas-
ing density, due to the decreased zero-point motion from
helium-helium interactions, reaching a maximum value
of 0.93(3) at ρ(z) = 0.002 Å−3. As the average den-
sity decreases below this point, the condensate fraction
begins to decrease, further evidence for correlated den-
sity fluctuations due to ripplons at the surface. This is
in qualitative agreement with the G-SWF VMC calcu-
lations of Galli and Reatto. However, the G-SWF trial
wave function significantly overestimates the degree to
which ripplons are present in the surface.

Our results support the model of a free helium surface
with ripplons, in which the condensate fraction reaches
a maximum at an intermediate density in the liquid-
vacuum interface, before decreasing at lower densities.
Experimental probes of the surface will indeed see an en-
hanced condensate fraction as proposed by Griffin and
Stringari[9].

VI. LOCAL SUPERFLUIDITY DENSITY
ESTIMATOR

In this section, a microscopic Path Integral Monte
Carlo (PIMC) estimator of the local contribution to the
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FIG. 4: n(r||, z) vs r||, throughout the surface region of N =

216 (top) and N = 432 (bottom) 4He slabs at T = 0.77 K,
calculated with PIMC. The slab dimensions were 24×24×17 Å
and 34 × 34 × 17 Å respectively. Density labels correspond
to z = 0, 8, 9, 10, 10.5, 11, 12, 13 Å for N = 216, and z =
0, 9, 11, 12, 13 Å for N = 432.

total superfluid response is presented. The superfluid
density can be defined in terms of the response of the sys-
tem to an imposed rotation. In imaginary-time path in-
tegrals, it is manifested by particle exchange over length
scales equal to the system size. Although superfluid re-
sponse (like conductivity) is not itself a local property, it
is possible to calculate a local contribution to the total
response. In PIMC, the total superfluid response along
the axis of rotation n̂ is proportional to the square of
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FIG. 5: Condensate fraction vs. density throughout the sur-
face region of a T = 0.77 K 4He slab. Also shown are the
VMC calculations of Galli and Reatto.

total projected area of the imaginary-time paths[24]:

ρs

ρ

∣∣∣∣
n̂

=
2m

〈
A2

n̂

〉

βλIc
, (6.1)

where λ = h̄2/2m, β = 1/kBT and Ic is the classical
moment of inertia. To define a local superfluid density
we write:

ρs(r)|n̂ = 2mN
βλIc

〈∫
dr′An̂(r)An̂(r′)

〉

= 2mN
βλIc

〈An̂(r)An̂〉 , (6.2)

where A(r), related to the local angular momentum op-
erator, is defined as

A(r) ≡ 1
2

∑

i,k

(ri,k × ri,k+1) δ(r− ri,k) (6.3)

and An̂ is the n̂-component of the total area of all the
particles. Since Ar integrates to the total area, the lo-
cal superfluid response exactly integrates to the total re-
sponse.

Two types of contributions to the local superfluid den-
sity can be distinguished based on the connectivity of
the instantaneous paths: contributions of particles on
the same chain, which on the average must be positive,
and contributions of particles on different exchange cy-
cles. By reversing the order of one exchange cycle the
contribution from different cycles will change sign; if the
cycles are spatially separated, the magnitude of the con-
tribution will be unaffected, so that their contribution is
much smaller. They will however increase the statistical
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FIG. 6: Average number density of an N = 500 4He-(HCN)3
droplet at T = 0.38 K. The grey scale saturates at ρ =
0.03 Å−3 (black). The dashed lines define the cylindrically-
symmetric region used for averaging superfluid density.

noise of the superfluid density. Numerically we find that
the same cycle contribution accounts for roughly 80% of
the total superfluid density in the systems presented in
this paper.

The local superfluid density estimator used by Kwon
and Whaley[23] defined the effective normal fluid induced
by the anisotropic molecule-helium interaction potential
in terms of the average number density distribution of
paths in exchange cycles of fewer than six atoms. Al-
though qualitatively interesting, this estimator is not the
superfluid response to an imposed rotation, as there is
no direct relation between the number of atoms in a per-
mutation cycle and its area.

VII. SUPERFLUIDITY OF HELIUM DROPLETS
WITH MOLECULAR IMPURITIES

Molecules confined in helium nanodroplets have been
shown to exhibit excitation spectra with clearly re-
solved rotational fine structure consistent with that of
a free rotor, though with an increased moment of inertia.
Grebenev et al.[21] have shown that only a few layers of
4He coating the molecule are required to decouple the im-
purity from the droplet and achieve free rotation. Calle-
gari et al.[22] have suggested that the increased moment
of inertia is due to the hydrodynamic response of the
impurity rotating through the anisotropic helium den-
sity immediately surrounding the molecule. Kwon and
Whaley[23] have proposed a model in which a micro-
scopic normal fluid is induced in the first solvation layer
by the anisotropy of the molecule-helium interaction.

In order to test our estimator, PIMC simulations were
performed on N = 128 and N = 500 4He droplets
doped with (HCN)3 isomers. Nauta and Miller[32] found
that HCN molecules in helium droplets self-assemble into
linear chains spaced roughly 4.4 Å apart. The HCN
molecules in our simulations were fixed along the z-axis
with this spacing. An imaginary time-step of 1/20 K−1

was used. With cylindrical symmetry and precise exper-
imental data over a range of isomer lengths, this system
is well-suited for studying superfluidity at a molecular
interface.

The number density of a doped helium droplet at
T = 0.38 K is shown in Fig. 6. The two-dimensional
areal density of the first solvation layer was 0.12 Å−2,
which is still in the liquid phase for thin 4He films at
these temperatures [25]. Even if the density were large
enough to be solid in a 2D film, the curved geometry of
the film around the HCN molecule could frustrate crys-
talline order, keeping the first solvation layer in a dense
liquid state.
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FIG. 7: Superfluid and number density distributions, aver-
aged over the cylindrically-symmetric region of an N = 500
4He-(HCN)3 droplet at T = 0.38 K.

We define the change in the moment of inertia due to
the helium as the contribution due to the normal fraction
in the first layer rotating rigidly with the impurity:

∆I =
∫

v(ξ)

drm4 r2
⊥ (ρ(r)− ρs(r)) (7.1)

where v(ξ) is the volume of helium a distance ξ away
from the surface of the molecule, r⊥ is the radial distance
from the axis of rotation in cylindrical coordinates. Both
the estimated statistical error and the uncertainty due
to the cut-off were on the order of 10%. The moment of
inertia due to the effective normal fluid in the first sol-
vation layer calculated using our PIMC local superfluid
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density estimator is in reasonable agreement with the ex-
perimental value of ∆I = 1240 amu Å2 [31], within error
bars. We also find that ∆I is effectively independent of
temperature below

T = 1.0 K. This is because the dominant contribution
to the moment of inertia comes from the induced normal
fluid at the ends of the isomer, which is almost completely
due to anisotropy in the molecular potential.

0 2 4 6 8
rcyl (Å)

0

0.2

0.4

0.6

0.8

1

ρ s
/ρ

 (
a
b

o
u

t 
r−

a
x

is
)

T=0.19 K
T=0.38 K
T=0.77 K
T=1.25 K

0 2 4 6 8
rcyl (Å)

0

0.2

0.4

0.6

0.8

1

ρ s
/ρ

 (
a
b

o
u

t 
z−

a
x

is
)

T=0.19 K
T=0.38 K
T=0.77 K
T=1.25 K

FIG. 8: Superfluid density fraction distributions, averaged
over the cylindrically-symmetric region of an N = 128 4He-
(HCN)3 droplet at T = 0.19, 0.38, 0.77, and 1.25 K. The top
graph shows superfluid response about the radial axis, the
bottom graph shows superfluid response about the molecule
axis.

To quantify the reduced superfluid response in the first
layer, we averaged over the cylindrically-symmetric re-

gion of the 4He-(HCN)3 droplet, defined as the region
between z = −3.5 Å and z = 3.5 Å (see Fig. 6). The
results of this averaging are shown in Fig. 7. Taking
the ratio of the superfluid density to the number den-
sity clearly shows a reduced superfluid response in the
first layer for rotation about both the radial axis and the
molecular axis. At zero temperature, there can be no
“normal” density for rotation about the molecular axis
because of the cylindrical symmetry, so this reduction
must be due to thermal excitations.

Shown in Fig. 8 is the temperature dependence of the
superfluid density in the first solvation layer. determined
for N = 128 4He-(HCN)3 droplets at T = 0.19, 0.38,
0.77, and 1.25 K. At first glance, this result appears to
contradict known properties of liquid helium; the super-
fluid density of bulk helium at 0.75 K is 1.000(1). The-
oretical studies of pure N = 128 helium clusters show a
superfluid transition roughly in agreement with the bulk
lambda transition[26]. Pure droplets like those produced
for use in scattering experiments, with several thousand
atoms at T = 0.38 K, should have a superfluid fraction
very close to unity. However, the helium in the first
layer coating the impurity molecule more closely resem-
bles a two-dimensional system than a three-dimensional
system, because the motion of the helium atoms is re-
stricted by the He-HCN potential to be primarily on the
cylindrical surface circumscribing the (HCN)3 impurity.
Two-dimensional helium films have been shown to have a
Kosterlitz-Thouless type of superfluid transition at tem-
peratures significantly lower than Tλ [27, 28]. The reduc-
tion in the transition temperature is due to the reduced
dimensionality, increasing the phase space for long wave-
length fluctuations, and the lowering of the “roton” gap.
A similar temperature-dependent reduction in the super-
fluid response of the first layer of helium surrounding the
ends of the isomer was not observed.

To extract the average superfluid density fraction in
the first layer from the distributions plotted in Fig. 8, we
integrate over the superfluid density and number density
in the first layer and take the ratio:

ρs

ρ
=

r1∫
0

drcyl ρs(rcyl)

r1∫
0

drcyl ρ(rcyl)
, (7.2)

where r1 is the position of the density minimum between
the first and second solvation layers. The average su-
perfluid density in the first solvation layer as a function
of temperature is shown in Fig. 10. The transition is
very broad due to the small number of atoms (∼ 30)
in the first layer. It shows the onset of superfluidity at
roughly 1 K. The superfluid density about the molecule
axis (z-axis) goes to unity as the temperature goes to
zero, as the density is symmetric about this axis. The
normal fluid response from rotating about the radial axis
(r-axis) combines both thermal effects and effective nor-
mal fluid induced by rotating through the anisotropic
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helium density, and because of this, does not go to zero
at T = 0 K[22].

We have determined that only a small fraction of the
particles in the first layer are localized (not permuting)
at T=0.38 K and below, as shown in Fig. 9. Though
many of the permutations are between atoms within the
same layer, the first layer is not cut off from the rest of
the fluid. Below 1 K, the majority of the atoms in the
droplet are part of exchange cycles with atoms in both
the first layer and the rest of the droplet. However, in
terms of excitations, the first layer is well represented as
a 2D superfluid.
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temperature. A permutation cycle was considered to be part
of the first layer if more than M/2 consecutive time slices were
contained within it, where M is the number of imaginary time
slices per atom.

To compare the effects of density on the thermally-
induced normal fluid in the first layer, we calculated the
superfluid density distribution for N = 128 4He-(HCN)3
droplets at T=0.19, 0.38, 0.77, and 1.25 K, with a 4He-
HCN interaction reduced by a factor of two in order to
reduce the density in the first solvation layer. The den-
sity in the first layer decreased by ∼ 15%, correspond-
ing to an average coverage of 0.10 Å−2. The difference
in coverage caused a 20% reduction in the superfluid re-
sponse about the radial axis at T=0.19 K and T=0.38 K.
At higher temperatures, the superfluid response was un-
changed within the estimated error bars. The super-
fluid response about the molecule axis (z-axis) was un-
changed within error bars. This is further evidence that
the normal response in the first layer is due to both the
anisotropy of the molecular potential and thermal exci-
tations.

Using PIMC and a local superfluid density estima-
tor, we find that the first solvation layer surrounding
an (HCN)3 isomer has significant thermal excitations at
temperatures as low as T=0.19 K, with a superfluid tran-
sition temperature similar to that of a two-dimensional
system. It remains to be seen how strongly these thermal
excitations are present in droplets with different dopants;
this is the first observation of thermal excitations in a he-
lium droplet at such low temperatures. Although we find
this effect only makes a small contribution to the moment
of inertia of this system, it may explain the anomalous
Q branch observed in helium droplets doped with long
linear impurities. The role of thermal excitations could
also be tested by varying the temperature of the droplet,
by adding 3He atoms.
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FIG. 10: Superfluid density fraction of the cylindrically-
symmetric portion of the first layer of an N = 128 4He-
(HCN)3 droplet vs. temperature, calculated using Eq. (7.2).
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sented. Also shown are the PIMC results of Gordillo et al
(open diamonds), for a 2D 4He film with σ = 0.051 Å−2. For
reference, the superfluid transition in bulk 4He is included
(dashed line).
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