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The PARCS (Primary Atomic Reference Clock in Space) experiment will use
a laser-cooled Cesium atomic clock operating in the microgravity environment
aboard the International Space Station (ISS) to provide both advanced tests of
gravitational theory and to demonstrate a new cold-atom clock technology for
space. PARCS is a joint project of the National Institute of Standards and Tech-
nology (NIST), NASA’s Jet Propulsion Laboratory (JPL), and the University of
Colorado (CU). This paper concentrates on the scientific goals of the PARCS mis-
sion. The microgravity space environment allows laser-cooled Cs atoms to have
Ramsey times in excess of those feasible on Earth, resulting in improved clock per-
formance. Clock stabilities of 5× 10−14 at one second, and accuracies better than
10−16 are projected. The relativistic frequency shift should be measureable at least
35 times better than the previous best, Gravity Probe A.[1] PARCS is scheduled for
launch in 2007 and will probably fly with the Stanford Superconducting Microwave
Oscillator (SUMO), which will allow a Kennedy-Thorndike type experiment with
an improvement of about three orders of magnitude compared to previous best
results. PARCS will also provide a much-improved realization of the second, and
a stable time reference in space. Significant improvements in testing fundamental
assumptions of relativity theory, and in testing non-metric theories of gravity, are
expected.

1 Introduction

The PARCS laser-cooled atomic clock takes advantage of the microgravity en-
vironment of space to achieve improvements in clock performance. We describe
here the scientific and technical measurements to be performed with PARCS.

1.1 Gravitational Measurements

Relativity predicts how clocks behave while moving or in varying gravitational
fields. The PARCS clock will be used to test such predictions. Improvements
in relativistic frequency shift measurements by nearly two orders of magnitude,
and improvements in Kennedy-Thorndike type tests at an even higher level are
expected. Earth-based tests of Local Position Invariance (LPI) have recently
improved significantly.[2] Space-based tests of LPI therefore no longer offer
important improvements, but can complement such earth-based tests with
clocks of different structures, in a different environment. These measurements
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provide a basis for possible future gravitational experiments in highly elliptical
earth orbit or for a solar probe.

1.2 Other Technical Measurements

The PARCS clock will realize the second’s definition approximately ten times
more accurately than that now done on earth. It can provide accurate time
interval and frequency signals to laboratories worldwide, thus contributing to
the coordination of clocks maintained by standards laboratories around the
world. Since the ISS will be above the troposphere and part of the ionosphere,
propagation-delay variations for signals traveling between GPS satellites and
the ISS will be smaller than those observed on earth. PARCS provides an op-
portunity to study the clocks, ephemerides, and propagation delay mechanisms
in GPS with high precision.

1.3 Atomic Clocks in Microgravity

Earth-based clocks using neutral atoms are limited in accuracy by strong grav-
itational forces which pull atoms downward out of the apparatus and limit the
interaction time over which their resonance frequency can be measured. On
earth this time limit, attained in laser-cooled cesium-fountain clocks, is about
one second.[3] In the ISS microgravity environment, atom-observation time
will be increased by an order of magnitude or more. The resonance linewidth
decreases as observation time increases, which simplifies locating the center
of the resonance. Many systematic frequency shifts scale as the observation
time, so accuracy is improved. We project a fractional frequency uncertainty
of 5 × 10−17 (for an averaging time of the order of 10 days) for PARCS. The
best earth-based atomic clocks have an uncertainty of order 1 × 10−15 [3,4,5].

The best configuration for a very slow-atom clock in space is the same
as that of the traditional atomic-beam clock, but the space clock will involve
balls of laser-cooled atoms rather than a continuous beam of thermal atoms. At
the projected stability σy(τ) = 5 × 10−14τ−1/2, the projected accuracy of the
PARCS clock cannot be achieved without the ISS microgravity environment.

1.4 Concurrent Flight with Other Experiments

Concurrent flight with other clock experiments would provide opportunities
for useful comparisons among clocks of different structures. Stanford’s su-
perconducting microwave oscillator (SUMO) is scheduled to fly with PARCS.
Other possibilities include RACE, a rubidium atomic-clock experiment; ACES,
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Figure 1: Allan deviation of the PARCS cesium clock showing averaging times τ (in seconds)
needed to achieve various measurement uncertainties.

Europe’s Atomic Clock Ensemble in Space; the cooled-sapphire oscillators de-
veloped at JPL and the University of Western Australia; and the linear-ion
clock developed at JPL. In particular, concurrent flight of PARCS and SUMO
will allow a Kennedy-Thorndike experiment with a projected performance 770
times greater than previously achieved on earth. A slight improvement in the
Michelson-Morley experiment can also be achieved.

2 Experimental Objectives

Relativistic effects on clocks in low-altitude earth orbits can be characterized
by the orders of magnitude of the fractional frequency shift they cause. For
example, first-order Doppler shifts are of order v/c ≈ 10−5 for an orbiting
clock, where v is the spacecraft speed in a local, freely-falling, earth-centered
inertial frame and c is the defined speed of light. If Φ represents the Newtonian
gravitational potential at the location of the clock, then gravitational frequency
shifts and second-order Doppler shifts are of order Φ/c2 ≈ (v/c)2 ≈ 10−10.
The data analysis technique that is planned for PARCS is discussed in the
Appendix. It uses only even-order terms; fortunately fourth-order terms are
negligible. Fig. 1 shows the projected Allan Deviation of PARCS as a function
of averaging time τ . The absolute uncertainty is projected to be 5 × 10−17,
after about 12 days of averaging. We assume a time-transfer uncertainty (to the
earth) with a stability of 220 ps over at least 12 days. We assume the following
orbital parameters: altitude 400 km, inclination 51.6◦, and eccentricity 0.001.
Then one pass over a fixed ground station takes about 400 s. The orbital period
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is about 5500 s, and during 1 day the satellite will be in position to exchange
direct transmission with a single ground-based reference during four or five
passes. During a single pass, the time available for direct frequency comparison
with a ground-based reference clock is not sufficient to realize the full capability
of the PARCS clock. Frequency comparisons are instead expected to use GPS
satellites as intermediaries, which do not require such line-of-sight exchange.

2.1 Measurement of the Gravitational Frequency Shift

Here the space-borne clock’s frequency is compared with the frequency of a
clock on the earth employing a measurement of the accumulated phase of the
orbiting clock (see Appendix). Accumulated phase measurements make best
use of the long-term stability of the space-borne clock.

The ISS altitude is only about 400 km, so the second-order Doppler shift is
the dominant contribution to the net frequency shift. The fractional frequency
shift due to second-order Doppler (time dilation) is approximately 3 × 10−10,
while that due to gravitation is about 4×10−11. Significant contributions come
from the monopole potential of the earth, the quadrupole moment (≈ 3×10−14)
and a few higher moments. The Stokes coefficients are known sufficiently well
known[6] that uncertainties in a frequency-shift test, arising from uncertainties
in the Stokes coefficients, are negligible.

One pass is too brief to yield scientifically significant new results with di-
rect frequency comparison to an earth-bound standard. However, with the
accumulated-phase measurement method, the long-term stability of the clock
can be used to advantage, since many passes over the ground station, lasting
for days, are available for the measurement. Fig. 2 shows the results of a
covariance analysis for this experiment in which time transfer errors, clock sta-
bility, tracking errors, and inaccuracy of the ground clock used for comparison
have been accounted for. If the experiment lasts only a few hundred seconds,
the uncertainty in determining the fractional frequency shift is dominated by
the time-transfer uncertainties. Eventually these become small compared to
clock instabilities. At long times, the uncertainty of less than 2 parts per mil-
lion is dominated by the inaccuracy of the ground clock (frequency uncertainty
of 5 × 10−16). The level at which the corresponding test of GR was achieved
in Gravity Probe A was 70 parts per million,[1] so the proposed experiment
should result in improvement of measurement of the total gravitational fre-
quency shift by between one and two orders of magnitude. To obtain this
result, satellite position uncertainties of less than 50 cm must be achieved.
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Figure 2: The total measurement uncertainty as a function of averaging time τ (in seconds)
for the total frequency shift using the accumulated-phase measurement method. Beyond
about 105 seconds, the uncertainty in the measurement drops below a value of 2 ppm.

2.2 Second-Order Doppler Shift

Measurement of the second-order Doppler shift would test Local Lorentz In-
variance (LLI), at an uncertainty comparable to that of the best previous
test. In the Mansouri-Sexl test theory of special relativity,[7] the time dila-
tion terms are multiplied by a coefficient α, where it is currently known that
α = −1/2 ± (1 × 10−6), a result obtained using fast 20Ne atoms.[8] This ex-
periment will probe the effect in a different parameter range.

2.3 Test of Local Position Invariance (LPI)

LPI implies that two clocks of different structure but equal frequencies should
suffer identical frequency shifts when moved together through a gravitational
field. For such tests the longer-term stability of the clocks is relevant, rather
than accuracy. The same control of systematic effects that yields high accuracy
also leads to high stability. LPI can still be tested with stable, (but possibly
inaccurate) clocks by studying variations in frequency differences as the orbit
radius and orbital speed vary. A highly eccentric orbit is most desirable. If
LPI is violated, then for nearby clocks A and B ∆f/f = cAB∆Φ/c2, where ∆Φ
is the change in the gravitational potential of the clocks, δf = fA − fB , and
f = fA ≈ fB . In general relativity (GR) the coefficient cAB is exactly zero. A
recent experiment, lasting many months, made use of variations in the sun’s
potential arising from earth’s orbital eccentricity.[2] An upper limit cAB ≤
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2.1 × 10−5 was obtained, a significant improvement over the previous best[9].
For a clock on the ISS, one may expect a variation in earth’s gravitational
potential of ≈ δΦ/c2 ≈ 1.3 × 10−12. If the comparison between clocks can be
performed at the full stabilities of PARCS and SUMO, then the value of cAB

can be tested in 30 days at a level such that the error in cAB is

∆cAB < 9 × 10−6 . (1)

This is only a small improvement, but complements the earth-based experi-
ments by using clocks of markedly different internal structure. A larger orbital
eccentricity for the ISS would benefit this comparison even more.

2.4 Kennedy-Thorndike Experiment

For this experiment, the laser-cooled cesium clock is compared to a clock (such
as SUMO) with a resonance based on the length of the oscillator cavity. This
oscillator is analogous to an arm of an optical interferometer. As the spacecraft
turns, the oscillator cavity turns, and the frequency of the resonance could be
influenced by any spatial anisotropy in the speed of light. In contrast, the
cesium frequency is not expected to change since any cavity pulling associated
with changes in the microwave cavity of this clock is negligible. Comparison
of the cesium frequency with that of SUMO thus tests for spatial anisotropy.

Mansouri and Sexl’s [7] theory provides a basis for analysis of interferom-
eter experiments testing local Lorentz invariance. Stability, not accuracy, of
the laser-cooled clock for an orbital period is crucial in performing such tests.
Also, one can hope to reach a precision better than the absolute uncertainty of
the clock (5×10−17) because the signals have a characteristic signature due to
orbital motion that can be used to average down the noise over many orbits.

Assuming the existence of a preferred frame (e.g., one at rest with respect
to the cosmic microwave background radiation), in which the speed of light is
isotropic, then in a laboratory moving with velocity v relative to this frame,
the two-way speed of light propagating at angle θ from v is given by

c(θ)/c = 1 + (1/2 − β + δ)v2/c2 sin2 θ + (β − α − 1)v2/c2 , (2)

where α, β, and δ are parameters (to be studied experimentally) introduced
in the Mansouri and Sexl test theory. In special relativity the time dilation
parameter α = −1/2; the Lorentz contraction parameter β = 1/2; and δ =
0. (δ describes contraction normal to v.) The light speed c(θ) in Eq. (2)
determines the frequencies of a local cavity oscillator of fixed length L.
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The parameter (β−α−1) is measured in a Kennedy-Thorndike experiment.
The square of the clock’s velocity relative to the preferred frame should be

v2 = (vsun + vearth + vsat)
2 (3)

where the terms on the right side of Eq. (3) are respectively, the velocity of
the sun relative to the preferred frame (which could be taken to be 377 km/s
derived from the anisotropy of the cosmic background blackbody radiation),
plus the velocity of the earth relative to the sun, plus the velocity of the
satellite relative to earth. The coefficient of the last term in Eq. (2) can
be quite significant. One contribution to the fractional frequency shift of the
cavity oscillator is a cross term in the expansion of Eq. (3), giving rise to

∆f

f
= (β − α − 1)

2vsun · vsat

c2
. (4)

The time signature of such a term is highly correlated with that of the change
of potential which is of interest in testing LPI. There it is the change in the
earth’s (or the sun’s) gravitational potential that drives the effect. Here, it
is the orientation of vsat relative to vsun that drives the effect. These two
relativistic effects should be separable since they differ in phase.

Currently, the combination of parameters (β − α − 1) is only known ex-
perimentally to be < 6.6 × 10−5.[10] If an upper limit of 5 × 10−16 (assumed
stability of the cavity oscillator at 5500 s) can be put on the frequency change
of Eq. (4), and we assume that vsun ≈ 377 km/s, then a limit of order
(β − α − 1) < 9 × 10−10 results, an improvement by almost three orders of
magnitude. A limit on α provides independent confirmation of the special rel-
ativity predictions of time dilation. Smaller upper limits on the parameters α,
β, and δ will help in eliminating some preferred frame theories.

2.5 Michelson-Morley (MM) Experiment

In a MM type experiment, the θ-dependent term in Eq. (2) is measured. This
can be done using the slow rotation of the spacecraft in its orbit, which nat-
urally changes while the laser-cooled cesium clock provides frequency mem-
ory. The fractional frequency shift for a 90◦ rotation starting from θ0 is
(1/2 − β + δ)v2/c2 cos(2θ0). One cross-term in the expansion of v2 varies
with the orbital period. Placing an upper limit of 5 × 10−17 on such a term
would lead to (1/2−β +δ) < 1.5×10−9, slightly better than the previous best
result.[11] This experiment has the advantage of a much larger orbital velocity
than the velocity due to earth rotation in an earth-bound experiment.
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Table 1: Summary of science objectives for the PARCS mission

Measurement/Test
Expected

Uncertainty
Previous Best
Uncertainty

Improvement
(Ratio)

Net Frequency Shift, ∆f/f 1.7 × 10−6 70 × 10−6 35

Gravitational Frequency Shift, ∆f/f 12 × 10−6 140 × 10−6 12

Kennedy-Thorndike, β − α − 1 9 × 10−10 6.9 × 10−7 770

Local Position Invariance, cAB 9 × 10−6 2.1 × 10−5 2.3

Michelson-Morley, 1

2
− β + δ 5 × 10−10 5 × 10−9 10

Atom Drift Time, s 10 1 10

Most Accurate Space Clock, ∆f/f 5 × 10−17 1 × 10−12 20,000

Realization of the Second, ∆f/f 5 × 10−17 1.2 × 10−15 24

2.6 Realization of the Second

In an earth-based cesium clock, gravity simply pulls the atoms out of the
apparatus. The linewidth of the observed transition is then broader, limiting
the determination of the resonance center. Also, the atoms in an earth-based
clock must move at higher velocities relative to the clock enclosure where the
Doppler shift and several other velocity-dependent systematic shifts are larger
and more difficult to evaluate. In microgravity, atoms can be launched much
more slowly, increasing the observation time by an order of magnitude and
reducing the uncertainty in realization of the second by a comparable amount.

2.7 The TH − εµ Theory of Lightman and Lee

In the TH − εµ theory, charged massive particles in a spherically symmetric
gravitational field couple to “gravitationally modified” electromagnetic field
equations. To leading order, predictions of gravitational frequency shifts and
violations of LPI are expressed through two parameters Γ0 and Λ0.[12,13]
For example, when comparing the frequencies of a superconducting cavity-
stabilized clock and a Hydrogen maser moving together through a varying
gravitational potential, cAB = 3(Γ0 − Λ0)/2. For clocks at different locations,
∆f/f = (1− 3Γ0 + Λ0)∆Φ/c2. The PARCS measurements should give signifi-
cantly improved upper limits on these two linear combinations of parameters.
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Figure 3: Allan variance plot of the stability limits for PARCS. See the text for a description
of the different curves. The long-term limit of curve B is determined by the inaccuracy of
the ground clock.

2.8 Realization of the Second

In an earth-based cesium clock, gravity simply pulls the atoms out of the
apparatus. The linewidth of the observed transition is then broader, limiting
the determination of the resonance center. Also, the atoms in an earth-based
clock must move at higher velocities relative to the clock enclosure where the
Doppler shift and several other velocity-dependent systematic shifts are larger
and more difficult to evaluate. In microgravity, atoms can be launched much
more slowly, increasing the observation time by an order of magnitude and
reducing the uncertainty in realization of the second by a comparable amount.

It is difficult to transfer frequency between laboratories at the accuracy
of the best earth-bound standards, so real-time access to the highest accuracy
frequency references is limited. PARCS should outperform its earth-based
counterparts by an order of magnitude. The best current realization of the
second on earth has an uncertainty of 1.4×10−15 [3]. The projected uncertainty
for the proposed space clock is 5×10−17. Transfer of the second at this accuracy
assumes that GR is correct, in order to correct for clock frequency shifts. At
this level, uncertainties in our knowledge of the gravitational potential will
contribute a few parts in 1017 to the overall uncertainty; spacecraft position
and velocity will have to be known to 10 cm and 0.12 mm/s, respectively.

Fig. 3 shows stabilities of the critical components of PARCS. The projected

9

32



clock stability is curve D. The straight curve A shows the frequency-transfer
limitation at short integration times, consistent with time transfer at an un-
certainty of 220 ps. (The unlabelled curve shows the effect of time transfer at
an uncertainty level of 100 ps.) Curve C shows the uncertainty in calculated
net frequency shift contributed by position uncertainty alone, from spacecraft
tracking at the 1 m level for position and 0.0013 mm/sec level for velocity. The
composite uncertainty is given by curve B, where the limit of 5× 10−16 is due
to estimated inaccuracy of the ground clock. The measurement objective for
∆f/f is achieved in 12 days. Curve D shows the full uncertainty of the space
clock being achieved at about 30 days.

2.9 Analyses of GPS Satellite Signals

The ISS is above the troposphere and most of the ionosphere, so the PARCS
mission affords the opportunity of viewing GPS satellite signals from a different
vantage point. Observations will be limited primarily by the high speed of the
ISS and multipath effects associated with signal reflections off ISS structures.
Analyses of GPS signals could add to our understanding of the system. When
more than four GPS satellites are observed from a receiver with a very stable
time base, the navigation equations are highly constrained; this can be turned
around to study a particular satellite. Issues of possible interest in GPS include
temperature and attitude dependencies of transmitter phase centers.

3 SUMMARY–SCIENCE OBJECTIVES

Table 1 summarizes the scientific objectives for PARCS . These involve the
SUMO oscillator that can support a clock stability of 5× 10−14τ−1/2 and can
be used for the on-board, two-clock (LPI) experiments. These results could be
enhanced by the concurrent flight of one or more of the clocks being developed
elsewhere. If PARCS flies concurrently with SUMO as currently planned,
bo the Kennedy-Thorndike (improvement factor 770) and Michelson-Morley
experiments (improvement factor 10) can be performed. The objectives and
the science requirements for the proposed flight have been dictated primarily
by the time-transfer stability considerations shown in Fig. 3.

Appendix

Transformation of second-order Doppler shift
of a space-borne atomic clock

This Appendix describes an alternative treatment of the second-order Doppler
shift contribution to orbiting clock frequency shift. Over long integration times,
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systematic errors in the determination of orbiting clock velocity are a major
source of uncertainties in comparing proper time predictions with observation.
Such errors can be greatly reduced by transforming this frequency shift con-
tribution into an alternative form appropriate for a satellite in nearly free fall,
in which the terms can be evaluated with less uncertainty. This approach has
been adopted as the principal method of data analysis for PARCS. Accumu-
lated phase involves integration of the second-order Doppler shift contribution
over coordinate time. Velocity is a coordinate time derivative, so this term
may be evaluated by integration by parts. The metric of GR, valid to order
c−2 in the neighborhood of the earth is:[14]

ds2 = gµνdxµdxν =

[

1 + αG
2(Φ − Φ0)

c2

]

(cdt)2−αD

[

1 +
2Φ

c2

]

(dx2+dy2+dz2)

(5)
where dt is the increment of coordinate time, Φ is the Newtonian gravitational
potential, and we have inserted coefficients αG and αD (which are exactly
equal to unity in GR) to identify the sources of various contributions. Φ0

is the effective gravitational potential on the earth’s rotating geoid. For an
orbiting clock in free fall, the equations of motion are

d2xα

ds2
+ Γα

µν

dxµ

ds

dxν

ds
=

[

d2xα

ds2

]

NG

. (6)

where Γα
µν is the Christoffel symbol of the second kind. The subscript “NG”

means the non-gravitational part of the acceleration. If the orbiting satellite is
in free fall the right-hand side of the above equation is zero. These equations
reduce approximately, in the Newtonian or classical limit, to

αD
dv

dt
+ αG∇Φ =

dv

dt

∣

∣

∣

∣

NG

. (7)

This shows that the gravitational part of acceleration is related to the gradient
of the potential through the coefficient ratio αG/αD.

Let τB and τB be proper times elapsed on the orbiting clock and the
earth-fixed reference clock, respectively, between coordinate times t1 and t2.
The fractional time difference observable is

∆τ

τ
=

τB − τA

τA
=

αG

τA

∫ t2

t1

dt

[

ΦB − ΦA

c2

]

−
αD

τA

∫ t2

t1

dt

[

v2

B − v2

A

2c2

]

. (8)

The largest contribution to measurement uncertainty of this observable comes
from the second-order Doppler shift term

∫

v2

Bdt. Transforming this term by
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integration by parts, using Eq. (7), gives

τB−τA

τA
= αG

τA

∫ t2
t1

dt
[

ΦB−
1

2
rB ·∇ΦB−ΦA

c2

]

+ αD

τA

∫ t2
t1

dt
[

v2

A

2c2

]

−
αD

2c2τA
rB · vB

∣

∣

t2

t1
+ αD

2c2τA

∫ t2
t1

dt [rB · aB ]

∣

∣

∣

∣

NG

.
(9)

Mathematically, this transformation is exact. The boundary terms involve
the dot products of the position and velocity evaluated at times t1 and t2.
These contributions can be made small. The dot product r·v is proportional to
the orbital eccentricity and for the planned space station orbit the eccentricity
will be in the neighborhood of 0.001. Also, it is possible to select starting and
ending points for the experiment for which either the dot product vanishes,
such as at apogee, or for which the upper boundary term cancels the lower
boundary term. Finally, the boundary term is divided by τA and decreases
with integration time. For long integration times, this term does not contribute
significantly to uncertainties in the prediction of the observable. For integration
times as short as one orbital period, if velocity can be measured to better than
1 mm/s and position to better than 1 m, the contribution to the fractional
error from one such boundary term is less than 5 × 10−17.

Second, the non-gravitational acceleration aboard the ISS is projected to
be less than about 3 × 10−6 g or 3 × 10−5 m/s2. The contribution of the
uncertainty in this term to the net fractional uncertainty can be reduced to
negligible levels by monitoring the non-gravitational acceleration to an accu-
racy of 400×10−9 g. This is well within the expected capabilities of the MAMS
(Microgravity Acceleration Measurement System) accelerometers, which is al-
ready operating on the ISS. A third contribution is proportional to the time
integral of rB · ∇ΦB . Here it is position errors rather than velocity errors that
give rise to uncertainties. This term involves the gravitational coefficient αG

and demonstrates that testing the total accumulated phase shift tests the term
proportional to αG in the metric, which is responsible for the gravitational part
of the frequency shift.

Thus errors in predicting the accumulated phase arise from clock instabil-
ities, inaccuracy of the ground clock, time transfer (errors in t1 and t2), errors
in position and velocity determination of B and A. A similar transformation of
the second-order Doppler term

∫

dtv2

A/(2c2) is not necessary. Fig. 3 illustrates
application of the integration-by-parts method.

Acknowledgments

This work was made possible by essential contributions from many individuals
at the participating institutions. Errors are the responsibility of the author.

12

35



References

1. Vessot, R.F.C., and M.W. Levine (1979), Gen. Rel. Grav., 10, pp.
181-204.

2. Bauch, A., and S. Weyers, Phys. Rev. D65, (2002), 081101(R).
3. Jefferts, S.R., D.M. Meekhof, J. Shirley, T.E. Parker, C. Nelson, F. Levi,

G. Costanzo, A. De Marchi, R.E. Drullinger, L. Hollberg, W.D. Lee,
and F.L. Walls, “Accuracy evaluation of NIST-F1,” Metrologia, Dec. 1
(2002).

4. Bauch, A. B. Fischer, T. Heindorff, and R. Schröder (1999), “Recent re-
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