
Synchronous Control Effort Minimized 
for Magnetic-Bearing-Supported Shaft
Various disturbances that are synchronous with the shaft speed can complicate radial 
magnetic bearing control. These include position sensor target irregularities (runout) and 
shaft imbalance. The method presented here allows the controller to ignore all 
synchronous harmonics of the shaft position input (within the closed-loop bandwidth) and 
to respond only to asynchronous motions. The result is reduced control effort.

A previous article in this report outlined a method for automatic centering of a shaft in 
radial magnetic bearings, which achieves zero average control current. That was done by 
adding a very slowly building integral of the control current to the control output. (Using 
an integral of the controller output command rather than measured current can be a 
simpler alternative.) The method for rejecting synchronous disturbances is an extension of 
that method. We presume that the shaft's angular (spin) position θ is always known (from 
a once-per-revolution pulse, for example). For each actuator degree of freedom, an array 
of integrals of control output O is calculated and stored. Each integral I(n) is 
approximated by a sum that receives a new contribution n samples after each one-per-
revolution pulse:

I(n) = (1 - f Ig) [I(n) + α I(n - 1) + α I(n + 1)] + (1 - 2α)Ig O(n)

where Ig is a small gain (such as 0.02) and f Ig is a "forgetter" factor. The terms 
containing α are discussed in the last paragraph of this article. Thus at a given speed, we 
are integrating the control effort required whenever the shaft has a particular angular 
position and are storing that in one element of the array. Adding that element in the array 
to the control output whenever the shaft angle is θ results eventually in the magnetic 
bearing producing no synchronous control force at that shaft angle. The output for the nth 
sample after the one-per-revolution is

O(n) = PD_control_etc(n) + I(n) + {cg [I(n + 1) - I(n - 1)]}/∆t

where PD_control_etc(n) is the control output for whatever control law is used, ∆t is the 
time between samples, and the presence of the term containing ∆t is explained in the last 
paragraph of this article. The I(n) array acts like a feed-forward function. Spurious 
synchronous sensor runout signals come into the controller and contribute to 
PD_control_etc(n) but are cancelled out by I(n). Furthermore, the shaft is allowed to 
revolve about its principle inertia axis rather than about its geometrical centerline, 
reducing the control effort due to imbalance as well as reducing the forces transmitted to 
the housing. The shaft runs like a supercritical shaft at all speeds

The method was demonstrated on a magnetic-bearing-supported energy-storage flywheel 
(DEV1) at the NASA Glenn Research Center. The runout of the radial sensors was very 
serious, amounting to 15 to 20 percent of the backup bearing gap of 8 mils (0.2 mm). The 
sensor runout produced apparent (but spurious) displacements at least an order of 
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magnitude higher than the real shaft dynamics. Moving notch filters had previously been 
needed to keep the sensor runout from causing power amplifier saturation at high shaft 
speeds. Spectral density measurements of the sensor signals showed that the present 
method reduced synchronous harmonic content by factors of 3 to 10 at shaft speeds up to 
20,000 rpm.

If explicit synchronous feed-forward signals are introduced to deal with unbalance, the 
array I(n) converges to the difference between its former values and the feed-forward 
function.

Several implementation details were developed on an ad hoc basis. The required size of 
the array is equal to the number of samples in one shaft revolution at the lowest speed at 
which the method will be used. We used arrays of 1500 to 2000 elements with a controller 
sample rate of 60 µsec and could introduce the integrals at shaft speeds somewhat below 
1000 rpm. Note that the number of active elements in the array becomes much smaller at 
high speeds; there are only 50 samples per revolution at 20,000 rpm. We do not need to 
change the array dimension with speed; rather the code automatically uses only as many 
elements as required in one revolution. The array was continually smoothed by a degree of 
averaging of adjacent elements. This was affected by the terms containing α, which was 
arbitrarily set somewhere between 0 and 0.25. This aids in letting the array adapt to 
changing speeds. Furthermore, each element was gradually eroded to remove 
contributions of the distant past by using a forgetter factor (1 - f Ig), which is very slightly 
less than one, where f was of order 1. Each element is, thus, a geometric average of the 
control effort exerted for n σαµπλεσ αφτερ τηε ονε−περ−ρεϖολυτιον πυλσε, 
σµοοτηεδ σοµεωηατ ιν τιµε. Φιναλλψ, το αϖοιδ αν ινσταβιλιτψ τηατ ωουλδ 
οτηερωισε δεϖελοπ ιν τηε αρραψ, α δεριϖατιϖε οφ τηε αρραψ ωιτη ρεσπεχτ το θ 
was added to the control output, with an empirically determined gain cg of the order of 
0.005.

If the shaft speed is set low, the actual sensor runout, which is difficult to measure 
otherwise, can be obtained by allowing the synchronous rejection to converge and then 
recording the sensor output. This measurement is relatively uncontaminated by closed-
loop effects that would otherwise prevent direct measurement of runout on the levitated 
shaft.
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