
ADAPTABLE CONSTRAINED GENETIC PROGRAMMING:
EXTENSIONS AND APPLICATIONS

Final Report

NASA Faculty Fellowship Program - 2004

Johnson Space Center

Prepared By: Cezary Z. Janikow, Ph.D.

Academic Rank: Associate Professor

University and Department: University of Missouri - St. Louis
Department of Mathematics and
Computer Science
St. Louis, Missouri 63121

NASA/JSC

Directorate: Engineering

Division: Automation, Robotics and Simulation

Branch: Intelligent Systems

JSC Colleague: Dennis Lawler

Date Submitted: July 22, 2004

Contract Number: NAG 9-1526 and NNJ04JF93A

ll-1

https://ntrs.nasa.gov/search.jsp?R=20050202032 2019-08-29T19:22:24+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42755833?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

An evolutionary algorithm applies evolution-based principles to problem solving. To
solve a problem, the user defines the space of potential solutions, the representation
space. Sample solutions are encoded in a chromosome-like structure. The algorithm
maintains a population of such samples, which undergo simulated evolution by means of
mutation, crossover, and survival of the fittest principles. Genetic Programming (GP)
uses tree-like chromosomes, providing very rich representation suitable for many
problems of interest. GP has been successfully applied to a number of practical problems
such as learning Boolean functions and designing hardware circuits.

To apply GP to a problem, the user needs to define the actual representation space, by
defining the atomic functions and terminals labeling the actual trees. The sufficiency
principle requires that the label set be sufficient to build the desired solution trees. The
closure principle allows the labels to mix in any arity-consistent manner. To satisfy both
principles, the user is often forced to provide a large label set, with ad hoc interpretations
or penalties to deal with undesired local contexts. This unfortunately enlarges the actual
representation space, and thus usually slows down the search. In the past few years,
three different methodologies have been proposed to allow the user to alleviate the
closure principle by providing means to define, and to process, constraints on mixing the
labels in the trees. Last summer we proposed a new methodology to further alleviate the
problem by discovering local heuristics for building quality solution trees. A pilot system
was implemented last summer and tested throughout the year.

This summer we have implemented a new revision, and produced a User's Manual so
that the pilot system can be made available to other practitioners and researchers. We
have also designed, and partly implemented, a larger system capable of dealing with
much more powerful heuristics.

11 -2

_TRODUCTION

Genetic programming (GP), proposed by Koza [1], is an evolutionary algorithm, and
thus it solves a problem by utilizing a population of solutions evolving under limited
resources. The solutions, called chromosomes, are evaluated by a problem-specific user-
defined evaluation method. They compete for survival based on this evaluation, and they
undergo simulated evolution by means of simulated crossover and mutation operators.

GP differs from other evolutionary methods by using trees to represent potential problem
solutions. Trees provide a rich representation that is sufficient to represent computer
programs, analytical functions, and variable length structures, even hardware circuits.
The user defines the representation space by defining the set of functions and terminals
labeling the nodes of the trees (for the intemal and the external nodes, respectively). One
of the foremost principles is that of sufficiency [1], which states that the function and
terminal sets must be sufficient to solve the problem. The reasoning is obvious: every
solution will be in the form of a tree, labeled only with the user-defined elements. In the
absence of specific knowledge and heuristics, sufficiency will usually force the user to
artificially enlarge the sets to avoid missing some important elements. This unfortunately
dramatically increases the search space.

Even disregarding sufficiency, GP practitioners still face another problem. Consider a 3-
argument /f function (corresponding to the if-else conditional statement in any
programming language). This fimction should have a test argument, and then two action
arguments. But GP has no way of defining or processing this knowledge. To allow GP to
operate nevertheless, Koza has proposed the principle of closure [1], which requires very
elaborate semantic interpretations to ensure the validity of any arity-consistent label in
any context. Structure-preserving crossover was introduced as the first attempt to handle
such specific local constraints [1].

Structure-preserving crossover wasn't a generic method. In the nineties, three
independent generic methodologies were developed to allow problem-independent
constraints on tree construction. Montana proposed STGP [5], which used types to
control the way functions and terminals can label local subtrees. For example, the
function/fcan be required to use Boolean-producing subtrees on its first argument.

We proposed CGP, developed at NASA/JSC during summer research, which originally
required the user to explicitly specify allowed and/or disallowed local tree structures [2].
These local constraints could be based on types, but also on some problem specific
heuristics. In a follow-up version, we also added explicit type-processing capabilities,
with polymorphic functions. For example, the + function could be overloaded so that it
produces an integer from integers but it produces an angle from angles.

Finally, those interested in program induction following specific syntax structure have
used similar ideas to propose CFG-based GP [6]. However, those systems still require the
user to enter all possible constraints that can be processed within the methodology. What
happens if the user is not aware of any, not aware of the best constraints to solve a
particular problem, or aware of the constraints but not of some rule-of-a-thumb
heuristics? To deal with this case, last summer we introduced Adaptable Constrained

11 -3

Genetic Programming vl.1 (ACGPI.1), which is a methodology (and a pilot
implementation) to automatically adapt the user-specified constraints and heuristics to
improve GP's performance. This summer, we have improved that implementation
(ACGPI.I.1), and provided a User's Manual, so that the system can be distributed to
interested practitioners and researchers.

ACGPI.1 discovers limited local heuristics and only on labels. This summer, we have
designed a new methodology, ACGP2.1, which is capable of discovering much richer
heuristics on labels, types, and combinations of these. We have implemented the system,
capable of discovering seven different heuristics. In the next few months, we plan to
build tools to analyze the heuristics, and then to use them to improve GP's searching
capabilities.

ACGP HEURISTICS

ACGP is a methodology to discover useful heuristics on GP solution trees. Such
heuristics, if available, have been shown to greatly enhance GP problem solving
capabilities [2]. ACGP discovers the heuristics by observing the distribution of labels
(and types if applicable) in those better-off solutions, assuming that those solutions are
better because they were generated with better distribution of local heuristics on average.
ACGPI.I.1 deals with limited heuristics on labels, while the newer ACGP2.1 handles
heuristics on both labels and types.

ACGP 1.1.1 and First-Order Label-Based Heuristics

Last year we have developed ACGPI.1, which processes heuristics on labels only, while
limited to parent-child relationship only. That is, ACGPI.1 doesn't process type
information, and it cannot discover any heuristics taking a node's siblings into account.
We call this kind of limited heuristics thefirst-order heuristics, as illustrated in Figure 1
center. Zero-order heuristics use one node at a time, while second-order heuristics take
all siblings into account.

zero-order f_st-order second-order

%% ¢1 tj I I _ %1x

,(f)l(_), ' _, , ,
__., __r %% I

Figure 1: The three different levels of heuristics. Note that zero-order heuristics are
meaningless if the only node information is the node's label.

ACGPI.I.1 does not process type information, and thus it only uses a function/terminal
label in a node. This is illustrated in Figure 2 (left). Apparently, this limited data provides
no information for zero-order heuristics. ACGPI.I.1 does not employ any second-order
heuristics either, as it was used as a proof of concept. Even the limited first-order

11 -4

heuristics have been demonstrated to both allow the user to discover very useful
knowledge and to improve problem-solving capabilities [3] [4].

Figure 2: Information available in a tree node: left in ACGPI.I.1 (label only), right in
ACGP2.1 (label, type generated, and the polymorphic function instance used).

ACGP2.1

ACGP2.1 uses both labels and types, with polymorphic functions. Therefore, the
information retained in a tree node is much richer, as illustrated in Figure 2 (right): each
node retains the label (function for an internal node and terminal for an external node)
and the specific polymorphic instance (for functions only - terminals are not overloaded).
For example, in Figure 2 right, the top node retains the information that the function used
in the node is f, and that the function generates type t, using its overloaded instance
which requires types to and tl on the two arguments, left to right respectively.

The richness of this information allows useful zero-order heuristics. For example, the
same node in Figure 2, if expressed disproportionally in the better solutions, would
suggest that f should use this polymorphic instance whenever it generates type t.
ACGP2.1 uses a number of heuristics of all three kinds: zero, first, and second-order.
Moreover, it uses heuristics on labels only (for typeless applications), on types only, and
on combinations of these. Example heuristics are illustrated in Figures 3-6.

CntTl_czj largestfun arity producing t i+ I
-- _ O , , k , Note: if a type is never produoed

71 I I_ I by functions of giveaaadty, vec=len=O
Cnt2 _ I I _e _,, [On arity 0, -_c=le.n=0 and toL_count_

S

-- It n! actu[t co!nters

Figure 3: First-Order Type-Based Heuristics CntT1.

Figure 3 illustrates a very specific first-order heuristic on types only. This particular
heuristic is capable of discovering, for example, that if a given type needs to be generated

11 -5

(ti), what arity function would be most beneficial to generate it, and for that arity, what
should be the types of all of the arguments.

Figure 4 illustrates a specific first-order heuristic on labels only. This heuristic is capable
of discovering what should be the labels of all the children, independently, of a function
such as f. This heuristic alone is in fact equivalent to all the capabilities available in
ACGPI.I.1.

CntLl_czj

The actual counters

Root Note: secondlevelarray ofunly length1allocatedfortheRoot

Figure 4: First-Order Label-Based Heuristics CntL1.

When we combine labels and types, even one node provides some meaningful
information, resulting in combined zero-order heuristics. One such heuristic is illustrated
in Figure 5. It is capable of discovering that if a given type needs to be generated from a
node (such as ti), what functions/terminals are most likely to generate it successfully.

CntTLO_czj Nu_'T

w

Figure 5: Zero-order Combined Heuristics CntTL0.

Figure 6 illustrates another combined zero-order heuristic. This one is capable of
discovering that if a given node needs to be labeled with a function such as f, which
polymorphic type it should use to be most successful (terminals are not polymorphic).

CntLTO czj Nlm_ypes

Figure 6: Zero-order Combined Heuristics CntLT0.

11 -6

Currently, ACGP2.1 discovers seven such heuristics, printing them into 28 files (using
different scenarios). In the near future, tools to analyze, and to use the heuristics in
improving the search, are needed.

REFERENCES

[t] Koza, J. R. 1994, Genetic Programming. On the Programming of Computers by
Means of Natural Selection, Massachusetts Institute of Technology.

[2] Janikow, Cezary Z. "A Methodology for Processing Problem Constraints in
Genetic Programming". Computers and Mathematics with Applications, Vol. 32,
No. 8, pp. 97-113, 1996.

[3] Janikow, Cezary Z. "ACGP: Adaptable Constrained Genetic Programming".
Proceedings of GPTP04 TBP.

[4] Janikow, Cezary Z. "Adapting Representation in Genetic Programming".
Proceedings of GECCO 2004.

[5] Montana, D. J 1995, "Strongly Typed Genetic Programming", Evolutionary
Computation, Vol. 3, No. 2.

[6] Whigham, P.A.. "Grammatically-based genetic programming". In J. P. Rosca,
editor, Proceedings of the Workshop on Genetic Programming: From Theory to
Real-WorldApplications, pages 3341, Tahoe City, California, USA, 9 1995.

11 -7

