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Abstract. The Jupiter Thermosphere General Circulation Model (JTGCM) 

calculates the global dynamical structure of Jupiter’s thermosphere self-consistently 

with its global thermal structure and composition. The main heat source that drives 

the thermospheric flow is high-latitude Joule heating. A secondary source of heating is 

the auroral process of particle precipitation. Global simulations of Jovian thermospheric 

dynamics indicate strong neutral outflows from the auroral ovals with velocities up to 

-2 km/s and subsequent convergence and downwelling at the Jovian equator. Such 

circulation is shown to  be an important process for transporting significant amounts of 

auroral energy to  equatorial latitudes and for regulating the global heat budget in a 

manner consistent with the high thermospheric temperatures observed by the Galileo 

probe. Adiabatic compression of the neutral atmosphere resulting from downward 

motion is an important source of equatorial heating (< 0.06 pbar). The adiabatic heating 

continues to dominate between 0.06 and 0.2 pbar, but with an addition of comparable 

heating due to horizontal advection induced by the meridional flow. Thermal conduction 

plays an important role in transporting heat down to lower altitudes (>0.2pbar) where 

it is balanced by the cooling associated with the wind transport processes. Interestingly, 

we find that radiative cooling caused by HZ, CH4, and C2HZ emissions does not play a 

significant role in interpreting the Galileo temperature profile. 
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1. Introduction 

On December 8, 1995, the Atmospheric Structure Instrument (ASI) on the Galileo 

probe provided the first in-situ measurement of Jupiter's neutral atmospheric structure 

from 1029 km to 133 km (altitudes are referenced to  l-bar pressure level) near the 

Jovian equator (Lat: 6.5"; XIII: 4.5") [Sei$ et al., 19981. The derived temperature profile 

exhibited wave-like variations and increased from N 200 K at 400 km t o  about 950 K 

at  1000 km, consistent with the profile inferred from the solar and stellar occultation 

experiments performed during the Voyager flybys in 1979 [Festou et al., 1981; Atreya 

et al., 19811. H$ emissions from the Jovian auroral and equatorial regions also provide 

information on the neutral temperature structure [Drossart et al., 19891. Analysis 

of such observations from the Canada-fiance-Hawii Telescope (CFHT) by Marten et 

al. [1994] yielded an exospheric temperature of 800f100 K near the Jovian equator. 

Hubbard et al. [1995] observed the occultation of the star SA0 78505 by Jupiter at 

N 8" latitude and determined a temperature of 1763~12 K, in good agreement with 

the AS1 temperature at a pressure level of 1.8 pbar. Liu and Dalgarno [1996] found 

an atmospheric temperature of 500f30 K at 0.3 pbar for a best fit to the Hopkins 

Ultraviolet Telescope (HUT) dayglow observation. Table 1 shows a summary of 

equatorial temperatures for Jupiter's upper atmosphere inferred from the above data. 

The observed temperature structure indicates that exospheric temperatures at 

Jupiter cannot be maintained by solar EUV heating alone [Strobel and Smith, 19731. 

Dissipation of gravity waves [Matcheva and Strobel, 1999; Young et ai., 1997; Yelle et 
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al., 19961, soft and energetic particle precipitation [Hunten and Dessler, 1977; Waite 

et al., 19971, and transport of auroral heat to low latitudes by thermospheric winds 

[e.g., Waite et al., 19831 have all been proposed as mechanisms for heating the upper 

atmosphere. 

2. Existing Interpretation of Galileo Temperature Profile 

Young et ak. [ 19971 determined that the dissipation of upward-propagating internal 

gravity waves could produce enough heat to account for the high thermospheric 

temperatures measured by the Galileo probe. While Matcheva and Strobel [1999] and 

Hickey et al. [ZOOO] argued that the propagation of gravity waves identified in the probe 

data can certainly heat the upper thermosphere, they proposed that the downward flux 

of sensible heat from the dissipating waves causes an appreciable cooling. Thus, the net 

heating rate from the observed propagating gravity waves was insufficient to maintain 

the high Jovian thermospheric temperatures. 

Independently, Waite et al. [1997] modeled the energetics of Jupiter’s upper 

atmosphere based on charged particles precipitating from the inner radiation belt to 

the Jovian equatorial atmosphere, resulting in X-ray emissions consistent with those 

observed by the High Resolution Imager on the Rontgensatellit (ROSAT). The model 

calculations of altitude profiles of the heating rates suggested that the energy associated 

with the observed low-latitude X-ray brightness could be an important source of upper 

atmospheric heating and could account for Jupiter’s high thermospheric temperatures. 

However, Maurellis et al. [2000] argued that a major fraction of the low-latitude 
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Jovian X-ray emissions is due to solar scattering and fluorescence, and therefore cannot 

provide enough energy for the upper atmospheric heating. Recent X-ray observations of 

Jupiter with Chandra [Gladstone et al., 20021 appear to support the scattered sunlight 

hypothesis, although there are some non-uniformities in the emission that could be 

indicative of charged-particle precipitation. 

The model calculations performed by Sommeria et ai. [1995] have indicated that an 

extremely rapid auroral electrojet can generate supersonic neutral winds up to  20 km/s 

and could disperse high-latitude auroral heating globally through a strong meridional 

flow to explain high Jovian exospheric temperatures. However, there is no observational 

evidence to date for winds of such magnitude. The first 3-D Jovian Ionospheric Model 

(JIM), developed by Achilleos et al. [1998], demonstrated that some of the energy 

deposited by high-latitude processes in the auroral regions can be transported to the 

Jovian equator by the meridional circulation of the neutral flow, yielding an equatorial 

temperature profile near local noon with an exospheric temperature of 1200 K [Millward 

et al., 20021. 

Independently, we have developed a 3-D Jupiter Thermospheric General Circulation 

Model (JTGCM) to simulate the Jovian thermospheric winds self-consistently with 

global temperature and ion-neutral species distributions. An important goal of our 

model is to study the response of imposed high-latitude ion convection, along with 

particle and Joule heating, on the neutral flow, and its subsequent impact on the thermal 

structure. The details of the JTGCM, including the model inputs and global simulations 

of thermospheric dynamics and temperatures, are reported elsewhere [Bougher et al., 
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20041. In this paper, we present the JTGCM analysis of the vertical thermal structure 

in comparison with that observed by the Galileo probe near the Jovian equator. We 

discuss heating and cooling processes within the equatorial region which indicate that 

the transport of significant amounts of auroral energy by high-speed neutral winds is 

responsible for maintaining the measured temperatures at the probe location. 

3. The JTGCM 

The JTGCM uses a 5" latitude by 5" longitude grid with 39 vertical pressure layers 

in increments of 0.5 pressure scale heights. The model solves coupled thermodynamic, 

zonal momentum, meridional momentum, continuity, and hydrostatic equations self- 

consistently using the basic framework of the National Center for Atmospheric Research 

(NCAR) general circulation model. Each of these equations is cast in log-pressure 

coordinates (Z, = ln(po/p)), with a specified reference pressure level corresponding 

approximately to  the average homopause level. For the JTGCM code, this reference 

pressure is located at 4.5 pbar (Z, = 0). Each Z, interval corresponds to a l-scale height 

(at the local temperature). 

The lower boundary in the JTGCM is at  20 pbar, to take into account the 

hydrocarbon cooling due to CZH2 and CH4 near the homopause level. Lower boundary 

conditions for temperature and neutral densities are taken from Galileo [Se# et al., 

19981 and Voyager data [Festou et al., 19811. Upper boundary conditions were specified 

at N 1.1 x nbar in order to properly include high-altitude auroral heating processes 

[Ajello et al., 2001; Grodent et al., 20011 and H i  cooling in the near-IR [Drossart 
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et al., 19931. Boundary conditions for temperature, neutral densities, and winds are 

taken from the corresponding NCAR terrestrial Thermosphere Ionosphere General 

Circulation Model (TIGCM) [Roble et al., 19881. A convection electric field is estimated 

and corresponding ion drifts (ui and vi) are generated using an ionospheric convection 

model based on Voyager measurements of ion convection in the outer magnetosphere 

[cf. Eviatar and Barbosa, 19841 mapped to high latitudes using the VIP4 magnetic field 

model [ Connerney et al., 19981. 

The JTGCM uses solar EUV radiation as a source of equatorial heating, while the 

particle heating calculated by Grodent et al. [2001] (incident electron energy spectrum 

described by a combination of three Maxwellian distribution functions with total particle 

energy E, = 25 keV and energy flux N 110 ergs cmW2 s-l) is used for the auroral region. 

The solar source is specified within a narrow band of 4110" latitude. The auroral heating 

by particle precipitation is specified along the polar ovals, which are currently described 

by the auroral morphology deduced from analysis of WFPC2 images taken in 1996 and 

1997 [Clarke et al., 19981. Recent analysis of HST-STIS images by Grodent et ak. [2003] 

indicates that the auroral oval locations on Jupiter are constant in latitude and system 

111 longitude. 

Ion-drag within the JTGCM code is described as a dominant physical process 

which limits neutral wind speeds through couplings between ions in the Jovian auroral 

ovals and the co-rotating neutral atmosphere. The ions, magnetically connected to 

the sub-rotating regions of the magnetosphere, lose their momentum in collisions with 

neutrals and thus drive the neutrals to  move in roughly the same direction. This drag 
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peaks near the height of maximum ion density. At higher ionospheric heights the 

effect of ion-drag gradually decreases as the ion gyrofrequency exceeds the ion-neutral 

collision frequency which constraints ionization to move along magnetic field lines. Joule 

heating, which is driven by the differential velocity between the ion and neutral species 

in the auroral ionosphere, has also been described in the JTGCM code as an important 

mechanism for modifying Jupiter’s global thermospheric winds and temperatures. The 

parameterization of ion-drag and Joule heating in the JTGCM code is based on the 

formulation described by Roble and R i d l e y  [1987]. The long-term effects of energy 

transport on the equatorial thermal structure are assessed by simulating the Jovian 

dynamics for more than 60 planetary rotations, until a cyclic steady-state solution 

in the modeled fields (i.e., the global 3-component neutral winds and corresponding 

temperatures and density distributions) is achieved. 

4. Results and Discussion 

The global temperature simulation with auroral forcing of particle precipitation 

alone does not provide sufficient energy to account for the temperature structure 

observed by the Galileo probe. The steady-state temperature fields for an integration 

time of 60 Jupiter days indicate gradual cooling of the high-latitude auroral thermosphere 

in response to local pressure gradients which drive neutral winds away from the heated 

regions. The derived horizontal winds up to 1 km/s served to reduce auroral temperature 

in the exospheric region from 1000 K at the start of the simulation to around 600-700 

K at  the end of the simulation. An equatorial temperature as high as 450 K, although 
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a factor of 2 cooler than the measured one, clearly indicates that the energy has been 

transported out of the auroral regions by a strong meridional flow. But we need an 

additional source of energy to  explain the measured characteristics of the thermal 

profile. 

Figure 1 shows the simulation of zonally-averaged temperatures with the best case 

scenario, which includes an auroral forcing by particle heating and an additional forcing 

by 15% of the total Joule heating produced in the auroral ovals. The simulation was run 

for 62 Jupiter rotations to  achieve steady-state temperature fields. Note that the neutral 

temperature is quite uniformly distributed globally for the thermospheric heights with 

pressure > 4 nbar (or zp<7) with the exception of the high-latitude region near the 

southern pole (70-90"s). This ambiguous behavior of temperature seems to  reflect strong 

ion-drag forcing due to the magnitude of zonally-averaged ion winds (ui) in the southern 

auroral oval, which is about a factor of 2 larger than in the northern auroral oval. Thus, 

ion-drag together with Joule heating effectively enhances momentum transfer affecting 

the neutral winds and temperatures. 

In the upper thermospheric regions (pressure < 4nbar or zp > 7), horizontal winds 

up to 1.8 km/s, driven largely by additional Joule heating, appear t o  be responsible for 

creating strong upwelling and divergence of the neutral flow in the polar regions, while 

convergence and subsidence of this flow is seen at  the Jovian equator. Such a global 

circulation of neutral flow results in an increase in neutral temperatures throughout the 

thermosphere compared to the case with particle heating alone. Joule heating dominates 

heat budgets in both hemispheres, yielding exospheric temperatures of 1000 - 1100 K 
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in the auroral regions, while the temperature near the Jovian equator is -850 K (see 

Figure 1). 

In Figure 2 we compare the JTGCM temperature profiles, simulated at  the entry 

location of the Galileo probe, with the measured and modeled thermal structure from 

various sources listed in Table 1. Curve B shows a steady-state equatorial temperature 

profile with intense auroral heating caused by precipitated charged particles and solar 

EUV heating around the Jovian equator. In this simulation, the transport processes 

associated with the Jovian wind system provided sufficient cooling to the entire 

thermosphere to generate an exospheric temperature of -490 K, which is about 60% 

cooler than the actual temperature measured by the Galileo AS1 instrument (Curve A). 

Clearly, an additional source of energy is needed to explain the measured temperature 

profile. 

Curve C shows a reasonable fit to the Galileo temperature profile by assuming 

15% of the total Joule heating produced in auroral ovals. The JTGCM simulated 

temperatures at 0.1 and 0.01 nbar are also found to be in reasonably good agreement 

with those inferred from the analysis of CFHT high-resolution H$ emission spectra 

[Marten et al., 19941 and Voyager UVS solar occultation data [Atreya  et al., 19811, 

respectively. Furthermore, the model temperatures in the stratospheric region (between 

1 and 2 pbar) also appear to be fairly close to the measured temperatures. However, 

an isothermal layer of N 115 K between 1 and 10 pbar, simulated by the JTGCM, is 

considerably cooler than the temperature measured by Galileo, which suggests that the 

heat conducted downward in the model is radiated away too efficiently. 
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In the region between 1 and 0.01 pbar, the JTGCM predicts rapidly rising 

temperatures as the meridional flow of auroral winds carries auroral energy to  lower 

latitudes. A similar rapid rise can be seen in the measured temperature, which has large 

vertical temperature gradients with a peak value of -3 K/km at 0.3 pbar [cf., Sze$ et 

al., 19981. However, our model predicts a peak value of about 5 K/km at 0.3 pbar in 

the altitude profile of the temperature gradient. At the AS1 probe location, our model 

predicts an integrated energy flux of N 6 ergs cmP2 s-l from meridional transport and 

heat conduction. This value is almost a factor of five larger than that used analytically 

by Yelke et al. [1996] to explain the measured temperatures a t  10 nbar [Marten et al., 

19941 and 0.4 pbar [Liu and Dalgamo, 19961 by assuming energy from dissipating gravity 

waves alone. Clearly, dynamical sources of heat transport play an important role in our 

understanding of the bulk of the equatorial heat budget. The effects of excess Joule 

heating on the heat transport processes, which control the thermospheric temperatures 

have also been studied. Curve D shows an example of the equatorial temperature 

profile from the simulation which assumes twice the Joule heating compared to the one 

which explains the Galileo temperature profile. In this case, the exospheric temperature 

reaches up to 1880 K as a result of increased meridional transport of auroral heat to the 

entry location of the Galileo probe. 

Figure 2 also shows a comparison between the equatorial temperature profiles 

derived from the JIM (Curve E) and JTGCM simulations. While the energy transport 

from the auroral ovals down to the equatorial region by neutral winds has been 

demonstrated by both models, the deficit in cooling rate due possibly to transport 
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processes and/or due to the absence of hydrocarbon and H t  radiative 

allows atmospheric heating to  rapidly elevate the neutral temperature 

the lower boundary (2 pbar) to about 1200 K at exospheric heights. 

cooling in JIM 

from 400 K at  

In Figure 3 we show the vertical profiles of transport sources for thermospheric 

heating and cooling from the JTGCM simulation which best describes the thermal 

structure measured in-situ by the Galileo probe. Note that the contributing solar EUV 

energy source for the upper thermospheric heating is negligibly small, but is included 

in the model for completeness. Figure 3a illustrates the balance between adiabatic 

heating, caused by the downward flow of the neutral atmosphere, and cooling by 

thermal conduction. Certainly, this balance plays an important role in maintaining an 

exospheric temperature of -890 K, consistent with observed temperature. In the region 

between 0.2 pbar and 1 nbar, the Jovian wind system seems to play an active role in 

transporting energy from the auroral region to the equatorial region. Figure 3b shows 

that the adiabatic process continues to dominate the heat budget, with a peak value of 

~ 5 x 1 0 ~  eV cm-3 s-l at  0.06 pbar. While horizontal advection, induced by meridional 

flow with a maximum velocity of -55 m/s [Bougher et al., 20041, becomes an important 

source of heating at 0.1 pbar, the process of heat conduction tends to cool down the 

atmosphere up to a pressure level of 0.2 pbar, with a maximum cooling rate of ~ 3 x 1 0 ~  

eV cmP3 s-'. Thus, the net heating rate is overwhelmed by transport sources, yielding 

a rapid increase in equatorial temperatures between 0.2 pbar and 0.01 pbar level (see 

Figure 2).  

Figure 3c reveals the importance of vertical energy transport by thermal conduction 
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in the Jovian thermosphere from 1 to 0.2 pbar. The maximum heating rate for this 

region is about 3 x lo5 eV cm-3 s-l, which is primarily balanced by the cooling associated 

with wind transport processes. However, in the high-pressure regions (>1 pbar) of 

Jupiter's thermosphere, adiabatic cooling from atmospheric expansion is overwhelmed 

by other cooling sources. The effect of such a large net cooling rate on the background 

atmosphere has been demonstrated by the simulated temperature profile (Curve C in 

Figure 2), indicating cooler temperatures compared to those inferred from most of the 

observations in that region. 

We estimate that the time constant for energy transport at  0.06 pbar is about 

2x106 s from TT = CppT/qT, where qT is the total heating rate in ergs cmP3 s-l from 

all sources, as shown in Figure 3. cp (1.4 x108 ergs K-l g-') and p (2.36 x10-l2 g 

~ m - ~ )  are specific heat and atmospheric density, respectively, appropriate for an H2 

atmosphere with a temperature of 634 K. The corresponding time constant for cooling 

is estimated to be about a factor of two longer than the heating time constant. This 

suggests that the energy transport by meridional flow, with a speed roughly estimated 

as R~/TT N 35 m/s (Rj being Jupiter's radius) [Bovgher et al., 20041, should not be lost 

to downward conduction along the way t o  the Jovian equator. 

5.  Summary 

The global dynamical structure of the Jovian thermosphere is simulated 

self-consistently with thermal structure and composition distributions using a three- 

dimensional Jupiter Thermosphere General Circulation Model (JTGCM). We have 
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shown that the global circulation of the neutral wind system, driven by auroral heating 

and 15% of the total Joule heating produced in the auroral ovals, can transport 

sufficient energy near the Jovian equator to explain the thermal structure observed by 

the Galileo probe. The energy transport processes associated with the Jovian wind 

system play a significant role in the global distribution of neutral temperatures. The 

cooling of auroral regions is caused by strong outflows which develop near the ovals as 

a result of large-scale pressure gradients and magnetospheric forcing imposed by the 

high-latitude ion convection. It is shown that the pole-to-equator circulation of the 

neutral flow resulting from strong Coriolis torques acting on the equatorward-directed 

meridional wind, rising motion in the auroral ovals, and subsequent convergence and 

downwelling motion at the Jovian equator, can regulate the transport of energy outward 

from the auroral regions to the rest of the planet. We find that such circulation 

controls the energy budget for the thermosphere at the location of the Galileo probe 

experiment. The heating is provided by the transport sources such as adiabatic and 

hydrodynamic advection for the upper thermosphere (<0.2 pbar), while the adiabatic 

cooling dominates the lower thermosphere. Cooling by HZ, CH4, and C2H2 does not 

play a significant role in interpreting the measured temperature profile. 
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CAPTIONS 

Figure 1. The JTGCM contours of zonally-averaged temperatures are shown as a function of 

latitude and pressure. 

Figure 2. The JTGCM temperature profiles (Curve B, C, and D) are shown in comparison 

with the equatorial temperature profiles from JIM (Curve E) and in-situ measurements by the 

Galileo AS1 probe (Curve A). Remotely-sensed temperature observations from various sources 

are also shown. 

Figure 3. The JTGCM heating and cooling rates corresponding to Curve C of Figure 2 for 

the entry location of the Galileo AS1 probe. 



Table 1.  Summary of observations. 

Date Experiment Payload Latitude Temperature Pressure Reference 

-lo-" Atreya et al. 3/5/79 Solar occultation Voyager 1 12.0 N 1100 f 200 

7/9/79 Stellar occultation Voyager 2 14.5 N 200 e30 -10" Festou et al. 

7/9/79 Stellar occultation Voyager 2 14.5 N 425 f25 -3~10-'O Festou et al. 

3/92 spectroscopy CFHT 10.0 N 800 A 0 0  -10'" Marten et al. 

3/4/95 UV dayglow HUT 1.0 N 530 f70  -3~10.' Liu & Dalgarno 

(bar) (K) 

(1 979) 

(1981) 

(1981) 

(1 994) 

(1 995) 

(1 995) 
12/13/89 Stellar occultation Groundbased 8.0 N 176 +12 -2x 1 o-6 Hubbard et al. 

12/8/95 AS1 probe Galileo 6.5 N Profile -36-9.5~10-'~ Seiff et al. (1998) 
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