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[i] This study evaluates the prediction of heat and moisture fluxes from a new land 
surface scheme with eddy correlation data collected at the old aspen site during the Boreal 
Ecosystem-Atmosphere Study (BOREAS) in 1994. The model used in this study couples a 
multilayer vegetation model with a soil model. Inclusion of organic material in the 
upper soil layer is required to adequately simulate exchange between the soil and 
subcanopy air. Comparisons between the model and observations are discussed to reveal 
model misrepresentation of some aspects of the diurnal variation of subcanopy 
processes. 
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1. Introduction 
[2] Modeling approaches for surface fluxes of heat, mois- 

ture and carbon dioxide can be classified into single-source 
models, two-source models and multilayer models. In the 
single-source model, evaporation is determined as if the plant 
canopy were a partly wet plane at the lower boundary of the 
atmosphere using bulk aerodynamic resistance and stomatal 
resistance. The bulk stomatal resistance in the single-source 
model is less well behaved than leaf stomatal resistance in 
two-source or multilevel models since it is not a purely 
physiological parameter [Raupach and Finnigan, 19881. 
Results from single-source models can be particularly sensi- 
tive to the roughness lengths for heat and moisture, which can 
behave erratically over vegetated surfaces. 

[3] In two-source models [Kustas, 1990; Sellers et al., 
1986; Choudhury andMonteith, 1988; Norman etal., 19951, 
an explicit single vegetation layer is considered separately 
from the ground surface. Although this model is more 
realistic than the single-source model, vertical structure of 
the canopy is not resolved. In actual canopies, the stomatal 
resistance depends significantly on height within the canopy 
because radiation, turbulence transfer and water supply from 
the root system vary with height. Consequently, multilayer 
models have been developed to simulate tall canopies such as 
forests [Su etal., 1996; Albertson etal., 20011. These models 
aim to describe not only the evaporation from the entire 
canopy, but also the partitioning of the evapotranspiration 
between various parts of the canopy together with other 
aspects of the canopy microclimate such as profiles of leaf 
and air temperature and air humidity. The price of such details 
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is more complexity and parameter input requirements. The 
choice of model complexity depends on the purpose and 
availability of computer resources. 

[4] Even when multilevel canopy models approximate 
the actual canopy processes, the coupling between the 
atmospheric boundary layer and canopy models requires 
estimation of aerodynamic quantities [Sun et al., 19991 and 
compliance with Monin-Obukhov similarity theory. In the 
roughness sublayer immediately above the canopy, the flux- 
gradient relationship based upon Monin-Obukhov similarity 
theory can significantly underestimate scalar fluxes 
[Simpson et al., 1998; Kaimal and Finnigan, 19941. Param- 
eterizations for the roughness sublayer [Cellier and Brunet, 
1991; Wend et al., 1997; Physick and Garratt, 19951 are 
difficult to verify from observations, partly because of the 
potentially large horizontal gradients on the scale of the 
roughness elements [e.g., Katul et al., 19991. Such micro- 
scale heterogeneity can contribute to vertical flux diver- 
gence due to increasing footprint with height. Two-source 
models apply Monin-Obukhov similarity theory by assum- 
ing that the aerodynamic temperature for Monin-Obukhov 
similarity is equal to the canopy air temperature. Although 
this simplification can lead to significant errors [Sun et al., 
19991, alternative procedures have not been developed and 
we employ the same approximation in this study. 

[5] The canopy turbulence is driven partly by coherent 
eddies of canopy scale sometimes leading to locally coun- 
tergradient fluxes [Raupach et al., 19961. Existing numer- 
ical models of canopy turbulence span a wide range of 
complexities from K theory to higher order closure model- 
ing and LES modeling [Katul and Albertson, 1998; Shaw 
and Schumann, 19921. Although K theory does not describe 
countergradient fluxes, for practical purposes, K theory 
remains an adequate approximation for some applications 38 
[Dolman and Wallace, 199 11 and is still used in many large- 
scale models [Bonan, 1996; Cotton et al., 20031. 
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[6] The coupling between the canopy air and soil through 
fluxes of heat and moisture can be governed by a shallow soil 
layer of high organic content above the mineral soil [Pauwels 
and Wood, 1999a; Van de Wiel et al., 20021. The organic layer 
is not usually included in soil models. Blunken et al. [ 19971 
and others have noted that leaf litter on the forest floor can act 
as a quasi-insulator and therefore promote large subsurface 
temperature gradients in addition to greater daytime warming 
of the subcanopy air in the pre-leaf-out period. More specif- 
ically, the soil surface layer with high organic content is 
normally characterized by smaller thermal conductivity and 
high porosity compared to mineral soils [Letts et al., 20001. 
Puuwels and Wood [ 1999a, 1999b, 20001 also pointed out the 
importance of an organic surface layer and included an 
organic surface layer in TOPLATS. The model performed 
well in simulating surface fluxes above the canopy but 
slightly overestimated the ground heat flux during the course 
of the day [Pauwels and Wood, 1999bl in BOREAS [Sellers 
et al., 19951. Although the modeled ground heat flux is 
sensitive to parameters such as moss thickness, thermal 
conductivity and heat capacity [Pauwels and Wood, 
1999b], subcanopy turbulence also plays an important role 
in determining ground heat flux. In this study, we focus on 
evaluation of the subcanopy flux and interaction between the 
surface organic layer and the subcanopy air. 
[7] To examine the interaction between microclimate and 

physiology, we have coupled the multilevel canopy model 
of Williams et al. [ 19961 with a soil model and atmospheric 
boundary layer model for use in regional models. This study 
evaluates the offline performance of the canopy and soil 
models in terms of vertical structure within the canopy and 
interaction with an organic surface layer. The model will be 
compared with data collected at the old aspen site during 
BOREAS. 

2. Model 
[SI The land surface model is based on the canopy model 

(soil plant atmosphere (SPA) model) of Rlliums et al. 
[1996, 20011, coupled to a multilayer soil model with snow 
and frozen soil physics [Mahrt and Pun, 1984; Koren et al., 
1999; Peters-Lidard et al., 19981 and the surface runoff 
scheme of Schuake et al. [1996]. The canopy model 
computes the stomatal resistance in each canopy layer to 
maximize daily carbon gain per unit leaf nitrogen content, 
within the limitation of canopy water storage and transport 
of water from soil to the canopy [ Williams et al., 19961. The 
radiation routines model the incidence, interception, absorp- 
tion and reflectance of PAR (Photosynthetic Active Radia- 
tion), near infrared radiation (NIR) and longwave radiation 
in each canopy layer [Amthor, 1994; Amthor et al., 19941. A 
spherical leaf angle distribution is assumed. 

[9] Here we apply two vegetation layers with the same 
thickness. Four soil layers are employed with thicknesses of 
0.1, 0.3, 0.6 and 1 m, where the top layer includes organic 
material. We refer to the above papers for a description of 
the model components and here describe only parts of the 
model where changes are made. 

2.1. Subcanopy Processes ~. 

[io] The total surface fluxes are partitioned into vegeta- 
tion and ground components. Transport is formulated in 
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Figure 1. The transfer diagram for the canopy system. 

terms of the atmospheric eddy diffusivities and leaf boundary 
layer resistances (Figure 1). The subcanopy air temperatures 
(Ti and 2'2) and the water vapor mixing ratios (ql and q2) 
are calculated using the leaf temperature (cv), the saturation 
mixing ratio (qiv) evaluated at the leaftemperature, the ground 
temperature (2'& the ground saturation mixing ratio (qg) 
for the ground temperature and resistances by solving the 
following equations for water vapor and temperature by 
iteration: 

where qa and Ta are the mixing ratio and the air temperature 
at the reference height (39 m from the ground) above the 
canopy, Ra is the aerodynamic resistance in the surface 
layer, Rk is the subcanopy resistance, Rb is the leaf boundary 
layer resistance and R,,, and RSha are the stomatal resistance 
for sunlit and shaded leaf areas, respectively, fw is the39 
wet fraction of leaf and (3 is the soil wetness function 
(equation (13)). L,, is the sunlit leaf area index, Lsha the 
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shaded leaf area index and L and S are the leaf area index and 
stem area index, respectively. While transpiration occurs on 
one side of the leaf, sensible heat flux occurs from both sides 
of the leaf due to mechanical mixing. Therefore a factor of 2 is 
used in equations (3)-(4). The value of 0.93 in equations (3) 
and (4) accounts for the differences in molecular diffisivities 
between heat and water vapor. It is assumed that the air 
adjacent to the shaded leaf surface is the same as that 
adjacent to the sunlit leaf surface due to sufficient mixing. 
Therefore no differentiation of leaf boundary layer resistance 
was made between shaded and sunlit leaf surfaces. The leaf 
temperature is calculated from the leaf energy balance 
equation. Neglecting any metabolic and physical storage, the 
leaf energy balance equation becomes 

Rn = Hv + =,(I - f w )  + M c f w ,  ( 5 )  

where H, is the leaf sensible heat flux, R, is the net radiation 
of the leaf surface, E, the transpiration and E, the direct 
evaporation from wet leaf surfaces. The ground temperature 
is calculated from the ground surface energy balance. 

[ 1 I] The aerodynamic resistances for momentum and heat 
transfer are calculated using the surface layer similarity theory 
for the eddy diffisivity. The subcanopy resistance for the heat 
and moisture fluxes between the soil surface and the lowest 
canopy layer and between canopy layers is estimated as 

dz 
Rk = J K h .  

The eddy diffisivity within the canopy layer for temperature 
and moisture is assumed to decrease exponentially from the 
canopy top downward toward the ground surface [Bonan, 
19961 

(7) 

where Ksfc is the eddy diffisivity at the canopy top 
calculated from Monin-Obukhov similarity, a is a non- 
dimensional constant, z is the height above ground and H is 
the canopy height. 

[ 121 The leaf boundary layer resistance is calculated as in 
the work of Jones [1992] 

Rb = 1oO(d/U)0'5, (8) 

where d is the characteristic dimension of leaf and u is the 
wind speed in each canopy layer. The default value of 
0.08 m from Williams et al. [1996] is used for d in this 
study. The wind profile within the canopy is assumed to 
decrease exponentially downward as 

(9) 

where U, is the wind speed at the canopy top. 

2.2. Surface Organic Layer 

content. The thermal conductivity is computed as 
[13] The topsoil layer is generalized to include organic 

K = C K i j ,  (10) 

where Ki is the thermal conductivity of each material 
component (Table 1) andf; is the volume fraction of each 
material. The volumetic heat capacity of the topsoil layer, 
C (J K-' m -3) is represented as 

c = CCij', ( 1 1 )  

where Ci is the volumetric heat capacity of the it,, soil 
component. For the thermal conductivity of the mineral soil, 
Johansen's parameterization [Peters-Lidard et a/. , 19981 is 
used. 
[M] For soil evaporation, we adopted the commonly used 

expression 

where Ep is potential evaporation, which is calculated by a 
Penman-based energy balance approach and p is calculated 
as 

where 0, is saturation soil moisture, is soil moisture at 
first soil layer and 0, is the wilting point. 

[IS] The organic soil has a small bulk density, typically 
about 0.13 g crnp3, while mineral soil has a typical value of 
about 1.3 g cm-3 for the BOREAS sites [Halliwell and 
Apps, 19971. The organic material usually includes highly 
permeable fibric peat near the surface [Letts et al., 20001, 
which dries out quickly, corresponding to rapidly decreas- 
ing hydraulic conductivity and decreasing surface evapora- 
tion. To include this effect into the above formulation, we 
used the following values as the saturation point and wilting 
point. 

(15) e, = 0.22 

The saturation point is based on bulk density and wilting 
point is used as a tuning parameter rather than pure physical 
quantity. A similar approach was employed by Pauwels and 
Wood [1999a, 1999bl where the soil resistance was 
calibrated for each tower site to represent the reduction of 
evaporation from a surface moss layer. 

3. Data 
[16] We compared the land surface model with eddy 

correlation data collected at 39 m on the old aspen tower 
in BOREAS 1994 and at 4 m on a small tower approx- 
imately 40 m from the main tower. The study site 
(56.629"N 106.200"W) was located in Prince Albert 
National Park, approximately 50 km NNW of Prince 
Albert, Saskatchewan, Canada. The site lies near the 
southern limit of the boreal forest with the transition to 
parkland occurring approximately 15 km to the south- 
west. The soil texture is sandy loam covered by about40 
8 cm of organic material. A natural fire occurred approx- 
imately 70 years ago resulting in an even aged stand of 
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Table 1. Thermal Properties of Soil Constituents From Furouki 
r 19xa  

Heat Capacity, Thermal Conductivity, 
Material x 1 ~ 3 ~ k 7 1 m - 3  W m-1k7‘ 
Quartz 1942 8.4 

Soil minerals 1942 2.9 
Soil organics 2503 0.25 

Water 4186 0.6 
Ice 1883 2.5 
Air 1.2 0.026 

aspen with a mean canopy height of 21.5 m and mean 
diameter at the 1.3 m height of 20 cm. Crown space was 
limited to the upper 5-6 m, beneath which was a 
branchless trunk space. The understory was dominated 
by a uniform cover of hazelnut with a mean height of 
2 m. The fetch was at least 3 km in all directions. 

[u] Two periods were selected for model evaluation 
and sensitivity tests during which skies were mostly clear 
except for a few short rain events. The characteristics of 
the two periods are described in Table 2. The first period 
is pre-leaf-out and snow free. According to Blanken et al. 
[1997], the leaf-out began in the third week of May. The 
second period is well after full leaf-out when the leaf area 
index (LAI) was approximately constant with time. The 
parameters used in SPA are listed in Table 3. To force the 
model in an ofline mode, we used meteorology data 
observed at 39 m on the main tower [Hurtog and 
Neumann, 20001, precipitation and longwave radiation 
from the Airborne Fluxes and Meteorology data set 
[Osborne et al., 19981 and observed soil data from Black 
[2000]. The model time step is 15 min. Meteorological 
forcing data are available at 30-min intervals, and pre- 
cipitation and longwave radiation are available at 15-min 
intervals. We have interpolated meteorological forcing 
data into 15-min intervals. 

[18] While we consider the data to be the “truth” for 
evaluation of the model, we must recognize a variety of 
errors. Random flux errors for individual 30-min. records 
may be greater than 10% and often greater than 20% for 
nonstationary transition periods and some nocturnal periods 
[Muhrr, 19981. Subcanopy measurements may be influenced 
by subcanopy heterogeneity. Measurements of wind and 
temperature in the subcanopy are not representative of the 
entire subcanopy layer particularly at night when a strong 
surface inversion generally forms in the lowest 5 m [Mahrt et 
al., 20001. 

[w] Nakamuru and Muhrt [2001] found that the above- 
canopy eddy correlation measurements in BOREAS were 
generally within the roughness sublayer, below the sur- 
face layer where Monin-Obukhov similarity theory 
applies. Model uses Monin-Obukhov similarity theory, 
which generally underestimates mixing in the roughness 
sublayer. As a probable consequence, the observed verti- 
cal temperature difference between the two observational 
levels (13 m, 39 m) is significantly smaller than 
that predicted using Monin-Obukhov similarity theory 
(Figure 2), especially in stable conditions, implying 
greater mixing compared to Monin-Obukhov similarity 
theory. The influence of the height dependence of the 
footprint on the observed vertical temperature difference 

and fluxes cannot be assessed here, which is always a 
concern in the roughness sublayer. 

4. Comparison With Aspen Data 

the pre-leaf-out and the other in the post-leaf-out period. 

4.1. Pre-Leaf-Out Period 
[a ]  Comparison of the IO-day averaged diurnal cycle 

between the model and the observations (Figure 3) indicates 
that the above-canopy and understory fluxes are simulated 
by the model reasonably well during the pre-leaf-out period, 
with some exceptions. Table 4 shows the statistical compar- 
isons between model-derived and tower-observed fluxes. 
Because of the small LA1 during this period, the total latent 
heat flux is dominated by soil evaporation. The relatively 
low correlation between the model and observed evapora- 
tion (Table 4) is due to poor model simulation of the direct 
evaporation from the soil immediately after rainfall. 
Although the rainfall amount is small, the observed subcanopy 
moisture flux, including direct evaporation from the soil and 
canopy, reaches about 200 Wm-2 immediately after rainfall. 

[22] The observed sensible heat flux ofnearly 150 Wm-2 in 
the subcanopy for the pre-leaf-out period implies significant 
buoyancy-generation of turbulence energy within the subcan- 
opy. In sparse canopies with low LAI, the use of the usual 
constant extinction coefficient (equation (7)) can underesti- 
mate turbulent mixing within the canopy, resulting in larger 
vertical temperature gradients in the subcanopy and higher 
ground surface temperature than observed during daytime. 
The model shows a warm bias in 4-m subcanopy temperature 
during daytime (Figure 3), consistent with underestimation of 
mixing, although advection and errors in the model radiative 
transfer could also be factors. The apparent cold bias in the 
nocturnal subcanopy, could be partly due to the location of the 
observed temperature near the top of a strong surface inversion 
of about 5-m depth. Since the model does not consider 
subcanopy stability in the heat transfer in the subcanopy, the 
model does not capture the strong nocturnal surface inversion, 
which results in overestimation ofthe understory sensible heat 
flux. 

4.2. Post-Leaf-Out Period 
[23] The post-leaf-out period is characterized by a signif- 

icantly higher LA1 and lower soil moisture content than in 
the pre-leaf-out period (Table 2). The simulated latent heat 
flux and soil heat flux are generally close to the observed 
values (Figure 4), although the understory latent heat flux is 
overestimated by 30 Wm-2 during the late afternoon from 
1500 LST to 1800 LST. The transpiration is controlled by 
the leaf boundary layer resistance and the stomatal resist- 
ance. In unstable conditions with significant wind, the leaf 
boundary layer resistance is usually smaller than the sto- 

[20] The model was run for two IO-day periods, one in 

Table 2. Characteristics of Selected Periods 
~~ 

PAI(LA1)’ Initial Topsoil 
Period HazelnuUAspen Moisture 

F‘re-leaf-out 5- 14 May 0.3(0.1)/1.2(0.3) 0.23 
Post-leaf-out 30 July to 8 Aug. 3.4(3.2)/3.2(2.3) 0.11 41 
‘PAI is the plant area index (the sum of leaf area index and stem area 

index) and LA1 is the leaf area index. 
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Table 3. Model Parameters 

Parameter Value Unit Source 
Stem specific hydraulic Conductivity 20 m, mol, m-l, s-', MPa-' estimated 

MPa s g mmol-' estimated Root resistivity 50 
Total fine m t  biomass 657 g m-' Sreele et al. [I9971 
Canopy layer capacitance 8000 mmol MPa-' Williams et al. [I9961 
Minimum leaf water potential -2.3 MPa Kimball et al. [I9971 
RuBP carboxylation catalytic Rate coefficient at 30"c)Ec 37.8 Williams et al. [2001] 
Electron transport rate Coefficient at 3O0Gkj 49.0 p mol g-' N S-' Williams et al. [2001] 
Soil color 4 no unit Kimball et al. [I9971 

p mol g-' N S-' 

matal resistance. Therefore the transpiration is limited by 
stomatal resistance and is less sensitive to leaf boundary 
layer resistance. However, when the wind speed is weak, 
transpiration can be more limited by the leaf-boundary layer 
resistance. In late afternoon when the subcanopy air 
becomes stably stratified, the wind speed within the canopy 
becomes weak due to less downward transport of momen- 
tum. The overestimation of subcanopy wind speed causes 
underestimation of leaf boundary layer resistance, which 
causes overestimation of transpiration in late afternoon. 

[24] Model errors for the sensible heat flux are greater 
than those for the latent heat flux. The model overestimates 
the subcanopy sensible heat flux throughout the diurnal 
period (Figure 4 and Table 4), possibly due to failure to 
resolve the vertical structure of the understory. The model 
employs only two layers of vegetation for application in 
regional models. The two vegetation layers, here each 10 m 
deep, assume uniform plant distribution within each layer 
whereas the actual vertical distribution includes a thick 
overstory of 5-6 m thickness and a 2-m dense understory 
near ground. The layer-averaged resistance in the lower 
canopy layer underestimates the leaf boundary layer resis- 
tance for the 2-m understory and therefore overestimates the 
subcanopy sensible heat flux from the understory. Note that 
transpiration is less sensitive to leaf boundary layer resist- 
ance since it is limited by stomatal conductance in unstable 
conditions, compared to sensible heat flux that depends 
more on leaf boundary layer resistance. 

[E] In the transition periods with low sun angle, the 
modeled subcanopy is stably stratified while the atmosphere 
above the canopy is still unstably stratified. The subcanopy 
mixing in the model depends on the stability above the 
canopy and therefore does not recognize the difference 
between the stability above and within the canopy. As a 
result, the model incorrectly predicts large negative sensible 
heat flux in the subcanopy during the transition periods 
whereas the observed subcanopy heat flux is small (Figure 4). 

[26] The model overestimates the daytime sensible heat 
flux above the canopy by 50 W mP2. This overestimation 
could be due to omission of the heat storage within the 
canopy and advection of temperature. 

[27] The simulated soil heat flux agrees with the obser- 
vations reasonably well during the day, but is overpredicted 
at night (Figure 4). The modeled temperature at the 4-m 
level is in good agreement with the observed temperature 
during the day but it is too cool at night giving larger 
temperature gradient than that observed in the upper canopy. 
The apparent cold bias could be due to location of the 
observed temperature just above the subcanopy surface 
inversion (section 4.1) or could be due to model overesti- 
mation of the radiative cooling of leaves. 

[28] The leaf radiative cooling is coupled to the leaf 
boundary layer resistance (equation (8)) through its influ- 
ence on leaf temperature in the leaf energy balance. The leaf 
boundary layer resistance represents the transfer of heat and 
moisture between the leaf surface and adjacent air and in the 
model is only a function of wind speed. In unstable 
conditions, the mixing in the canopy is significant, such 
that the canopy wind speed and air temperature are close to 
those adjacent to the leaf surface. However, in stable 
conditions, large differences exist between average canopy 
wind speed and air temperature and wind speed and air 
temperature adjacent to the leaf surface due to suppression 
of mixing by the stable stratification. Without consideration 
of these differences, the heat exchange between the leaf and 
the atmosphere is overestimated in stable conditions, which 
reduces the temperature difference between the radiatively 
cooled leaf surface and the air. The resulting overprediction 
of leaf temperature causes more emitted longwave radiation 
and therefore larger net radiative cooling of the canopy. Due 
to the overcooling in the subcanopy, the subcanopy air 
temperature decreases to the saturation point causing over- 
estimation of understory condensation (Figure 4). 

5. Influence of Organic Material 
[29] To examine the effect of the surface organic layer on 

the subcanopy processes, simulations were performed with 
and without organic material in the upper soil layer. During 

2 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 
z/L 

Figure 2. The modeled vertical temperature difference 
(TI3,,, - T39,) minus the observed vertical temperature42 
difference between the displacement height (13 m) and 
reference height (39 m) as a function of z/L. 
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the pre-leaf-out period. 

the pre-leaf-out period, the simulation with no organic 
material substantially overestimates soil evaporation and 
heat flux into the ground and underestimates understory 
sensible heat flux (Figure 5). The simulation with organic 
material predicts fluxes much closer to the observed values. 
The unrealistically large soil evaporation in the simulation 
with no organic material leads to rapid drying of the soil. 
The organic material acts as a partial insulator between the 
soil surface and deep soil. As a result, the surface organic 
layer makes the subcanopy more unstable during daytime 
and more stable during night. This improves the comparison 
with the observations. 

[30] The impact of the organic material is smaller after 
leaf-out because the understory reduces exchange between 

Table 4. Results of Model Aodication’ 

Sensible heat flux (understory) 

Y-----l 

0 5 10 15 20 
Sensible heat flux above canopy 

r m  
3 100 
E 

-loOO 
5 10 15 20 

Temperature at 4m 

Y 2 9 o p ;  .......... 
280 ........... 
270 0 5 10 15 20 I 

LST 

DO8103 

the ground and the atmosphere (Figure 6). The overestima- 
tion of soil evaporation in the simulation without an organic 
layer leads to underestimation of the vapor pressure deficit 
in the subcanopy, which in turn leads to underestimation of 
transpiration. Therefore the sensitivity of latent heat flux to 
the organic layer is reduced. The simulation with no organic 
material also overestimates the downward ground heat flux 
during the daytime, which results in smaller sensible heat 
flux in the subcanopy. 

6. Conclusions 
[31] The land surface scheme tested in this study roughly 

captures the main energy partition between the understory 

Period Variable Mean Observation, W m-’ Mean Simulation, W m-’ R, Dimensionless RMSE, W m-’ 
he-leaf-out 

H“ 40.62 40.65 0.96 33.62 
H a  96.5 1 71.76 0.95 54.71 

LE, 11.37 12.69 0.62 15.48 
LEa 17.06 19.76 0.59 21.62 
G -12.36 -9.00 0.92 14.35 

Post-leaf-out 
H” 2.39 -0.51 0.69 11.48 
H. 10.15 4.63 0.88 35.30 
LE. 21.46 23.76 0.81 23.6 
LE. 78.02 74.49 0.93 36.42 43 
G -5.03 -2.52 0.95 5.29 

“Subscripts u and a represent understory and above the canopy respectively, R is the correlation coefficient and RMSE is the root mean square error. 
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Figure 4. Composite diurnal variation for the observed (circles) and modeled (solid line) variables for 
the post-leaf-out period. 
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Figure 5. Comparison between the model with (solid line) and without (dash-dot line) the organic layer 
for the pre-leaf-out period and the observed values (circles). 
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Figure 6. Comparison between the model with (solid) and without (dash-dot line) the organic layer for 
the post-leaf-out period and the observed values (circles). 
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