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Uplink Array Calibration via Far-Field
Power Maximization

V. Vilnrotter,1 R. Mukai,1 and D. Lee1

Uplink antenna arrays have the potential to greatly increase the Deep Space
Network’s high-data-rate uplink capabilities as well as useful range, and to provide
additional uplink signal power during critical spacecraft emergencies. While tech-
niques for calibrating an array of receive antennas have been addressed previously,
proven concepts for uplink array calibration have yet to be demonstrated. This
article describes a method of utilizing the Moon as a natural far-field reflector for
calibrating a phased array of uplink antennas. Using this calibration technique,
the radio frequency carriers transmitted by each antenna of the array are optimally
phased to ensure that the uplink power received by the spacecraft is maximized.

I. Introduction

Uplink arraying is a fundamentally new concept that promises to dramatically increase NASA’s fu-
ture deep-space communications capabilities. The requirements to command spacecraft after launch
and during encounter, and to provide two-way communication and two-way ranging as well as in-flight
reconfiguration to accommodate changes to mission objectives, are integral parts of every deep-space
mission. The use of antenna arrays enables greater data rates, greater effective operating distance, and
cost-effective scaling for more demanding future missions through a highly flexible design philosophy, via
the inherently parallel architecture of antenna arrays.

Currently, uplink command and telemetry functions are carried out by 34- and 70-meter antennas in
the Deep Space Network (DSN). The newer 34-meter antennas are used for routine uplink operations,
whereas the older 70-meter antennas are employed when greater range or data rate is required. However,
the 70-meter antennas may soon be decommissioned due to age and increasing maintenance costs. Instead
of building new 70-meter-aperture or larger antennas, current plans call for the construction of arrays of
smaller antennas together with the required signal processing to maintain and eventually greatly surpass
NASA’s long-range and high-data-rate communications capabilities.

The current uplink capabilities of a long-range 70-meter antenna, equipped with a 20-kW X-band
transmitter, can be maintained by configuring two existing 34-meter antennas (also with 20-kW trans-
mitters) as a two-element uplink array. Adding more 34-meter antennas to the two-element uplink array
continues to improve on current 70-meter uplink capabilities since the far-field power increases as the
square of the number of antennas when the transmitter power on each antenna remains the same. It is
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anticipated that either new 34-meter antennas will be built in the future to provide even greater uplink
capabilities or large numbers of smaller antennas will be constructed and configured as uplink arrays to
meet future requirements via cost-effective and flexible array architectures.

The use of arrays for uplink applications requires precise knowledge of the phase vector that maximizes
the power density along the desired line of sight (LOS) towards the spacecraft. Initially, the phase vector
of the array must be calibrated with sufficient accuracy along the calibration LOS, after which the
calibration vector has to be translated to the spacecraft LOS and maintained dynamically throughout
the track. This article addresses the first of these requirements, namely the initial calibration of the array
vector via far-field radar calibration.

II. Uplink Array System Model

A functional block diagram of a two-element uplink array constructed using the existing 34-meter
beam-waveguide (BWG) antennas at the Goldstone Deep Space Communications Complex (GDSCC)
is shown in Fig. 1. The antennas in this block diagram are located at the Apollo Deep Space Station
(DSS) 24 and DSS 25, where initial Moon-bounce experiments already have been carried out, but also
could include the 34-meter antenna at DSS 26 in future experiments. The intent is to identify and
characterize the key components of an experimental two-element uplink array system that will be used
to demonstrate the calibration algorithms described in this article.

Critical to any array for which precision measurements of phase are required is an accurate and stable
reference frequency subsystem that can be used to determine the phase of each antenna at a specified
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Fig. 1.  Conceptual diagram of a two-element uplink array, identifying reference frequency generation and 
distribution, signal distribution, power amplifiers (PAs), and antenna phase centers.
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point in the electronic signal path. The highest (hence most accurate) reference frequency distributed at
the GDSCC is 100 MHz, with a differential stability between co-located antennas on the order of a few
hertz per day. Such an accurate reference frequency enables differential comparison of the transmitted
carrier phase up to a day after initial calibration, reducing the frequency of calibrations between uplink
transmissions.

The carrier frequency envisioned for operational uplink arraying is X-band 7.1- to 7.9-GHz, which is
the current uplink frequency, well separated from the nominal 8.4-GHz downlink carrier frequency. At
these X-band frequencies, tropospheric delay variations do not present a serious problem under nominal
operating conditions, but could be measured along the antenna LOS and incorporated into the calibration
vector using standard water vapor radiometer (WVR) techniques, if required. In this article, we do not
consider tropospheric effects on the uplink signal, but refer the interested reader to previous articles that
treat this subject in detail [1,2].

The X-band signals are generated at the central Signal Processing Center (SPC) 10 located at DSS 14
and distributed via fiber to the Apollo complex where the antennas are located, some 16 kilometers away.
The exciters generating the X-band carriers also impose modulation on the signal on demand and have the
capability to incorporate predict-based differential Doppler compensation to cancel the effects of Earth
rotation on the transmitted carriers. The compensated X-band carriers are amplified by 20-kW power
amplifiers located in the pedestal room of the BWG antennas. Finally, the amplified X-band fields are
launched into space in the commanded pointing direction via the beam-waveguide interface.

Studies addressing the stability of the phase centers of the three-antenna cluster at the Apollo station
indicate that differential drift between antennas is on the order of a millimeter over several years,2 which
translates to about 10 degrees of electrical phase at the X-band uplink carrier frequency, implying that
differential drift in phase centers between uplink array calibration is not a significant problem. The
antenna phase center, defined as the intersection of the azimuth and elevation axes, is a convenient point
for referencing the phase of the X-band carrier at each antenna: the antenna phases θi in the following
theoretical development are understood to be measured at the phase center of each antenna.

III. Far-Field Calibration Principles and Algorithms

The far-field calibration techniques covered in this section do not include the case when a spacecraft
downlink signal is available, since uplink calibration may be required even when a downlink signal is
not available. Therefore, we restrict our attention to calibration techniques that rely on natural sources
or radar reflectors that are visible at least once a day, such as quasars and the Moon. Two distinct
calibration scenarios will be considered: calibration by measuring the interferometric phase, obtained
either from a natural point source such as a quasar or from an illuminated target such as the Moon, and
applicable to both uplink and downlink arrays; and calibration via a novel far-field power maximization
scheme developed specifically for uplink arrays.

Uplink array calibration is defined as the process of obtaining the phase vector required to project
a maximally narrow beam in the direction of a spacecraft or other target, with accuracy exceeding the
angular dimensions of the far-field beam. The key concepts required for understanding array calibration,
and in particular uplink array calibration, can be defined and illustrated by considering the calibration
of a two-element array in receive mode via a distant point source, such as a compact quasar.

A. Receive-Mode Calibration Using Quasar Radiation

Quasars are a natural source of strong radio frequency (RF) radiation, and their spatial extent generally
is small compared to the beamwidth of the antenna elements or even to the secondary beam of a compact

2 C. Jacobs, personal communication, Jet Propulsion Laboratory, Pasadena, California, 2005.
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array. The signal it generates appears as white noise over receiver bandwidths of interest (50 to 100 MHz);
hence, the radiation from a noise-like point source can be modeled as a plane wave with random, wideband
modulation.

As shown in Fig. 2, the downconverted complex baseband signal received by two antennas with a
geometrical range difference of R2 − R1 is of the form

si(t) = nQ
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where λ is the carrier wavelength, c is the speed of light, and θi, i = 1, 2 is the instrument phase associated
with antenna “i” in receive mode. These signals are observed in the presence of additive noise; however,
we do not consider additive noise in this article, instead relegating it to a future article in which the
performance of uplink array calibration algorithms will be addressed.

The quasar signal shown in Fig. 2 is wideband and hence can be assumed to be delta-correlated for
large receiver bandwidths. Therefore, applying the delay difference to one of the signals and correlating
the delay-compensated received waveforms from the two antennas yields the expected value:
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Fig. 2.  Array and source geometry for calibrating two antennas using a distant point source, such as a quasar.
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where σ2
Q = E|n2

Q(t)| is the variance of the noise-like point-source or, equivalently, the power of the
received quasar signal. The interferometric phase is an estimate of the geometric phase difference plus
the difference of the receive-mode instrument phases. It can be recovered from the correlation by taking
the arc-tangent of the ratio of the imaginary and real components. If the geometric phase difference is
known precisely, then it can be subtracted from the interferometric phase, leaving an estimate of the
difference of the instrument phases needed to calibrate the antenna pair.

B. Receive-Mode Calibration Using Interferometric Synthetic Apperture Radar Techniques

The concept of extracting interferometric phase between two receive antennas using a distant point
source can be extended to radiation reflected from rough surfaces, such as the surface of the Moon [3].3 If
the lunar surface is illuminated by radio waves, the reflected components can be detected on the ground
by sensitive receivers and processed to extract the phase information. Consider a portion of the lunar
surface illuminated by radio waves as in Fig. 3. The reflected component just above the surface is the
result of reflections by a multitude of scatterers at different distances and can be represented by a complex
field distribution.

The impinging radio wave s(t) is taken to be a plane wave. After encountering the rough surface, a
portion of the signal field is reflected, with some fraction of the total reflected power propagating back
towards the transmitter. Since the scatterers are at slightly different distances, the phase of each reflected
component tends to be random, but stationary for a short time. A hypothetical plane just above the
lunar surface is convenient for analyzing the return signal for the purpose of developing a two-dimensional
model. This model then is applied to analyze the Moon-bounce calibration algorithms.

Consider the Cartesian coordinate system attached to the virtual plane just above the lunar surface,
as shown in Fig. 3. We can model the reflected fields as the product of a nominal return plane wave
and an amplitude and phase distortion function, h(x, y). Define the spatial coherence function H as the
expectation of the product of displaced distortion functions:

H(x1 − x2, y1 − y2) ≡ E
{
h(x1, y1)h∗(x2, y2)

}
(3)

where the expectation is over the ensemble of independent surface samples from a given region. This
coherence function can be used to generate a complete set of orthonormal functions that are useful for
expanding the random reflected fields. The eigenfunctions of the coherence kernel, ξ(x, y), satisfy the
integral equation:

∫∫
dx1dy1H(x1 − x2, y1 − y2)ξj(x1, y1) = ςjξj(x2, y2) (4)

where ςj is the eigenvalue associated with the jth eigenfunction, ξj(x, y). The reflected field, r(x, y; t), can
be expanded in terms of these functions as r(x, y; t) =

∑
j rj(t)ξj(x, y), where E

{
rj(t)r∗k(t)

}
= ρj(t)δjk

and ρj = |hj |2; in other words, the spatial coefficients are uncorrelated. Expansions of this type, that make
use of the eigenfunctions of the coherence kernel, are known as Karhounen–Loeve (K-L) expansions and
are used extensively in communications theory and signal processing to generate expansions with uncor-
related (or, in the case of Gaussian processes, independent) coefficients. For isotropic coherence kernels,
these eigenfunctions are often peaked, unimodal functions, leading to a spatial sampling interpretation for
the K-L expansion. This interpretation effectively replaces the continuous lunar surface with a sampled
representation, incorporating the complex reflection coefficient in the neighborhood of each sample into
the expansion coefficients. This sampled model is illustrated in Fig. 4, where several scattering coefficients

3 F. Wang and K. Sarabandi, Study of Uplink Large Array Calibration Using In-Orbit Targets, Progress Report III (internal
document), University of Michigan, April 2005.
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Fig. 4.  Illustration of complex reflection coefficients for the sampling interpretation.

are identified. For convenience, we shall refer the scattered power ρ to the receiving antenna, in effect
absorbing the propagation loss from the Earth to the Moon into the coefficients.

It is well-known4 [3] that the lunar surface imparts different Doppler shifts to radio signals reflected
from thin “slices” parallel to the apparent spin axis. In addition, the near-spherical mean surface of the
Moon can be decomposed into concentric rings of equal distance, or delay, from the receivers, radiating
outwards from the apparent center of the Moon. The intersection of the Doppler slices and concentric
delay rings gives rise to “pixels” on the lunar surface with distinct Doppler-delay signatures, as illustrated
in Fig. 5.

4 Ibid.
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Fig. 5.  Receive mode uplink array calibration using interferometric SAR, illustrating the Doppler-delay technique.
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With a single antenna transmitting and two antennas receiving, a Doppler-delay pixel on the lunar
surface can be isolated through the use of a matched filter at each antenna, designed to respond only
to signal components with specific range and Doppler parameters. Range resolution can be obtained by
modulating the transmitted signal with a pseudorandom noise (PN) code whose autocorrelation function
peaks at the desired delay; Doppler resolution can be achieved by filtering out all but a narrow band
of frequencies around the desired Doppler frequency. A transmitted illuminating signal incorporating
these features and, therefore, enabling the matched filtering operation at the receivers is of the form
x(t) = m(t) exp[j(ωt)], where m(t) is a PN sequence with chip duration and total range designed to provide
the desired range resolution and to simultaneously eliminate range ambiguity. The carrier frequency is
arbitrary but known to the receivers, enabling computation of the desired Doppler slice a priori.

The Doppler-delay pixel typically extends over hundreds of meters to kilometers and hence contains
a great many sample coefficients. To simplify notation, we assume that the scattering coefficients have
been renumbered using a single index, j, instead of the two indices (i, j) shown in Fig. 4. With P watts
illuminating the selected pixel, the complex envelope of the scattered component received by the ith
antenna on the ground, due to the jth scatterer within this pixel, is of the form

rij(t) =
√

Phjm

(
t − Rij

c

)
exp

[
j

(
ωijt +

2πRij

λ
+ θi

)]
(5)

where hj is the complex coefficient of the scattered signal component received at the ith antenna (after
propagation losses have been taken into account), λ is the carrier wavelength, Rij is the total pathlength
from the jth scatterer to the ith antenna, and θi is the instrumental phase associated with the ith receiver.
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Using a single subscript to identify the scatterers within the desired Doppler-delay pixel, the total signal
received from the Moon within the design range and Doppler slice of the matched filter can be expressed
as

ri(t) =
∑
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c
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exp
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)]

∼=
√

Pm

(
t − R̄i

c

)
exp

[
j

(
ω̄it +

2πR̄i

λ
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j

hj (6)

where R̄i and ω̄i are the average range and Doppler frequency of the desired pixel, observed at the
ith receiving antenna. Performing the correlation of the signals from two antennas and taking the expected
value yields
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Equation (7) shows that the interferometric phase can be recovered from a pixel on the lunar surface, in
general comprised of a large number of scatterers. In effect, we can view the pixel as an average scattering
surface with reflection coefficient β = Nρ̄/Apixel. This interpretation is helpful for estimating the received
power, given the illuminating power density and the size of the Doppler-delay pixel.

C. Direct Uplink Array Calibration Using “Moon-Bounce” Power Maximization

The calibration techniques described above rely on receive-mode calibration of two antennas, whereby
the signal is received simultaneously either from a distant point source (quasar) or from a pre-selected
Doppler-delay pixel on the lunar surface, illuminated from the ground. These techniques are applicable
to cases for which a receiver is available on the uplink antennas, and in addition the received phase can
be accurately translated to the uplink transmitter system. If a downlink signal from the spacecraft were
available, and if the calibration between the receiver and transmitter sections of the uplink antennas
could be characterized and preserved, then the downlink signal itself could be used to calibrate the uplink
array. However, in the general case when no downlink signal is available due to spacecraft malfunction or
other operational constraints, this method of calibration may not be available during routine operational
scenarios.

A preferred method for calibrating the uplink array is in transmit mode, where all of the array elements
are transmitting towards a predetermined point in space and where the far-field signal power is maximized
in the desired look direction through a direct far-field measurement. The same mathematical concepts
developed in the above receive-mode calibration approaches can be employed to develop the new concepts
required for transmit-mode calibration of the uplink array. For transmit-mode calibration, it is necessary
to take into account the relative delay and differential Doppler between the two transmitting antennas.
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The geometrical relationship between the two transmitting antennas and a single receiver antenna de-
signed to receive signal power only from the pre-selected Doppler-delay pixel is shown in Fig. 6. The
range difference between the two antennas is R2−R1, which gives rise to a delay difference of (R2−R1)/c
in the modulation and to a total phase difference of 2π(R2 − R1)/λ in the carrier phase. Taking these
offsets into account, the transmitted signals from the two antennas would arrive at the lunar surface in
phase and with compensated delay if the instrument phases θ1 and θ2 were equal. However, even if the
instrumental phases are not equal at the array elements, there is a point in the primary illumination
pattern where the phases are exactly equal, guaranteed by the fact that the separation of the antenna
centers always exceeds the antenna diameter.

Denoting the delay and Doppler compensated signals leaving the two antennas by x1(t) and x2(t),

x1(t) =
√

Ptmt(t) exp
[
j(ωt + θ1)

]

x2(t) =
√

Ptmt

(
t − R2 − R1

c

)
exp

[
j

(
ωt +

2π(R2 − R1)
λ

+ θ2

)] (8)

where mt(t) refers to the transmitted modulation. The sum of the transmitted signals impinging on the
lunar surface is of the form x(t) = C[x1(t) + x2(t)] = Cm(t) exp(jωt)[exp(jθ1) + exp(jθ2)], where C is

Fig. 6.  Transmit mode uplink array calibration, illustrating electronic scanning of the far-field signal distribution by 
varying the differential antenna phase.
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a constant coefficient. Consider the point over the lunar surface where θ1 = θ2. Absorbing the complex
constant into the coefficient, we can see that the amplitude of the illuminating field at this point on the
surface is twice the field magnitude; hence, the power is proportional to four times the power from each
antenna. At a point where the phase of the second (or first) antenna differs from that of the first (or
second) antenna by π radians, the two exponentials cancel, and the power over that point on the lunar
surface is reduced to zero. It is clear that, for any point on the lunar surface within the overlapping
footprint of the two antennas, the phases could be made to add or cancel by varying the phase of one
of the antennas on the ground, resulting in constructive or destructive interference at a given point in
the far field. Varying the phase of one antenna to scan the peak of the interference pattern over a line
formed by the projection of the antenna baseline onto the center of the antenna footprint in this manner
amounts to a form of electronic beamsteering in the far field of the array. We incorporate this concept
into our model by defining the constant coefficient as C = 2

√
Pt(∆θ) → 2

√
Pt, with ∆θ ≡ θ2 − θ1 and

the understanding that Pt is a function of the phase difference. It is clear that the arrayed power can be
alternately maximized and nulled over the point on the surface where θ1 = θ2 by adding and removing
π radians to θ1 (or θ2) on the ground.

After encountering the lunar surface, a Doppler frequency generated by an effective lunar spin is added
to the carrier frequency of the reflected components. We assume that each reflecting surface within the
selected pixel has approximately the same relative radial velocity, and approximately the same range,
as any other. Adjacent pixels, on the other hand, have different rotational velocities, or range, or both,
from the selected pixel. Denoting the average Doppler-shifted carrier frequency and average range of the
selected pixel by (ω̄0, R̄0), respectively, and that of the kl-th pixel by (ω̄k, R̄l), and assigning a random
complex reflection coefficient hkl(n) to the nth reflecting surface within the kl-th pixel, the received signal
from the klth pixel contains all reflected components from that pixel and is of the form

rkl(t) = m

(
t − R̄k

c

)
exp(jω̄lt)

∑
n

hkl(n) (9)

where propagation losses and ground antenna gain have been incorporated into the complex coefficients
hkl(n). Assuming that the receiving antenna is of the same diameter as the transmitting antennas,
it collects reflections from all pixels within the illuminated footprint, yielding the total received signal
r(t) =

∑
k,l rkl(t). The reflections from the selected pixel can be isolated by correlating the received

signal with a PN sequence and Doppler frequency matched to the Doppler-delay signature of the selected
pixel. Denoting this function by m(t − [R̄0/c]) exp(−jω̄0t), the result of the correlation operation is
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∑
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√

Pt

∑
n

h00(n) (10)

In other words, only those scattered components originating from the selected pixel survive the correlation
operation; all other reflected components are eliminated by virtue of the fact that the autocorrelation of
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the PN sequence is zero (or very close to zero) for all integer shifts, and that integrals of the complex
exponential function over an integer number of cycles are zero. The integration time T should be at least
as long as the PN sequence and, further, it should be selected so as to make sure that correlations over
adjacent pixels are close to zero.

Equation (10) shows that the correlation operation eliminates the scattered signal field components
from all but the selected pixel. Taking the expected value of the squared magnitude of the correlation
yields the average reflected power collected by the receiver:

4PtE

∣∣∣∣∣
∑

n

h00(n)

∣∣∣∣∣
2

= 4PtE

(∑
n

∑
m

h00(n)h∗
00(m)

)

= 4Pt

∑
n

E|h00(n)|2 + 4Pt

∑
n

∑
m

E

n �=m

h00(n)h∗
00(m) = 4Pt

∑
n

ρn (11)

When the interference pattern generated by the antenna pair reaches its peak over the selected pixel,
the received power in the matched filter is maximized for any realization of the scattering surfaces,
resulting in a 6-dB gain in reflected power over a single transmitting antenna. Higher average bulk
reflectivity, characterized by larger average ρn within the selected pixel, yields higher average received
power; therefore, it is advantageous to search for regions of high reflectivity at the carrier frequency of
interest. Next, we turn to the problem of maximizing the received power in a systematic way by varying
the phase between two antennas on the ground, and then extend these concepts to the general case of a
large number of transmitting antennas.

IV. “Moon-Bounce” Calibration of Uplink Arrays

Two distinct algorithms for maximizing the power of an uplink array in a given look direction will
be considered. First, we describe our methodology for maximizing the received power for a two-antenna
uplink array by varying the relative phases of the antennas in a systematic fashion and making measure-
ments of the reflected signal amplitude, and then we extend this technique to 2L antennas by repeated
application of the two-pair algorithm. Second, a gradient ascent algorithm will be described that has
been developed for optical phase retrieval applications in adaptive optics systems [3], but which has been
modified for calibrating large radio frequency uplink arrays.

A. Maximizing Uplink Power in the Case of a Two-Antenna Array

In the far field, the beam pattern of a single antenna is given by the Fourier transform of the field
distribution over the antenna aperture. If the pupil function is assumed to be an ideal circular pupil
function, the pattern is that given by Goodman [5]:

R · exp
(

j
k

2f
ρ2

)
jρ

J1

(
2πρR

λf

)

where R is the antenna radius in meters, f is the distance to the target, and k is the wave number
2π/λ. We are using the polar coordinates (ρ, φ) to describe points in the target plane. An example of
the simulated far field of a single 34-meter antenna located 3.84 × 105 kilometers from the target plane
(at the distance of the Moon) is shown in Fig. 7.
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Fig. 7.  Single-antenna transmitted far-field intensity pattern.

When two antennas are arrayed, the far-field distribution is now the Fourier transform of the aperture
function of the two-element array. A two-element array can be viewed as the convolution of the antenna
pupil function with two impulses located at the phase center of each array; hence, in the Fourier transform
domain, this yields the product of the antenna far-field pattern and a sinusoidal interference pattern
characteristic of Young’s well-known experiment. This compound intensity pattern is shown in Fig. 8.

We can maximize the received power at a point P in the far field using the following algorithm. Let
θ1(0) denote the original phase of antenna 1, and let θ2(0) denote the original phase of antenna 2. Let
the phase of the two antennas as a function of integer time increment n, denoting the nth sample, be
given by θ1(n) and θ2(n), respectively, and apply the following differential modulation scheme:

(1) Let θ1(n) = θ1(0) throughout the maximization.

(2) Let θ2(n) = θ2(0) +
[
2πn

Nr

]
+

[1 + (−1)n]
2

π, where Nr � 1.

In other words, we apply a phase ramp from 0 to 2π radians with period Nr and simultaneously add
an alternating phase term of π radians of much higher repetition rate to the phase ramp. Since the
addition of π radians interchanges the peak of the pattern with a null, the above procedure effectively
toggles the peak of the far-field array pattern on and off the nominal array LOS, thus yielding a differential
measurement of the reflected power from the desired target point. The receiver observes both a sinusoidal
variation in the power as a function of the phase ramp being applied and a rapidly alternating term, where
the difference in the amplitudes of the alternating term is proportional to the received signal level. The
point of maximum difference in the received power can be taken as the point where the phases θ1(n) and
θ2(n) are equal.

12



x104

15

10

5

0

X, km

Fig. 8.  Dual-antenna transmitted far-field intensity pattern.

−800 −600 −400 −200 200 400 600 800 1000−1000 0

Y
, k

m

−1000

−800

−600

1000

800

600

400

200

−200

−400

0

Utilizing the above maximization procedure, the received power as a function of time is shown in
Fig. 9. Here the blue/red lines denote power with and without the rapid π radian phase term applied.
As the difference in received power with and without the π radian phase shift increases, the line remains
blue until the maximum difference is reached (the power difference is shown as a black line). Once this
maximum is reached, the blue lines change to red, and we continue measuring power differences. The
phase at which the maximum power difference occurs is the “calibration phase” that aligns the phase of
antenna 2 with that of antenna 1.

B. Maximizing Received Power with M = 2L Antennas

Here we assume the transmitted RF carriers can be modulated using suitable orthogonal PN codes
as necessary to distinguish between different antenna pairs. The use of such codes makes it possible to
maximize the power of a given pair of antennas, using the procedure described in the previous section,
while ignoring the reflected signal from other antenna pairs. For example, if antennas 1 and 2 use PN
code 1 while antennas 3 and 4 use PN code 2, then the uplink power at the target point for antennas 1
and 2 can be maximized independently of the other pair by virtue of the orthogonality of the PN codes.

It is now possible to align antenna phases pairwise in the array if orthogonal PN codes are used; hence,
we can align the phases of 2L antennas as follows:

(1) Divide the set of 2L antennas into 2L−1 pairs of antennas.

(2) Maximize the uplink power at the target point for each of the 2L−1 antenna pairs. This can
be done in parallel due to the orthogonality of the PN sequences being used.

(3) After performing step (2) above, treat each of the 2L−1 antenna pairs as a single antenna.
Then repeat this process by pairing up the 2L−1 “antennas” to form 2L−2 “antenna pairs”
and repeat the process.

The total number of steps required is only L, making this a logarithmic time procedure in the number of
antennas.
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Fig. 9.  Example of power maximization as a function of
applied differential phase.

C. Gradient Ascent Calibration Algorithm

Another candidate algorithm for power maximization is gradient ascent. Let M denote the number
of antennas, and let their phases as a function of sample time n be given in the phase vector x(n) =[
θ1(n) θ2(n) · · · θM (n)

]
. The gradient ascent procedure works as follows [4]:

(1) Apply a set of phase perturbations given by δx(n) =
[
δθ1(n) δθ2(n) · · · δθM (n)

]
.

(2) Measure the change in received power: δP .

(3) Update the phase vector via the recursive algorithm: x(n + 1) = x(n) + α · δP · δx(n).

This procedure was shown by Carhart et al. [6] to work very well for maximizing received power in the
focal plane, using only intensity measurements. Since both the far-field Fraunhofer diffraction pattern
and the focal-plane field pattern are given by a Fourier transform relationship [5] and since Carhart et al.
were performing cost function minimization in the focal plane of their system, the algorithm developed
by Carhart applies as much to far-field problems as it does to the focal-plane problem. Therefore, this
technique provides an alternate method for phasing up an uplink array consisting of more than two
elements.

V. Summary and Conclusions

We have presented three different approaches to far-field calibration of uplink arrays. The first array
calibration method utilizes a distant radio source (e.g., a quasar) to determine the interferometric phase
between the two antennas in receive mode. The difference in the receive mode instrument phase of the
two antennas then is derived by subtracting correction factors due to geometry and atmosphere from
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the measured interferometric phase. Assuming that transmit and receive chains in each antenna share a
common path, the calibrated delay in receive mode can, in principle, be translated to delay in transmit
mode. This method has the advantage that it is based on VLBI techniques well-established in the deep-
space community. However, uplink array calibration may be problematic with this technique for an array
of small antenna elements because available quasars may be too weak a signal source to provide sufficient
SNR, and because phase variations in transmit chain elements not common to the receiving chain (e.g.,
high-power amplifier, exciter) may cause drift in the transmitter delay relative to the measured receiver
delay.

The second calibration technique addresses the SNR problem by measuring reflected power from a
closer target in the far-field (namely the Moon). This is accomplished by using a single transmit antenna
to “bounce” a modulated PN sequence off the Moon, and correlating the received return signal at two
different antennas. Because of the large number of scatterers on the Moon (which cannot be modeled as
a point source), it is necessary to isolate reflections from a particular segment of the lunar surface using
Doppler-delay techniques. However, this calibration method also has the disadvantage of employing a
measurement of the receive mode phase—hence, the transmitter phase may be subject to drift.

The third calibration technique addresses both problems encountered in the previous methods by
using the uplink array in transmit mode. With this technique, the phase of the first transmit antenna is
held constant while the phase of the second transmitter is varied, and the uplink array is calibrated by
maximizing the received reflected power. As with the second calibration method, delay-Doppler pixels
are used to isolate reflections from a small portion of the lunar surface. The applicability of these
techniques to practical operational uplink array calibration will be determined by means of additional
analysis, simulation, and experiments. Uplink array calibration experiments involving the 34-meter BWG
antennas at the Goldstone complex are the subject of current research and will be described in a future
article.
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