
CASE 2: SIMULATION OF A PERIODIC JET IN A CROSS FLOW
WITH A RANS SOLVER USING AN UNSTRUCTURED GRID

H. L. Atkins

Computational Modeling & Simulation Branch, NASA Langley Research Center, Hampton, VA 23681-2199

Introduction

A second-order unstructured-grid code, developed and used primarily for steady aerodynamic simulations, is
applied to the synthetic jet in a cross flow. The code, FUN3D, is a vertex-centered finite-volume method orig-
inally developed by Anderson[1, 2], and is currently supported by members of the Fast Adaptive Aerospace
Tools team at NASA Langley. Used primarily for design[3] and analysis[4] of steady aerodynamic configu-
rations, FUN3D incorporates a discrete adjoint capability, and supports parallel computations using MPI.

Solution Methodology

A detailed description of the FUN3D code can be found in the references given above. The code is under
continuous development and contains a variety of flux splitting algorithms for the inviscid terms, two meth-
ods for computing gradients, several turbulence models, and several solution methodologies; all in varying
states of development. Only the most robust and reliable components, based on experiences with steady
aerodynamic simulations, were employed in this work.

As applied in this work, FUN3D solves the Reynolds averaged Navier-Stokes equations using the one
equation turbulence model of Spalart and Allmaras[5]. The spatial discretization is formed on unstructured
meshes using a vertex-centered approach. The inviscid terms are evaluated by a flux-difference splitting
formulation using least-squares reconstruction and Roe-type approximate Riemann fluxes. Green-Gauss
gradient evaluations are used for viscous and turbulence modeling terms.

The discrete spatial operator is combined with a backward time operator which is then solved iteratively
using point or line Gauss-Seidel and local time stepping in a pseudo time. For steady flows, the physical
time step is set to infinity and the pseudo time step is ramped up with the iteration count. A second-order
backward in time operator is used for time accurate flows with 20 to 50 steps in the pseudo time applied at
each physical time step.

For this effort, FUN3D was modified to support spatially varying boundary and initial conditions, and
unsteady boundary conditions. Also, a specialized in/out flow boundary condition was implemented to
model the action of the diaphragm. This boundary condition is described below in more detail.

The grids were generated using the internally developed codes GridEX[6] for meshing the surfaces and
inviscid regions of the domain, and for CAD access; and MesherX[7] for meshing the viscous regions. Grid
spacing in on the surfaces and in the inviscid regions are indirectly controlled by specifying sources. The
viscous layers are generated using an advancing layer technique. MeshersX allows the user to control the
spatial variation of the first step off the surface, growth rates, and the termination criterion by providing
small problem dependent subroutines.

Modeling of Diaphragm Boundary

A specialized in/out flow boundary condition is formulated to model the action of the diaphragm at a station-
ary boundary. This boundary condition is similar to a standard characteristic boundary condition, commonly

2.6.1

https://ntrs.nasa.gov/search.jsp?R=20070031067 2019-08-29T18:38:53+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42754747?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


applied at far-field boundaries, in that the inviscid boundary flux is evaluated from an intermediate solution
state Ui that is computed from the current boundary solution Ub and a prescribed external state Up. In the
weak form implemented in FUN3D, the boundary solution is not replaced by the intermediate solution but is
allowed to evolve. The viscous gradients are evaluated using only the boundary and interior solution values,
and have no knowledge of the prescribed or intermediate solution states.

At a far-field boundary, the intermediate solution is determined by the characteristic relationships that
model the convective and acoustic waves that are assumed to exist between the boundary and the far-field.
For example, at a subsonic boundary

R��Ui� � R��Ub�� R��Ui� � R��Up�� and Rc�Ui� �

�
Rc�Ub� if Vn �� �
Rc�Up� otherwise, (1)

where R���� denotes the characteristic variable associated with acoustic waves leaving(entering) the do-
main, Rc denotes characteristic variables associated with convective waves, and Vn is the normal velocity
through the boundary, with outflow taken as positive.

In the case of a moving diaphragm, the “prescribed” state is that at the diaphragm face, and only the
diaphragm velocity is known. If the boundary were moving with the diaphragm, than the intermediate state
would be given by

Vn � �� R��Ui� � R��Ub�� and Rc�Ui� � Rc�Ub�� (2)

Simply applying these conditions at a stationary location, by setting V n equal to the diaphragm velocity,
would result in under specifying the flow during the inflow phase of the simulation. To stabilize the simu-
lation, the latest value of Rc is saved during the outflow phase of the calculation, and reapplied during the
inflow phase to give:

Vn � � cos��t�� R��Ui� � R��Ub�� and Rc�Ui� �

�
Rc�Ub� if Vn �� �
�Rc�Ub� otherwise,

(3)

where �Rc denotes the value saved from the most recent outflow cycle. In practice, only the entropy is saved
and reapplied. The boundary tangential velocity is allowed to evolve without constraint. Also, during the
inflow cycle, the entropy is gradually relaxed back toward its initial value.

Implementation and Case Specific Details

The geometry of the cavity is simplified by making the diaphragm flat with the height of the diaphragm
chosen so that the “at rest” volume of the cavity is unchanged. To reduce the problem size, the domain is
divided at the tunnel centerline and only half of the domain is grided. Although all simulations presented
here were performed on this half-domain geometry, it is possible to reflect the grid about the centerline to
obtain a symmetric grid for the larger problem. The computational domain extends from 8 jet diameters
upstream and to the side of the jet center, and to 16 jet diameters downstream of the jet center.

The fine grid was sized so that the first spacing on the tunnel wall would have a y� � �. Spacings
inside the cavity were based on preliminary simulations with steady blowing applied at the diaphragm face.
Griding sources were placed around the lip of the jet and along the jet centerline in an effort to improve
the clustering there. Figures 1(a-c) shows three views of the mesh on the symmetry plane that illustrate the
mesh distribution near the jet.

A coarse grid was generated simply by doubling all grid sources and modifying the growth rate of
the viscous layers. Originally, this grid was intended only to provide rapid turn-around while sorting out
boundary and initial conditions. The fine grid has 1457853 tetrahedra and 255426 nodes. The coarse grid
has 254046 tetrahedra and 46063 nodes.

Characteristic boundary conditions are applied weakly at the inflow, outflow and top boundaries. Sym-
metry conditions are imposed at both y=constant boundaries. No-slip conditions are enforced on the tunnel

2.6.2



(a)

x(mm)

z(
m

m
)

40 50 60 70 80 90

-10

-5

0

5

10

15

20

(b)

x(mm)

z(
m

m
)

51 52 53 54 55 56

-2

-1

0

1

2
(c)

x(mm)

z(
m

m
)

53.7 53.8 53.9 54 54.1 54.2

-0.2

-0.1

0

0.1

0.2

Figure 1: Grid on the symmetry plane: a) overall view, b) near jet exit, c) near corner of jet exit.

floor, the top wall of the cavity, and in the jet contraction. At these no-slip boundaries, the temperature is
set to the adiabatic wall temperature, and the density is determined from the continuity equation. The side
walls of the cavity are treated as inviscid walls, which FUN3D enforces weakly. The in/out flow boundary
condition described in the previous section is applied on the lower wall of the cavity.

The inflow and initial conditions in the tunnel region were generated by performing a separate boundary
layer simulation with FUN3D and extracting the solution at the appropriate Reynolds number. Initially, there
is no flow in the cavity and the pressure is set to the freestream value. The simulation was started impulsively
with the diaphragm velocity (normalized by u�) specified as ������ cos��t�. The simulations used 720
time steps per period, with results saved every 5 degrees of phase. The long time averages requested by the
workshop were computed by averaging these 5-degree samples. The fine grid simulations required 35 hours
per period when using 16 intel processors; the coarse grid simulations required less than 11 hours per period
when using 8 processors.

The fine and coarse grid simulations produced noticeably different solutions in several respects. Fig-
ures 2 (a) and (b) show the fine grid solution history at a location 0.17mm upstream of the jet center.
Although the vertical velocity component W settles quickly to a periodic solution, the streamwise velocity

2.6.3



Phase,deg
U

/U
in

f
200

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Measured
fine grid
coarse grid

(c)
Phase,deg

W
/U

in
f

200

-1

-0.5

0

0.5

1

Measured
period 1
period 2
period 3
period 4
period 5

(a)
Phase,deg

U
/U

in
f

200

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b)

Figure 2: Solution at 0.17mm upstream of jet center: a) and b) fine grid startup history of W and U,
respectively; c) comparison of U.

component U requires 4 periods. In the coarse grid simulation, the solution requires even longer, 6 periods,
before the U velocity component becames periodic. The fine and coarse grid simulations give similar results
for W, but the U velocity components, compared in fig. 2(c), have completely different character during
the blowing phase. The coarse grid produces results similar to the experiment, while the fine grid predicts
a large negative streamwise velocity component during the blowing cycle. The contour plots of U, shown
in fig. 3, indicate that this negative streamwise velocity is due to a vortical behavior that develops in the jet
exit flow.

Acknowledgments

The author would like to acknowledge Bill Jones and Mike Park for their assistance and suggestions with
grid generation, and Bob Biedron, Beth Lee-Rausch and Eric Nielson for their assistance and advice in
modifying and running FUN3D.

References

[1] Anderson, W. Kyle and Bonhaus, Daryl L. “An Implicit Upwind Algorithm for Computing Turbulent
Flows on Unstructured Grids,” J. Computers and Fluids, Vol. 23, No. 1, pp. 1–21, 1994.

2.6.4



Figure 3: Streamwise velocity contours from fine grid simulation during peek blowing: phase = 160.

[2] Anderson, W. K. and R. D. Rausch and Bonhaus, D. L. ”Implicit/Mulitgrid Algorithms for Incom-
pressible Turbulent Flows on Unstructured Grids,” J. Computational Physics, Vol. 128, pp. 391-408,
1996.

[3] Neilson, Eric, J. and Lu, James and Park, Mike A. and Darmofal, David L “An Exact Dual Adjoint
Solution Method for Turbulent Flows on Unstructured Grids,” AIAA paper 2003-0272, 2003, to appear
in J. Computers and Fluids.

[4] Lee-Rausch, E. M. and Mavriplis, D. J. and Rausch, R. D. “Transonic Drag Prediction on a DLR-F6
Transport Configuration Using Unstructured Grid Solvers,” AIAA Paper 2004-0554, 2004.

[5] Spalart, P. R. and Allmaras, S. R. “A One-Equation Turbulence Model for Aerodynamic Flows,” AIAA
paper 92-0429, 1992.

[6] Jones, William T. “GridEx - An Integrated Grid Generation Package for CFD,” Proceedings of the 16th
AIAA Computational Fluid Dynamics Conference, AIAA Paper 2003-4129, 2003.

[7] Park, Micheal A. “Three-Dimensional Turbulent RANS Adjoint-Based Error Correction,” AIAA paper
2003-3849, 2003.

2.6.5




