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CASE 3: RANS AND URANSAPPLICATION WITH CFL3D

C. L. Rumsey

Computational Modeling & Simulation Branch, NASA Langley Research Center, Hampton, VA 23681-2199

Solution M ethodology

This case was run using CFL 3D, a multi-zone Reynolds-averaged Navier-Stokes code developed at NASA
Langley [1]. It solvesthe thin-layer form of the Navier-Stokes equationsin each of the (selected) coordinate
directions. It can use 1-to-1, patched, or overset grids, and employslocal time step scaling, grid sequencing,
and multigrid to accelerate convergence to steady state. In time-accurate mode, CFL3D has the option to
employ dual-time stepping with subiterationsand multigrid, and it achieves second order temporal accuracy.

CFL3D is afinite volume method. It uses third-order upwind-biased spatial differencing on the con-
vective and pressure terms, and second-order differencing on the viscousterms; it is globally second-order
spatialy accurate. The flux difference-splitting (FDS) method of Roe is employed to obtain fluxes at the
cell faces. It isadvanced in time with an implicit three-factor approximate factorization method.

Model Description

For thistest case, three different turbulence model swere used. Thefirst isthe one-equation Spalart-Allmaras
model (SA) [2], the second is the two-equation shear-stress transport model of Menter (SST) [3, 4], and the
third is an explicit agebraic stress model (EASM-ko) in k-w form [5]. The first two models are both linear
eddy-viscosity models that make use of the Boussinesq eddy-viscosity hypothesis, whereasthe EASM-ko is
anonlinear model. The equations describing these three models can be found in their respective references.

In CFL 3D, the model s are implemented uncoupled from the mean-flow equations. They are solved using
a three-factor implicit approximate factorization approach. The advection terms are discretized with first-
order upwind differencing. The production sourceterm is solved explicitly, while the advection, destruction,
and diffusionterms are treated implicitly. For EASM-ko, the nonlinear terms are added to the Navier-Stokes
equations explicitly.

I mplementation and Case Specific Details

Three flow conditions are computed over the hump model: (1) no flow control, (2) steady suction flow
control, and (3) oscillatory synthetic jet flow control. The control is applied near = /¢ = 0.65 on the back
side of the hump, near where the flow separates in the un-controlled state. The freestream Mach number
is M = 0.1, and the Reynolds number is approximately Re = 936,000 per hump chordlength. For the
oscillatory case, the oscillation frequency is 138.5 Hz.

All computations performed for this case were 2-D. The grid used was the supplied 2-D structured grid
number 1 (which contains 4-zones connected in a 1-to-1 fashion, and approximately 210,000 grid points),
as well as amedium-level grid made from the fine grid by extracting every-other point in each coordinate
direction (2-D structured grid number 2). The SA model was solved on both the fine and medium grids,
whereasthe SST and EASM-ko models were only solved on the medium grid. For the oscillatory case, only
the SA model on the fine grid was used.

For the no-flow-control and steady suction cases, CFL 3D was run in steady-state mode, utilizing local
time-stepping to accelerate convergence. For the oscillatory case, the time step chosen yielded 360 time
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Figure 1. Convergence of subiteration residual during time-accurate oscillatory computation, SA model,
fine grid.

steps per cycle of the forcing frequency, and 5 subiterationswere employed per time step. For this case, this
number of subiterations was enough to reduce the I.o-norm of the subiteration density residual by about 2
orders of magnitude. See Fig. 1, which shows subiteration residual over the course of 7 time steps (with 5
subiterations per time step) during part of the unsteady cycle.

The boundary conditionswere as follows. At the floor and hump surfaces, as well as at the side walls
inside the cavity, solid wall adiabatic boundary conditions were applied. At the front of the grid, which
extended to = /¢ = —6.39, far-field Riemann-type boundary conditions were applied. At the downstream
boundary (at = /c = 4.0) the pressure was set &t p/prr = 0.99947, and all other quantitieswere extrapol ated
from the interior of the domain. This back pressure was determined viatrial and error, to achieve approxi-
mately the correct inflow conditions. At the bottom of the cavity, different boundary conditionswere applied
depending on the case. For the no-flow-control case, thiswall was treated asan inviscid wall. For the steady
suction case, the boundary condition set the vel ocity components as follows:

U=0 V=(pV)et/p D
and (pV')set Waschosen in order to achieve the equivalent of amass flow of 0.01518 kg/sthrough a 23-inch
span. The value used turned out to be (pV')see = —.001248pyerarer, Where a,r 1S the reference speed of

sound. For the oscillatory flow case, the boundary condition set the velocity components as follows:

U=20 V= [(pv)max/p]COS(Qﬂ-Ft) )

where F isthe frequency and ¢ isthetime, and (pV)max Was chosen in order to achieve amaximum velocity
magnitude near to the target of approximately 26.6 m/s out of the slot during the cycle. Fig. 2 showsthe
vel ocity magnitude at a position near the center of the dot exit as a function of nondimensional time, on a
line even with the hump surface, over the course of one cycle of oscillation. The value of (pV) ymax Used to
achieve this condition was (pV' ) max = 0.001pperarer. Along with the above boundary conditions given by

3.82



30
25 [ v
20

17

10

‘7

velocity magnitude, m/s
[8)]
I~
< |
../
P
\

! ! ! ! ! ! ! ! |
q 16 118 120 122 124
nondimensional time

Figure 2: Velocity magnitude at the slot exit for oscillatory case, SA model, fine grid.

Egs. 1 and 2, the density and pressure at the bottom of the cavity are extrapolated from the interior of the
domain.

Thetop tunnel wall wastreated as aninviscidwall for al of the computations submitted to the workshop.
However, the effect of making the top wall a viscouswall was al so investigated (using a different grid with
appropriate finer normal spacing near the top wall). Resulting surface pressure coefficients are shown in
Fig. 3. Using viscous top wall lowers the peak €', levels over the center of the hump, in better agreement
with experiment. However, the effect does not fully account for the difference between CFD and experiment.
Also, the viscous upper wall does not impact the C', levelsin the separated region to any significant degree.

Asanonlinear model, EASM-ko can do a better job predicting the turbulent normal stressesthan linear
models. This can be seen in Fig. 4, which shows results predicted by the three models at «/c = —2.14.
The linear models show no perceptible difference between v/’ and v'v’, whereas EASM-ko does predict a
normal stress difference. The u/«’ from EASM-ko isin better agreement with the experiment, although its
peak near the wall is till too low. There were no measurements of v’v’.

Examplesof the effects of grid and turbulencemodel can be seenin Fig. 5. Thisfigure shows streamwise
velocity profiles in the separated region at = /¢ = 0.8 for the suction case, using SA on both the fine and
medium grids, and using SST and EASM-ko on the medium grid. Thereis essentially no difference between
the SA results on the fine and medium grids, and the two-equation models both predict a qualitatively
different profile than SA at thislocation.
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Figure 3: Surface pressure coefficients for no-flow-control case, SA model, medium grid.
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Figure 4: Predicted turbulent normal stressesat « /¢ = —2.14, medium grid.
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Figure 5: Velocity profilesat /¢ = 0.8 for the suction case.
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