

Medium Spatial Resolution Satellite Characterization

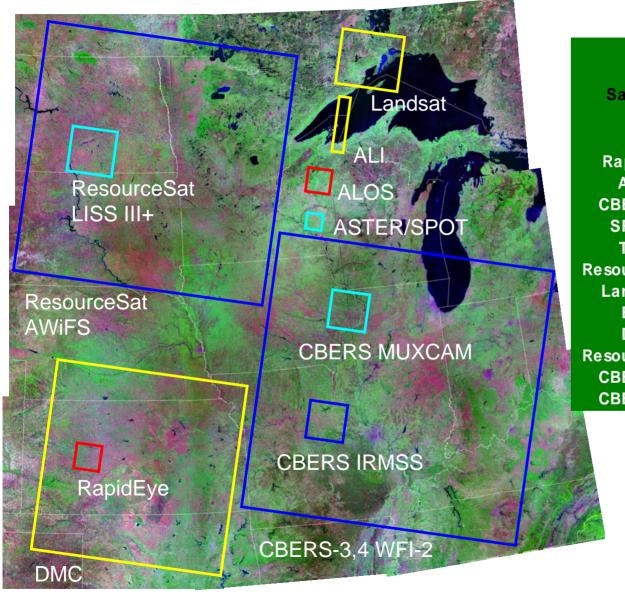
Presented to JACIE Workshop, 14 Mar 2006 Greg Stensaas, USGS Project Chief Remote Sensing Technologies

Project Introduction

- USGS Remote Sensing Technologies (RST) Project
 - calval.cr.usgs.gov
 - Greg Stensaas (605) 594-2569 <u>stensaas@usgs.gov</u>
- Project provides:
 - characterization and calibration of <u>aerial and satellite</u> <u>systems</u> in support of quality acquisition and understanding of remote sensing data,
 - and verifies and validates the associated data products with respect to ground and atmospheric truth so that accurate value- added science can be performed.
 - assessment of new remote sensing technologies

System/Product Characterization

- System Characterization is related to understanding the sensor system, how it produces data, and the quality of the produced data
- Imagery attempts to accurately report the conditions of the Earth's surface at a given the time.
 - Assessed by product characterization categories:
 - Geometric/Geodetic: The positional accuracy with which the image represents the surface (pixel coordinates vs. known ground points)
 - Spatial: The accuracy with which each pixel represents the image within its precise portion of the surface and no other portion
 - Spectral: The wavelengths of light measured in each spectral "band" of the image
 - Radiometric: The accuracy of the spectral data in representing the actual reflectance from the surface
 - Dataset Usability: The image data and understanding of the data is easily usable for science application



Medium Resolution Characterization

- DCWG "Data Characterization Working Group" feeds Tech Group
 - GSFC Team led by Brian Markham
 - SSC Team led by Tom Stanley
 - USGS Team led by Greg Stensaas
- Using JACIE methods

Data Scene Characteristics

Satellite	Sensor	Ground Sample Distance (m)
RapidEye	REIS	
ALOS	AVNIR	
CBERS-3,4	MUXCAM	20
SPOT 5	HRG	10/20
Terra	ASTER	15/30/90
ResourceSat-1	LISS III+	23.5
Landsat 7	ETM+	15/30/60
EO-1	ALI	30
DMC	MSDMC	32
ResourceSat-1	AWiFS*	56
CBERS-3,4	WFI-2	73
CBERS-3,4	IRMSS	40/80

Note: For purposes of scene size comparison only. Locations do not represent actual orbital paths or operational acquisitions.

ASPRS Study

Mid-Res Land Imaging Satellites

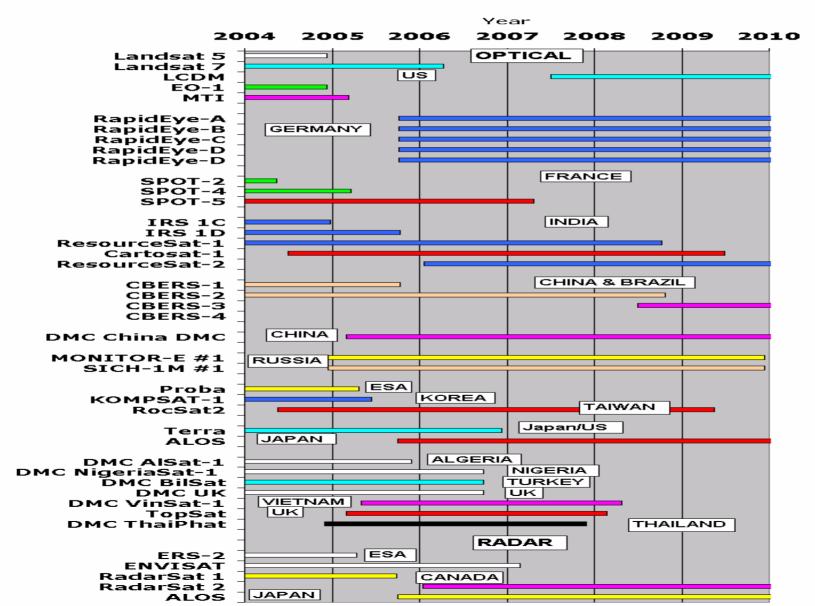
Res. M

2--2.5

6--6.6

12--15

20-24


□ 30--32

3--5

7--9

10

36

Systems Considered

- IRS ResourceSat 1, 2 (India)
- CBERS 2, 2A, 3, 4 (China & Brazil)
- RapidEye 1, 2, 3, 4, 5 (Germany)
- DMC (Algeria, Nigeria, UK, China)
- Terra/ASTER (US & Japan)
- High-resolution U.S. commercial systems
- SPOT 4, 5 (France)
- ALOS (Japan)
- EO-1/ALI (US)

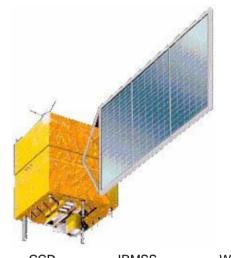
Advanced Land Observing Satellite (ALOS)

- ALOS to be launched in 2005 by Japan Aerospace EXploration Agency (JAXA)
- Revisit time is 46 days, but it can observe any area within 2 days
- Orbital altitude/inclination: 692 km/~98 degrees
- Nodal crossing: 10:30 a.m.
- System life: 3 5 years
- Three instruments devoted to land imaging
 - Panchromatic Remote Sensing Instruments for Stereo Mapping (PRISM)
 - Advanced Visible and Near Infrared Radiometer (AVNIR-2)
 - Phased Array L-band Synthetic Aperture Radar (PALSAR)
- Availability of data and products, data policy, and pricing is TBD
- Website: http://alos.nasda.go.jp/

	<u>PRISM</u>	AVNIR-2	PALSAR
	0.52-0.77um	0.42-0.50um	1.27GHz (L-ba
		0.52-0.60um	
Sprectral bands		0.61-0.69um	
		0.76-0.89um	
Resolution	2.5m 10m		1000/1000
	2.3111	10111	10m/100m
Swath width	35km/70km	70km	70km/350km
Swath width	35km/70km	70km	70km/350km

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)

- ASTER was launched on December 18, 1999 on the Terra satellite
- Orbital altitude/inclination: 705 km/98.2 degrees
- Nodal crossing: 10:30 a.m.
- System life: 6 years
- Three instruments are
 - Visible and Near-Infrared Radiometer(VNIR)
 - Short Wave Infrared Radiometer (SWIR)
 - Thermal Infrared Radiometer(TIR)
- Archive data sets are available at \$60/scene
- Website: http://asterweb.jpl.nasa.gov/


	<u>VNIR</u>	<u>SWIR</u>	<u>TIR</u>
	0.52-0.60um	1.60-1.70um	8.12-8.47um
	0.63-0.69um	2.14-2.18um	8.47-8.82um
Sprectral bands	0.76-0.86um	2.18-2.22um	8.92-9.27um
		2.23-2.28um	10.25-10.95um
		2.29-2.36um	10.95-11.65um
		2.36-2.43um	
Resolution	15m	30m	90m
Swath width	60km	60km	60km
Pointing (+-)	24 degrees	8.55 degrees	8.55 degrees
Revisit	-	- -	-
Actual revisit	16 days	16 days	16 days

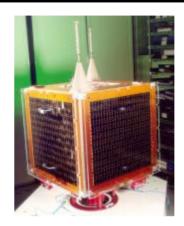
China-Brazil Earth Resources Satellite (CBERS 1-2)

- CBERS-1 launched on October 14, 1999;
 CBERS-2 on October 21, 2003;
 CBERS-2B to be launched in 2006
- Revisit time is 26 days
- Orbital altitude/inclination: 778 km/98.5 degrees
- Nodal crossing: 10:30 a.m.
- System life: 2 years
- Data only downlinked to Brazil and China, may commercialize in future
- Each satellite has 3 cameras (see below)
- Availability of data and products, data policy, and pricing is TBD
- Website: http://www.cbers.inpe.br/en/

	CCD	<u>IRMSS</u>	<u>WFI</u>
	0.51-0.73um	0.50-1.10um	0.63-0.69um
	0.45-0.52um	1.55-1.75um	0.77-0.89um
Sprectral bands	0.52-0.59um	2.08-2.35um	
	0.63-0.69um	10.4-12.5um	
	0.77-0.89um		
Resolution	20m	80m/160m	260m
Swath width	113km	120km	890km
Pointing (+-)	32 degrees	none	none
Revisit	3 days	-	-
Actual revisit	26 days	26 days	5 days

China-Brazil Earth Resources Satellite (CBERS 3-4)

- CBERS-3 to be launched in 2007 or 2008; CBERS-4 after 2007
- Revisit time is 26 days
- Orbital altitude/inclination: 778 km/98.5 degrees
- Nodal crossing: 10:30 a.m.
- System life: 2 years
- Each satellite will have 4 cameras (see below)
- Availability of data and products, data policy, and pricing is TBD
- Website: http://www.cbers.inpe.br/en/


	MUXCAN	<u>PANMUX</u>	<u>IRMSS</u>	<u>WFI</u>
	0.45-0.52um	0.51-0.75um	0.76-0.90um	0.52-0.59um
	1.55-1.75um	0.51-0.85um	0.76-1.10um	0.63-0.69um
Sprectral bands	0.52-0.59um	0.52-0.59um	1.55-1.75um	0.77-0.89um
	0.63-0.69um	0.63-0.69um	2.08-2.35um	1.55-1.75um
	0.77-0.89um	0.77-0.89um	10.4-12.5um	
Resolution	20m	5m/10m	40m/80m	73m
Swath width	120km	60km	120km	866km
Pointing (+-)	32 degrees	32 degrees	none	none
Revisit	3 days	5 days	-	-
Actual revisit	26 days	none	26 days	5 days

Disaster Monitoring Constellation (DMC)

- DMC is a constellation of microsatellites being developed by Surrey Satellite Technology Limited (SSTL) that would provide daily global coverage
- A five satellite constellation could collect 400-600 scenes/day
- Four satellites are currently operational;
 AISAT-1 was launched on November 28,
 2002; UK-DMC, NigeriaSat-1, and
 BILSAT-1 were launched on September 27, 2003
- An enhanced satellite for China will be launched in 2005
- Orbital altitude/inclination: 686 km/98 degrees
- Nodal crossing: 10:30 a.m.
- System life: 5 years
- Data characteristics are satellite dependent
- Availability of data and products, data policy, and pricing is TBD
- Website: http://www.sstl.co.uk/

	St an dar d	BILSAT-1	Chin a DM C +4
	0.52-0.60 um	0.52-0.60 um	0.52-0.60 um
	0.63-0.69 um	0.63-0.69 um	0.63-0.69 um
Sprect ralban ds	0.77-0.90 um	0.77-0.90 um	0.77-0.90 um
		pan	pan
Resolution	32 m	28 m/ 12 m	32 m/ 4 m
Swat h widt h	6 0 0 km	55km/24.5km	6 0 0 km/
Pointing (+)	-	30	-
Revist	-	4-5 days	-
Act ualr evist	4-5 days	16 days	4-5 days
St an dard = ASAT-1, Niger aSat-1, UK-DMC			

Earth Observing-1 (EO-1)

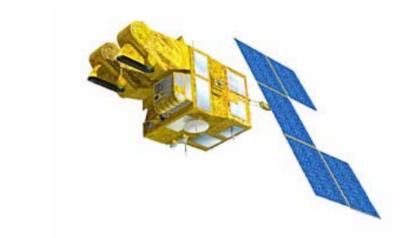
- EO-1 was launched on November 21, 2000 by NASA, and continues today as the EO-1 Extended Mission operated by NASA and the USGS
- Revisit time is 16 days
- Cross track pointing: Three times in a 16 day cycle
- Orbital altitude/inclination: 705 km/98.2 degrees
- Nodal crossing: 10:15 a.m.
- System life: 1 year
- Two instruments devoted to land imaging
 - Advanced Land Imager (ALI)
 - Hyperion
- ALI, 9 multispectral bands at 30 m (0.43-0.45um, 0.45-0.51um, 0.52-0.60um, 0.63-0.69um, 0.77-0.80um, 0.84-0.89um, 1.20-1.30um, 1.55-1.75um, 2.08-2.35um) and 1 pan band at 10 m (0.48-0.69um)
- Swath width: 37 km by 42 km
- Capable of acquiring approximately 20 scenes/day on WRS-2 grid
- Archived data available at \$250 or \$500/scene; data acquisition requests are additional \$1,500/scene
- Website: http://eo1.gsfc.nasa.gov/

RapidEye

- RapidEye to be launched in late 2007, a total of 5 satellites is proposed, all launched at once and 19 minutes apart on orbit
- Commercial effort focused on providing information to the agricultural and cartographic communities
- Revisit time is 1 day, average coverage repeat is < 5 days with all satellites operating
- Orbital altitude/inclination: 622 km/97.8 degrees
- Imaging area: +/- 75 degrees
- Cross track pointing: +/- 25 degrees
- Nodal crossing: 11:00 a.m.
- System life: 7 years
- Multi-Spectral Imager (push-broom scanner), 5 bands (0.44-0.51um, 0.52-0.59um, 0.63-0.685um, 0.69-0.73um, 0.76-0.85um)
- Ground resolution: 6.5 m
- Swath width: 78-80 km by 1,500 km
- Availability of data and products, data policy, and pricing is TBD
- Website: http://www.rapideye.de/

ResourceSat-1 (IRS-P6)

- ResourceSat-1 was launched on October 17, 2003 by Indian Remote Sensing (IRS)
- Orbital altitude/inclination: 817 km/98.69 degrees
- Nodal crossing: 10:30 a.m.
- System life: 5 years
- Three instruments devoted to land imaging
 - Linear Imaging Self-Scanner (LISS-IV)
 - Linear Imaging Self-Scanner (LISS-III)
 - Advanced Wide Field Sensor (AWiFS)
- Space Imaging has distribution rights outside of India
 - LISS-III and LISS-IV are \$2,750/scene; AWiFS is \$850/scene
- Website: http://www.spaceimaging.com/product s/irs/

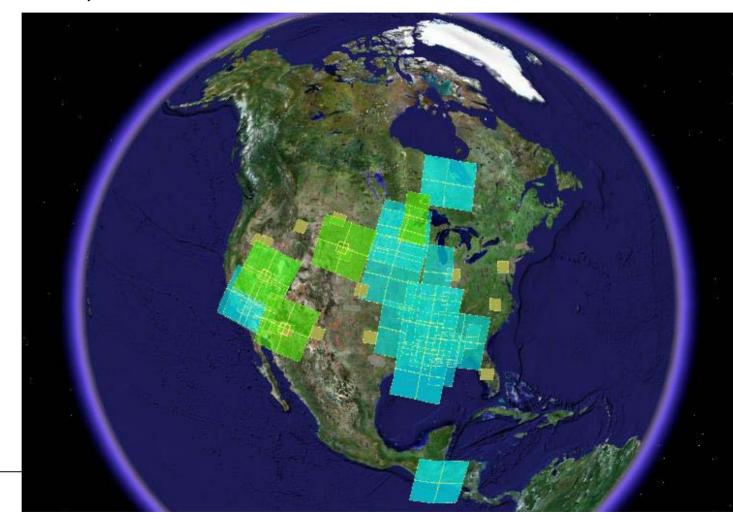

<u>LISS-IV</u>	<u>LISS-III</u>	<u>AWiFS</u>
0.52-0.59um	0.52-0.59um	0.52-0.59um
0.62-0.68um	0.62-0.68um	0.62-0.68um
0.77-0.86um	0.77-0.86um	0.77-0.86um
	1.55-1.70um	1.55-1.70um
5.8m	23.5m	56m
23.9km/70km	141km	740km
26 degrees	-	-
5 days	-	-
24 days	24 days	5 days
	0.52-0.59um 0.62-0.68um 0.77-0.86um 5.8m 23.9km/70km 26 degrees 5 days	0.52-0.59um

SPOT

- SPOT 2 was launched on January 22,
 1990; SPOT 4 was launched on March 24,
 1998; and SPOT 5 was launched on May 4,
 2002
- Orbital altitude/inclination: 822 km/98.7 degrees
- Nodal crossing: 10:30 a.m.
- System life: 3 and 5 years for SPOT 2, and SPOT 4 and 5, respectively
- Instruments on each satellite
 - SPOT 2 High Resolution Visible (HRV)
 - SPOT 4 High Resolution Visible Infra Red (HRVIR)
 - SPOT 5 High Geometric Resolution (HRG)
- Single user price of geometrically (systematic) corrected archive scene (systematic) ranges from \$2,400 (10m/20m) to over \$10,000 (2.5m color)

	<u>HRV</u>	<u>HRVIR</u>	<u>HRG</u>
	0.50-0.73um	0.61-0.68um	0.48-0.71um
	0.50-0.59um	0.50-0.59um	0.50-0.59um
Sprectral bands	0.61-0.68um	0.61-0.68um	0.61-0.68um
	0.78-0.89um	0.78-0.89um	0.78-0.89um
		1.58-1.75um	1.58-1.75um
Resolution	10m/20m	10m/20m	2.5m/5m/10m/2
Swath width	60km	60km	60km
Pointing (+-)	27 degrees	27 degrees	27 degrees
Revisit	2-3 days 2-3 days 2-3 d		2-3 days
Actual revisit	26 days	26 days	26 days

USDA AWiFS Data



DCWG ResourceSat Holdings

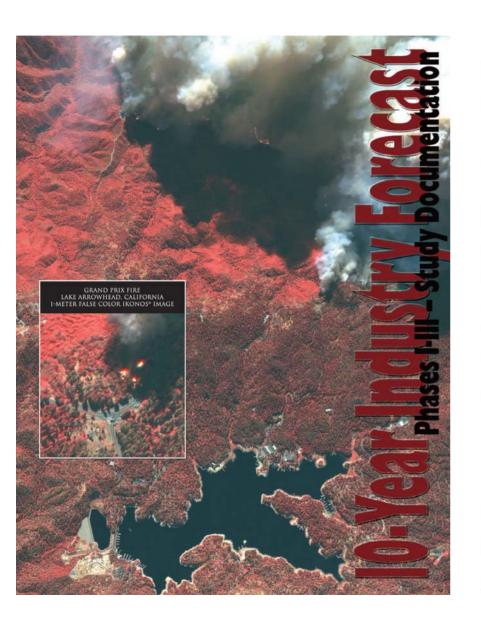
• USGS Green, SSC Blue

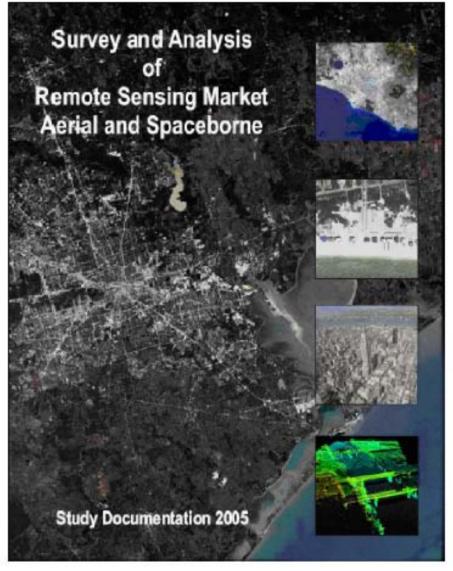
Satellite Characterization Summary (1)

- There are many instruments providing image data for civil science purposes
 - Support of Global Earth Observing System of Systems
- Some systems maybe available candidate sensing systems may be able to meet <u>at least some</u> of the needs of the Landsat user community.
- Technical advances have enabled the creation of many multi-spectral satellites
 - 14 -15 countries have mid to hi resolution satellites in orbit
 - By the end of the decade, there will be 20+ countries
 - 66 Civil Land Imaging Satellites by 2010
- All the data has value but it needs to be well understood
 - System characterization and calibration needed
 - Cal parameter files and metadata important
 - Product verification and validation needed
 - Cross calibration and international test areas must be used

Satellite Characterization Summary (2)

- Assessing ResourceSat-1 (AWiFS, LISS-III LISS-IV), and SurreySat DMC, and working with INPE to access CBERS-2
- Technologies are becoming robust enough to fill niches and cheap enough to cover many areas; <u>however, there are major issues to be address:</u>
 - Resolution and required bands SWIR bands?
 - Accuracy and stability
 - Calibration concerns/Cross calibration concerns
 - Data acquisition
 - Data availability
- Cross calibration requires a stable base with cross band coverage (GEOSS)
 - Strong need for a base, long term mission (Landsat)
- Precise high resolution data provides a great compliment to global assessment and is a must for ER




Summary

- JACIE teams moving forward in support of digital imagery processes and guidelines
- Satellite characterization efforts continue
 - ◆ Future assessments IRS-6, CBERS-2, DMC, TopSat, ChinaSat, ALOS, RapidEye,
- Future is very bright many new technologies many new aerial and satellite products
- New systems and integrated products require characterization and calibration
- Strong position to support US GEO and GEOSS
- UAV and miniaturization technologies
- Real time products what do we do with all the data?
- Forecasts available showing continued growth

Forecasts

