FINITE ELEMENT ANALYSIS OF ELASTOMERIC SEALS FOR LIDS

Jay J. Oswald J&J Technical Solutions, Inc. Cleveland, Ohio

> Christopher C. Daniels University of Akron Akron, Ohio

Finite Element Analysis of Elastomeric Seals for LIDS

Prepared for the 2006 NASA Glenn Seals/Secondary Air System Workshop November 15, 2006

vation
& Moti
ctives
Objec

<u>Objective</u>

- Create a means of evaluating seals w/o prototypes Motivation
- Cost
- Prototype 54" seal ~\$100k per seal pair
- FEA license + high end workstation ~ \$30k per <u>year</u>
- Development time
- 6 months lead time for a new seal design
- Many designs per day (solution time <1 minute)
- Understanding
- Difficult to experimentally measure strains, contact pressure profile, stresses, displacements

Part I

Hyperelastic Material Modeling

- Fully or nearly Incompressible
- Bulk modulus typically 100-1000x shear modulus
 - Poisson's ratio approaches 0.5
- Problems in displacement-based FEA formulation
- Requires B-bar or mixed u-P formulation
- Huge elastic range of deformation
- Strains > 80% are (mostly) recoverable
- Analysis should account for nonlinear geometry and material properties

Hyperelastic	ity vs. Linear Elasticity
<mark>Linear elasticity:</mark> W = Cε:ε (which is like: E = ½ kΔx ²)	$\sigma_{ij} = \frac{\partial W}{\partial \varepsilon_{ij}} \begin{array}{l} \text{Definition of second Piola-} \\ \text{Kirchoff stress from strain} \\ \text{energy density and Green-} \\ \text{energy density and Green-} \\ \text{Lagrange strain} \end{array}$
Hyperelasticity: $W = f(I_1, I_2, I_3)$ or $W = f(\lambda_1, \lambda_{11}, \lambda_{11})$	$I_1 = \lambda_I^2 + \lambda_M^2 + \lambda_M^2$ $I_2 = \lambda_I^2 \lambda_M^2 + \lambda_M^2 \lambda_M^2 + \lambda_M^2 \lambda_M^2$
r D	$I_3 = \lambda_I^2 \lambda_M^2 \lambda_M^2 = 1 + \left(\frac{\Delta V}{V}\right)^2 = J^2$
γ _l a λ _l b	$\lambda_{I}, \lambda_{II}, \lambda_{III}$: principal stretch ratios I_{1}, I_{2}, I_{3} : strain invariants J: Jacobian (volume ratio)

Some forms of the work function	ynomial models: (Mooney-Rivlin, Neo-Hookean)	$W = \sum_{i+j=1}^{N} C_{ij} \left(\overline{I}_1 - 3 \right)^{i} \left(\overline{I}_2 - 3 \right)^{j} + \sum_{k=1}^{N} \frac{1}{d_k} (J-1)^{2k}$	oh model: j=0, neglects second strain עמרומות	or plane strain Yeoh is equivalent to general olynomial form because $I_1 = I_2$	nparison of lowest order terms for a 50 durometer material $1/d_1 \approx 200,000$ $c_{1,0} \approx 40$
	olyn		Yeoh inv	Fol pol	Compi

Constraints on the work function	o strain must have zero energy (W(0) = 0) o strain must have zero stress (W'(0) = 0) cond derivative must be positive (W''(ϵ) > 0 for all ϵ)	$\frac{\partial W}{\partial \varepsilon_{ij}}$	Strain
Constra	Zero strain mus Zero strain mus Second derivati	$\frac{\partial w}{\partial s_{ij}}$	

a aterial	Stretch Ratios	$\lambda_{I} = \frac{1}{\lambda_{II}^{2}} = \frac{1}{\lambda_{III}^{2}}$	$oldsymbol{\lambda}_{I} = oldsymbol{\lambda}_{II} = rac{1}{\sqrt{oldsymbol{\lambda}_{III}}}$	$oldsymbol{\lambda}_{I}=rac{1}{oldsymbol{\lambda}_{II}}oldsymbol{,}oldsymbol{\lambda}_{III}=1$	$\lambda_{I} = \lambda_{II} = \lambda_{III} < 1$
states of ssible ma	Strain				
Basic strain	Load				
Den		Uniaxial	Biaxial	Planar	Volumetric

Performed
Tests
Material

- Materials: XELA-SA-401, S0899-50, S0383-70
 - 40, 50, 70 durometer hardness
- Test parameters
- Various temperatures
- -50, 23, 50, &125 °C
- 3 specimens per test
- Uniaxial, planar, biaxial tension & volumetric
- 20,40,60,80 % strain increments
- Other properties:
- Coefficient of friction (elastomer on elastomer), thermal conductivity, heat capacity, density, emissivity, absorptivity

This data will be published soon in a NASA technical publication

NASA/CP-2007-214995/VOL1

Uncertainty based off student's t distribution from multiple specimens

Results can be curve fitted to determine material property constants This can be done as a function of temperature

The strain energy density is the area under the curve for each deformation

elastomer (-50 °C

Part II

Finite Element Analysis of Seals

· Elastomeric FEA	ular elements placement BC will have only 1 degree ncompressibility	onverge easiest 4-node brick works	quire non-symmetric stiffness on coefficients	nent distortion on is most stable	naterial models	<u>Severe</u> element edge distortion Analvses did not converge
Hints for	 Stay away from triangute Elements with 2 disposition of freedom due to in 	 Low order elements co well 	 Sliding contact may rec matrices for large frictic 	Watch corners for elem u-P element formulatio	Check for stability of m	
NIA SA/OD		N)	آری 410	<u>4</u> 0	Ú.	

NASA/CP-2007-214995/VOL1

NASA/CP-2007-214995/VOL1

yses
Anal
lermal
Ì
Seal

- CTE of elastomers is very high
- 350x10⁻⁶ °C⁻¹
- AI: 24x10⁻⁶ °C⁻¹

Comparison of compression at 25°C (front) and 125°C (back). Contours are axial stress.

Y displacement of seals with 100°C rise in temperature, black outline indicates original geometry

Adhesion analysis