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1. Introduction 

 
In the present day, orbit determination by Global Positioning System (GPS) is not unusual. Especially for 

low-cost small satellites, position determination by an on-board GPS receiver provides a cheap, reliable and 

precise method. However, the original purpose of GPS is for ground users, so the transmissions from all of 

the GPS satellites are directed toward the Earth’s surface. Hence there are some restrictions for users above 

the GPS constellation to detect those signals. On the other hand, a desire for precise orbit determination for 

users in orbits higher than GPS constellation exists. For example, the next Japanese Very Long Baseline 

Interferometry (VLBI) mission “ASTRO-G” is trying to determine its orbit in an accuracy of a few 

centimetres at apogee. The use of GPS is essential for such ultra accurate orbit determination. This study 

aims to construct a method for precise orbit determination for such high orbit users, especially in High 

Elliptical Orbits (HEOs). There are several approaches for this objective. In this study, a hybrid method 

with GPS and an accelerometer is chosen. Basically, while the position cannot be determined by an 

on-board GPS receiver or other Range and Range Rate (RARR) method, all we can do to estimate the user 

satellite’s position is to propagate the orbit along with the force model, which is not perfectly correct. 

However if it has an accelerometer (ACC), the coefficients of the air drag and the solar radiation pressure 

applied to the user satellite can be updated and then the propagation along with the “updated” force model 

can improve the fitting accuracy of the user satellite’s orbit. In this study, it is assumed to use an 

accelerometer available in the present market. The effects by a bias error of an accelerometer will also be 

discussed in this paper. 

Table 1-1-1: Osculating Keplerian Orbital Elements 
Epoch 00:00:00.0, 16

th
, May, 2006 

Semi-major Axis 19378.0 km 

Eccentricity 0.62 

Inclination 31.0 

RAAN 0.0 

Argument of Perigee 0.0 

Mean Anomaly 0.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1-1: Image of ASTRO-G 

 
In this study, the next Japanese VLBI mission called "ASTRO-G" is used as a test mission. VLBI is a 

method of astronomical observation in the field of radio astronomy. The first VLBI mission was conducted 
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by Japanese satellite called "HALCA" which was the first VLBI satellite and finished its mission in 2005 

after 8 years operation.  

 
ASTRO-G is also planned by ISAS / JAXA, and it is scheduled to be launched in 2011. The orbit type of 

this mission is HEO, and the required orbit determination accuracy is a few centimetres at apogee. Figure 

1-1-1 shows the image of this mission. 

 
In Table 1-1-1 the osculating Keplerian orbital elements of ASTRO-G's orbit are summarised. As you can 

see in this table, the perigee altitude is 1,000 km while the apogee altitude is 25,000 km which is higher 

than the altitude of GPS orbits. The epoch time shown in Table 1-2-1 is the time set for this study.  

 
Figure 1-1-2 shows us the geometric relationship between the Earth, GPS satellite and ASTRO-G.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1-2: Conceptual Diagram of GPS & ASTRO-G orbits 

 
In this study, it is intended to determine the orbit by using both of the GPS measurement data collected in 

the "lower" part of the orbit and the on-board ACC output data. The ACC allows to estimate more suitable 

force model, which will improve the orbit determination accuracy.  

 

2. Perturbation Forces 

 
In real situation, several perturbation forces are also applied to a satellite. When those forces are taken into 

account, the force vector a
�

 is described as; 

 

 

 

where, alnonspherica
�

is the perturbation force cause by the non-spherical terms of the geo-potential model, 

)(3 Sunbodya −

�
 and )(3 Moonbodya −

�
 are the forces by the third bodies, specifically the Sun and the Moon. 

airdraga
�

 is the force caused by the Earth's atmosphere and SRa
�

 is the solar radiation pressure. 

 
When we design the estimator utilizing ACC we have to consider the two disturbing forces i.e. the Air drag 

and the Solar radiation pressure. In the following sections those forces are introduced. 

 

2-1 Air Drag 

 
The disturbing force by the atmospheric drag has a strong influence against the motion of the LEO satellites. 

The next equation describes this perturbation force; 

SRairdragMoonbodySunbodyalnonspheric
E aaaaar
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where DC  is the coefficient of drag which describe the susceptibility of the satellite to the air drag 

force. DC  is approximately 2.2 in the upper atmosphere of the Earth when a flat plate model is applied. 

A  is the cross-sectional area exposed to the atmosphere, and m  is the mass of the satellite. ρ  is the 

atmospheric density which differs along with the altitude. relv
�

 is the velocity vector of the satellite 

relative to the atmosphere. This velocity vector is also described in the Earth Centred Inertial (ECI) 

coordinate system in this research. 

 
In this study, the following parameters are used; 

 

 

 
These values are derived from HALCA's specification. 

 
Practically speaking, the atmospheric density ρ  changes depending on the complicated interaction among 

some basic factors. However, in this research, simple values are used which changes with the altitude for 

simplicity. Figure 2-1-1 summarises the values of the mean atmospheric density [2]. And the derivative of 

airdraga
�

 by satr
�

 is zero. 

 
In this research the atmospheric density is interpolated linearly by using the values of Figure 2-1-1. The 

altitude above 1500km, it is defined that the density lineally reduces and reaches zero at the altitude 

1750km. 

 
For the simulation of this study the following description is used for simplicity. 

 

 

 

The dragK  appearing in the equation (2-1-3) is one of the state parameters estimated by the orbit 

estimator. 

 

 

 

 

 

 

 

 

 

Figure 2-1-1: Mean Atmospheric Density 

 

2-2 Solar Radiation Pressure 

 
The radiation from the Sun also affects on the satellite motion as a perturbing force. The solar-radiation 

pressure is given by; 
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where SRp  is the solar pressure which equals to
261051.4 mN−× . RC  is the reflectivity whose 

value is between 0.0 to 2.0. In this research the RC  is set to 1.3. SunA  is the satellite’s exposed area to 

the Sun and m  is satellite’s mass. These SunA  and m  are same as the values shown in (2-1-2). 

Sunsatr −

�
 is the point vector from the satellite to the Sun. The derivative of SRa

�
 is zero. 

 

This perturbation force is also written in the following equation (2-4-2). The coefficient SRPK  is 

estimated by the orbit estimator in this study. 

 

 

 

3. Visibility Analysis 

 

3-1 Geometry 

 

 

 

 

 

 

 

 

 

 

Figure 3-1: Geometrical Allocation of GPS satellites and the user satellite 
 

To evaluate the feasibility of the orbit estimator designed in this study, the visibility analysis of GPS 

satellites should be investigated. Figure 3-1 shows the geometrical allocations of the GPS satellites and the 

user satellite. As can be seen, the user above the GPS orbits can only detect the signal from the GPS 

satellite which is beyond the Earth because all of the GPS signal transmission is directed toward the Earth, 

beside the beam width of the transmission antenna is not so wide. 

 

3-2 GPS Antenna Configuration 

 
To analyse the visibility of the GPS satellites in detail, the antenna patterns of the GPS transmission 

antenna and the GPS receiver's antenna are defined. As far as I know, the antenna configuration of the 

on-board GPS satellite antenna is not published. However some results of the investigation by GPS users 

are published. Basically, the antenna pattern for the GPS signal transmission should be designed to 

illuminate the Earth's surface from the altitude 20,200km. Hence the half angle should be about 13.88 

degrees. Figure 3-2-1 shows the antenna geometry.  

 

 

 

 

 

 

Figure 3-2-1: The Geometry of the GPS transmission antenna 
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Figure 3-2-2: Diagram of Antenna Patterns 
 

On the other hand, the beamwidth of GPS receiver's antenna is set to 150 degrees. Figures 3-2-2 shows the 

diagram of those antenna patterns. 

 
To figure out the visible number of GPS satellites, the shape of the satellite and the coordinate system was 

determined as shown in Figure 3-2-3. 

 

 

 

 

 

 

 

 

 

Figure 3-2-3: Definition of Coordinate System of the satellite 
 

As summarised in Figure 3-2-3, it is considered 6 GPS antennas are loaded on 6 panels of a cubed shape 

satellite. The satellite's body frame is fixed in the inertial space and the user satellite's shape is simply 

assumed a cube. Figure 3-2-4 shows the result of the visibility analysis. 

 

 
Figure 3-2-4: Result of Visibility Analysis 

4. Orbit Estimator 

 

4-1 Kalman Filtering 

 
The orbit estimator designed in this study uses Kalman Filtering method. Kalman Filtering is a technique 

for computing the best estimate of the state parameters from imperfect observation values and uncertain 

dynamic model. Figure 4-1-1 shows the flow chart of this method. 

 

40 deg 150 deg 

(a) GPS transmission antenna pattern (b) GPS receiver antenna pattern 
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In this study, the state parameters are the range and velocity vectors of the user satellite, and two 

coefficients of the air drag and the solar radiation pressure. The subscripts "drag" and "SRP" appearing in 

Figure 4-1-1 describe the air drag and the solar radiation pressure respectively. On the other hand, the 

observation values are the range, velocity and acceleration vectors. Note that the range and velocity vectors 

are described in ECI coordinate system while the acceleration vector's coordinate system is in the satellite's 

body frame. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-1-1: Flow Chart of Kalman Filtering 

 

4-2 Observation Matrix 

 

The observation matrix H  is the matrix which describes the relationship between the state parameter X  

and the observation value Z . This matrix is defined by the following equation; 

 

 

 
In this study this matrix is; 

 

 

 

 

 

 

 

 

Note that the acceleration a′
�

 appearing in the equation (4-2-2) is the force by the air drag and the solar 

radiation pressure only because the on-board ACC can only detect the non-conservative forces which are 

not proportional to the satellite's mass. Hence this force is described by; 

 

 

 
 
To distinguish this force from the acceleration of the force model the notation "dash" is used. By 

substituting the equation (4-2-3) into (4-2-2), then the following matrix is obtained; 

Input of the initial state parameters; 

( )
SRPdragzyxzyx KKvvvrrrX =0

ˆ

 

Propagations of the state, STM and the 

covariance matrix; 

PX ,, Φ  

Computation of Kalman Gain Matrix; 

K  

Input of Observation Values 

( )
zyxzyxzyx aaavvvrrrZ ′′′=0

 

Update of the state and the covariance matrix; 
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where; 

 

 

 

 

 

 

 

 

 

 

 

 

 

4-3 State Transition Matrix 

 

When we define the state transition matrix for 6 orbital parameters as carΦ , then this matrix can be 

obtained by solving the following equation; 

 

 

 
where; 

 

 

 

 

 

The vector a
�

 appearing in the equation (4-3-2) is the force vector shown in the section 3. The matrices 

33xO  and 33xI  are 3x3 zero matrix and the 3x3 identity matrix respectively. As can be seen in this 

equation we need to calculate the derivative of the force vector by the position vector of the user satellite to 

get the state transition matrix. 

 

When we describe the state transition matrix with four 3x3 matrices, the equation (4-3-1) is modified into 

the following equation; 

 

 

 

where ( ) 33xIraD
��

∂∂= . From the equation (4-3-3) we can obtain the state transition matrix carΦ . On the 

other hand, the state transition matrix dsΦ for the two coefficients of the air drag and the solar radiation 

pressure is simply described as following; 
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because they are simply assumed constant. Consequently, the state transition matrix Φ in this study is 

written as; 

 

 

 

4-4 Process Noise Matrix 

 

The matrix Q is a process noise matrix which describes uncertainty of the dynamic model in the orbit 

estimator. According to [7], the formula of this matrix is provided as; 

 

 

 

where the vector u
�

 is a noise vector whose elements are white Gaussian noise. Here, we assume that the 

process noise emerges only in the vector w
�

 because the uncertainty of the model is in the force i.e. a
�

. 

Hence the simplified orbit dynamics can be written; 

 

 

 
then we obtain; 

 

 

 

where pS  is the spectral amplitude associated with the white noise driving function, and δ  is Dirac 

delta function. u
�

 is specifically written as; 

 

 

 

δ  becomes "1" only when ηξ = . Therefore, the following equation is obtained from the equation 

(4-4-1);  

 

 

 

 

 

 

 

 

 

 

4-5 Observation Noise Matrix 

 

The matrix R is an observation noise matrix which corresponds to the sensor's noise used in the observation. 

This matrix is described as following; 
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where; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Simulation 

 

5-1 Simulation Configuration 

 
To figure out the contribution of an on-board ACC some simulations are carried out. Figure 5-1-1 shows 

the diagram of the simulation configuration. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-1-1: Diagram of Simulation Configuration 

 
As Figure 5-1-1 shows the reference orbit called "true orbit" is prepared at first. In real situation nobody 

knows the "true" orbit. The force model for the true orbit is summarised in Table 5-1-1. 

 
The geo-potential model used in this study is WGS 84 (EGM 96). Two disturbing forces by the Sun and the 

Moon are included. The coefficient of the air drag changes from 0.0 to 1.99e-13 because of the atmospheric 

density model applied to this study. On the other hand the coefficient of the solar radiation pressure is set to 

constant number. Note that the orbit estimator simply assumes that those coefficients of the air drag and the 

solar radiation pressure are constant.  

 
However, the real coefficients are not constant. They change depending on the solar activity whose 

magnitude is usually unpredictable, although the cycle of the period of the solar maximum and minimum is 

not unknown.  
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Table 5-1-1: Force Model of True Orbit 
Geo-potential Model 36 x 36 

3-Body Disturbing Forces Sun & Moon 

Coefficient of Air Drag 0.0 ~ 1.99e-13 

Coefficient of Solar Radiation Pressure 3.53e-10 

 

5-2 Simulation Cases 

 

5-2-1 Case1: Influence of GPS Positioning Accuracy 

 
Here we can see the influence of the GPS positioning accuracy to the orbit determination error. Table 

5-2-1-1 shows the relationship between the noise configurations of GPS positioning and the orbit 

determination errors when the orbit is determined only by the GPS measurement data. The initial 

coefficient of the air drag is set to 0.0 and the coefficient of the solar radiation pressure is 7.06e-10 which is 

twice larger than the true value. 

 

Table 5-2-1-1: GPS Positioning Accuracy and Orbit Determination Error 
Case Number Case 1-1 Case 1-2 Case 1-3 

Along 0.02 0.20 2.00 

Cross 0.02 0.20 2.00 

GPS positioning 

random error 

[m] Radial 0.04 0.40 4.00 

Orbit Determination Error [m] 8.19 9.29 16.32 

 
The result tells us that the orbit determination error will be more than 8 m even if we use a very accurate 

GPS receiver whose positioning accuracy is only 2.0 cm in the along and cross track, and 4.0 cm in the 

radial. When we use an ordinal GPS receiver such as 2.0 m positioning accuracy the determination error 

increases up to about 16 m. 

 

5-2-2 Case2: Influence of Initial Coefficients 

 
To figure out the influence of the initial coefficients to the orbit determination accuracy, three cases with 

different initial coefficient are simulated. Note that the coefficient of the air drag is set to 0.0 because the 

air drag is basically zero except the small part of the orbit near perigee. Table 5-2-2-1 summarises the 

result. 

 

Table 5-2-2-1: Initial Coefficients and Orbit Determination Error 
Case Number Case 2-1 Case 2-2 Case 2-3 

Air Drag 0.0 0.0 0.0 
Initial 

Coefficients 
Solar Radiation 

Pressure 
7.06e-10* 1.77e-9** 3.53e-9*** 

Orbit Determination Error [m] 8.19 31.36 75.60 

* True value x 2, ** True value x 5, *** True value x 10 
 

When we see the result we can easily find that the influence of the initial coefficient are very large. If we 

use the value which is ten times larger than the true one the determination error becomes 75.6 m. Perhaps 

the reader of this paper may think that this difference is "too large". However the real coefficients of the air 

drag and the solar radiation pressure are very small so the tens or hundreds times variation is not unusual. 
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5-3 Simulation Result 

 

5-3-1 Contribution of ACC 

 
To improve the orbit determination accuracy, an on-board ACC is used. When the ACC is available we can 

get the information of the non-conservative force vectors i.e. the air drag and the solar radiation pressure. 

The information from the ACC allow us to estimate more suitable coefficients, which update the force 

model used in the orbit estimator and improve the determination accuracy. Figure 5-3-1-1 shows the orbit 

determination error at apogee by the estimation with using the on-board ACC. 
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Figure 5-3-1-1: Result of Orbit Determination with ACC 

 
The horizontal axis shows the accuracy of the on-board ACC and the vertical axis shows the orbit 

determination error at apogee. Figure (a) is the result of Case 1, which shows the errors with three different 

GPS positioning accuracies and the contribution of the on-board ACC to the orbit determination precision. 

Figure (b) is the result of Case 2 showing the errors with three different initial coefficient set. 

 
At first let's see the result of Figure (a). As you can see the determination accuracy significantly improves 

by the use of the ACC. When we use the hybrid method with an super accurate GPS receiver with 2.0 cm 
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positioning accuracy and a ultra accurate ACC with 3.0e-17 m/s2, then we can determine the orbit in an 

accuracy of 53.0 cm at apogee. Even in the worst case whose determination error is about 16 m when it is 

determined only by GPS, the error decreases down to 5.4 m. 

 
On the other hand, Figure (b) shows the necessity of the accuracy of the initial coefficient. As it was said in 

the previous section the influence of the initial coefficient to the orbit determination accuracy is very large. 

Even if a very accurate ACC is used for the estimation the determination error still remains more than 30 m 

when the initial value which is ten times larger than the true value is used. In other words, this result tells us 

that we have to determine the initial coefficient as precisely as possible if we need to fit the orbit 

accurately.  

 

5-3-2 Estimation of the Coefficient of Air Drag 

 
As you already know, the orbit estimator of this study estimates the two coefficients of the air drag and the 

solar radiation pressure. 

 

 
 

 

 
 

 

Figure 5-3-2-1: Result of Estimation of Air Drag Coefficient 

 
Here the estimation result of the air drag's coefficient is shown. Figures 5-3-2-1 show the results of the 

estimation with four different ACCs. Similarly to the previous section Figure (a) corresponds to Case 1 and 

Figure (b) is the result of Case 2. The horizontal axis shows the time period starting on 00:00:00.0, 16
th
, 

May, 2006. The estimation time period is roughly 4 hours which corresponds to the half of the period of 

ASTRO-G's orbit. The vertical axis shows the value of the estimated coefficient. 

 
When we scrutinise the results shown in Figure (a) we find that the estimated value is negative number i.e. 

"-9.72e-12" at the end of the estimation time period. Frankly speaking this result is odd because the 

coefficient should always be positive value.  
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However, in this study a very simple atmospheric density model is applied. According to the density model 

the air density has some value when the user satellite's altitude is below 1,750 km, but in the most of the 

part of the orbit this value is zero. In contrast, the orbit estimator simply assumes the coefficient is a 

constant value. Hence the estimator has to make the value negative to cancel the effect of the air drag 

applied to the user satellite near perigee. This is the why. 

 
Figure (b) also shows a similar result. The three lines appearing in the graph correspond to Case 2-1, Case 

2-2 and Case 2-3 respectively. According to the result all of the three values converge to the same value as 

Figure (a) i.e. "-9.72e-12". On the other hand, the shape of the three lines are different each other while 

those in Figure (a) are perfectly same. This is because of the initial coefficient of the solar radiation 

pressure. The force sensed by the on-board ACC consists of the air drag and the solar radiation pressure, so 

the different coefficient of the solar radiation pressure affects to that of the air drag. 

 

5-3-3 Estimation of the Coefficient of Solar Radiation Pressure 

 
Here we see the estimation result of the solar radiation pressure's coefficient. Figures 5-3-3-1 show the 

result. 

 
Figure (a) shows us the good estimation result of the coefficient. The value converges to "3.32e-10" while 

the true one is "3.53e-10". The shapes of the lines of those three different cases are completely same, which 

means the influence of the GPS positioning accuracy to the estimation of the coefficients are very small.  

 
Conversely, Figure (b) shows different characteristic. In Figure (b) the estimated values of the coefficient in 

those three cases are different each other. Obviously this is because of the initial coefficient set. The solar 

radiation pressure's coefficients of Case 2-1, Case 2-2 and Case 2-3 converge to "3.3e-10", "4.5e-10" and 

"6.6e-10" respectively, while the true one is "3.53e-10". The difference of those values are very small, but 

those small variations of the estimated coefficients cause the large orbit determination error as you saw in 

the previous section.  
 

 
 

 

 
 

Figure 5-3-3-1: Result of Estimation of Solar Radiation Pressure Coefficient 
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5-4 Influence by ACC's bias 

 
In this study, the following ACC bias model is applied as a test. 

 

 

 
At this present time the research for the ACC's bias is not sufficient. However, by using the brief model 

described in the equation (5-4-1) the influence by the bias was tried to figure out.  

 

Table 5-4-1: Values of ACC bias 
Bias Values 

b  2.0e-11 

b�  
2.0e-14 

b��  
2.0e-17 

 
In this study the accuracy of GPS is same as case1-1 in Table 5-2-1-1. The random noise of ACC is 3.0e-11. 

The initial coefficients of the air drag and the solar radiation pressure of the estimator are twice larger than 

the true value. In this case the peak range error became about 3.63m while that of the same case without 

ACC bias is about 0.53m. To reduce this error the ACC bias should also be estimated by the estimator. 

 

6. Conclusion 

 
This study revealed the feasibility of the hybrid orbit determination method by GPS and ACC. If only GPS 

measurement data is used for the determination at least 8 m error will emerge at apogee even if a super 

accurate GPS receiver is used. However the ACC allows us to estimate the coefficients of the 

non-conservative forces i.e. the air drag and the solar radiation pressure applied to the user satellite, which 

reduces the determination error down to only 53 cm. This study also tells us that the more accurate ACC 

makes the determination accuracy better, but the contribution of the ACCs which are more accurate than 

"3.0e-8 [m/s2]" saturates. 

 
The influence of GPS positioning accuracy to the orbit determination error is not small. A few meters 

positioning error at perigee will produce about 16 m error at apogee. This accuracy should be taken into 

account through the use of dual frequencies, a more detailed Kalman filter capable of modelling the clock 

bias model of the GPS receiver when we need to determine the orbit precisely. The use of GPS weak 

signals from the side lobe of the transmission antenna may also be useful to achieve better result. 

 
The biggest factor which affects to the determination accuracy is the initial coefficients set of the air drag 

and the solar radiation pressure. Generally speaking, these values are so small that the ten or hundred times 

variations of those values are common. However this study revealed the ten times difference will cause 

more than 75 m error at apogee. Hence it is vitally important to set those initial coefficients as precisely as 

possible if a very accurate orbit determination accuracy is required. 

 
As future works, the problem of an ACC's bias still remains. In real situation the output data from an 

on-board ACC contains some bias which changes over time. This problem should be discussed when this 

method is applied to the application of real spacecrafts. To solve this problem it is intended to estimate the 

ACC's bias as well as other state parameters. The bias model should be considered for the modification. 

 

The calibration of the on-board ACC is also important problem. This also should be taken into account to 

make this algorithm more practical. 

 

( ) ( )2
ttbttbbBias refref −+−+= ��� (5-4-1) 
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