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Abstract

Space missions to small solar system bodies must deal with multiple perturbations acting on the
spacecraft. These include strong perturbations from the gravity field and solar tide, but for small bodies
the most important perturbations may arise from solar radiation pressure (SRP) acting on the spacecraft.
Previous research has generally investigated the effect of the gravity field, solar tide, and SRP acting on
a spacecraft trajectory about an asteroid in isolation and has not considered their joint effect. In this
paper a more general theoretical discussion of the joint effects of these forces is given.

1 Introduction

Space missions to small solar system bodies such as asteroids and comets face significant dynamical chal-
lenges. However these bodies are also of great interest to space scientists. Furthermore, small Near Earth
Asteroids (NEA) are the most energetically accessible bodies in the solar system, and hence are a natural
target for low cost space missions. The special challenges faced by spacecraft missions to these bodies are
the relatively strong solar radiation pressure (SRP) forces that act on a spacecraft, the irregular mass distri-
bution that can affect spacecraft in close proximity, and the gravitational effects of the sun, present through
direct attraction and through the orbital motion of the asteroid in inertial space. In some mission scenarios,
such as that encountered by the Japanese Hayabusa mission to asteroid Itokawa [1], these concerns lead
to a mission design that does not have the spacecraft orbit the small body but instead maintains a quasi-
stationary position in the asteroid-sun fixed frame enabled by frequent thruster firings. This introduces
additional constraints, however, such as the need for frequent control thrusts, and also prevents precision
estimation of the physical parameters of the asteroid in some cases. It also limits the lifetime of the orbiter,
in that the spacecraft cannot stay indefinitely at the asteroid with no operator intervention. In the current
paper we study the orbit mechanics of a spacecraft in orbit about a small body such as an asteroid. The
purpose is to outline the limits that exist for stable orbital motion, so a clear determination can be made
between when orbiting is feasible and when a spacecraft must instead hover about a small body. Specifically,
we study a class of orbits that are stable against SRP perturbations over long time spans, and determine
what the effect of the small body mass distribution is on these orbits.

To analyze the stability of the proposed close proximity operations we apply a general analytical method-
ology that rests on numerous studies of specific asteroids. We assume that the asteroid is modeled as a
tri-axial body with 2nd degree and order gravity field coefficients, and incorporate the perturbative force of
solar radiation pressure. It has been demonstrated previously that it is the 2nd degree and order gravity
field terms that dominate the orbital stability for close proximity motion to uniformly rotating asteroids
[2, 3, 4, 5], and that solar radiation pressure can destabilize spacecraft motion about a small body [6, 7, 8, 9].
The effect of both the gravity field and solar radiation pressure perturbations on the orbital evolution of
a spacecraft can be characterized with analytical theories of motion. Using these theories we can develop
a theory for characterizing whether close proximity operations about a small asteroid model is feasible or
not. For characterizing stability against solar radiation pressure we apply the theory developed in [6, 7, 8]
given the total mass of the asteroid, the asteroid orbit, and the mass to area ratio of the spacecraft. These
provide us specific orbital limits and specific orbit designs to ensure a safe trajectory. For motion close to
the body we apply theory developed in [2, 5] for the interaction of orbiters with non-spherical, rotating mass
distributions.
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Using the results reported here, questions of interaction between the solar radiation pressure and mass
distribution perturbations can be taken into account. For a particular asteroid and spacecraft one can
derive conditions under which there exists an interval of orbit radii that are robustly stable against both the
destabilizing effects of solar radiation pressure (which becomes stronger for larger orbit radii) and interactions
with the mass distribution (which becomes stronger for smaller orbit radii). These considerations lead to a
nominal orbit design that places the orbit plane parallel to the asteroid terminator plane. This configuration
is essentially a frozen orbit for motion about a small asteroid and yields constant orbit elements on average
except for the longitude of ascending node, which becomes synchronized with the asteroid’s orbital motion
about the sun. This synchronicity even persists for a highly eccentric asteroid orbit. When traveling through
aphelion, however, the reduced precession rate of the spacecraft orbit can be more easily be perturbed by
the precession rate induced by the asteroid mass distribution. This can lead to fluctuation of the orbit
eccentricity and can make the orbit unstable. We develop specific bounds on fluctuations in eccentricity and
discuss conditions for when this can destablize an orbit.

2 Environment Models

To begin our discussion we provide a brief review of the small body environment and force perturbations.
These are split between the asteroid specification and the relevant force perturbations.

2.1 Small Body Model

We assume that the small body is on an elliptic orbit about the sun, and that its motion is well characterized
by simple Keplerian dynamics over time spans of interest. This is generally true unless a close passage by a
planet occurs, a situation that happens only infrequently. Of specific interest is the varying position vector
between the asteroid and the sun, d = dd̂. Both the magnitude d and a direction d̂ are functions of the
asteroid true anomaly ν:

d =
P

1 + E cos ν
(1)

d̂ = cos νx̂ + sin νŷ (2)

where x̂ is the unit vector pointing to the orbit perihelion, ŷ is the unit vector in the heliocentric plane of
motion and normal to x̂. The cross product of these two vectors defines the orbit normal, specified as ẑ,
about which the asteroid revolves.

Another important specification for the asteroid is its mass distribution and rotation pole. Here we
assume the asteroid is uniformly rotating about its maximum moment of inertia. For our detailed analytical
discussions we only consider the effect of the C20 = −J2 oblateness gravity field coefficient, although the
effect of the C22 ellipticity gravity field coefficient is discussed in general terms. These gravity field coefficients
can be specified by the mass-normalized moments of inertia of the body and equal:

C20 = −1
2

(2Iz − Ix − Iy) (3)

C22 =
1
4

(Iy − Ix) (4)

where Ix ≤ Iy ≤ Iz are the principle moments of inertia of the body.
The asteroid rotation pole is assumed to be fixed in inertial space. For convenience we specify its

orientation relative to the above described orbital frame by an obliquity angle β measured between the orbit
normal ẑ and asteroid rotation pole p̂, and a right ascension angle α measured between the vector ẑ× p̂ and
x̂. With these definitions the asteroid rotation pole can be explicitly specified as:

p̂ = sinβ sinαx̂− sinβ cosαŷ + cosβẑ (5)

2.2 Force Models

Next we summarize the relevant force models that act on a small body orbiter. These include solar radiation
pressure (SRP), mass distribution effects, and solar gravitational effects.
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Solar radiation pressure: We use a minimal model for the SRP acceleration, modeling the spacecraft
as a flat plate oriented at the sun. It is possible to generalize this model, however the essential dynamics of
motion under this force will not be changed significantly. We start with a force potential formulation of the
model:

Rg = gd̂ · r (6)

where g is the acceleration, d̂ is the direction in which it acts (away from the sun) and r is the position of
the spacecraft relative to the asteroid center of mass. The acceleration force is computed as the partial of
Rg with respect to r and is g = gd̂ and the acceleration magnitude is computed as:

g =
β

d2
(7)

where β = (1 + ρ)G1/B, G1 ∼ 1× 108 kg-km3/(s2-m2), B is the spacecraft mass to area ratio in kg/m2, ρ is
the reflectance of the spacecraft, β = (1 + ρ)G1/B, and d is the distance between the sun and small body in
km. This model assumes that the spacecraft is modeled as a flat plate facing the sun, and that the absorbed
solar radiation is radiated away uniformly. Note the dependence of g on the distance between the asteroid
and sun, thus the SRP force varies in time between a maximum at perihelion and a minimum at aphelion.

Mass distribution: The attraction of the small body is initially modeled as a point mass, but we will
later consider the effect of a 2nd degree and order gravity field perturbation. Inclusion of the 2nd degree and
order field is sufficient to capture the main effects of non-sphericity in the mass distribution. Higher order
gravity coefficients can be important, but do not have such a dominant effect on the qualitative dynamics
of motion for this system. For our situation where the rotation axis of the body is not aligned with the ẑ
axis of the main coordinate frame, it is useful to state this term in vector form.

R2(r) = − µ

2r3
C20

[
1− 3(r̂ · p̂)2

]
+

3µ
r3
C22

[
(r̂ · ŝ)2 − (r̂ · q̂)2

]
(8)

where we assume that the unit vectors p̂, q̂, ŝ are aligned with the body’s maximum, intermediate, and
minimum axes of inertia. For our analytical work we will neglect the C22 coefficient, although this has been
studied in detail elsewhere [5].

Solar gravitation: Also necessary to incorporate for some analyses is the perturbation of the sun’s gravity
on the motion of an orbiter. This can be modeled as a 3rd body perturbation, and its functional form can be
simplified by performing an appropriate expansion which is essentially Hill’s approximation. In this paper
we do not deal with the solar gravitation in any substantial way, and we refer the reader to [7] for an in-depth
discussion.

3 Equations of Motion

Combining the above force models we can define the equations of motion for a spacecraft in orbit about an
asteroid. In an inertially fixed frame centered at the asteroid, they can be stated as:

r̈ =
∂U

∂r
(9)

U(r) =
µ

r
+R(r) (10)

R(r) = R2(r) +Rg(r) +RS(r) (11)

We can equivalently state the problem in terms of the Lagrange Planetary Equations:

da

dt
=

2
na

∂R

∂σ
(12)

de

dt
=

1− e2

na2e

∂R

∂σ
−
√

1− e2

na2e

∂R

∂ω
(13)
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di

dt
=

cot i
na2

√
1− e2

∂R

∂ω
− 1
na2

√
1− e2 sin i

∂R

∂Ω
(14)

dω

dt
=

√
1− e2

na2e

∂R

∂e
− cot i
na2

√
1− e2

∂R

∂i
(15)

dΩ
dt

=
1

na2
√

1− e2 sin i
∂R

∂i
(16)

dσ

dt
= − 2

na

∂R

∂a
− 1− e2

na2e

∂R

∂e
(17)

where a is the semi-major axis, e is the eccentricity, i is the inclination, ω is the argument of periapsis, Ω is
the longitude of the ascending node and σ = −Mo where Mo is the mean anomaly at epoch. The additional
parameter n =

√
µ/a3 is the mean motion.

For each of these equations, there are situations where we wish to pose them in a frame rotating with
the sun-line d̂. By definition, this frame rotates at the true anomaly rotation rate, which varies with the
distance of the asteroid with the sun. The rotational velocity vector for this rotating frame is ν̇ẑ and
ν̇ =

√
µsunA(1− E2)/d2. For example, in a rotating frame the above equations of motion become:

r̈r + 2ν̇z̃ · ṙr + ν̈z̃ · r + ν̇2z̃ · z̃ · r =
∂U

∂r
(18)

where the subscript r denotes a time derivative with respect to the rotating frame, we note that ν̈ =
−2µsunE sin ν/d3 and that

z̃ = x̂ŷ − ŷx̂ (19)

using a dyadic notation. The Lagrange Planetary equations are simply modified by subtracting the true
anomaly ν from the longitude of the ascending node, Ωr = Ω− ν, yielding the modified equation:

dΩr

dt
=

1
na2

√
1− e2 sin i

∂R

∂i
− ν̇ (20)

all else being the same.

4 Orbit Mechanics

The equations of motion stated above can be solved exactly for a number of different special cases. Some of
these cases are of interest and can help answer certain fundamental questions such as what is the maximum
orbit size before it is stripped away from the central body and what the secular evolution of an orbit subject
to SRP. In the following we present some of these exact solutions and their applications. Much of this
work has been reported elsewhere, although we bring it together for the first time and add some additional
interpretation of these issues.

4.1 Escape conditions

The simplest system to analyze is that of a non-rotating, constant acceleration acting on a spacecraft orbiting
about a point mass. This problem is integrable if motion is constrained to a plane containing the acceleration
vector, as it is a limiting case of the fixed two-center problem with one of the centers being moved to infinity
[10]. This problem was also analyzed extensively by Dankowicz [11, 12, 13, 14] using advanced methods
of dynamical systems theory. Dankowicz’s analysis considered both the unperturbed problem and various
perturbations of it. From the initial analysis of Dankowicz [11] we can extract some very useful results
for spacecraft orbit design, which are based on the ideal conservation of the angular momentum about the
constant force direction (i.e., the line of action of the solar radiation pressure).

The relevant force potential in this case is U = µ/r + gd̂ · r where d̂ is assumed to be stationary with
respect to inertial space. The resulting equations of motion are:

r̈ = − µ

r3
r + gd̂ (21)
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We can easily show that the total angular momentum projected onto the d̂ direction is conserved, or hd =
d̂ · (r× ṙ) is a constant. The form of the equations are simplified if we shift to a cylindrical frame with the
axis of the cylinder along d̂ and the radius, ρ, and polar angle, θ, measured perpendicular to this direction.
If we assign the x̂ axis to the direction of the acceleration and the ŷ and ẑ axis perpendicular to this we find
the simplified set of equations:

ẍ = −µx
r3

+ g (22)

ρ̈− ρθ̇2 = −µρ
r3

(23)

ρθ̈ + 2ρ̇θ̇ = 0 (24)

where r2 = x2 + ρ2. The conserved angular momentum is now hd = ρ2θ̇ and can be immediately inferred
from integrating Eqn. 24. Eliminating θ̇ through this parameter we find the simplified set of equations and
related force potential:

ẍ =
∂Ud

∂x
(25)

ρ̈ =
∂Ud

∂ρ
(26)

Ud =
µ

r
− 1

2
h2

d

ρ2
+ gx (27)

It is important to note that the reduced set of equations still have a Jacobi integral:

C =
1
2

(
ẋ2 + ρ̇2

)
− Ud (28)

This is directly related to the energy of the system, as if we substitute for hd = ρ2θ̇ we find the following:

C =
1
2

(
ẋ2 + ρ̇2 + ρ2θ̇2

)
− U (29)

where U = µ/r + gx is the original force perturbation and the velocity term ẋ2 + ρ̇2 + ρ2θ̇2 = V 2
I where VI

is the magnitude of the total inertial velocity.
These equations have many interesting properties, but the one we focus on is the existence of an equilib-

rium point that corresponds to a circular orbit, offset from the center of the point mass along the direction
x̂ and perpendicular to this same direction. A modified form of this orbit will also play a special role in
the more general case accounting for the motion of the asteroid about the sun. The unique aspect of this
solution is that it can lose its stability at a certain value of energy, and that this agrees well observed limits
for the escape of a spacecraft from an asteroid due to the SRP perturbation.

The equilibrium point is simple to find, solving for ∂Ud/∂x = 0 and ∂Ud/∂ρ = 0:

xeq =
g

µ
r3eq (30)

ρ4
eq =

h2
d

µ
r3eq (31)

where these two equations are still coupled through the relation r2 = x2 + ρ2. We note that the crucial
parameter is the orbit radius, r, and the ratio g/µ. Once these are specified the value of x and ρ are fixed.
We note that by definition x ≤ r and thus we find a fundamental limit on the orbit radius, r ≤

√
µ/g.

Conversely, as ρ ≤ r as well, we find a lower limit as h2
d/µ ≤ r, which implies a limit hd ≤ 1/

√
µg.

To study the stability of this equilibrium point we form the linearized equations of motion and compute
the characteristic equation. Evaluation of the system yields a simple condition for stability:

xeq ≤ 1
3
√

3

√
µ

g
(32)
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We note that the upper bound on xeq is the value at which the Jacobi integral value takes on its maximum
value for all of the relative equilibria, Cmax = −2

√
µg/

√
3. In [11] the orbit dynamics of the system were

studied when the relative equilibrium were unstable, and escape was found to be the common occurrence.
From the above analysis we see that when C < Cmax that there will be two relative equilibrium orbits, one
stable with x < x∗ and one unstable with x > x∗. When C = Cmax these two equilibrium points coincide
at the maximum value of C. This simple relationship allows us to derive a necessary condition for escape of
a spacecraft from the asteroid in this simple model, or a sufficient condition for stability. Simply put, if the
Jacobi energy of a spacecraft is less than Cmax and the spacecraft is in the interior region of the zero-velocity
surface, then it cannot escape. If its Jacobi energy is equal to or greater than Cmax, then it is possible for
it to escape. In practice we find escape to be the usual situation. Thus, given an initial value of hd, x and
ρ we have a limit for the reduced speed of the system, (ẋ2 + ρ̇2)/2 ≤ Cmax + Ud. We can make this limit
simpler and more useful by taking advantage of the special structure of this Jacobi integral, and find a limit
on the osculating semi-major axis for stability:

a ≤
√

3
4

√
µ

g
= amax (33)

This serves as a useful design parameter in constraining the maximum orbit size for mission design purposes.
Once the motion of the asteroid about the sun is modeled, by allowing the unit vector d̂ to rotate as a

function of time, the conservation of hd is destroyed and the dynamics of the system become much more
complex. Additionally, the solar gravitational effect must be taken into account as it balances the centripetal
accelerations that arise from the frame rotation. In [7] this problem is derived and studied in detail. We
will only summarize those results here. There are some exact solutions of the system in this case that
are stationary in the frame rotating and pulsating with the asteroid-sun distance, and which correspond
to periodic orbits in inertial space that follow close to the 2-body motion of the asteroid about the sun.
Analysis of these equations provides a necessary condition for a spacecraft to escape which, in the limit of
strong SRP perturbation, approaches the limit given above for the non-rotation case. Thus, this provides
further validation of the above limit and makes it clear that it is appropriate to use for varying distances
between the asteroid and sun.

4.2 Averaged Orbit Mechanics Solutions

Stating the spacecraft motion as a perturbation problem allows us to introduce averaging to the system.
This allows one to solve for the general secular motion of an orbiter under SRP, which is found to be quite
complex yet integrable, and to identify a set of “frozen orbits” that are suitable for orbiting a spacecraft in.
We also present the averaged effect of mass distribution to identify the effect of the asteroid’s shape on an
orbit.

4.2.1 SRP Perturbation Formulation and Averaging

Given that the perturbation from solar radiation pressure is usually small, it is useful to cast the problem
into a perturbation form. The perturbing potential associated with SRP is found in Eqn. 6. We introduce
the concept of averaging as this allows us to evaluate the secular effect of the perturbation on our system.
The averaged potential is defined as

R̄g =
1
2π

∫ 2π

0

RgdM (34)

= −3ag
2

e · d̂ (35)

where M is the mean anomaly and e is the eccentricity vector and has magnitude equal to the eccentricity
and points towards the orbit periapsis. The average is taken over the unperturbed 2-body motion of the
spacecraft about the asteroid, and we hold the direction d̂ fixed initially.

Stated in this form, the rates of change of the orbit elements can be computed by substituting the
averaged potential R̄g into the Lagrange Planetary equations. The simplest observation to make is that
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the semi-major axis is conserved on average, and hence the energy of the orbit is conserved on average.
The Lagrange Planetary Equations for this case can be integrated in closed form, a fact originally proven
by Mignard and Hénon [15], and worked out in detail in [6]. An alternate statement of the perturbation
equations is given by [16] and uses the angular momentum and eccentricity vectors as the nominal orbit
elements. These are not an immediately obvious choice, as this system is overdetermined in that the 6
components of these two vectors are functions of only 4 orbit elements with secular rates, e, i, ω and Ω.
Still, this formulation has a significant advantage in being able to be solved in closed form, a fact originally
realized by Richter and Keller [16].

In [16] the standard set of equations for the secular evolution of the eccentricity vector e and the nor-
malized angular momentum vector h in the presence of a non-rotating SRP force is found to be:

ė =
3g
2

√
a

µ
˜̂d · h (36)

ḣ =
3g
2

√
a

µ
˜̂d · e (37)

The normalized angular momentum vector h =
√

1− e2ĥ, and thus is normalized by the factor
√
µa, which

is constant on average.
These equations can be modified to account for the rotation of d̂. Given a frame rotational velocity

vector of ν̇ẑ we find:

ėr + ν̇˜̂z · e =
3g
2

√
a

µ
˜̂d · h (38)

ḣr + ν̇˜̂z · h =
3g
2

√
a

µ
˜̂d · e (39)

where the r subscript indicates time derivative with respect to a rotating frame and will be dropped from
this point on. We can write the secular equations as a linear system:

[
ė
ḣ

]
=

3g
2

√
a

µ

 − 2ν̇
3g

√
µ
a z̃ ˜̂d

˜̂d − 2ν̇
3g

√
µ
a z̃

[
e
h

]
(40)

While this is a linear differential equation, it is not time-invariant as both ν̇ and g vary in time. It is
important to note that the ratio ν̇/g is time invariant, as both vary inversely with d2:

2ν̇
3g

√
µ

a
=

2
√
µSunA(1− E2)

3β

√
µ

a
(41)

This quantity is a constant for a given asteroid, spacecraft and spacecraft orbit, so we define [15]:

tanΛ =
3β
2

√
a

µµSunA(1− E2)
(42)

We note that as the SRP perturbation becomes strong, Λ → π/2, and that as it becomes weak Λ → 0.
Despite the time invariance of the ratio, the multiplying factor of the matrix is still time varying. We can

eliminate this by changing our independent parameter from time to the true anomaly of the asteroid about
the sun, as ė = de

dν ν̇ = e′ν̇. Then the factor in front of the matrix becomes our newly defined SRP strength
parameter, leading to the time-invariant linear differential equations:[

e′

h′

]
=

[
−z̃ tanΛ˜̂d

tanΛ˜̂d −z̃

] [
e
h

]
(43)

where we note that the direction d̂ is now fixed in the rotating coordinate frame. We find it convenient to
redefine the independent variable from true anomaly ν to a new angle ψ = ν/ cos Λ.
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The solution matrix can be reduced to elementary functions, yielding the explicit solution:[
e(ψ)
h(ψ)

]
= Φr(ψ − ψo)

[
eo

ho

]
(44)

Φ(ψ) = cos(ψ)I6×6 + (1− cos(ψ)) cos2 Λẑẑ + sin2 Λd̂d̂ − sinΛ cos Λ
(
ẑd̂ + d̂ẑ

)
− sinΛ cos Λ

(
ẑd̂ + d̂ẑ

)
cos2 Λẑẑ + sin2 Λd̂d̂


+sin (ψ)

[
− cos Λ˜̂z sinΛ˜̂d

sinΛ˜̂d − cos Λ˜̂z

]
(45)

This combines the explicit solution detailed in [15, 6] in classical orbit elements and the solution in [16] that
only provides a solution in the non-rotating case. We note that the solutions are periodic in ψ, repeating
every true anomaly 2π cos Λ. Thus, over one heliocentric orbit the solution will advance 1/ cos Λ times. As
the perturbation grows large, and Λ approaches π/2, the solution will repeat many times. Conversely, as
the perturbation grows small the solution will repeat only once every heliocentric orbit. Also, we note that
the state transition matrix is ortho-normal and defines a rotation matrix in 6-dimensional space.

We can discuss the existence of frozen orbits for this system. To find them we search for solutions to the
algebraic equations:

−˜̂z · e + tanΛ˜̂d · h = 0 (46)

−˜̂z · h + tanΛ˜̂d · e = 0 (47)

We note that e and h are orthogonal and assume that both are non-zero in magnitude initially. A detailed
study of this matrix and its null spaces shows that there are two classes of solutions. First, if we choose e
parallel to d̂ and h parallel to ẑ the second equation is identically solved and the first equation reduces to a
vector equation parallel to the unit vector t̂. It turns out that the direction in which these vectors point is
important, thus we introduce the test solutions e = e(d̂ · ê)d̂ and h = h(ẑ · ĥ)ẑ. Resolving the first equation
along the direction t̂ then yields:

e(d̂ · ê) + tanΛh(ẑ · ĥ) = 0 (48)

We note again that h =
√

1− e2, which simplifies the expression to
e√

1− e2
= −(d̂ · ê)(ẑ · ĥ) tan Λ (49)

Thus there are two conditions for a frozen orbit to exist in this configuration:

−(d̂ · ê)(ẑ · ĥ) = 1 (50)
e = sinΛ (51)

This class of frozen orbit were discussed in [6] and called Ecliptic frozen orbits. The orbit lies in the same
plane as the asteroid’s heliocentric orbit. If the orbit normal is aligned with the heliocentric orbit, periapsis
must point towards the sun, otherwise if the orbit normal is anti-parallel to the heliocentric orbit normal,
periapsis must point away from the sun. As the perturbation strength grows the orbit approaches rectilinear,
while if the perturbation strength vanishes the orbit approaches circular. Due to this, these orbits are not
preferred for strongly perturbed situations, as the periapsis has a low altitude. Also, these orbits cross
through the asteroid’s shadow.

A second frozen orbit solution, called Solar Plane-of-Sky frozen orbits in [6], also exist and are more
useful for highly perturbed systems. Now, choose e parallel to ẑ and h parallel to d̂ so the Equation 46 is
identically solved and Equation 47 reduces to a vector equation again parallel to the unit vector t̂. Again
the direction in which these vectors point is important, thus we introduce the test solutions e = e(ẑ · ê)ẑ
and h = h(d̂ · ĥ)d̂. Resolving Equation 47 along the direction t̂ then yields:

etanΛ(ẑ · ê) + h(d̂ · ĥ) = 0 (52)
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which simplifies again to

e√
1− e2

= −(ẑ · ê)(d̂ · ĥ) cotΛ (53)

The two conditions for a frozen orbit to exist in this configuration are:

−(ẑ · ê)(d̂ · ĥ) = 1 (54)
e = cos Λ (55)

The orbit lies in the plane perpendicular to the sun-line, commonly referred to as the terminator plane, a
dawn-dusk orbit or a 3o’clock/9o’clock orbit. If the orbit normal points towards the sun, periapsis must
point above the orbit plane along the positive ẑ axis, otherwise if the orbit normal points away from the
sun, periapsis must point below the orbit plane. As the perturbation strength grows the orbit becomes more
circular, while if the perturbation strength vanishes the orbit approaches rectilinear. Due to this, these orbits
are preferred for strongly perturbed situations. Also, these orbits avoid the asteroid’s shadow. Finally, these
orbits are the natural continuation of the equilibrium orbits in the non-rotation case.

4.3 Mass Distribution Perturbation and Averaging

Now we will review the classical result for the averaged effect of a second degree and order gravity field. In
order to relate this analysis to the SRP frame requires that the oblateness effect be specified in a general
orbit frame, and not one chosen so that the inclination is measured from the symmetry axis. When a general
frame for the oblateness perturbation not aligned with the symmetry axis is specified the inclination can
also suffer a secular perturbation. To see this we state the oblateness perturbation function in a general
vector expression. If the maximum moment of inertia axis of the mass distribution is stipulated as p̂ and
the potential is averaged, we find:

R̄20 =
µC20

2a3(1− e2)3/2

[
5− 3

(
ĥ · p̂

)2
]

(56)

where ĥ is the unit vector along the orbit normal.
Now we wish to specify this force potential in our frame of choice, where we assume that the rotation

pole of the asteroid, p̂, is specified by its obliquity angle β and its right ascension α and ĥ = sin i sinΩx̂ −
sin i cos Ωŷ + cos iẑ, so the general force potential in this frame becomes:

R̄20 =
µC20

2a3(1− e2)3/2

[
5− 3 (sinβ sin i cos(α− Ω) + cosβ cos i)2

]
(57)

Analysis of this potential shows that R̄20 = constant, implying that ĥ · p̂ is constant which means that
the orbit plane inclination relative to the rotation pole p̂ is a fixed quantity. Also derivable from this form
of the equations is that the precession rate about the orbit pole is a constant equal to 3nC20/2p2ĥ · p̂ and
that the argument of periapsis has a rate of advance equal to 3nC20/4p2

[
1− 5(ĥ · p̂)2

]
.

5 Stability of the Frozen Orbit Solutions

5.1 Stability of the Frozen Orbit

To study the stability of the frozen orbits defined above may seem to be a redundant exercise, given that
the general solution of motion in these systems has been defined and is oscillatory. However, it is important
to understand how these oscillations manifest themselves, especially when we consider the effect of joint
perturbations between the SRP and mass distribution effects. For this stability analysis it is easier to work
with the orbital elements themselves, as they do not have the non-linear constraints on magnitudes, etc.,
that the angular momentum and eccentricity vectors inherit.
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We consider the two frozen orbit solutions in turn. In both cases we use the averaged force potential
given in the form:

R̄g = −3aeg
2

d̂ · ê (58)

ê = [cosω cos Ω− sinω sinΩ cos i] x̂
+ [cosω sinΩ + sinω cos Ω cos i] ŷ + sinω sin iẑ (59)

and the vector ê is stated in our reference frame of choice where we align d̂ = x̂. In the current discussion
we do not shift to true anomaly as independent variable, as this will complicate the inclusion of the asteroid
oblateness perturbation later.

As a first step we restate the Lagrange equations for this perturbing force function, noting that ȧ = 0:

de

dt
= − 3g

2na

√
1− e2 [sinω cos Ω + cosω sinΩ cos i] (60)

di

dt
= − 3g

2na
e√

1− e2
cosω sinΩ sin i (61)

dω

dt
= − 3g

2na
1

e
√

1− e2

[
(1− e2) cosω cos Ω− sinω sinΩ cos i

]
(62)

dΩ
dt

= − 3g
2na

e√
1− e2

sinω sinΩ− ν̇ (63)

dσ

dt
=

3g
2na

1 + e2

e
[cosω cos Ω− sinω sinΩ cos i] (64)

where we note that this is stated in a rotating reference frame, captured by including the angular rate, ν̇, of
the asteroid about the sun.

Due to its applicability, we only consider the stability of the terminator plane frozen orbit solution:
i = π/2, sinΩ sinω = −1, and e = cos Λ. Linearizing the Lagrange equations about this solution in terms of
variables e, i, ω, and Ω yields:

dδe

dt
= − 3g

2na
sinΛδΩ (65)

dδi

dt
= − 3g

2na
cot Λδω (66)

dδω

dt
=

3g
2na

1
sinΛ cos Λ

δi (67)

dδΩ
dt

=
3g
2na

1
sin3 Λ

δe (68)

Thus, the system splits into two uncoupled harmonic oscillators. If we express these in terms of eccentricity
and inclination with true anomaly as the independent parameter we find:

δe′′ = − 1
cos2 Λ

δe (69)

δi′′ = − 1
cos2 Λ

δi (70)

with the oscillation period being 2π cos Λ, which is to be expected given the general solution found for motion
in this system.

5.2 Perturbation from the Oblateness

Now we want to consider the effect of central body oblateness on these frozen orbits. A reasonable assumption
is that if the orbit semi-major axis is large, the effect of the asteroid shape may be small and negligible.
When the asteroid is small, however, the maximum semi-major axis becomes small and must lie close to the
body, raising the possibility for a destabilizing interaction between the SRP and oblateness perturbations.
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We will evaluate this interaction by assuming that the spacecraft lies in a frozen orbit and then include the
secular rates from oblateness as a constant perturbation in the Lagrange equations. The resulting system
can be solved to find the maximum oscillation amplitude in the orbit element of interest, in this case the
eccentricity and inclination.

Our main interest is in the terminator frozen orbits, due to their favorable properties. Thus we will only
study the effect of oblateness on this class of frozen orbit. To do so we must evaluate the rate of change of
each of the orbit elements due to this perturbation at the frozen orbit conditions, stated previously. Doing
so we find ȧ = ė = 0 and:

di

dt
=

3
4
n(Ia − It)
a2 sin4 Λ

sin2 β sin 2α (71)

dω

dt
=

3
4
n(Ia − It)
a2 sin4 Λ

[
5− 3 sin2 β sin2 α

]
(72)

dΩ
dt

= (±)Ω
3
4
n(Ia − It)
a2 sin4 Λ

sin 2β sinα (73)

(±)Ω = sinΩ (74)

We can insert these nominally constant terms on the right-hand side of Eqns. 65 - 68 to form a set of
non-homogenous equations. Given the simple form of the linearized solutions, the general solution for these
terms can be found assuming an initial orbit evaluated at the frozen orbit conditions.[

δi
δω

]
=

3
4
n(Ia − It)
a2 sin4 Λ

1
ν̇

(75)
cos Λ

{
sin2 β sin2 α [sin(ν/ cos Λ) + 3 cos Λ(1− cos(ν/ cos Λ))]

−5 cos Λ(1− cos(ν/ cos Λ))}

sin2 β sin2 α [(1− cos(ν/ cos Λ)) + 3 cos Λ sin(ν/ cos Λ)]
+5 cos Λ sin(ν/ cos Λ)


and [

δe
δΩ

]
= (±)Ω

3
4
n(Ia − It)
a2 sin4 Λ

sin 2β sinα
ν̇[

− cos2 Λ(1− cos(ν/ cos Λ))
cos Λ sin(ν/ cos Λ)

]
(76)

These results can be used to evaluate the fluctuation amplitude in these orbit elements from their nominal
values, especially in eccentricity, in order to determine if the variation is acceptable. If the amplitude becomes
too large the linearization assumption we have made will be violated, and a full non-linear evaluation should
be made. We note that the amplitude of oscillation will change as the asteroid moves about the sun. The
variation in eccentricity from its nominal value, cos Λ, is bounded by:

|δe| <
3
2
n(Ia − It)

a2

cos2 Λ
sin4 Λ

sin 2β sinα√
µsunP

d2 (77)

The deviation in e will decrease with an increasing semi-major axis, however there also exists an upper
bound on a for the spacecraft to remain trapped. To determine the minimum deviation in eccentricity due
to the asteroid’s oblateness, substitute the value amax =

√
3µ/g/4 into the above to find:

|δe|min =
(

16
3

)2 (Ia − It)
µ

cos Λ
sin3 Λ

sin 2β sinα
β

d2
(78)

where for this formula the assumption is that the orbit is adjusted to always be at the maximum distance.
Thus, the second formula has the smallest perturbation at aphelion while Eqn. 77, for a fixed semi-major
axis, has the maximum perturbation at aphelion.
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5.3 Perturbation from Ellipticity

For the ellipticity effect, we rely on the numerical analysis given in [5] where it is empirically determined
that orbits outside of 1.5 resonance radii are not subject to destabiliziation due to the orbit ellipticity. The
resonance radius is the orbit semi-major axis where the orbit period equals the rotation period and equals(
µT 2/(4π2)

)1/3. Thus, for rapidly rotating bodies one can in principle orbit more closely, while for slowly
rotating bodies one must in general maintain a greater distance. The 1.5 resonance radius limit we state does
not make any assumption about the orientation of the rotation pole, and is only sharp if the orbit inclination
is less than 45 degrees in general. For high inclination orbits, especially for retrograde orbits with inclinations
greater than 135 degrees, it becomes possible to orbit much more closely to the body without suffering any
effects from the ellipticity. In these situations, however, the oblateness becomes a major perturbation. Thus,
the orbit limit to guard against ellipticity effects can be stated as:

a >
3
2

(
T 2µ

4π2

)1/3

(79)

where T is the rotation period of the asteroid. In general, once the orbit pole of the asteroid is known it is
possible to immediately map out when the terminator orbits will have to take special care relative to their
interaction with the asteroid gravity field distribution.

5.4 Destabiliziation Mechanism

The mechanism for destabilization can include two different effects. First is the the oblateness alone, which
may induce large oscillations in the frozen orbit elements which then excite the longer-term oscillations in
the orbit elements which can lead to growth in the eccentricity. This form is not as serious, as it generally
takes longer for the instability to become pronounced, and even then it follows a well defined solution. More
difficult to deal with is the joint action of the oblateness and the ellipticity. Here, variations in the eccentricity
can cause the orbit periapsis to drop, given that a is constant on average. If the amplitude becomes large
enough, and the alignment of the orbit pole with the rotation pole is direct, resonant interactions between the
spacecraft orbit and the asteroid rotation rate can cause changes in the orbit semi-major axis, eccentricity,
and inclination. Variations in any of these can become reinforced, causing larger oscillations which send
periapsis closer to the asteroid which further destabilizes the motion. When designing an orbit, this is the
main mechanism to avoid, captured by the 1.5 resonance radius condition above, as this can destabilize an
orbit rapidly.

6 Example Computations

In the following we provide some example computations for orbit mechanics of a spacecraft about two
different asteroids, one relatively small and the other a bit larger. The spacecraft model we choose has a
mass to area ratio of 33 kg/m2, corresponding to a projected area (including solar arrays) of 12 m2 and a
mass of ∼ 400 kg. For simplicity we chose a reflectance ρ = 0. We modeled the motion of the spacecraft
about two different asteroids modeled after NEA candidates for a mission. We call these Asteroid I and
Asteroid II.

Asteroid I has semi-major axes of 214 × 100 × 100 meters, an assumed density of 2 g/cm3, an assumed
rotation period of 12 hours, and an assumed obliquity of 45◦. It’s heliocentric orbit has a perihelion of 1.03
AU and an aphelion of 2.7 AU.

Asteroid II is larger and has semi-major axes of 635×317×317 meters, an assumed density of 2 g/cm3, an
assumed rotation period of 19 hours, and an assumed obliquity of 45◦. It’s heliocentric orbit has a perihelion
of 1.1 AU and an aphelion of 1.45 AU.
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Figure 1: Examples of an escaping orbit due to solar radiation pressure perturbations for Asteroid I. The
left image is the trajectory as viewed from the sun, the right is as viewed in the terminator plane with the
sun to the left. The spacecraft escapes when the asteroid approaches perihelion and amax is violated.

Figure 2: Long-term stable orbits about Asteroid I (left) and Asteroid II (right). These orbits are viewed
from the Sun to the asteroid and both are propagated for over a year, through the asteroid perihelion passage.

7 Conclusions

Spacecraft orbiting about small solar system bodies such as asteroids and comets must contend with signif-
icant perturbations from solar radiation pressure, the body mass distribution, and solar gravitation. Orbit
mechanics in the presence of each of these perturbations can be analyzed in detail, and in some special cases
joint perturbation effects can be added. This paper states the known orbit mechanics results for motion in
the presence of these perturbations and analyzes the effect of joint perturbations on the orbital motion of a
spacecraft.
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Figure 3: Two orbits about Asteroid II, one chosen in the terminator plane according to the nominal frozen
orbit design and the other started 45 degrees out of the terminator plane in a circular orbit. The non-nominal
design impacts on the asteroid in a little over 10 days.

Figure 4: Example orbits about Asteroid II. Left, initial orbit radius of 2 km, at a distance where resonance
effects from the mass distribution are important. Right, initial orbit radius of 3 km, outside the reach of the
mass distribution effects.
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