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I. INTRODUCTION 

This article, on electron-molecule collisions, is dedicated to the legacy of my good friend and sometime collaborator, 
Aaron Temkin on his retirement from the NASA-Goddard Space Flight Center after many years of work at  the highest 
intellectual level in the theoretical treatment of electron-atom and electron-molecule scattering. Aaron's contributions 
to the manner in which we think about electron-molecule collisions is clear to all of us who have worked in this field. 
I doubt that the great progress that has occurred in the computational treatment of such complex collision problems 
could have happened without these contributions. For a brief historical account, see the discussion of Ternkin's 
contribution to electron-molecule scattering in the first article of this volume by Dr. A. K. Bhatia. 

In this article, I will concentrate on the application of the so called, non-adiabatic R-matrix theory, to vibrational 
excitation and dissociative attachment, although I will also present some results applying the Linear Algebraic and 
Kohn-Variational methods to vibrational excitation. As a starting point for almost all computationally effective 
approaches to electron-molecule collisions, is the fixed nuclei approximation. That is, one recognizes, just as one does 
with molecular bound states, that there is a separation of electronic(fast) and nuclear(s1ow) degrees of freedom. This 
separation makes it possible to "freeze" the nuclei in space, calculate the collision parameters for the frozen molecule 
and then, somehow to add back the vibrations and rotations. The manner in which this is done, depends on the 
details of the collision problem. It is the work of Aaron and a number of other researchers that has provided the 
guidance necessary to resolve these issues. 

11. THE FIXED NUCLEI PROBLEM 

A. Geometric Considerations 

Let us first consider the relationship between a coordinate system whose origin is centered at  the center of mass of a 
molecule and the laboratory frame of reference. The laboratory frame of reference is illustrated in Figure 1, where the 
z' axis is defined to lie along the incident electron beam direction and the scattered beam is in the direction (O', 4') 
relative to this direction. The molecular frame of reference, which is rigidly attached to the molecule, is illustrated 
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FIG. 1: Laboratory frame for electron molecule scattering. 

in Figure 2 for the case of a diatomic molecule. The center of gravity, G, is chosen as the origin of coordinates, with 
the z-axis lying along the internuclear axis, R, and the two nuclei labelled as A and B, R = RA + RB. For a general 

i th electron 

FIG. 2: hIolecular frame for electron diatomic molecule collisions. 

polyatomic molecule, one would choose the principle axis of inertia to replace the z-axis of the diatomic molecule. 
The molecular frame is oriented in a direction defined by the Euler angles a,  P,  y,  discussed, for example, in [33], 
which takes the laboratory frame of reference into the molecular frame of reference. Almost all electron-molecule 
scattering calculations are carried out in the molecular reference frame, where it is more natural to treat short- 
range effects such as exchange and correlation in non-vibrating, non-rotating molecules. Physical quantities, such as 
scattering amplitudes and cross sections, are extracted from the asymptotic form of the scattering wavefunction, which 
is typically written in a spherical coordinate system attached to the nlolecular frame. Consequently, it is necessary 
to transform the asymtotic form of the scattering wavefunction from the molecular to the laboratory reference frame. 
All that is required to perform this transormation is, 

which relates spherical harmonics in the two frames of reference, where D:n,, ( a ,  B, y) are Wigner rotation matrices, 
defined in [33] and a ,  /3 and y are Euler angles which transform the laboratory frame of reference into the molecular 
frame of reference. 

B. Dynamics: Fixed Nuclei R-Matrix Treatment 

The collision process for an electron scattering from an N electron target molecule, in the fixed nuclei approximation 
(nuclear kinetic energy= O ) ,  is described by the time-independent Schrijdinger equation, 

where HN+i is the non-relativistic Hamiltonian defined in atomic units in the molecular frame where r designates 
a given irreducible representation of the molecule. In light, linear molecules, r is the projection of the total angular 
momentum along the internuclear axis. For non-linear molecules, r, labels the irreducible representations of the 
molecular point group. In most of what follows, the presentation will be for linear molecules. This simplifies the 
algebra but the other cases may also be treated if one admits a more cumbersome notation. 

The solutions of this equation depend parametrically on R. There have been a number of successful approaches 
developed over the past few decades to calculating accurate, ab-initio, wavefunctions to eq(2). Early researchers used 
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single-center expansions ([I ,  21) and solved the resultant set of coupled, integro-differential equations using Numerov 
or related numerical integration procedures. Others turned to integral equation formulations. However, the most 
robust methods were based on multi-center expansions and variational methods to reduce the problem to one of linear 
algebra. Techniques such as the R-matrix ([7-91) and Kohn Variational method ([3, 41) expand the wavefunction in 
a computationally convenient basis set, substitute the expansion into the Schrodinger equation, and use projection 
techniques to obtain algebraic equations for the expansion coefficients. In the R-matrix method, which we describe 
in detail below, the major computational effort is spent solving an eigenvalue problem. In the Kohn Variational 
method, one is faced with solving a set of real or complex linear algebraic equations. The solution of eq(2) is typically 
expanded in a set of basis functions designed to explicitly represent channels that are energetically accessible(open 
channels/P-space) and those that are not (closed channels/Q-space). The P-space components asymptotically contain 
the scattering information while the Q-space components are needed to describe certain exchange effects, polarization 
and electron correlation. Often the physical closed states are replaced by pseudostates, which are better adapted 
to describing these effects using a much smaller set of basis functions. The common characteristic of Q-space basis 
functions is that they exponentially decay far from the interaction region. It has also become common to include 
in the expansion pseudostates designed to represent high lying, open channels in the breakup region of the target 
molecule. These non-physical states are needed to represent, in some fashion, the loss of flux into the continuum. We 
typically define the P-space basis functions as, 

and the Q-space wavefunctions as, X: (X~+l ) .  Note, that the P-space basis states are constructed as an antisym- 
metrized product of a set of n physical target states and m one-electron function representing the scattering electron. 
The channel functions are here taken to be eigeizfunctions of total spin S of the ( N  + 1) electron system and its 
projection, hfs, on the z-axis. The number, h1, of Q-space wavefunctions is, in principle, arbitrary, but in practice 
is restricted to keep the size of the overall expansion manageable. At a minimum, the Q-space states must include 
enough functions to keep the P and Q space parts of the overall expansion orthogonal. In the R-matrix approach, the 
one-electron functions may be regular solutions to some model eigenvalue problem, designed to improve convergence of 
the expansion, but simpler forms may also be employed. The P-space wavefunctions are orthonormal and that requires 
that certain orthogonality conditions be imposed on the u:,, one-electron basis. In the Kohn Variational method, the 
one-electron functions are chosen as unknown linear combinations of asymptotically regular and irregular solutions 
of either the non-interacting problem or some model problem. Again, there are certain orthogonality conditions that 
need to be imposed to make the expansion numerically tractable. The linear combination is determined using the 
Kohn Variational principle. In the R-matrix approach, first developed in [7, 81, the major computational step is the 
solution of the composite ( N  + 1) electron eigenvalue problem, 

where we have dropped the coordinate labels for notational simplicity. Note, that all the electron coordinates are 
restricted to lie inside a sphere of radius r< ao. Inside the sphere, the composite system is subject to the full dynamical 
range of effects such as exchange, and short range correlation. Outside the sphere, pure electrostatic effects dominate 
the interaction of the target and the scattered electron and antisymmetry of target and scattered electron may be 
ignored. The Bloch operator, L, in eq(5) is defined as, 

where b is an arbitrary, real constant. One can demonstrate that HN+i + LN+i is Hermitian in a basis of square 
integrable functions satisfying arbitrary boundary conditions a t  r = ao. The major computational advantage of the 
R-matrix approach is its similarity to standard bound state eigenvalue problems. Inside r = ao, the wavefunction 
may be expanded in a convenient set of basis functions and the problem reduced to the diagonalization of a matrix. 
The one and two electron integrals are defined inside r = a0 and while most of these rnatrix elements have a negligible 
contribution from regions outside r = ao, others must be treated more carefully. For those matrix elements involving 
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orbitals that have an appreciable contribution from regions r > ao, the procedure is to compute the integrals over all 
of space and subtract the part for r 2 ao. Typically, the subtraction may be done using multipolar expansions and is 
inexpensive as long as the number of integrals is not too large. In the modern R-matrix codes, all of the orbitals are 
expanded in a set of multicenter Gaussian type orbitals. The R-matrix orbitals, which must have significant amplitude 
a t  r = ao, contain diffuse Gaussians placed a t  the center of gravity of the molecule for all of the asymptotically 
important partial waves. For the details see [27, 281. We now employ the expansion of eq(5b) to solve the scattering 
problem a t  energy E(R)  in the internal region. 

In order to extract the scattering information from this equation, we project Qr onto the channel functions, 
@ : ( X N ;  ~ N + ~ u ~ + ~ )  and then set rlvtl = ao. This produces the following set of coupled, algebraic equations. 

In the above equation the radial scattering functions are defined as, 

and the R-matrix matrix elements as, 

The only remaining task, is to solve these equations and extract the scattering information. To accomplish that 
requires us to consider the form of the scattering equations in the long-range region. Since the scattered and target 
electrons are now separated in space, the relevant equations are, 

kz = 2(E - E,) 

The simplest approach to dealing with these equations is to use the R-matrix method in the external region(s). 
Consider the region between the two annuli. r = a0 and r = bo. Lets us assume we have already calculated the 
R-matrix, R', from r = 0 to r = ao. Using the continuity of the functions and their first derivatives on the interval 
(ao, bo). joining the regions, it is possible to  derive an equation for the R-matrix, R1+l, from r = 0 to r = bo. This 
approach, known as the R-matrix propagation method, has a long history in heavy particle collisions [29, 321 and 
was adapted to electron-atom and electron-molecule scattering by a number of authors [30, 311. I only quote the 
fundamental equation, 

where the ri:f are the sub-region R-matrices relating the adjacent boundaries, r = a0 and r = bo. Once we have 
propagated the R-matrix into the far asymptotic region, it can be matched to known analytic forms. At these 
distances the equations have two linearly independent solutions which may be obtained by a variety of methods; 
inward numerical integration, inverse power series expansions, analytic techniques or combinations of all of these, 
depending on the distance. Which linearly independent solutions are used depends on what boundary conditions are 
imposed on the solution in the far asymptotic region. The easiest ones to deal with impose the conditions that, 
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Substituting this into eq(8), rearranging terms, leads to an equation for unknown Kc,d. Other asymptotic forms may 
easily obtained using the standard relations, 

sr = [I - iKr]  [I + iKr]  (14a) 

= sr-1 (14b) 

In order to obtain the scattering amplitude, it is necessary to  express the asymptotic solution as a linear combination 
of an incident plane wave in channel c plus an outgoing spherical wave in all the open channels, in the laboratory 
coordinate system. 

,p - QIK + ,pxatt 
C - C 

q i n c  - (15a) 

@ ~ ( X N ) X $ ~ ,  (aA'+l) exp(ik~zh+l)  = rL+1- (15'3) 

q s c a t t  exp(ikdrh+,) 
T X + ~ + W  x @d(x~)x;~~(~~+~)fdc(Oh+i~ &+I) , 

d rh+1 

The remaining task is to determine the linear combination of molecular frame solutions, needed to reproduce the 
incoming laboratory frame plane wave of eq(15b). To accomplish this we write, 

Inserting eq(l6c) into eq(l6b) and then substituting the result into eq(l6a), results in an asymptotic expression for 
Q, expressed in the molecular reference frame. By choosing, 

4: = i ~ ~ / ~ k ; ~ / ~ i ~ ~ ( 2 e ~  + 1); (SciAfScf ~ , S ' A ~ ~ ) D $ ~ , ~ ;  (a ,  3,)) .  (17) 

and using eq(1) it is possible to demonstrate that we indeed produce the required incident wave in the laboratory 
reference frame. To my knowledge, this was first demonstrated in a slightly simpler form in the paper of Temkin and 
Vasavada[5]. The scattering amplitude may immediately be extracted as, 

In the fixed nuclei approximation, the scattering amplitude depends parametrically on the nuclear coordinates. In 
keeping with the philosophy of the Born-Oppenheimer approximation, transitions between electronic, vibrational and 
rotational states of the molecule may be obtained from these amplitudes by simply multiplying by the appropriate 
ro-vibrational wavefunctions of the target and integrating over the nuclear degrees of freedom. This approach, the 
so-called adiabatic-nuclei approximation, was first discussed in [34-361, and is valid provided the collision time is 
short compared with the times for vibration and/or rotation of the neutral molecule. Hence it can be applied in non- 
resonant regions or a t  electron collision energies which are not close to threshold. In the case of diatomic molecules 
in a lC  state the scattering amplitude for a transition between electronic, vibrational and rotational states defined 
by the quantum numbers cuejemj, and dudjdmj, is given by 

where fdc(O1, 4') is defined in 18. In this approximation both the rotational and vibrational degress of freedom are 
assumed to follow the adiabatic-nuclei prescription. In many cases, the prescription is not valid for the vibrational 
degrees of freedom but is an excellent approximation for the slower rotations. A hybrid theory was developed in [6, 211 
to account for such a situation, which occurs frequently in the vibrational excitation of molecules in the presence of 
electronic resonances. In this approach the electronic and vibrational degrees of freedom are explzcitly treated using a 
coupled states expansion. The rotational degrees of freedom are treated as in eq. (19). An alternative approach, the 
non-adiabatic R-matrix method, which is also applicable to dissociative attachment, is described in the next section. 
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FIG. 3: Partitioning of configuration space in non-adiabatic R-matrix theory. 
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111. NON-ADIABATIC R-MATRIX THEORY 
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The adiabatic-nuclei approximation breaks down in the neighbourhood of narrow resonances or close to thresholds. 
This occurs because the colliding electron spends an appreciable time in the neighbourhood of the molecule allowing 
it to transfer energy to the nuclear motion with high probability. An interesting debate arose as to whether it 
was necessary to explicitly couple electronic and nuclear motion, as in a vibrational close coupling method, under 
these circumstances or whether a simpler conceptual and computational approach would suffice. There were formal 
theoretical arguments([l4-17, 201) as well as semi-empirical methods ([18]) based on the theoretical arguments that 
suggested this might indeed be the case, but no fully ab-initio, computational approach existed before 1979-1980. 
In looking back on these early papers I am quite impressed a t  the insight and intuition of the Manchester group. 
Basically, they had the physics under control. It was left to others to develop more quantitative approaches ([37, 381) 
and show how first principles calculations verify these early theoretical developments. 

We now consider the time-independent Schrodinger equation for a diatomic molecule, 

(HN+I + TR)QXN+I, R)  = EQ(XN+I,  R) ,  (20) 

I 
I 

where we explicitly include the nuclear kinetic energy operator, 

and p is the reduced mass of the two nuclei. We will assume that the molecule does not rotate appreciably during the 
collision. In Figure 3 we illustrate the partitioning of configuration space adopted in non-adiabatic R-matrix theory. 
The internal region is taken to be a rectangle defined by 0 < r < a0 and Ai 5 R 5 A. where ao is defined in the 
same way as in the fixed-nuclei theory given in Section 11, A, is chosen to exclude the nuclear Coulomb repulsion 
singularity at  R = 0, where the wave function describing the nuclear motion is negligible, and A. is chosen so that 
the target vibrational states of interest in the calculation have negligible amplitude for R > Ao. For r > a0 the 
molecule separates into an electron plus residual molecule which may be vibrationally and/or electronically excited. 
For R > A. the molecule separates into an atom plus an atomic negative ion (dissociative attachment) or into two 
free atoms plus the electron (three body breakup). In the internal region, Schrodinger equation, takes the form, 

where the Bloch operators LN+1 and LR are introduced so that HN+1 + TR + LN+1 + LR is hermitian in the basis 
of quadratically integrable functions defined over the internal region in Figure 3 and satisfying arbitrary boundary 
conditions on the boundary of this region. We have already defined LN+1 by eq. (6) such that H N + ~  + LN+1 is 
hermitian for fixed internuclear separation R. The Bloch operator LR, which is defined by 
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where Bo and Bi are arbitrary constants, is such that TR + LR is hermitian over the range Ai < R 5 Ao. It follows 
that HN+I + TR + L N + ~  + LR is hermitian as required. We now expand the total wavefunction as, 

The Q[ in this equation are the fixed-nuclei R-matrix electronic basis functions defined by eq. (5b) which are solved 
for a mesh of fixed internuclear values of R spanning the range Ai < R < Ao, and the OL(R) are functions representing 
the nuclear motion. Substituting eq.(24) into eq.(22), mutiplying from the left with Q;, and integrating over all the 
electronic coordinates, produces the following equation for 0:, if we ignore the derivative of the R-matrix  electronic 
wavefunction with respect to  the internuclear coordinates. 

The round brackets are used to denote integrations over electronic coordinates only. The two summations are re- 
spectively over 1) the electronic/vibrational degrees of freedom of the neutral molecule and 2) the electronically 
bound/dissociative degress of freedom of the negative ion. Specifically excluded from the sum are the three body 
states involving a true unbound outgoing electron and two dissociating nuclei, although one could include pseudostates 
to represent their effect just as is done in electronic breakup. This is the essence of the Born-Oppenheimer approxi- 
mation and it is here applied to the internal R-matrix states of the compound (N + 1) particle system. The physical 
argument is, in the internal region, even an asymptotically slow moving electron is moving much faster than the nuclei 
can vibrate or rotate due to the internal electromagnetic forces experienced at  small r .  Mathematically, we need to 
examine the adiabatic potential curves for any avoided crossings. If such crossings were present, it would invalidate the 
argument and non Born-Oppenheimer correction terms would have to be considered to obtain quantitative agreement. 
The formal solution for Qr may be written as, 

The final step is to project this equation onto the asymptotic channel functions, 

Gk(R I R') = ( R I  [TR+ L n + E k ( R )  - E ] - I  I R') (27g) 

The R matrices are defined here as quadratures over the nuclear Green's operator associated with each electronic 
R-matrix state. In practice, they may be computed as solutions to an inhomogeneous partial differential equation 
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plus a qudrature or by using the spectral expansion of the Green's operator. The most widely used approach is to 
project the nuclear Hamiltonian on to a finite basis set of Gaussians or polynomials, diagonalize the resultant matrix 
and use the approximate eigenvalues and eigenvectors to spectrally resolve the Green's operator. Using a spectral 
expansion of the Green's operator, 

the R-matrices may be rewitten as, 

1 
R c ~ . d u ,  = - x (xv.(R) I uc,i(ao. R) 1 ok,q(R)) [ti,, - E ] - ~ ( B I , ~ ( R ' )  I ur,x(ao, R') I X.,(R')) (29a) 

k , q  

Note, that there is a very interesting interpretation of these equations if the variation of the electronic factors are 
slow and can be removed from the integration. Then, the numerators would involve Franck-Condon factors between 
vibrational states of the neutral and R-matrix states, while the denominators have zeros at  the vibrational R-matrix 
eigenvalues. Thus, one might expect to see structure in the neighborhood of these zeros with an intensity dependent 
on the Franck-Condon factors. This is precisely what is seen in the experiments and is fundamental to the success of 
the Boomerang model. 

The additional work required to handle the effects of nuclear motion in this non-adiabatic R-matrix method, are 
minimal. In particular, there is no explicit coupling of the electronic and vibrational degrees of freedom as happens 
in a vibrational close coupling technique. Perhaps more importantly, the essential readjustment of the nuclei to the 
environment of a long lived molecular negative ion, is built in to the R-matrix levels. There are other ab-initio 
approaches ([16, 171) based on the use of Feshbach projection operator techniques, that share this important feature 
and also invoke the Born-Oppenheimer approximation, which have also been quite effective in treating vibrational 
resonances and dissociative attachment. 

Once the R-matrices are computed on the surfaces on the internal region, they may be propagated outward to very 
large distances using a simple generalization of the methods used in the fixed nuclei case. The major difference is the 
need to include any additional vibrational and/or rotational coupling in the external region. Finally, links between 
the formal non-adiabatic R-matrix theory and the Boomerang model developed in [18], as well as quantum defect 
theory, may be found in the references. 

IV. RESULTS 

There are numerous examples of fixed nuclei electron-molecule, R-matrix theory in the literature. The number of 
applications of the non-adiabatic theory are much more limited but a t  the time the theory was developed, it was critical 
to demonstrate that this ab-initio approach could produce satisfactory agreement in a t  least one important problem, 
the vibrational excitation of the N2 molecule by electrons. The problem was important for a number of reasons. First, 
although there were a number of vibrational excitation experiments ([lo-121) which were in essential agreement as far 
as the shapes and peaks in the cross sections, there were disagreements in absolute values. Experiments designed to 
measure the absolute value of the total cross section also existed ([13]) and those suggested that one of the vibrational 
excitation experiments was correct. Second, the existing theories had their own limitations. The Hybrid Theory 
produced qualitative agreement with the observed experimental structure but clearly was either unconverged with 
respect to the vibrational basis set or lacked in its treatment of the fundamental electron-molecule interaction potential. 
The semi-empirical Boomerang treatment does a fine job of reproducing the observed structure in the cross section 
but has to rely on experiment for absolute normalization. Clearly, a fully first principles treatment could and should 
resolve these issues. In addtion, such an approach should be able to predict as yet unmeasured cross sections such as 
those between excited vibrational levels. Such a calculation was undertaken while the author was on sabbatical at  the 
Observatoire de Paris in Meudon, France in 1979-80 ([38]). The calculations were done on a CDC6600 computer a t  
the computation center associated with the Universitk Paris VI. The staff there made it very easy to bring computer 
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codes from Los Alamos and get them running quite quickly. Almost the entire calculational effort went to computing 
the R-matrix eigenstates as a function of internuclear distance. The computation of the nuclear Green's operator 
was done using a variational/spectral approach based on Gaussian type functions. The results are shown in figure 
4 to figure 9. Note in figure 4 how the R-matrix curves near the electronic resonance energy are shifted and flatter 
than the neutral molecule potential. This is a direct effect of the trapping of the electron into what is essentially 
a T, antibonding orbital of the nlolecular negative ion. The results in figure 6 demonstrate the excellent agreement 
between the calculated and experimental results and point also to the overall normalization of the experimental results 
of Wong as being correct. Figure 7 comparing the current calculation with the Hybrid Theory shows that both theories 
have demonstrated that the resonance structure comes from the compound state state vibrational states formed in 
the collision complex, but the Hybrid Theory calculation has been unable to capture the details. I believe it is a 
consequence of expanding the scattering wavefunction in the vibrational basis of the neutral molecule. This is slowly 
convergent in the resonance region and would require a large number of states to reproduce the experimental features. 
Also shown, are the vibrational cross sections from excited state vibrational levels and the total cross section. The 
agreement between the R-matrix theory and experiment is gratifying and gives us confidence in the non-adiabatic 
R-matrix theory. 

I will conclude this paper with some examples using the Linear Algebraic (LAM) and Complex Kohn Variational 
Method (CKVM) to calculate electron-molecule scattering cross section in diatomic and polyatomic systems. The 
discussion, by necessity, will be brief and the interested reader should consult the references for more details. 

A fundamental problem in electron-molecule collisions is to compute reliable cross sections for electronic excitation. 
The transition from the ground X to the b 3C$ of Hz had been studied experimentally ([39-411 as well as 
computationally ([42] by a number of researchers . Early theoretical calculations agreed with one of the three 
experimental results but differed by a factor of two from the other two experiments. Since both the LAM, R-matrix 
and Schwinger Variational Method had matured enough to perform the calculation with all the relevant electron- 
molecule terms included, this calculation was undertaken by all three groups ([43-451. The relevant thoretical and 
experimental data is shown in figure 10. The three theoretical results were in perfect agreement with one another 
but disagreed with the earlier theoretical calculation. The calculations also agreed with two of the experimental 
measurements. This work prompted the third experimental group to re-examine its measurements. It was discovered 
that these experimental measurements were, in fact, normalized incorrectly. When this was corrected all of the 
theoretical calculations and all of the experiments agreed. This was very strong evidence of the importance and need 
of precise calculations where experiments are difficult and uncertainties abound. 

Another interesting problem involves the doubly excited lII, states of the Hz molecule. In fig 11 ( [46]), we see 
that there there are two series (lu,n~g+) and (lxLna,) which cross as a function of internuclear distance. This must 
occur if one examines the behavior of the orbitals in the separated and united atom limits. Calculations on the two 
separate series show very different behavior of the widths of these resonances, one tending to be broad and the other 
narrow. The question is, if configuration interaction (CI) between the two series is taken into account, do the multiple 
crossings of these series produce interesting and possibly observable effects. The answer, shown by the calculations, 
is that CI radically changes the simple picture of two separate resonance series. The widths vary dramatically as a 
function of R, due to the level crossings. A photoionization experiment was proposed to probe the interesting regions 
of R using vibrationally excited Hz but for technical reasons, the experiment could not be performed. It is difficult to 
prepare vibrationally excited homonuclear molecules experimentally. Nonetheless, this theoretical calculation again 
demonstrated that powerful computational methods and theory can bring a great deal of insight into electron collisions 
and photoionization of molecular systems. 

Turning to the CKVM, we show in figure 12 the cross section for the elastic scattering of electrons from ethylene [47]. 
This was one of the earliest calculations performed on a polyatomic molecule and it incorporated a CI based, a b  initio 
optical potential of a few thousand configurations to accurately treat core polarization and electron correlation. While 
it was expected, on general theoretical grounds, that there would be resonances involving antibonding 7r orbitals, an 
unexpected feature appeared in the cross section at  very low energies; it nearly vanished. The reason for this was 
the existence of what is known as a Ramsauer-Townsend minimum in electron atom scattering. In a molecule the 
situation is not so simple as an atom, where there is spherical symmetry and only s-wave scattering a t  these energies. 
However, the higher partial waves do not contribute much to the cross section at these low energies and the situation 
in this molecule is quite similar to that in the rare gas atoms. Later calculations on a variety of other polyatomic 
species, some hydrocarbons, some not, revealed that these minima appeared for very low energy collisions in numerous 
systems. The calculations appear to confirm the results of numerous swarm measurements which have appeared in 
the literature over many years. 

Finally, in figure 13 we show the vibrational excitation of the carbon-oxygen bond in formaldehyde ([MI). Again, 
a CI based optical potential was employed and the calculation was carried out varying the C - 0  bond distance in 
order to treat vibration. This molecule has a low lying shape resonance, very similar to that found in N2 and other 
hydrocarbons. This long lived negative ion produces a vibrational pattern similar to that shown in N2. Coupling to 
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other vibrational modes in the molecule was ignored in the theoretical calculation and the vibrational motion of the  
C-0 stretch was treated using the simple, one dimensional Boomerang model. In  spite of these simplifications, the  
results were in quite reasonable agreement with available experiment. 

V. CONCLUSION 

Our ability t o  calculate accurate cross sections for a wide array of processes involving the collision of electrons with 
molecules has matured over the past decade and a half. We can now even talk about electron induced chemistry, 
where i t  is possible t o  follow the flow of energy deposited by a n  incident electron as it migrates between electronic 
and vibrational modes in small polyatomic molecules. Even larger systems can be treated a t  lower but  still useful 
levels of approximation. The  major goal is t o  understand how dissociation and/or dissociative attachment proceeds 
in these systems so tha t  it may be controlled in a variety of important applications from the  etching of computer 
chips t o  waste management. The  early studies discussed in this article paved the  way. Aaron Temkin played a very 
important role in these developments. It would b e  remiss of me not t o  mention the  pioneering work of other people 
such as Arvid Herzenberg, Phil Burke, Howard Taylor, Norman Bardsley, and  Tom O'Malley who gave us both a 
conceptual framework to  build on as well as  some useful conlputational tools. Aaron, I hope in your "retirement" you 
will continue to  do science with the  passion tha t  you have always brought t o  your work and find even greater time 
for the  other things you enjoy such as family, travelling and music. 
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Potential curves for N2 and N2-: Dash-dotted line, ground state of 
N,; dotted line, resonant state of N2-; and solid line, R-matrix states 
of N2-. 

Fig. 4: The R-Matrix Potential Curves 
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Width resonance as a function of internuclear distance in N2. 

FIG. 5:  Resonance Width for e + Nz Scattering 
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Comparison of calculated and experimental vibrational excitation cross sec- 
tions for N2. 

FIG. 6: Calculated versus Experimental Vibrational Excitation Cross Section for e + Nz Scattering 
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FIG. 7: Comparison of R-matrix and Hybrid Theory Vibrational Excitation Cross Section for e + N2 Scattering 
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ELECTRON ENERGY ( r V )  

Vibrational excitation cross sections c1,(A2) 
a. Dub6 Herzenberg (DH) Boomerang results. 
b. N2- core approximation present results. 
c. Comparison of Wong's experimental results with DubC-Herzenberg and Chan 
dra-Temkin theoretical results. 

FIG. 8: Calculated and Experimental Excited State Vibrational Excitation Cross Section for e + Nz Scattering 
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The total scattering cross section (A2) for e+Nz (v=O) 

a. Bonham and Kennerly (. *) compared with the theoretical sum (---) of 
Dube-Hertzenberg ,n, resonant results and Chandra-Temkin non-resonant back- 
ground (--------). 

b. Bonham and Kennerly experimental results (. 0 )  compared with the theoreti- 
cal sum (---) of the present N ,  core 2n, resonant results and Buckley-Burke 
non-resonant background (--------). 

FIG. 9: The Total Cross Section for e + Nz Scattering 
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Comparison of theoretical calculations of the X '2,-b 3C, total excitation cross sec- 
tions as a fnction of incident electron energy for e-Hz scattering. Nomenclature: full 
curve, present SEC calculations; broken curve, present OSE; chain curve, SEC (Baluja 
et al. 1985); full curve with circles, SEC (Lima et al. 1985); crosses, OSE (Holley et 
al. 1981). 

Comparison of theoretical and experimental X '1,'-b 31, cross sections, Nomencla- 
ture: full curve, present SEC calculations; circles, experimental results (Khakoo et al. 
1985); crosses, experimental results (Nishimura et al. 1985); triangles, experimental 
results (Hall and AndriC 1984). 

FIG. 10: Electronically Inelastic Scattering from the X 'c: State to  the b 3 ~ t  State of Hz 



Symposium on Atomic & Molecular Physics 

-t- - t i I I I 
asa.a,str t a e  to? i  rxa r.rs I.ES ~m 

N@al 

Schematic representation for the 'nu symmetry of the Resonant position E, as a function of R for the 
lounxg'and ln,'no, Feshbach resonance series of H2+ lowest few 'nu resonances in the lo,,nx,' (solid 
lying below the ln,threshold for e--H,' scattering as lines) and ln,'nog (dashed lines) series in 2CC. 
a function of R. The resonances are depicted by solid The numbers give the order of the resonances 
lines, the states of H,' by dashed lines. within each series. 

FIG. 11: Structure of t he  Double Excited Resonant S ta t e  of t he  'II, States H:! 

Incident Energy In eV 4o - - - --- - - - 
I -1 

2 
2 ~ 2 ,  partial integrated cross section for e--C2H, A, partial integrated cross section for e--C2H4 

scattering. scattering. 

FIG. 12: Cross Section for Elastic Electron Scattering from Ethylene 
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Elastic differential cross section for e--CH,O. Solid Curve: optical-potential results at 90'; 
dashed curve: optical-potential results at 120'; dash-dotted curve: static-exchange result at 90'. 
Inset: Experimental results of Benoit and Abouaf (Ref. 8). 

FIG. 13: Cross Section for Vibration Excitation in Formaldehyde 




