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The Temkin-Poet model of electron-hydrogen scattering has played a crucial role in the devel- 
opment of many general computational methods for collisions in atomic physics, and in particular 
the convergent close-coupling (CCC) method. Here we review the CCC method to electron-atom 
scattering and give the historical perspective of its development utilising the Temkin-Poet model. 

I. INTRODUCTION 

It was with great pleasure and honour to accept the invitation to make a presentation a t  the symposium celebrating 
the life-long work of Aaron Temkin and Richard Drachman. The work of Aaron Temkin was particularly influential on 
our own during the development of the CCC method for electron-atom collisions. There are a number of key problems 
that need to  be dealt with when developing a general computational approach to such collisions. Traditionally, the 
electron energy range was subdivided into the low, intermediate, and high energies. At the low energies only a 
finite number of channels are open and variational or close-coupling techniques could be used to obtain accurate 
results 11, 21. At high energies an infinite number of discrete channels and the target continuum are open, but 
perturbative techniques are able to yield accurate results [3]. However, a t  the intermediate energies perturbative 
techniques fail and computational approaches need to be found for treating the infinite number of open channels. In 
addition, there are also problems associated with the identical nature of electrons and the difficulty of implementing 
the boundary conditions for ionization processes. 

The beauty of the Temkin-Poet model of electron-hydrogen scattering is that it simplifies the full computational 
problem by neglecting any non-zero orbital angular momenta in the partial-wave expansion, without loosing the 
complexity associated with the above-mentioned problems [4-91. The unique nature of the problem allowed for 
accurate solution leading to  benchmark results which could then be used to  test the much more general approaches 
to  electron-atom collision problems. 

The immense value of the Temkin-Poet model is readily summarised by the fact that the initial papers of Temkin [4] 
and Poet [7] have been collectively cited around 250 times to date and are still being cited in present times [lo, 111. 
Many of the citations came from our own work during the course of the development of the CCC method, which we 
now describe. 

11. THE CONVERGENT CLOSE-COUPLING METHOD 

At the beginning of the 1990s there were major discrepancies between theory and experiment for the most fun- 
damental electron atom collision systems such as e-H and e-He scattering. For 54.4 eV electron-hydrogen excitation 
there were two independent measurements of the 2p angular correlation parameters in broad agreement with each 
other [12, 131, but not with the most sophisticated calculations available at the time [14-171. For electron-helium 
scattering, a favourite system for the experimentalists, the discrepancies were even much more widespread over the 
energy range and variety of excitation parameters. For both targets there was no ab  initio description of the total 
ionization cross sections, measured with an uncertainty of around 5% [18-201. The CCC method was developed with 
the view to addressing these problems, starting with the e-H system. 

The CCC method is based on the close-coupling method which expands the total e-H wavefunction 9:+)(rl,rz) 
using a set of known target-space states &(rz). The effect of the Temkin-Poet model is t o  reduce the dimensionality of 
the problem by reducing the vector nature of the r coordinates to scalars r. In other words, angular dependence of the 

(A) N ( A )  scattering is neglected. In the original Laguerre-based CCC method [21], the target states +J (r) = En=, CJn<n (r), 
where <iA)(r) is a Laguerre basis with exponential fall-off factor A, are obtained by diagonalising the hydrogen 
Hamiltonian 

More recently 1221, another way of obtaining the target states is by solving the eigenstate problem in a box 
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for r < Ro, with 4iR0)(0) = q 5 i R o ) ( ~ 0 )  = 0. We distinguish between the CCC method using the above two sets of 
states as CCC-L and CCC-B, respectively. 

angular momentum 

FIG. 1: Hydrogen excited-state energy levels in CCC-B ( R o  = 66ao) and CCC-L (Nl = 30 - 1 ,  X = 1.84) calculations. 

In figure 1 we present the energy levels that  can result from Laguerre-based (CCC-L) or box-based (CCC-B) 
calculations. The parameters specified were chosen in such a way so as to  indicate t'hat there is considerable similarity 
in the two approaches. The negative and low positive-energies are almost identical for all 1, with variation occurring 
only for the higher energies. 

r a d i u s  ( a . u . )  

FIG. 2: CCC-B (N = 70,  X = 2) and CCC-L (Ro  = 134ao) 1 eV suitably normalised wavefunctions for 1 = 0. 

Having looked at  the energies, in figure 2 we compare the 1 eV wavefunctions for 1 = 0  arising from another set of 
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calculations. We see that the two functions are almost identical until the larger radial values, with the major variation 
being where the Laguerre-basis exponential fall-off dominates past 120 ao. 

Once the states 4( r )  are defined, utilising either approach, they are then used to expand the appropriately sym- 
metrised total wavefunction 

In the CCC method we write the resulting close-coupling equations in the form of coupled integral equations for the 
transition matrix ( k f  q5f lT14iki) - ( k f 4 f  ~ v I Q ~ + ) ) ,  which satisfy 

where E = E, + k:/2 is the total energy, and V is a combination of interaction potentials that  depend on the 
wavefunction symmetry [21]. Note that  for the Temkin-Poet model we can write the momenta k as scalars also. 

The key feature of the CCC method is that  convergence in the results of interest should be observed with increasing 
number of states N in the expansion of Eq. (3) .  This has the effect of increasing the number of coupled equations in 
Eq.(4), whose computational method of solution is specified in Ref. 1211. 

Laguerre basis size 

FIG. 3: Hydrogen 1 = 0 energy levels in CCC-L calculations for X = 1 and specified basis size. 

To check the convergence we shall consider here just the original CCC-L approach. In figure 3 we show what 
happens to the target-state energies as the Laguerre basis is increased, with both the discrete and the continuous 
spectra becoming more densely populated. 

As discussed earlier, Temkin and Poet [4-91 gave a set of benchmark results for the e-H model problem. In testing 
the CCC method we need to ensure that  convergence is obtained and that it is to the correct values given by Temkin 
and Poet. In figure 4 we present the results of three CCC calculations, for N = 5,10,30.  We see that  for the  smallest 
calculation there can be very large unphysical oscillations in the cross sections, particularly a t  the lower energies and 
for the higher transitions. As the size of the calculations increases the cross sections converge to a smooth result 
that is in good agreement with the benchmark results. The cross sections for the individual transitions are obtained 
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simply from the magnitudes of the corresponding T-matrix elements obtained from Eq. (4). The total ionization 
cross section is obtained as a sum of cross sections of all positive-energy states. Note that  no comparison of the total 
ionization cross section was possible [23], but when CCC was applied to  the full e-H problem [24] excellent agreement 
with experiment was obtained. 
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FIG. 4: Temkin-Poet model electron-hydrogen cross sections calculated with the CCC-L method using the specified basis sizes. 

Having obtained an  overall picture as a function of energy we now look a little closer a t  a specific incident electron 
energy of 3 Ry (E=2 Ry). In figure 5 we present a convergence study for all negative-energy states arising in the 
CCC calculations of specified N .  The first thing to note is that  the largest cross sections converge first, and that  the 
convergence appears to be from above. The least negative-energy state in each calculation reverse the diminishing 
cross section trend. These states are not true eigenstates and have the effect of summing the cross sections for all the 
negative-energy states not explicitly included in the calculations. 

FIG. 5 :  Temkin-Poet model of 3 Ry e-H scattering. Negative-energy state cross sections calculated with the CCC method of 
specified basis size. 

Successful reproduction of the Temkin-Poet model benchmark results was followed by application to  the fulle-H 2p 
excitation problem [21]. However, the CCC results were also unable to reproduce the experiment [12, 131, and were 
more in agreement with previous calculations [14-171. Nevertheless, the sound foundations of the CCC method and 
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its numerous successes elsewhere [25, 261 motivated the experimentalists to revisit the problem [27, 281 yielding much 
better agreement with the theory. 

Having found good agreement with the results of Temkin and Poet for discrete excitation, we realised that  the 
model could be taken further and address some of the fundamental issues in the theory of electron-impact ionization. 
We have already demonstrated in figure 4 that at any energy above the ionization threshold the total ionization cross 
section converges with increasing basis size. Now we take a specific incident electron energy and ask the question 
does the underlying singly differential cross section converge also. In particular, we note from Eq. (4) that  when 
summing over the positive-energy cross sections we sum over all open channels for which 0 5 E,, 5 E. Since we 
have two identical electrons in the problem it appears that the identical ionization process with electron energies 
e, = E,, eg = E - t, and e, = E - E,, eb = cn is being counted twice. Yet the close coupling theory is unitary and 
does not allow for double-counting. 

tri let mi 
energy (RY) 

FIG. 6: Temkin-Poet model of 3 Ry e-H scattering. Positive-energy state cross sections calculated with the CCC method of 
specified basis size. The straight lines connecting the points are there to help guide the eye. The step-function denoted by 
CCC(co) is an integral preserving estimate. 

In figure 6 we consider the same calculations as presented in figure 5 ,  but this time we look a t  the positive-energy 
state cross sections, which have been converted to singly differential cross sections (the integral, rather than the sum, 
yields the total ionization cross section of figure 4). Looking a t  the triplet case first, we see convergence to  a smooth 
line which tends to  zero a t  1 Ry (equal energy-sharing), and remains zero for larger energies. In the singlet case the 
situation is more complicated. Here we see substantial oscillation and apparently a lack of convergence, particularly 
a t  energies below 1 Ry. Observation of this behaviour suggested that the CCC-calculated SDCS is converging to  a 
step function [29], and that solving Eq. (4) is like taking a Fourier expansion of a step function [30]. In this case a t  the 
step the underlying amplitudes should converge to  half the true amplitude magnitude, and hence the cross section t o  
one quarter of the true cross section. The CCC(m) estimate given in figure 6 was obtained this way. Subsequently, 
methods like the exterior complex scaling [31, 321 showed very good agreement with the CCC estimates. 

The notion that the CCC methods should yield amplitudes that are zero for 6 ,  > E / 2  resolves the apparent 
problem with double-counting. In effect this reduces the endpoint of the SDCS integration from E to E/2 ,  as would 
be expected in any theory that treats the two electrons identically. Application of these ideas to the full e-H and e-He 
ionization problems has resulted in excellent agreement with experiment [33, 341. 

111. CONCLUSIONS 

The Temkin-Poet model has played a crucial role in the development of general electron-atom scattering theories, 
and continues to  do so. It retains the complexity associated with the infinite target discrete and continuous spectrum, 
as well as electron exchange. The unique nature of the underlying Schrodinger equation allows for an accurate 
solution leading to benchmark results against which general methods may be tested. It is helpful not only for discrete 
scattering, but also for ionization problems. The success of the convergent close-coupling method for electron-, photon- 
and positron- scattering on atoms can all be traced back to  the simple model problem first considered by Aaron Temkin 
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back in 1962. 
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