
259

Virtual VMASC: A 3D Game Environment

Suchitra Manepalli, Project Scientist; Yuzhong Shen, Assistant Professor; Hector M.
Garcia, Senior Project Scientist; Kaleen Lawsure, Project Scientist

Virginia Modeling, Analysis, and Simulation Center
smanepal@odu.edu, yshen@odu.edu, hgarcia@odu.edu, klawsure@odu.edu

Abstract The advantages of creating interactive 3D simulations that allow viewing, exploring, and
interacting with land improvements, such as buildings, in digital form are manifold and range from
allowing individuals from anywhere in the world to explore those virtual land improvements online, to
training military personnel in dealing with war-time environments, and to making those land improvements
available in virtual worlds such as Second Life. While we haven't fully explored the true potential of such
simulations, we have identified a requirement within our organization to use simulations like those to
replace our front-desk personnel and allow visitors to query, naVigate, and communicate virtually with
various entities within the building. We implemented the Virtual VMASC 3D simulation of the Virginia
Modeling Analysis and Simulation Center (VMASC) office building to not only meet our front-desk
requirement but also to evaluate the effort required in designing such a simulation and, thereby, leverage
the experience we gained in future projects of this kind. This paper describes the goals we set for our
implementation, the software approach taken, the modeling contribution made, and the technologies used
such as XNA Game Studio, .NET framework, Autodesk software packages, and, finally, the applicability
of our implementation on a variety of architectures including Xbox 360 and PC. This paper also
summarizes the result of our evaluation and the lessons learned from our effort.

1. INTRODUCTION

Interactive 3D virtual environments present a
unique scope allowing both individuals and
organizations to analyze and practice methods
that are otherwise difficult. Those methods may
range from the military studying geographical
regions represented virtually in 3D to launch or
defend attacks, to realtors advertising real estates
in 3D virtual environments to their clients. Further,
the success of online versions of 3D
environments, such as Second Life and
OpenSimulator, attest to the applicability and
power of the virtual environments. While the use
cases are many, the process of designing and
developing such environments is the same at
many levels. To evaluate the effort required and to
study the problems that might arise when
designing such environments, we have designed
and implemented "Virtual VMASC", a 3D game,
with the goal to replace front-desk personnel with
an Xbox console assisting the guests arriving at
the VMASC facility. The implementation provides
a visual interface to search and browse for various
pieces of information including faculty and staff
directory, navigational maps to individual offices,
and presents ongoing research information.
Guests, who are represented as avatars in the
virtual world, are free to walk within the building,
perhaps following a .map to a specific room,
interact with various entities on the way, and

eventually be able to talk to individuals through
video conferences from the console.

The higher-level goals of this effort are to study
and evaluate the level of effort needed to model,
design, and implement 3D games, and also to
study the effectiveness of the various software
and platforms chosen for this implementation. We
believe our study provides useful information to
the Modeling and Simulation community in dealing
with similar efforts.

2. MODELING

In this section, we discuss our modeling approach
and the software and toolset we used for creating
the 3D model for the gaming environment. We
also highlight the solutions implemented to deal
with the problems encountered while constructing,
texturing, and prepping the model. Finally, we
discuss the areas to improve in the model, which
we tabled for the future.

3. VMASC 3D MODEL
The VMASC facility, located in Suffolk, Virginia, is
a two-floor building, divided into east and west
wings by a large atrium, with 120 rooms including
office, lab, conference, supply, and utility spaces
along with 5 restrooms and 3 kitchens. In order to
construct a 3D virtual model of the facility, a
variety of 3D digital content creation software
technologies were used such as Autodesk 3ds
MAX [2], Autodesk Maya [3], and Google

https://ntrs.nasa.gov/search.jsp?R=20100012844 2019-08-29T18:55:45+00:00Z



260

SketchUp Pro [5] as well as 20 image editing
software products such as Adobe Photoshop CS4
[1] and Luxology's imageSynth [7].

The process of creating a 3D model of the
VMASC building began by importing 2D AutoCAD
drawings of the floor plan into 3ds Max. After
importing the floor plan, walls were generated by
using the extrusion tool which generates 3D
extruded objects from 2D lines, in this case the 2D
lines from the floor plan as illustrated in Figure 1.

Figure 1: 3D objects extruded from 20 floor plan

Wall height, window placements, doors, and other
elevation features of the building that are required
for performing extrusion were extracted from
digital elevation drawings, pictures, and actual
measurements of the building. Additionally,
certain geometric and floor plan layout features
had to be corrected due to changes in the real
world building that had not been reflected in the
available 2D AutoCAD drawings. In order to
make those corrections, the latest paper based
floor plans were used along with a physical walk
through of the building. In addition to the
geometric corrections, certain other features were
added such as the glass for the windows
enclosing the atrium, east stairs, west stairs,
interior windows, benches along the hallways, a
roll up door at the loading dock, and a revolving
door at the front entrance.

In order to make these corrections and additions,
some objects were edited, while others were
created from scratch. Some objects were
converted into editable meshes for the purpose of
modifying their geometry, and a variety of 3ds
Max's tools were used for editing including tools
that allow the objects to move, rotate, scale,
extrude, bevel, clone, align, and attach. For
creating missing features, 3ds Max was used as it
allows creating simple geometric objects such as
boxes and cylinders, complex objects such as
knots and spindles, and architectural objects such

as doors, windows, stairs, and handrails. Those
standard primitives, complex objects and
architectural objects were used to add features
that would replicate the VMASC building in the
model.

3.1 Textures

After the initial 3D bUilding structure was created,
we added textures and other materials to the
model to capture the interior and exterior design
of the building. Some existing textures from the
3ds Max texture library were used. However,
given the high level of detail desired, it was
necessary to use as many realistic textures as
possible for the building's exterior, interior, and
contents. In order to facilitate this, a Samsung
SL310W 13.6 megapixel digital camera was used
to photograph the building (in the real world). The
images were processed using Adobe Photoshop
CS4 and imageSynth before applying it to the
model.

Photoshop CS4 offers a variety of tools for
adjusting hue, saturation, contrast, brightness,
exposure, and color of the images. It also
provides tools for cropping, rotating, erasing, color
sampling, and layering. Those image manipulation
tools were used to crop and properly align the
images, remove any undesirable blemishes or
shadowing, and correct problems with colors or
shading. However, after improving the images in
Photoshop, we still faced problems tiling the
textures. This problem was eliminated by
imageSynth software, which creates seamless
textures from the processed images, as illustrated
in Figure 2.

Figure 2: Uncorrected carpet tile (left) and
Corrected carpet tile (right)

After correcting the textures, we created a palette
of materials for the entire building, some of which
are illustrated in Figure 3. The UVW texture
mapping tool from 3ds Max was used to place the
textures correctly in the 3D model.



261

I:
I'

!,

Figure 3: Sample material palette used for the
VMASC 3D building

The next step in designing the model was to
export it to a FBX file format, which is compatible
with XNA - our gaming platform. Google
SketchUp Pro was used to import the model from
3ds Max and then export to a FBX file as it
provided a better FBX file that XNA is compatible
with than the one generated from 3ds Max.

3.2 Hierarchical 3D Model

After designing the model, we transformed it into a
hierarchical one using Autodesk Maya's
hypergraph hierarchy tool. This tool allows the
user to arrange the objects hierarchically one
within the other, as illustrated in Figure 4 that
optimizes the collision detection mechanism as
described in the Technical Approach section.

Figure 4: Generated hierarchy using the
hypergraph tool (partial hierarchy shown)

Snapshots of the final model are illustrated in
Figures 5 and 6.

Figure 5: Front view of the VMASC 3D model

Figure 6: VMASC 3D building with textures

3.3 Model Refinement

There are still some additional details that we
would like to add in the future. Those details
include adding sinks, commodes, and stalls for
the restrooms along with cabinetry and appliances
for the kitchens.

Additionally, furniture including chairs, tables,
desks, bookshelves, cabinets, and other office
needs are to be added to the model. Those will
have to be created using digital photographs from
the real world.

4. IMPLEMENTATION FRAMEWORK

We have implemented the 3D game using
Microsoft XNA Game Studio [8], which is a
software library and toolkit targeted at
independent and small game studios, academics,
and hobbyists. XNA supports cross-platform game
development for personal computers, Microsoft
Xbox 360, and Zune media player.

At the core of XNA is the XNA Framework, a set
of C# libraries for game development based on
the Microsoft .NET Framework. C# is an object
oriented programming language drafted by



262

Microsoft and approved by ISO as a standard.
The XNA Framework encapsulates low-level
details involved in developing games and allows
game developers to focus more on the content
and high-level gaming experience. Game
developers can more rapidly learn the truly
important and difficult parts of game development
without dealing with the low-level details such as
lighting, shadow effects, etc. Developers can use
both the XNA Framework and the .NET
Framework in a game with the former for game
specific tasks such as graphics rendering and
managing inputs and the latter for more general
programming tasks.

The XNA Device Center lets developers manage
and connect to multiple XNA devices, including
Xbox 360s and Zune devices. The XNA Game
Studio supports features including avatars,
animations, and embedded videos. XNA can
compress and decompress content such as
meshes and textures automatically to reduce
storage space usage and deployment time. XNA
also supports content access from a device's
media library such as songs, pictures, and
playlists. The ClickOnce deployment technology
can create self-updating Windows based
applications that can be installed and run with
minimal user interaction.

5. TECHNICAL APPROACH

The Virtual VMASC 3D simulation, designed as
an Xbox game, involved designing a 3D model,
developing game heuristics, and designing an
interface to meet our front desk requirements.
Transforming the VMASC 3D model, the design of
which is discussed in the Modeling section, into a
game using XNA while still coherently presenting
a real world experience to the player through the
avatar resulted in many challenges including
presenting a responsive and realistic 3D world,
detecting and handling collisions, and providing
various viewing (aka camera) modes. Additionally,
optimization of the model and texture rendering
and collision detection techniques proved to be
pivotal for designing a responsive game. The
following sub-sections highlight some of those
technical challenges and the solutions we adopted
for resolving them.

5.1 Rendering

A model is usually comprised of a composite of
multiple sub-models. While different mechanisms
may be used to render those sub-models, it is
important that any model rendering mechanism

employed should eliminate lag, jitter, flickers, and
other un-real artifacts.

The Virtual VMASC 3D model uses a variety of
textures for realistically representing the VMASC
building, as discussed in the Modeling section.
XNA renders those textures automatically if
referenced in the FBX model [8]. However, the
building includes a large number of meshes and
textures, the rendering of which is process
intensive resulting in unrealistic lag and artifacts
during model representation as part of the game.
In order to mitigate this issue, a known solution
based on the octree mechanism is implemented
[6]. The crux of this solution is to recursively divide
a model into eight equally sized cubes until the
leaf cubes contain a specified number of spatial
objects. Once a model is thus split, thereby
resulting in a hierarchical graph (or tree), only
those sub-cubes that are in the viewable area
(based on the field of view) are processed for
rendering, resulting in a cleaner, faster and
responsive game. Figure 7 illustrates the visual
clarity we achieved after incorporating the octree
solution.

Figure 7: Unwanted artifacts resulting from the
default XNA rendering (left) and Clean display

resulting from the integration of the octree
technique (right)

5.2 Collision Detection and Handling

XNA is in-built with content pipeline architecture
for importing art assets from the model as binary
objects (aka mesh-parts) that may, then, be
processed and controlled as required by the
game. The content pipeline converts art assets
into binary objects using four components [4]:

a. Importer: XNA supports and provides a
number of importers. One such importer
for Autodesk is the FBX importer, which is
used in our implementation. Importers
convert a model into managed objects
conforming to the Content Document
Object Model that is processed further by
the content processor.

b. Content Processor: Content processors
process the managed objects generated



263

by importer and creates custom managed
objects, if required for special gaming
requirements.

c. Content Compiler: The compiler bundles
together the managed objects generated
by the content processor into a compact
binary asset for faster run-time loading.

d. Content Loader: The loader is responsible
for locating and loading the compiled
asset into memory.

Related to the content pipeline architecture is the
process of collision detection. XNA associates
bounding spheres with meshes to deal with the
location and arrangement of those meshes [6]. It
is easy to see, however, that not all meshes are
spherical in shape (walls, furniture blocks, doors,
avatars, etc.); as such, enclosing those meshes in
spheres especially to process the location and
detect collisions is unrealistic, although simpler. In
our model, we identified that most of the spatial
features are box-like structures and enclosing
those features within bounding boxes is ideal.

The FBX model we designed also associated
bounding boxes with each of those meshes. To
derive the bounding boxes information from the
model into the gaming runtime, instead of using
the default bounding spheres created by XNA, a
custom content pipeline is implemented. At the
time of rendering, the retrieved information is used
to load bounding boxes for the meshes. Those
bounding boxes are then used for detecting and
handling collisions.

Avatars, which can move around the VMASC
building model, are the reason to perform collision
detection and handle those collisions. Normally,
collisions occur when the avatar hits blocked
surfaces like a wall or a closed door. However,
handling collisions between an avatar and stairs is
complicated. Instead of not allowing the avatar to
proceed further on its path during such collisions,
it needs to climb up or down depending on the
direction of the stair mesh. This requires
identifying the direction of the avatar and the
orientation of the stair meshes before handling
those types of collisions.

Handling collisions may be simply done by
verifying if the avatar's bounding box is colliding
with any of the building's bounding boxes [6].
However, performing detection in a brute force
fashion by checking one bounding box after the
other from the building is process intensive, and,
given the number of meshes in the VMASC
building, has resulted in a substantial lag after
every move the avatar makes. To deal with this

issue, we redesigned the FBX model by creating a
hierarchy of meshes. That is, as per this re
design, the entire building is a mesh; each of the
floors in the buildings is represented as a
separate mesh within that building mesh. The
rooms are sub-meshes within those floor meshes,
and this process was continued until every object
is modeled. The advantage of this hierarchical
representation is that the number of collision
detections is reduced logarithmically compared to
the brute-force approach. This is because, in the
hierarchy of meshes (logically represented as an
n-tree), the avatar may collide only with a
particular path leading from the root to the leaf
node, and as such all other computations are not
necessary to detect the actual source of collision.
Although, we designed and implemented this
novel way of collision detection recently, early
results seem to have corrected the lag problem
dramatically.

5.3 Camera Modes

We implemented three camera modes giVing
multiple views of the model as the avatar walks
through the building. A first person camera mode,
in which the world is viewed through the avatar's
eyes, results in a very realistic experience. We
also implemented a chase camera mode in which
it appears as if someone with a camera is
following the avatar. An additional elastic effect
where the camera slowly comes to a stop
although the avatar had abruptly stopped gives a
realistic experience for the viewing user. Finally, a
static camera mode that just displays a constant
field of view is also implemented. This camera
mode is best used when multiple cameras are
fixed, thereby, allowing multiple fields of view.
Figure 8 illustrates the distinction between the first
person and chase camera modes.

Figure 8: First person camera mode (left) and
Chase camera mode (right)

5.4 Audio and Visual Interface

Since the goal of the game is to achieve
virtualized front-desk features vis-a-vis providing



264

faculty and staff directory, ongoing research and
projects, and navigational maps to individual
rooms within the facility, a variety of menus and
screen flows are implemented. Initially, the game
is loaded with a welcome screen, as illustrated in
Figure 9, which provides the following menu
options:

a. Tour of the building

b. Personnel Directory

c. Staff Search

d. Cluster Information

Figure 9: Virtual VMASC visual interface

Users interacting with the game may tour the
building as an avatar, browse through the floors
by going up and down the stairs, and visit the
offices. Users have the choice of various camera
modes to flip through during the tour. The second
option offers the users a personnel directory to
browse and select any office personnel from the
system to get additional information, which
includes the selected person's office address,
email address, and directions to his/her office.
The third option lets the users query a personnel
database based on a name. The fourth option
provides information about the different research
areas that VMASC focuses on.

The game also incorporates audio capability,
implemented using the Microsoft Cross Platform
Audio Creation Tool [8), which enables users to
hear any recorded messages or music configured
while interacting with the system.

6. CONCLUSION

We found that the XNA game studio coupled with
the Autodesk and other software technologies we
employed provides a good environment for
modeling and developing interactive 3D simulation
environments. Autodesk software provides a
variety of tools to deal with many modeling issues,
and XNA provides functionality to integrate typical
gaming scenarios easily. The obvious advantage
is the integration of the game developed using

XNA into Xbox 360 consoles. However, there are
many challenges that we faced as discussed and
those challenges required custom
implementations and techniques to be employed.

We believe our study, which resulted in valuable
lessons that we learned, would also benefit the
Modeling and Simulation community.

7. REFERENCES

1. Adobe Photoshop CS4.
http://www.adobe.com/products/photoshop/ph
otoshop/

2. Autodesk 3ds Max.
http://usa.autodesk.com/adsk/servlet/index?sit
eID=123112&id=5659302

3. Autodesk Maya.
http://usa.autodesk.com/adsk/servlet/index?id
=7635018&siteID=123112

4. Carter, Chad. "Microsoft XNA Unleashed:
Graphics and Game Programming for Xbox
360 and Windows," Sams. August 5, 2007,
pp. 113-119.

5. Google SketchUp Pro.
http://sketchup.google.com/

6. Grootjans, R. (2008). "XNA 2.0 Game
Programming Recipes: A Problem-Solution
Approach," Apress. July 11, 2008, pp. 63-66,
88-110.

7. imageSynth.
http://www.luxo/ogy.comlwhatismodo/imageS
ynth/

8. Microsoft, "XNA Developer Center," 2009.
http://msdn.microsoft.com/en-
us/xna/default. aspx




