
307

An Optimization Model for Scheduling Problems with Two
Dimensional Spatial Resource Constraints

Christopher Garcia, Ghaith Rabadi

Engineering Management and Systems Engineering
Old Dominion University

cqarcOO1@odu.edu, qrabadi@odu.edu

Abstract. Traditional scheduling problems involve determining temporal assignments for a set of jobs in
order to optimize some objective. Some scheduling problems also require the use of limited resources,
which adds another dimension of complexity. In this paper we introduce a spatial resource-constrained
scheduling problem that can arise in assembly, warehousing, cross-docking, inventory management, and
other areas of logistics and supply chain management. This scheduling problem involves a two
dimensional rectangular area as a limited resource. Each job, in addition to having temporal
requirements, has a width and a height and utilizes a certain amount of space inside the area. We
propose an optimization model for scheduling the jobs while respecting all temporal and spatial
constraints.

INTRODUCTION

Scheduling problems arise in many areas of
business and industry. Common to all types of
scheduling problems is the need to assign a set
of resources or jobs to a set of time slots.
Beyond this, different types of scheduling
problems present their own unique sets of
objectives and constraints and require
individualized formulation and solution methods.
In this paper, we examine a problem that
involves scheduling jobs that have two spatial
dimensions, width (x) and height (y), in addition
to having required processing times, deadlines,
and earliest start times. These jobs must be
processed inside a two-dimensional processing
area which has its own width and height.
Consequently, solving this problem involves
simultaneously determining both the time each
job should be processed as well as the spatial
location and layout of each job within the
processing area.

To demonstrate an instance of this problem,
consider the following jobs listed below in Table
1. Assume that we are given a processing area
having a width of 10 and a height of 8 in which
these jobs must be processed, and that our

objective is to minimize the total tardy time. In
order to solve this problem we must determine
both a start time and a coordinate for each job.
To complicate matters further, we also assume
that the layout of any job can be changed, which
is accomplished by rotating the job by 90
degrees. This results in a swapping of the job's
width and height. For instance, Job 1 has a
width of 4 and a height of 5. If its layout is
changed, Job 1 will have a width of 5 and a
height of 4. An optimal solution to this problem is
given in Table 2. The lower-left corner of the
processing area can be understood as the (0, 0)
coordinate, enabling the solution to be visualized
as shown in Figure 1.

Although much literature exists for both box
packing problems and scheduling problems,
there is relatively little literature that directly
addresses spatial scheduling. Literature
addressing this topic directly addresses a more
specialized problem encountered in shipbuilding
[1), [2). To our knowledge the problem proposed
in this paper has not been discussed in previous
literature, and we are aware of no previous
problem instances.

https://ntrs.nasa.gov/search.jsp?R=20100012856 2019-08-29T19:05:56+00:00Z

308

Table 1: A small problem instance

Job Width Height Earliest Start Processing Time Deadline

1 4 5 2 4 8

2 2 4 0 5 6
3 1 3 2 6 10

4 3 1 0 2 9

Table 2: An optimal solution to the small problem instance, in ascending start-time order

Job Start End Due Tardy X Y Width Height
2 0 5 6 0 0 0 2 4
1 2 6 8 0 2 0 4 5
4 2 4 9 0 6 0 3 1
3 2 8 10 0 9 0 1 3

Figure 1: A visualized solution to the small problem instance

Job
2

(0.0)

nme=O

Width

Time = 5

nme=2

f--'--

Job Job 1

2 3

Job 4

Time = 6

Time =4

--

Job Job 1

2 3

Time = 8

- -
- -

Job 1
- -

3- -
3

309

A GREEDY APPROXIMATION HEURISTIC

FOR OPTIMIZATION

The incorporation of spatial resources into
scheduling problems introduces a considerable
amount of complexity [6]. Additionally, because
we were not aware of any prior work on this
problem our aim was to develop a
computationally fast approximation heuristic to
provide baseline solutions for evaluating the
performance of future methods. The algorithm
we developed combines a two-dimensional box
packing algorithm with an earliest-deadline-first
scheduling algorithm. Each job is understood to
be a structure having an (X,Y) coordinate, width,
height, processing time (duration), earliest
allowable start time, deadline, start time, and
end time.

Spatial Operations

The spatial operations are used to determine the
spatial location and layout for each job within the
processing area. We assume we are given a
width and height of the processing area as well
as constants m and n. The area is divided into
(m x n) discrete units - m units in the width
dimension and n in the height dimension. Thus,
each unit's width is (width I m) and its height is
(weight / n). An (m x n) matrix of binary values
called Area is used to keep track of which units
are covered by a job. Here, 1 denotes that the
corresponding unit is occupied and 0 denotes
that it is not. The packing procedure returns
either a coordinate for the job (in the case of
success) or 0 if it is unable to fit the job into the
area.

Three specific procedures are used: PACK,
GREEDY_PACK, and REMOVE. PACK is the
top-level packing procedure and attempts to find
a feasible coordinate and layout for a given job.
GREEDY_PACK attempts to fit a job into the
available space without changing the layout.
REMOVE frees the space occupied by a job.
These procedures are described in pseudocode
in Table 3. Comments follow the # symbol.

Table 3: The PACK, GREEDY_PACK, and
REMOVE procedures

Procedure PACK (Job) DO:
Coordinate := GREEDY_PACK(Job)
IF Coordinate =0 DO:

Change layout - rotate job 90 degrees
SWAP(Job.width, Job.height)
RETURN GREEDY_PACK(Job)

ELSE
RETURN Coordinate

END
END
Procedure GREEDY_PACK (Job) DO:

f
Cm)(Job.width)l

FOR 1 SiS m- width DO:

f
Cn)(Job.height)l

FOR 1 Sj S n - height DO:

f
Cm)(Job.width)l

P := { P lis pSi + width }

f
Cn)(Job.height)l

Q := { q Ij ::; q ::; i + height }

IF Area[p][q] = 0 for all pEP and q E Q
DO:

Area[p][q] := 1 for all pEP and q E Q
Job.X:= (width)(i) / m

Job. Y:= (height)U) / n
RETURN (Job.X, Job. Y)

END
END

END
RETURN 0

END
Procedure REMOVE (Job) DO:

i:= Job.Xlm
j:= Job. Yin

f
Cm)(Job.width)l

P := { p Ii::; p ::; i + width }

f
Cn)(Job.height)l

Q := { q I j ::; q::; i + height }

FOR ALL pEP and q E Q DO:
Area[p][q] : = 0

END
END

310

The Scheduling Algorithm

The scheduling algorithm ;s concerned with two
types of events: 1) the next time one or more
jobs are eligible to be processed/added to the
area, and 2) the next time one or more jobs are
complete and can be removed from the
processing area. Two job lists are utilized to
keep track of these concerns. Open is a list of all
unscheduled jobs, sorted in ascending order by

Table 4: The scheduling algorithm

Procedure SCHEDULE (Jobs) DO:
Open := SORT Jobs BY earliest start time
In_Processing := 0
Time:= 0

WHILE Open IS NOT EMPTY DO:

earliest start time. In_Processing is a list of all
jobs currently inside the processing area and is
sorted in ascending order by end time. It should
be noted that ADD and DELETE operations on
these lists preserve their order. The algorithm
assigns job times as it moves jobs from Open
into In_Processing. The pseudocode for this
procedure is found in Table 4 below, and
comments follow the # symbol.

Remove jobs that are finished
WHILE In_Processing IS NOT EMPTY AND NexLFinished_Job.end_time S Time DO:

REMOVE(NexLFinished_Job) # Procedure defined in Table 3 above
DELETE Next Finished Job FROM In Processing
NexLFinishe~Job := NEXT_ELEMEN-T(ln_Processing)

END

Add jobs until we run out of space or all open jobs have been added
Next Job := NEXT ELEMENT(Open)
Time-:= Next JOb.earliest allowable start time
Coordinate :~PACK(Nexl.Job) # Procedure defined in Table 3 above

WHILE Open IS NOT EMPTY DO AND Coordinate 'I- 0 DO:
Next Job.start time:= Time
Next-Job. endtime := Time + Next Job.duration
DELETE NextJob FROM Open -
ADD Next Job TO In Processing- -
Next Job:= NEXT ELEMENT(Open)
Time-:= NexLJob.earliesLallowable_start_time
Coordinate:= PACK(NexLJob)

END
END

END

RESULTS

We developed a Java implementation of this
greedy spatial scheduling algorithm. We also
developed an algorithm to generate random
problem instances. For each job, the width and

height were generated using a uniform
distribution over [1, width or height of area].
Durations were generated using a uniform
distribution over [5, 25]. Earliest allowable start
times and deadlines were generated using an
incremented current time and a tightness factor

311

ranging from 1 to 10, with 10 generating the
most tightly-packed problems. Earliest allowable
start times were generated by

E = current time - r

where r is a random number uniformly
distributed over [0, (current time) / tightness].
Deadlines were generated by

o = current time + current job duration +
(r * tightness)

where r is a random number uniformly
distributed over [0, current job duration]. Finally,
current time is initialized to 0 prior to the
generation of any job and subsequently
incremented after each job generation by

Increment = 10 * r / tightness

where r is a random number uniformly
distributed over [0, current job duration].

Ten generated problem instances of varying
sizes were selected to be solved by the spatial
scheduling algorithm, and the results are
reported in Table 4 below. In each problem
instance a width of 10 and a height of 7 were
specified for the processing area. As can be
seen, a higher tightness parameter results in a
lower maximal deadline for a given number of
jobs. Thus, a higher tightness parameter results
in a more tightly-packed problem instance.

Table 4: The results for several generated problem instances

Problem Number Tightness Maximal Total Tardiness Computational
Instance of Jobs Deadline (Objective Time

Function) (milliseconds)
E-100 100 3.3 2608 a 16
H-100 100 9.9 877 497 16
E-500 500 3.3 11,231 a 94
H-500 500 9.9 3640 51219 94
E-1000 1000 3.3 21,971 a 234
M-1000 1000 8.5 8393 132 312
H-1000 1000 9.9 7239 180,473 328
E-10000 10,000 3.3 222,491 a 10,172
M-10000 10,000 8.9 80,259 22,903 12,812
H-10000 10,000 9.9 73,381 3,426,391 13,062

FUTURE WORK

Much literature exists for many types of
scheduling and box-packing problems. There is
relatively little literature, however, that directly
addresses the topic of spatial scheduling. The
work in this paper is quite preliminary in nature,
and there are many aspects of this scheduling
SUb-discipline to be explored. Future theoretical
work includes the development of mathematical
models for different types of spatial scheduling
problems as well as an analysis of the
complexity of these problems. Future applied
work includes the development of new

algorithms and heuristics that can provide
reliably near-optimal solutions within a
reasonable amount of time.

REFERENCES

1. Modeling and Solving the Spatial Block

Scheduling Problem in a Shipbuilding Company.

Kyungchil Park, Kyungsik Lee, Sungsoo Park,

Sunghwan Kim. 1996, Computers & Industrial

Engineering 30, pp. 357-364.

312

2. A Spatial Scheduling System and its

Application to Shipbuilding: DAS-Curve. Kyoung

Jun Lee, jae Kyu Lee. 1996, Expert Systems with

Applications 10, pp. 311-324.

3. Spatial Block Arrangement in Shipbuilding

Industry Using Genetic Algorithm for Obtaining

Solution for Anticipated Bottleneck. Ranjan

Varghese, Duck Young Yoon. Seoul, Korea: The

International Society of Offshore and Polar

Engineers, 2005. Proceedings of the Fifteenth

International Offshore and Polar engineering

Conference.

4. A new exact methodfor the two-dimensional

bin-packing problem. Francois Clautiaux,

Jacques Carlier, Aziz Moukrim. 2007, European

Journal of Operations Research 183, pp. 1196

1211.

5. Two- and three-dimensional parametric

packing. F.K. Miyazawa, Y. Yakabayashi. 2005,

Computers and Operations Research 34, pp.

2949-2603.

6. Adjacent Resource Scheduling: Why Spatial

Resources are so Hard to Incorporate. Jacob Jan

Paulus, Johann Hurink. 2006, Electrinic Notes

on Discrete Mathematics 25, pp. 113-116.

