
145

Modeling Pilot Behavior For Assessing Integrated Alerting And
Notification Systems On Flight Decks

Mathew Cover, Graduate Student; Thomas Schnell, Associate Professor
Operator Performance Laboratory, University of Iowa

mcover@engineering.uiowa.edu; tschnel/@engineering.uiowa.edu

Abstract. Numerous new flight deck configurations for caution, warning, and alerts can be conceived; yet
testing them with human-in-the-Ioop experiments to evaluate each one would not be practical. New sensors,
instruments, and displays are being put into cockpits every day and this is particularly true as we enter the
dawn of the Next Generation Air Transportation System (NextGen). By modeling pilot behavior in a computer
simulation, an unlimited number of unique caution, warning, and alert configurations can be evaluated 24/7
by a computer. These computer simulations can then identify the most promising candidate formats to further
evaluate in higher fidelity, but more costly, Human-in-the-Ioop (HITL) simulations. Evaluations using batch
simulations with human performance models saves time, money, and enables a broader consideration of
possible caution, warning, and alerting configurations for future flight decks.

1. INTRODUCTION

The aviation safety (AvSafe) program at NASA, is
tasked with assuring that safety of current and
future aircraft participating in the National Airspace
System is always being evaluated and improved
upon [7]. The Integrated, Intelligent Flight Deck
(IIFD) program within Aviation Safety, has
sponsored a research project at the University of
Iowa's Operator Performance Laboratory to
mitigate high crew workload and increase
situational awareness in the operational NextGen
environment. Specifically, the research project
seeks to resolve conflicts in caution, warning, and
alerts (CWAs) that may be presented to pilots.
The mechanism in which this is done will be via a
software solution called the integrated alerting and
notification (IAN) function. This work is conducted
in conjunction with Ohio University and is
supported with efforts from Boeing, Rockwell
Collins and Delft University of Technology (TUD).

2. ARCHITECTURE OVERVIEW

The architecture of our model is best introduced

as a closed-loop control system where the aircraft
state and IAN function are fed into a human model
(Figure 1). The human model then analyzes the
stimuli provided by the aircraft displays and
sensors and responds accordingly, outputting
feedback into the flight model.

The model needs to be run hundreds to thousands
of times to test variations of the IAN function and
displays on the human model. Using batch Monte
Carlo simulations with a human model permits us
to test out a wider variety of simulated avionics
conditions and operational scenarios than could
ever be feasible with HITL testing.

Figure 1: This figure outlines the top-level view of
how the closed-loop model is constructed

A. Simulink

For the project model, Simulink provides a
structure that many pieces of the model can plug
into to complete the closed-loop architecture.
Using some TCPIIP functions, programs that run
outside of Simulink are able to communicate and
participate in the model such as a flight simulator,

https://ntrs.nasa.gov/search.jsp?R=20100012876 2019-08-29T19:05:00+00:00Z



146

Figure 2: A more detailed view of the software
architecture for the IAN I human model

the human model, and display visualizations
(Figure 2).

B. Flight Simulation Interface

The IAN project requires a realistic aircraft flight
model for the human model to fly. Microsoft Flight
Simulator X (FSX) has been chosen to run the
flight model for this project. FSX provides
SimConnect, a built-in interface that provides a
standardized interface for add-on executable
programs to communicate with and allows
asynchronous communication over a network
connection. These features make FSX ideal for
multi-threaded applications and allow it to run out
of-process with the rest of the closed-loop model
[6].

3. INTEGRATED ALERT AND NOTIFICATION
(IAN)

The flight simulator is only a part of the closed
loop model. The human model will connect to a
representation of a NextGen cockpit. This
simulation models an important characteristic of
the NextGen aircraft - an integrated alerting and
notification system. One aspect of this functionality
is the ability to sort through alerts and notification
and resolve conflicting information prior to
presenting it to the pilot. This system is named the
integrated alert and notification (IAN) function, as
mentioned previously.

This is critical as conflicts in the cockpit consume
pilot's time and spare mental capacity to resolve
and respond in what are usually challenging
situations. For instance, an enhanced ground
proximity warning system (EGPWS) may suggest
increasing altitude to avoid a mountain while the
traffic collision avoidance system (TCAS) may tell
a pilot to lower altitude to avoid another aircraft
nearby.

Work with Boeing and Rockwell Collins will be
able to help provide a set of rules in the IAN
function so that visual, auditory, and tactile cues
do not conflict and convey information in a useful
manner to the pilot. They will also be constructed
so as not to fallout of line with standards and
common practices followed today and envisioned
for NextGen operations.

---
Detailed Architecture_.

C. Aircraft Sensors

As part of the aircraft model, additional sensors
that make the aircraft NextGen-worthy are being
added to the FSX flight model. Among the sensors
that are being modeled and incorporated into the
architecture are GNSS, ADS-B, TCAS,
TAWS/EGPWS, WxR. Future work by Ohio
University will include computer models of sensors
such as FUR, millimeter wave radar (MMWR), 3D
imager, and Interferometer. All of these sensors
are coordinated and filtered by the Hazard
Integration and Monitoring (HIM) module.
Relevant data is then passed along to the IAN
function.

4. COGNITION

The following requirements were considered in the
selection of a base modeling approach to
incorporate into the IAN system modeling function
for this research.

1) We wanted to make sure that the cognitive
model could interact with an external environment
in a software-feasible way. Having the best
cognitive model in the world does us no favors if it
is unable to communicate with the flight model and
IAN function. This closed-loop architecture has
been done with cognitive models previously with
prime examples seen by ACT-R [1], Soar [5].

2) The cognitive model needs to demonstrate at
least face validity; that is, it should accurately
approximate how a pilot would behave in different



147

circumstances. It is felt that a rule-based system
would best be suited for a model of an aviator.

Starting with a system that makes some simple
assumptions about generic human cognitive
performance allows for more time and effort to
focus on tailoring the model to flying-related tasks.

3) In order to mimic a human interacting with an
aircraft as much as possible, the interface needs
to closely emulate the human body perceiving
through the eyes and ears and manipulating with
hands and feet. A software module/client, named
the execution block, will be written that
communicates with the cognitive model and
creates a representation of arms, hands, legs,
feet, head, and eyes. This helps unload the
burden on the cognitive model of keeping track of
the details regarding the sources of input and
output.

4) We are concerned with efficiency. To this end,
we aimed to select an approach that minimized
development time, and leveraged eXisting work. In
addition, the human model component is designed
to run out-of-process, or asynchronously with the
aircraft simulator to facilitate parallel development.
Once a common interface is described, the human
model should be able to fly many types of
simulated aircraft that meet that software
specification. This also permits development to not
be dependent on the Simulink portions of the
model in order to test and run it.

5) We are on a schedule and need to make sure
that the cognitive model we select doesn't take an
unnecessary amount of time to develop. It is
undesirable to spend time re-inventing something
that someone else has already done. Any existing
models and architectures that exist out in the
world should be considered as a potential baseline
for our model and taken advantage of.

The follOWing sections highlight some of the
candidate cognitive models considered and some
of the pros and cons of each with regard to their
applicability toward our IAN model.

A. ACT-RJPM

ACT-R Perceptual-Motor (ACT-R/PM) is a set of
extensions to ACT-R which provides perceptual-

motor capabilities for ACT-R. The Perception
Motor layer is made up of modules that handle
various aspects of perception and action. Among
the modules covered with this extension to ACT-R
are vision, motor, speech, and audition [2].

One of the difficulties of working with ACT-R is
that it is written in Lisp, a powerful, yet older high
level programming language. While it is known for
powering artificial intelligence research over the
last several decades, it is not as prevalent as
other high-level programming languages such as
C, C++, and Java for general programming
activities.

Another difficulty of ACT-R is that it traditionally is
run as a stand-alone application where the
cognitive model does not talk easily with any
external application/devices/computers. That was
resolved with release of the ACT-R/PM module
which does incorporate the ability to interact with a
simulated device easily. However, the simulated
device must be a Lisp object which must have
certain methods defined for it, which in turn, will be
called automatically by ACT-R/PM at the
appropriate times [2].

There also exists a version of ACT-R called jACT
R which is a java implementation of ACT-R. While
not comprehensive of all features that ACT-R
provides, it covers most of what one would expect
of ACT-R, but written in Java rather than Lisp.
jACT-R also provides some benefits to interact
with external environments and control the models
remotely [4].

B. Air MIDAS

Air Man-machine Integration Design and Analysis
System (Air MIDAS) is a modeling and simulation
tool designed to assess human-system integration
in dynamic aviation-related environments. It is
currently being used to analyze advanced air
traffic management concepts at San Jose State
University where it was originally developed by the
Human Automation Integration Laboratory [3].

Like ACT-R, Air MIDAS is programmed in Lisp,
although it interfaces with external simulators
more natively. Air MIDAS also has the benefit that
it was developed with an aviation emphasis and
not just a generic cognitive model.



148

C. Soar

Soar is a theory of a cognitive model that is
implemented as software architecture [10]. Soar
research today tries to realize an approximation of
human behavior and thought while minimizing the
sets of mechanisms that are required. Soar
memory is associative which means that the flow
of control in Soar is not determined by a
sequential, deterministic control structure that is
used in most programming languages. In other
words, evaluation of relevant knowledge can be
done in parallel [10].

Another feature of Soar is the ability to
automatically create sub goals to help resolve
impasses in decision junctions. Soar also takes
into account past experiences when adapting to
unfamiliar situations and making decisions. This
allows Soar to learn new conceptual knowledge,
procedures, and even correct its knowledge as it
gains feedback through experience in its
environment [10].

The most recent release of Soar version 9.0.1 now
includes a reinforcement learning (RL) module.
Beta versions of Soar include episodic memory
and semantic memory modules. These new
memory and learning modules greatly enhanced
Soar's ability to approximate human memory [9].

All of these positives, in terms of programming,
come at the expense of under specifying the
capabilities that must be built into intelligent
agents. Most of the knowledge that a Soar agent
has, stems from rules that have been programmed
into it. For the agent to realize high-level intelligent
behavior, the knowledge must be created. Soar
also can make simplifications which leads to
unrealistic behavior in the model [5].

Perhaps one of the greatest benefits Soar
provides for a closed-loop model is a standardized
way to connect to external simulators via a
language called Soar Markup Language (SML).
The method was debuted in Soar version 8.6, and
has been supported since. The SML specification
allows external programs to send and receive
information from Soar which allows external
simulations, such as a flight simulator and/or
custom applications to interact with the human
model easily [8].

D. Model Selection

Based upon the model considered, we have
determined that Soar best meets our requirements
to integrate into the IAN / human model. Soar
provided the easiest method to integrate into the
closed-loop architecture, provided models that
already existed to build upon (Air-Soar, TacAir
Soar), and is a reasonable cognitive
approximation with notable, but acceptable faults.

E. Model Extension for IAN

Our concept in the NextGen IAN functions will not
focus on modeling perception as much as it will on
comprehension and cognition. We are aware that
perception of stimuli in the closed-loop simulation
can be a factor in the evaluation of IAN functions;
however, parameters such as font sizes,
brightness, and contrast ratios are prescribed by
detailed design specifications for flight decks. We
assume that these same design specifications will
be used in NextGen avionics. This minimizes the
need to study perceptual parameters in the
closed-loop simulation of the model.

However, we intend to use the closed-loop
simulation, as described in this paper, to
determine design specifications for the cognitive
processing aspects of IAN functions. The number
of simultaneous or near-simultaneous caution,
warning, and alerts that may be presented to the
pilot could be competing for scarce cognitive
resources. Multiple stimuli could be subject to the
psychological refractory period wherein the pilot
may delay reaction to an important stimulus while
attending another. It is these types of scenarios
that we wish to use the human model to determine
the best candidate IAN functions.

5. CREW PERFORMANCE DATA

The OPL has years of experience collecting data
from human pilots in both aircraft and flight
simulators to evaluate pilot performance and

estimate workload. This capability is being
developed under a separate NASA project entitled
Operator State Sensor Investigations and
Operator State Classification and Feedback
Algorithms (NNL07AAOOA). A significant piece of
software has stemmed from this project called the
Cognitive Avionics Toolset or CATS. This program



149

is used to provide real-time data exploration and
analysis to support effective operator state
feedback.

It is our hope that we may be able to also gain an
understanding of what the workload is of the
human model in the IAN simulation. The OPL has
conducted several studies in airborne platforms
and ground-based simulators that involved
collecting workload measurements as well as
physiological responses and eye tracking.
Empirical data collected from such studies can
help us fine-tune the human model for similar
scenarios such as the standard terminal arrival
route (STAR) approach and landing.

It is also of interest to allow the IAN function to be
aware of pilot state during all phases of flight.
Should, during long stretches of low workload, the
pilot allow their attention to fall elsewhere (or
nowhere at all, should they fall asleep), IAN will
become aware of the pilot's inattention. How IAN
presents information to an attentive versus an
inattentive pilot should be quite different. For
example, sounding audio cues in addition to
presenting visual cues may be necessary to draw
the pilot's attention to significant information.

6. FUTURE WORK

As part of the IAN / human model project, human
in-the-Ioop experiments will be conducted using
the candidate formats down-selected by the IAN /
human model. The CATS software developed by
the OPL will be used as the primary collector of
human performance data during these
experiments. This allows us to estimate the
workload of pilots in the simulator with the new
IAN functions being tested. This provides a
quantitative way of comparing the different IAN
functions in terms of reducing workload for pilots
and indicates desirable function and display
formats.

After the IAN closed-loop model is able to
successfully start testing candidate IAN functions
and display properties, there will be a selection of
the top four candidates. These top candidates will
then be implemented in a flight simulator and
flown as part of a pilot-in-the-Ioop
experiment/study that will verify the properties and
characteristics of the IAN system. The OPL

houses and maintains several research aircraft
and flight simulators, including a 737-800 fixed
based flight deck that we will use to conduct the
human-in-the-Ioop study (Figure 3).

Figure 3: OPL's 737-800 Flight Simulation Facility

7. TEST SCENARIOS

Under consideration for scenarios to be tested
with the human model are terminal approaches. In
a NextGen aircraft, this would not typically involve
much from the human model other than to act as a
supervisor for the auto-pilOt. In order to put the
IAN system to the test, a circumstance that would
cause pilot intervention needs be a part of the
scenario. While these scenarios are still being
finalized at the time of this writing, one scenario
being developed is an aircraft receiving a STAR to
O'Hare (ORO). This scenario would involve
conflicting air traffic interfering with the intended
route to the airport. Presentation of this
information to the pilot(s) would progress from
simple messages and advisories to full warnings
(if action was not taken earlier).

8. ACKNOWLEDGEMENTS

We would like to acknowledge the National
Aeronautics and Space Administration under grant
number NNX08BA01A. We also would like to
thank Dr. Maarten Uijt DeHaag and his great team
at Ohio University. The views and conclusions
contained herein are those of the authors and
should not be interpreted as necessarily
representing the official policies or endorsements,
either expressed or implied, of NASA, the U.S.
Government, or any other organization.



150

9. REFERENCES

1. Byrne, M.D.; Kirlik, A; Fleetwood, M.D.; Huss,
D.G.; Kosorukoff, A; Lin, R.; Fick, C.S., 2004.
"A closed-loop, ACT-R approach to modeling
approach and landing with and without
synthetic vision system (SVS) technology."
Proceedings of the Human Factors and
Ergonomics Society 4fih Annual Meeting.

2. Byrne, Mike. ACT-R/PM Theoretical Notes.
Computer-Human Interaction Lab at Rice
University. 20 April 2009.

http://chil.rice.edu/projects/RPM/theory_not

es.html
3. Freund, Louis. San Jose State University.

Telephone Interview. Conducted 15 July
2009.

4. Harrison, Anthony M. jACT-R. 20 July 2009.
http://jactr.org

5. Jones, R.M. Laird, J. E., Nielsen, P.E.,
Coulter, K. J., Kenny, P., Koss, F. V. (1999).
"Automated Intelligent Pilots for Combat Flight
Simulation." AI Magazine. Spring, 1999.

6. Microsoft. "About SimConnect." 4 March 2009.
http://www.fsinsider.com/developersPages/Ab
outSimConnect.aspx .

7. NASA, Aviation Safety Program. Aeronautics
Research Mission Directorate. 20 July 2009.
http://www.aeronautics.nasa.gov/programs_av
safe.htm.

8. Pearson, Douglas. "XML Interface to Soar
(SML) Software Specification." August 28,
2008.

9. Soar Group. "Soar-EpMem Manual". 11 May
2009. http://sitemaker.umich.edu/soar/

10. Soar Technology. "Soar: A Functional
Approach to General Intelligence." Ann Arbor:
2002. http://www.soartech.com .




