
Synthesis Of Greedy Algorithms Using Dominance Relations
Srinivas Nedunuri

Dept. of Computer Sciences
University of Texas at Austinnedunuri@cs.utexas.edu Douglas R. Smith

Kestrel Institutesmith@kestrel.edu William R. Cook
Dept. of Computer Sciences
University of Texas at Austincook@cs.utexas.edu

Abstract

Greedy algorithms exploit problem structure and constraints to achieve linear-time performance.
Yet there is still no completely satisfactory way of constructing greedy algorithms. For example, the
Greedy Algorithm of Edmonds depends upon translating a problem into an algebraic structure called
a matroid, but the existence of such a translation can be as hard to determine as the existence of a
greedy algorithm itself. An alternative characterizationof greedy algorithms is in terms of dominance
relations, a well-known algorithmic technique used to prune search spaces. We demonstrate a pro-
cess by which dominance relations can be methodically derived for a number of greedy algorithms,
including activity selection, and prefix-free codes. By incorporating our approach into an existing
framework for algorithm synthesis, we demonstrate that it could be the basis for an effective engi-
neering method for greedy algorithms. We also compare our approach with other characterizations
of greedy algorithms.

1 Introduction

A greedy algorithm repeatedly makes a locally optimal choice. For some problems this can efficiently
lead to a globally optimal solution. Edmonds [Edm71] characterized greedy algorithms in terms of
matroids. In 1981, Korte and Lovasz generalized matroids to definegreedoids[KLS91]. The question of
whether a greedy algorithm exists for a particular problem reduces to whether there exists a translation
of the problem into a matroid/greedoid. However, the characterization does not provide any guidance
on how to construct this translation. In addition, there areproblems that have greedy solutions, such as
Activity Selection and Prefix-free Codes, [CLRS01], that donot seem to fit within the matroid/greedoid
model. A number of other attempts have been made to characterize greedy algorithms, [BM93, Cur03,
Cha95, HMS93] but the challenge in all of these approaches isestablishing the conditions required for a
given problem to meet that characterization. Thus, there has been very little work in helping a developer
actually construct greedy algorithms.

An alternative approach to constructing algorithms is to take a very general program schema and
specialize it with problem-specific information. The result can be a very efficient algorithm for the given
problem, [SPW95, SW08, NC09]. One such class of algorithms,Global Search with Optimality (GSO)
[Smi88], operates by controlled search, where at each levelin the search tree there are a number of
choices to be explored. We have recently [NSC10] been working on axiomatically characterizing a class
of algorithms, called Greedy Global Search (GGS), that specializes GSO, in which this collection of
choices reduces to a single locally optimal choice, which isthe essence of a greedy algorithm. Our
characterization is based on dominance relations [BS74], awell-known technique for pruning search
spaces. However, this still leaves open the issue of deriving a greedy dominance relation for a given
problem, which is what we address in this paper. We start witha specialized form of the dominance
relation in [NSC10] which is easier to work with. Our contribution is to introduce a tactic which enables
the two forms of dominance to be combined and also show how themain greediness axiom of GGS
theory can be constructively applied. We have used this approach to derive greedy solutions to a number
of problems, a couple of which are shown in this paper.

Although our derivations are currently done by hand, we haveexpressed them calculationally as
we hope to eventually provide mechanical assistance for carrying them out. In addition to providing a

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 97

https://ntrs.nasa.gov/search.jsp?R=20100018530 2019-08-29T19:04:12+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42754116?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Synthesis Of Greedy Algorithms Using Dominance Relations Nedunuri,Smith,Cook

Algorithm 1 Program Schema for GGS Theory--given x:D satisfying i returns optimal (wrt. cost fn c) z:R satisfying o(x,z)function solve :: D -> {R}solve x =if Φ(x, r̂0(x) ∧ i(x)) then (gsolve x r̂0(x) {}) else {}function gsolve :: D -> {R̂} -> {R} -> {R}gsolve x space soln =let gsubs = {s | s∈subspaces x space ∧ ∀ss ∈ subspaces x space,s δx ss}soln' = opt c (soln ∪{z | χ(z,space) ∧ o(x,z)})in if gsubs = {} then soln'else let greedy = arbPick gsubs in gsolve x greedy soln'function opt :: ((D,R) -> C) -> {R̂}-> {R̂}opt c {s} = {s}opt c {s,t} = if c(x,s)>c(x,t) then {s} else {t}function subspaces :: D -> R̂-> {R̂}subspaces x r̂ = {ŝ: ŝlx r̂∧Φ(x,ŝ)}
process for a developer to systematically construct greedyalgorithms, we also believe that our approach
has a potential pedagogical contribution. To that end, we show that, at least in the examples we consider,
our derivations are not only more systematic but also more concise than is found in algorithms textbooks.

2 Background

2.1 Greedy Global Search (GGS) Theory

GSO, the parent class of GGS, is axiomatically characterized in [Smi88]. The definition contains a
number of type and abstract operators, which must be instantiated with problem specific information.
GGS [NSC10] specializes GSO with an additional operator, and axioms. The operators of GGS theory,
which we informally describe here, are namedr̂0,χ ,∈,l,δ ,Φ along with an additional typêR ; they
parametrize the program schema associated with the GGS class (Alg. 1). D,R,C,o andc come from the
problem specification which is described in Section 2.2.

Given aspaceof candidate solutions (also called apartial solution) to a given problem (some of
which may not be optimal or even correct), a GGS program partitions the space intosubspaces(a process
known assplitting) as determined by a subspace relationlx. Of those subspaces that pass afilter (a
predicateΦ which is some weakened efficiently evaluable form of the correctness condition,o) one
subspace is greedily chosen, as determined by a dominance relation δx, and recursively searched1. If
a predicateχ on the space is satisfied, a solution is extracted from it. If that solution is correct it is
compared with the best solution found so far, using the cost functionc. The process terminates when no
space can be further partitioned. The starting point is an initial space, computed by a function̂r0, known
to contain all possible solutions to the given problem. The result, if any, is an optimal solution to the
problem. Because spaces can be very large, even infinite, they are rarely represented extensionally, but
instead by adescriptorof some typêR. A relation∈ determines whether a given solution is contained in
a space.

The process of algorithm development using this theory consists of the following steps:

1. Formally specify the problem. Instantiate the types of GGS theory.

2. Develop a domain theory (usually associativity and distributivity laws) for the problem.

1Such an approach is also the basis of branch-and-bound algorithms, common in AI

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 98

Synthesis Of Greedy Algorithms Using Dominance Relations Nedunuri,Smith,Cook

3. Instantiate the abstract search-control operators in the program schema. This is often done by a
mechanically-assisted constructive theorem proving process calledcalculation that draws on the
domain theory formulated in the previous step

4. Apply further refinements to the program such as finite differencing, context simplification, partial
evaluation, and datatype refinement to arrive at an efficient(functional) program.

Our focus in this paper is on Step 3, in particular how to derive the dominance relation, but we also
illustrate Steps 1 and 2. Step 4 is not the subject of this paper. Specware [S], a tool from Kestrel
Institute, provides support for carrying out such correctness preserving program transformations. Details
can be found in [Smi90].

2.2 Specifications

A problem specification(Step 1) is a 6-tuple〈D,R,C, i,o,c〉, whereD is an input type (the type of the
problem instance data),R an output type (the type of the result),C a cost type,i : D → Booleanis pre-
condition defining what constitutes a valid input,o : D×R→ Booleanis anoutput or post condition
characterizing the relationship between valid inputs and valid outputs. The intent is that an algorithm
for solving this problem will take any inputx : D that satisfiesi and return asolution z: R that satisfies
o (making it afeasiblesolution) for the givenx. Finally c : D×R→C is acost criterionthat the result
must minimize. When unspecified,C defaults toNat andi to true. A constraint satisfaction problemis
one in whichD specifies a set of variables and a value set for each variable,R a finite map from values
to variables, ando requires at least that each of the variables be assigned a value from its given value-set
in a way that satisfies some constraint.

2.3 Dominance Relations

A dominance relation provides a way of comparing two spaces in order to show that one will always
have a cheaper best solution than the second. The first one is said todominatethe second, and the second
can be eliminated from the search. Dominance relations havea long history in operations research,
[BS74, Iba77]. For our purposes, letẑ be a partial solution in some type of partial solutionsR̂, and let
ẑ⊕ebe a partial solution obtained by “extending” the partial solution with some extensione : t for some
problem-specific typet using an operator⊕ : R̂× t → R̂. The operator⊕ has some problem-specific
definition satisfying∀z· z∈ ẑ⊕ e⇒ z∈ ẑ. Lift o up to R̂ by definingo(x, ẑ) = ∃z · χ(z, ẑ)∧ o(x,z).
Similarly, lift c by definingc(x, ẑ) = c(x,z) exactly when∃!z · χ(z, ẑ). Then

Definition 1. Dominanceis a relationδ ⊆ D× R̂2 such that:

∀x, ẑ, ẑ′ · δ (x, ẑ, ẑ′)⇒ (∀e′ · o(x, ẑ′⊕e′)⇒∃e · o(x, ẑ⊕e) ∧ c(x, ẑ⊕e)≤ c(x, ẑ′⊕e′))

Thus,δ (x, ẑ, ẑ′) is sufficient to ensure that̂z will always lead to at least one feasible solution cheaper
than any feasible solution in̂z′. For readability,δ (x, ẑ, ẑ′) is often writtenẑδx ẑ′. Because dominance in
its most general form is difficult to demonstrate, we have defined a stronger form of dominance which is
easier to derive. This stronger form of dominance is based ontwo additional concepts: Semi-congruence
and extension dominance, which are now defined.

Definition 2. Semi-Congruenceis a relation ⊆ D× R̂2 such that

∀x,∀e, ẑ, ẑ′ · (x, ẑ, ẑ′) ⇒ o(x, ẑ′⊕e)⇒ o(x, ẑ⊕e)

That is, semi-congruence ensures that any feasible extension of ẑ′ is also a feasible extension ofẑ. For
readability, (x, ẑ, ẑ′) is written ẑ x ẑ′.

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 99

Synthesis Of Greedy Algorithms Using Dominance Relations Nedunuri,Smith,Cook

And

Definition 3. Extension Dominanceis a relationδ̂ ⊆D× R̂2 such that

∀x,e, ẑ, ẑ′ · δ̂ (x, ẑ, ẑ′)′⇒ o(x, ẑ⊕e) ∧ o(x, ẑ′⊕e)⇒ c(x, ẑ⊕e)≤ c(x, ẑ′⊕e)

That is, extension dominance ensures that one feasible completion of a partial solution is no more expen-
sive than the same feasible completion of another partial solution. For readability,̂δ (x, ẑ, ẑ′) is written
ẑδ̂x ẑ′. Note that both x and δ̂x are pre-orders. The following theorem and proposition showhow the
two concepts are combined.

Theorem 2.1. Let c∗ denote the cost of the best feasible solution in a space. If is a semi-congruence
relation, andδ̂ is an extension dominance relation, then

∀x, ẑ, ẑ′ · ẑδ̂xẑ
′∧ ẑ x ẑ′⇒ c∗(x, ẑ)≤ c∗(x, ẑ′)

Proof. See Appendix

It is not difficult to see that̂δx∩ x is a dominance relation.The following proposition allows us
to quickly get an extension dominance relation for many problems. We assume we can apply the cost
function to partial solutions.

Proposition 1. If the cost domain C is a numeric domain (such as Integer or Real) and c(x, ẑ⊕e) can

be expressed aŝc(x, ẑ)+k(x,e) for some functionŝc and k then̂δx whereẑδ̂x ẑ′ = ĉ(x, ẑ)≤ ĉ(x, ẑ′) is an
extension dominance relation.

Proof. See Appendix

In addition to the dominance requirement from Theorem 2.1, there is an additional condition onδ ,
[NSC10]:

i(x)∧ (∃z∈ r̂ · o(x,z)) ⇒
(∃z∗ · e(z∗, r̂)∧o(x,z∗)∧c(x,z∗) = c∗(r̂))∨∃ŝ∗lx r̂,∀ŝlx r̂ · ŝ∗ δx ŝ (2.1)

This states that, assuming a valid inputx, an optimal feasible solutionz∗ in a spacêr that contains feasible
solutions must be immediately extractable or a subspaceŝ∗ of r̂ must dominate all the subspaces ofr̂.

2.4 Notation

The following notation is used throughout the paper:7→ is to be read as “instantiates to”. A type decla-
ration of the form{a : T,b : U , · · · } whereT andU are types denotes a product type in which the fields
are accessed bya,b, . . . using a “dot” notationo.a,o.b, etc. An instance of this type can be constructed
by {a = v,b = w, . . .} wherev,w, · · · are values of typeT,U, · · · resp. The notationo{ai = v,a j = w, . . .}
denotes the object identical too except fieldai has the valuev, a j hasw, etc. [T] is the type of lists of
elements of typeT, asi accesses theith element of a listas, [a] constructs a singleton list with the element
a, [a | as] creates a list in which the elementa is prefixed onto the listas, andas++bsis the concatenation
of lists asandbs, as−bs is the list resulting from removing fromasall elements that occur inbs. first
andlast are defined so that for a non-empty listas= first(as)++[last(as)]. Similarly, {T} is the type of
sets of elements of typeT. T�U is the type of finite maps fromT to U .

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 100

Synthesis Of Greedy Algorithms Using Dominance Relations Nedunuri,Smith,Cook

3 A Process For Deriving Greedy Algorithms

We first illustrate the process of calculating andδ̂ by reasoning backwards from their definitions on a
simple example.

Example 1. Activity Selection Problem [CLRS01]

Suppose we have a setS= {ai ,a2, . . . ,an} of nproposed activities that wish to use a resource,
such as a lecture hall, which can be used by only one activity at a time. Each activityai has a
start timesi and finish timefi where 0≤ si < fi < ∞. If selected, activityai takes place in the
half-open time interval[si , fi). Activities ai anda j are compatible if the intervals[si , fi) and
[sj , f j) do not overlap. The activity selection problem is to select amaximum-size subset of
mutually compatible activities.

Step 1 is to formally specify the problem. The input is a set ofactivities and a solution is subset of that
set. Every activity is uniquely identified by anid and a start time (s) and finish time (f). The output
condition requires that activities must be chosen from the input set, and that no two activities overlap.
For convenience we define a precedence operator� :

D 7→ {Activity}
Activity= {id : Nat,s : Nat, f : Nat}

R 7→ {Activity}
o 7→ λ (x,z) · noOvp(x,z)∧z⊆ x

noOvp(x,z) .= ∀i, j ∈ z · i 6= j ⇒ i � j ∨ j � i
i � j = i. f ≤ j.s

c 7→ λ (x,z) · ‖z‖

In order to devise a greedy algorithm, the question is what should the basis be for an optimal local choice?
Should we always pick the activity that starts first? Or the activity that starts last? Or the activity that
overlaps the least number of other activities? Or somethingelse? We now show how to systematically
arrive at the answer.

Most of the types and operators of GGS theory are straightforward to instantiate. We will just set
R̂ to be the same asR. The initial space is just the empty set. The subspace relation l splits a space
by selecting an unchosen activity if one exists and adding itto the existing partial solution. The extract
predicateχ can extract a solution at any time:

R̂ 7→ R
r̂0 7→ λx · /0
l 7→ λ (x, ẑ, ẑ′) · ∃a∈ x− ẑ · ẑ′ = ẑ∪{a}
χ 7→ λ (z, ẑ) · z= ẑ
Φ 7→ ?
δ 7→ ?

The tricky bit is finding bindings forδ andΦ to complete the instantiation, which we will do in step 3.
First, in step 2 we explore the problem and try and formulate adomain theory. The composition operator
⊕ is just∪. The� relation can be lifted up to sets of activities by defining thestart and finish times of a
set of activities, namely(u⊕v). f = max{u. f ,v. f} and(u⊕v).s= min{u.s,v.s}. The following theorem
will come in handy:

Theorem 3.1. noOvp(s) ⇔∃s1, . . .sn ⊆ s · s =
⋃

1≤i≤nsi ∧ (∀i · 1≤ i < n⇒ si � si+1∧ noOvp(si))∧
noOvp(sn)

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 101

Synthesis Of Greedy Algorithms Using Dominance Relations Nedunuri,Smith,Cook

o(x, ŷ⊕{a}⊕e)
= {defn}
noOvp(ŷ∪{a}∪e)∧ ŷ∪{a}∪e⊆ x
⇐{Theorem 3.1 above}
ŷ� {a} � e∧noOvp(ŷ)∧noOvp(e)∧ ŷ∪{a}∪e⊆ x
⇐{noOvp(ŷ)∧noOvp(e)∧ ŷ∪e⊆ x by assumption}
ŷ� {a} � e∧a∈ x
⇐{ŷ� {a′} � e, apply transitivity}
ŷ� {a}∧a. f ≤ a′. f ∧a∈ x

Figure 3.1: Derivation of semi-congruence relation for Activity Selection

This says that any set of non-overlapping activities can be partitioned into internally non-overlapping
subsets that follow each other serially.

For Step 3, we instantiate Definition 2 and reason backwards from its consequent, while assuming the
antecedent. Each step of the derivation is accompanied by a hint (in {}) that justifies the step. Additional
assumptions made along the way form the required semi-congruence condition. First note that a solution
z′ 6= /0 can be expressed asŷ∪{a′}∪eor alternativelŷy⊕{a′}⊕e, for somêy,a′,e, such that, by Theorem
3.1,ŷ� {a′} � e. Now consider the feasibility of a solution̂y⊕{a}⊕e, obtained by switching outa′ for
somea, assumingo(x, ŷ⊕{a′}⊕e) as shown in Fig. 3.1

That is, ŷ⊕ a can be feasibly extended with the same feasible set of activities asŷ⊕ a′ providedŷ
finishes beforea starts anda finishes beforea′ finishes anda is legal. By lettingŷ⊕ a and ŷ⊕ a′ be
subspaces following a split of̂y this forms a semi-congruence condition betweenŷ⊕a andŷ⊕a′. Since
c is a distributive cost function, and all subspaces of a givenspace are the same size, the dominance
relation equals the semi-congruence relation, by Proposition 1. Next, instantiating condition 2.1, we
need to show that if̂y contains feasible solutions, then in the case that any solution immediately extracted
from ŷ is not optimal, (ie. the optimal lies in a subspace ofŷ) there isalwaysa subspacêy⊕ a that
dominates every extension ofŷ. Unfortunately, the dominance condition derived is too strong to be able
to establish the instantiation of 2.1. Logically, what we established is asufficientdominance test. That
is ŷ� {a}∧a. f ≤ a′. f ∧a∈ x⇒ ŷ⊕{a}δx ŷ⊕{a′}. How can we weaken it? This is where the filterΦ
comes in. The following theorem shows how to construct a simple dominance relation from a filter:

Theorem 3.2. Given a filterΦ satisfying∀ẑ′ · (∃z∈ ẑ′ · o(x,z))⇒Φ(x, ẑ′), ¬Φ(x, ẑ′)⇒∀ẑ · ẑδx ẑ′.

The theorem says that a space that does not pass the necessaryfilter is dominated by any space.On
a subspacêy⊕a′, one such filter (that can be mechanically derived by a tool such as KIDS [Smi90]) is
ŷ� {a′}. Now, we can combine both dominance tests with the 1st order variant of the rule(p⇒ r∧q⇒
r)⇒ (p∨q⇒ r) , reasoning backwards as we did above as shown in Fig. 3.2.

The binding formabove shows that 2.1 is satisfied by picking an activity inx− ŷ with the earliest fin-
ish time, after overlapping activities have been filtered out. Note how in verifying 2.1 we have extracted
a witness which is the greedy choice. This pattern of witnessfinding is common across many examples.
The program schema in Alg. 1 can now be instantiated into a greedy solution to the Activity Selection
Problem.

In contrast to our derivation, the solution presented in [CLRS01] starts off by assuming the tasks are
sorted in order of finishing time. Only after reading the pseudocode and a proof is the reason for this
clear (though how to have thought of it a priori is still not!). For us, the condition falls out of the process
of investigating a possible dominance relation. Note that had we partitioned the solution̂y⊕{a′}⊕ e

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 102

Synthesis Of Greedy Algorithms Using Dominance Relations Nedunuri,Smith,Cook

∃a∈ x− ŷ,∀a′ ∈ x− ŷ · ŷ⊕aδx ŷ⊕a′

⇐{ŷ� {a}∧a. f ≤ a′. f ∧a∈ x⇒ ŷ⊕{a}δx ŷ⊕{a′} & ŷ � {a′} ⇒ ŷ⊕{a}δx ŷ⊕{a′}}
∃a∈ x− ŷ,∀a′ ∈ x− ŷ · ŷ � {a′}∨ (ŷ� {a}∧a. f ≤ a′. f)
= {logic}
∃a∈ x− ŷ · ŷ� {a}∧∀a′ ∈ x− ŷ · ŷ� {a′}⇒ a. f ≤ a′. f
= {logic}
∃a∈ x− ŷ · ŷ� {a}∧∀a′ ∈ x− ŷ∩{b | ŷ� {b}} · a. f ≤ a′. f
= {definea≤ b = a. f ≤ b. f}
∃a∈ x− ŷ · ŷ� {a}∧∀a′ ∈ x− ŷ∩{b | ŷ� {b}} · m≤ a′⇒ a. f ≤ a′. f
wherem= min≤ x− ŷ∩{b | ŷ� {b}}
= {law for monotonep : (∀x∈ S · m≤ x⇒ p(x)) ≡ p(m)}
∃a∈ x− ŷ · ŷ� {a}∧a. f ≤m. f wherem= min≤ x− ŷ∩{b | ŷ� {b}}
= {law for anti-monotonep : (∃x∈ S · m≤ x∧ p(x))≡ p(m)}
m. f ≤m. f wherem= min≤ x− ŷ∩{b | ŷ� {b}}
=
true

Figure 3.2:

differently ase� {a′} � ŷ, we would have arrived at an another algorithm that grows theresult going
backwards rather than forwards, which is an alternative to the solution described in [CLRS01].

Next we apply our process to the derivation of a solution to a fairly non-trivial problem, that of
determining optimum prefix-free codes.

Example 2. Prefix-Free Codes

Devise an encoding, as a binary string, for each of the characters in a given text file so as to
minimize the overall size of the file. For ease of decoding, the code is required to beprefix-
free, that is no encoding of a character is the prefix of the encoding of another character (e.g.
assigning “0” to ’a’ and “01” to ’b’ would not be allowed).

D.A. Huffman devised an efficient greedy algorithm for this in 1952. We show how it can be system-
atically derived. Step 1 is to specify the problem. The inputis a table of character frequencies, and the
result is a table of bit strings, one for each character in theinput, satisfying the prefix free property.

D 7→ Char� Frequency
Char= Frequency= Nat

R 7→ Char� [Boolean]
o 7→ λx,z. dom(z) = dom(x)∧∀c 6= c′ ∈ dom(z) · ¬prefixOf(z(c),z(c′))

prefixOf(s, t) = ∃u · t = s++u∨s= t++u
c 7→ λx,z. ∑c∈dom(z) ‖z(c)‖×x(c)

Often a good way of ensuring a condition is to fold it into a data structure. Then the rules for
constructing that data structure ensure that the conditionis automatically satisfied. It turns out that a
binary tree in which the leaves are the letters, and the path from the root to the leaf provides the code for
that letter, ensures that the resulting codes are automatically prefix-free2. One obvious way to construct

2It is possible to systematically derive this datatype by starting with an obvious datatype such as a set of binary stringsand
folding in a required property such as prefix-freeness. However, we do not pursue that here

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 103

Synthesis Of Greedy Algorithms Using Dominance Relations Nedunuri,Smith,Cook

s
w

t

Extension, e

Partial
solution

[s,w,t,u,v] u
v

a
c

b

Figure 3.3: An extension applied to a partial solution with 5trees

such a tree is by merging together smaller trees. This will bethe basis of thel relation: the different
subspaces arise from thet(t−1)/2 choices of pairs of trees to merge, wheret is the number of trees at
any point in the search. The starting pointr̂0 is the ordered collection of leaves representing the letters.
The extract predicateχ checks there is only one tree left and generates the path to each leaf (character)
of the tree, which becomes the code for that character. With this information, we can instantiate the
remaining terms in GGS, except forδ (〈〉 is the non-elementaryBinTreeconstructor)

R̂ 7→ [BinTree]
r̂0 7→ λx · asList(dom(x))
l 7→ λ (x, ẑ, ẑ′) · ∃s, t ∈ ẑ. ẑ′ = [〈s, t〉 | (ẑ−s− t)]
χ 7→ λ (z, ẑ) · ‖ẑ‖= 1∧∀p∈ paths(ẑ) · z(last(p)) = f irst(p)

paths(〈s, t〉) = (mapprefix0 paths(s))++(mapprefix1 paths(t))
paths(l) = [l]
prefix0(p) = [0 | p], prefix1(p) = [1 | p]

Φ 7→ true
δ 7→ ?

One interesting difference between this problem and the Activity Selection problem is that every
subspace leads to a feasible solution. For that reason,Φ is just true. It is not obvious what the crite-
rion should be for a greedy choice. Should it be to combine thetrees with the least number of leaves,
or those with the least height, or something else? To proceedwith our process and apply Defs. 2 and
3, we will define⊕ as a left-associative binary operator whose net effect is tomerge twoBinTrees
from its left argument together into anotherBinTree. The right argument specifies which trees are to
be merged. That is,̂z⊕ (i, j) = [

〈
ẑi , ẑj

〉
| ẑ− ẑi − ẑj]. For example, Fig 3.3 shows the merger of trees

s andt and the merger of treesu andv in a partial solution̂z to form two subtrees with rootsa andb.
This is described by the expression(ẑ⊕ (1,3))⊕ (3,4) = ẑ⊕ (1,3)⊕ (3,4). The extension in this case is
(1,3)⊕ (3,4). A semi-congruence condition is shown in Fig. 3.4. Assumingo(x, ẑ′⊕e) and a definition
of lvs(ẑ) = maplast(paths(ẑ)). (Note we omit the remainder of the output condition since itis implied by
the Binary Tree construction) This says that any two partialsolutions of the same size are extensible with
the same feasible extension. This semi-congruence condition is trivially satisfied by any two subspaces
of a split. For the extension dominance condition, it is easyto show thatc(x, ẑ⊕e) can be expressed as

ĉ(x, ẑ)+ k(x,e) for somek whereĉ(x, ẑ) = ∑|lvs(ẑ)|
i=1 d(ẑ)(i) · x(lvs(ẑ)i) whered(ẑ) is a function returning

the depth of its argument leaf within the treeẑ, and therefore by Prop. 1, it is sufficient to determine
conditions under whicĥc(x, ẑ) ≤ ĉ(x, ẑ′). However, if we try to calculate such a condition as we have
done for semi-congruence we will end up with an expression that involves the depths of individual leaves
in the trees. Is there a simpler form? We have been investigating ways to provide a developer with hints
about how to proceed. We call thesetactics. In earlier work [NSC09] we introduced tactics for the
derivation of operators for non-optimization problems. Wenow introduce a tactic for dominance rela-
tions. We have used this tactic to derive greedy solutions for a number of problems, including Machine
Scheduling, several variations on the Maximum Segment Sum Problem,[NC09], Minimum Spanning

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 104

Synthesis Of Greedy Algorithms Using Dominance Relations Nedunuri,Smith,Cook

o(x, ẑ⊕e)
= {defn ofo on R̂}
∃z · χ(z, ẑ⊕e)∧o(x,z)
= {defn ofχ ,o}
∃z · ‖ẑ⊕e‖= 1∧∀p∈ paths(ẑ⊕e) · z(last(p)) = f irst(p)∧dom(z) = x∧ ·· ·
= {intro defn}
‖ẑ⊕e‖= 1∧dom(z) = x∧ ·· ·
wherez= {last(p) 7→ f irst(p) | p∈ paths(ẑ⊕e)}
⇐ {o(x, ẑ′⊕e)⇒ dom(z′) = x wherez= {last(p) 7→ f irst(p) | p∈ paths(ẑ′⊕e)}}
‖ẑ⊕e‖= 1∧asSet(lvs(ẑ)) = asSet(lvs(ẑ′))
= {split does not alter set of leaves}
‖ẑ⊕e‖= 1
= {‖ẑ⊕e‖= ‖ẑ‖−‖e‖ ,‖ẑ′⊕e‖= 1}
‖ẑ‖= ‖ẑ′‖

Figure 3.4: Derivation of extension dominance relation forHuffman problem

c(ẑ)≤ c(ẑ′)
= {unfold defn ofc}

∑|lvs(s)|
i=1 (d(s)(i)+h) ·x(lvs(s)i)+ ∑|lvs(t)|

i=1 (d(t)(i)+h) ·x(lvs(t)i)
+∑|lvs(u)|

i=1 (d(u)(i)+2) ·x(lvs(u)i)+ ∑|lvs(v)|
i=1 (d(v)(i)+2) ·x(lvs(v)i)

≤
∑|lvs(u)|

i=1 (d(u)(i)+h) ·x(lvs(u)i)+ ∑|lvs(v)|
i=1 (d(v)(i)+h) ·x(lvs(v)i)

+∑|lvs(s)|
i=1 (d(s)(i)+2) ·x(lvs(s)i)+ ∑|lvs(t)|

i=1 (d(t)(i)+2) ·x(lvs(t)i)
= {algebra}

(h−2) ·∑|lvs(s)|
i=1 x(lvs(s)i)+ (h−2) ·∑|lvs(t)|

i=1 x(lvs(t)i)
≤ (h−2) ·∑|lvs(u)|

i=1 x(lvs(u)i)+ (h−2) ·∑|lvs(v)|
i=1 x(lvs(v)i)

⇐ {algebra}
∑|lvs(s)|

i=1 x(lvs(s)i)+ ∑|lvs(t)|
i=1 x(lvs(t)i)≤ ∑|lvs(u)|

i=1 x(lvs(u))+∑|lvs(v)|
i=1 x(lvs(v)i)∧h > 2

Figure 3.5:

Tree, and Professor Midas’ Driving Problem.Exchange Tactic : Try to derive a dominance relation by comparing a partial solution ŷ⊕a⊕α ⊕b (as-
suming some appropriate parenthesization of the expression) to a variant obtained by exchanging a pair
of terms, that is,̂y⊕b⊕α⊕a, with the same parenthesization

Given a partial solution̂y, suppose treess andt are merged first, and at some later point the tree con-
taining s andt is merged with a tree formed from mergingu andv (treesatcubvin Fig. 3.3), forming
a partial solution̂z. Applying the exchange tactic, when is this better than a partial solution ẑ′ resulting
from swapping the mergers in̂z, ie mergingu andv first and thensandt? Letd(T)i be the depth of leaf
i in a treeT, and leth be the depth ofs (resp.u) from the grandparent ofu (resp. s) in ẑ (respẑ′), (the
distance fromc to the root ofs in Fig. 3.3). The derivation of the extension dominance relation is shown
in Fig. 3.5.

That is, if the sum of the frequencies of the leaves ofs and t is no greater than the sum of the
frequencies of leaves ofu andv thens and t should be merged beforeu andv. (The conditionh > 2

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 105

Synthesis Of Greedy Algorithms Using Dominance Relations Nedunuri,Smith,Cook

simply means that no dominance relation holds when〈u,v〉 is immediately merged with〈s, t〉. It is clear
in that case that the tree is balanced). How does this help us derive a dominance relation between two
subspaces after a split? The following theorem shows that the above condition serves as a dominance
relation between the two subspaces[〈s, t〉 | (ŷ−s− t)] and[〈u,v〉 | (ŷ−u−v)]:

Theorem 3.3. Given a GGS theory for a constraint satisfaction problem,(∃α · (ŷ⊕a⊕α ⊕b)δx (ŷ⊕
b⊕α⊕a))⇒ ŷ⊕a δx ŷ⊕b

By using a witness finding technique to verify condition 2.1 as we did for Activity Selection, we
will find that the greedy choice is just the pair of trees whosesums of letter frequencies is the least.
This is the same criterion used by Huffman’s algorithm. Of course, for efficiency, in the standard al-
gorithm, a stronger dominance test is used:∑|lvs(s)|

i=1 x(lvs(s)i) ≤ ∑|lvs(u)|
i=1 x(lvs(u)i)∧∑|lvs(t)|

i=1 x(lvs(t)i) ≤
∑|lvs(v)|

i=1 x(lvs(v)i) and the sums are maintained at the roots of the trees as the algorithm progresses. We
would automatically arrive at a similar procedure after applying finite differencing transforms, [Smi90,
NC09]. In contrast to our stepwise derivation, in most presentations of Huffman’s algorithm, (e.g.
[CLRS01]) the solution is presented first, followed by an explanation of the pseudocode, and then several
pages of lemmas and theorems justifying the correctness of the algorithm. The drawback of the conven-
tional approach is that the insights that went into the original algorithm development are lost, and have to
be reconstructed when variants of the problem arise. A process for greedy algorithm development, such
the one we have proposed here, is intended to remedy that problem.

4 Related Work

Curtis [Cur03] has a classification scheme for greedy algorithms. Each class has a some conditions that
must be met for a given algorithm to belong to that class. The greedy algorithm is then automatically
correct and optimal. Unlike Curtis, we are not attempting a classification scheme. Our goal is to simplify
the process of creating greedy algorithms. For that reason,we present derivations in a calculational style
whenever the exposition is clear. In contrast, Curtis derives the “meta-level” proofs, namely that the
conditions attached to a given algorithm class in the hierarchy are indeed correct, calculationally but the
“object-level” proofs, namely those showing a given problem formulation does indeed meet those con-
ditions, are done informally. We believe that this should bethe other way around. The meta-level proofs
are (hopefully) carried out only a few times and are checked by many, but the object level proofs are car-
ried out by individual developers, and are therefore the ones which ought to be done calculationally, not
only to keep the developer from making mistakes but also witha view to providing mechanical assistance
(as was done in KIDS, a predecessor of Specware). Another difference between our work and Curtis is
that while Curtis’s work is targeted specifically at greedy algorithms, for us greedy algorithms are just a
special case of a more general problem of deriving effectiveglobal search algorithms. In the case that the
dominance relation really does not lead to a singleton choice at each split, it can still prove to be highly
effective. This was recently demonstrated on some Segment Sum problems we looked at, [NC09]. Al-
though the dominance relation we derived for those problem did not reduce to a greedy choice, it was
nonetheless key to reducing the complexity of the search (the width of the search tree was kept constant)
and led to a very efficient breadth-first solution that was much faster than comparable solutions derived
by program transformation.

Another approach has been taken by Bird and de Moor [BM93] whoshow that under certain con-
ditions a dynamic programming algorithm simplifies into a greedy algorithm. Our characterization in
[NSC10] can be considered an analogous specialization of (aform of) branch-and-bound. The difference
is that we do not require calculation of the entire program, but specific operators, which is a less onerous
task.

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 106

Synthesis Of Greedy Algorithms Using Dominance Relations Nedunuri,Smith,Cook

Helman [Hel89] devised a framework that unified branch-and-bound and dynamic programming.
The framework also incorporated dominance relations. However, Helman’s goal was the unification of
the two paradigms, and not the process by which algorithms can be calculated. In fact the unification,
though providing a very important insight that the two paradigms are related at a higher level, arguably
makes the derivation of particular algorithms harder.

Charlier [Cha95], also building on Smith’s work, proposed anew algorithm class for greedy algo-
rithms that embodied the matroid axioms. Using this class, he was able to synthesize Kruskal’s MST
algorithm and a solution to the 1/1/∑Ti scheduling problem. However he reported difficulty with the
equivalent of the Augmentation (also called Exchange) axiom. The difficulty with a new algorithm class
is often the lack of a repeatable process for synthesizing algorithms in that class, and this would appear
to be what Charlier ran up against. In contrast, we build on top of the GSO class, adding only what is
necessary for our purposes. As a result we can handle a wider class of algorithms than would belong in
Charlier’s Greedy class, such as Prim’s and Huffman’s.

References

[BM93] R. S. Bird and O. De Moor. From dynamic programming to greedy algorithms. InFormal Program
Development, volume 755 of Lecture Notes in Computer Science, pages 43–61. Springer-Verlag, 1993.

[BS74] K.R. Baker and Z-S. Su. Sequencing with due-dates andearly start times to minimize maximum
tardiness.Naval Research Logistics, 21(1):171–176, 1974.

[Cha95] B. Charlier. The greedy algorithms class: formalization, synthesis and generalization. Technical report,
1995.

[CLRS01] T Cormen, C Leiserson, R Rivest, and C Stein.Introduction to Algorithms. MIT Press, 2nd edition,
2001.

[Cur03] S. A. Curtis. The classification of greedy algorithms. Sci. Comput. Program., 49(1-3):125–157, 2003.

[Edm71] J. Edmonds. Matroids and the greedy algorithm.Math. Programming, 1(1):127–136, 1971.

[Hel89] P. Helman. A common schema for dynamic programming and branch and bound algorithms.J. ACM,
36(1):97–128, 1989.

[HMS93] P. Helman, B. M. E. Moret, and H. D. Shapiro. An exact characterization of greedy structures.SIAM
J. on Discrete Math., 6:274–283, 1993.

[Iba77] T. Ibaraki. The power of dominance relations in branch-and-bound algorithms.J. ACM, 24(2):264–
279, 1977.

[KLS91] B. Korte, L. Lovasz, and R. Schrader.Greedoids. Springer-Verlag, 1991.

[NC09] S. Nedunuri and W.R. Cook. Synthesis of fast programsfor maximum segment sum problems. InIntl.
Conf. on Generative Programming and Component Engineering(GPCE), Oct. 2009.

[NSC09] S. Nedunuri, D. R. Smith, and W. R. Cook. Tactical synthesis of efficient global search algorithms. In
Proc. NASA Symposium on Formal Methods, April 2009.

[NSC10] S. Nedunuri, D. R. Smith, and W. R. Cook. A class of greedy algorithms and its relation to greedoids.
Submitted to: Intl. Colloq. on Theoretical Aspects of Computing (ICTAC), 2010.

[S] Specware. http://www.specware.org.

[Smi88] D. R. Smith. Structure and design of global search algorithms. Tech. Rep. Kes.U.87.12, Kestrel
Institute, 1988.

[Smi90] D. R. Smith. Kids: A semi-automatic program development system.IEEE Trans. on Soft. Eng., Spec.
Issue on Formal Methods, 16(9):1024–1043, September 1990.

[SPW95] D. R. Smith, E. A. Parra, and S. J. Westfold. Synthesis of high-performance transportation schedulers.
Technical report, Kestrel Institute, 1995.

[SW08] D. R. Smith and S. Westfold. Synthesis of propositional satisfiability solvers. Final proj. report, Kestrel
Institute, 2008.

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 107

Synthesis Of Greedy Algorithms Using Dominance Relations Nedunuri,Smith,Cook

5 Appendix: Proofs of Theorems

5.1 Proofs of Theorem 2.1 and Proposition 1:

Theorem 2.1: If is a semi-congruence relation, andδ̂ is a extension dominance relation, then

∀x,∀ẑ, ẑ′ · ẑδ̂xẑ
′∧ ẑ x ẑ′⇒ c∗(x, ẑ)≤ c∗(x, ẑ′)

Proof. By contradiction. (input argumentx dropped for readability). Suppose thatẑδ̂xẑ′ ∧ ẑ x ẑ′ but
∃z′∗ ∈ ẑ′, O(z′∗)∧c(z′∗) < c∗(ẑ), that isc(z′∗) < c(z) for any feasiblez∈ ẑ . We can writez′∗ asẑ′⊕e for
somee. Sincez′∗ is cheaper than any feasiblez∈ ẑ, specifically it is cheaper thanz= ẑ⊕e, which by the
semi-congruence assumption and Definition 2, is feasible. But by the extension dominance assumption,
and Definition 3, this meansc(z) ≤ c(z′∗), contradicting the initial assumption.

Proposition 1: If the cost domainC is a numeric domain (such asIntegeror Real) andc(x, ẑ⊕ e)
can be expressed asĉ(x, ẑ)+k(x,e) for some functionŝc andk thenδ̂x whereẑδ̂x ẑ′ = ĉ(x, ẑ)≤ ĉ(x, ẑ′) is
an extension dominance relation

Proof. By showing that Definition 3 is satisfied.c(ẑ⊕ e) ≤ c(ẑ′⊕ e) = ĉ(ẑ) + k(e) ≤ ĉ(ẑ′) + k(e) by
distributivity of c which is justc(ẑ)≤ c(ẑ′) after arithmetic.

Proceedings of NFM 2010, April 13-15, 2010, Washington D.C., USA. 108

