View metadata, citation and similar papers at core.ac.uk

Reduced Order Modeling of Incompressible Flows

B. T. Helenbrook

Mech. & Aero. Eng. Dept., Clarkson University

POD-based Reduced Order Modeling

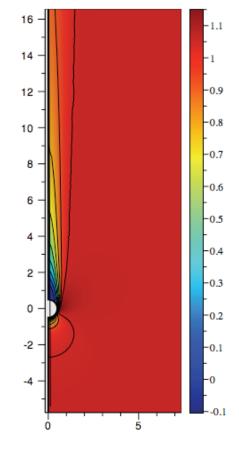
- ► Develop low-dimensional model that can represent the dynamics of a higher dimensional system
- ► Uses:
 - Models for real-time control
 - Sub-model generation
- ► Difficulties:
 - Round-off sensitive
 - Unstable / poorly conditioned
 - Units inconsistency for systems

Particle Modeling

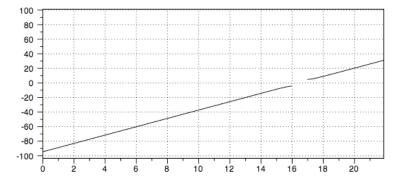
► Incompressible, flow over a sphere with variable inlet velocity

$$u = u_{\infty} \left(1 + A \sin(2\pi t/T) \right)$$

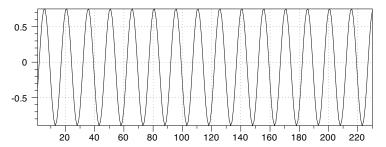
► Axial Velocity



► Centerline pressure



► Force



Generate Modes

- ▶ Find decomposition $\sum_{j} a_{j}(t)\phi_{j}(x)$ to represent solution u(x,t)
- Choose optimal functions by maximizing mean square projection:

$$\Pi(\phi) = \frac{\langle (\phi, u)^2 \rangle}{(\phi, \phi)}$$

► Some trouble:

$$\vec{u} = \left[\begin{array}{c} u_r \\ u_z \\ p \end{array} \right]$$

$$\Pi(\phi) = rac{\langle (ec{\phi}, ec{u})^2
angle}{(ec{\phi}, ec{\phi})}$$

Dimensionally inconsistent?

Possible Choices for \vec{u}

► Depends on non-dimensionalization:

$$\vec{u} = (u_r(\vec{x}, t), u_z(\vec{x}, t), p(\vec{x}, t)/(\rho u_\infty))$$

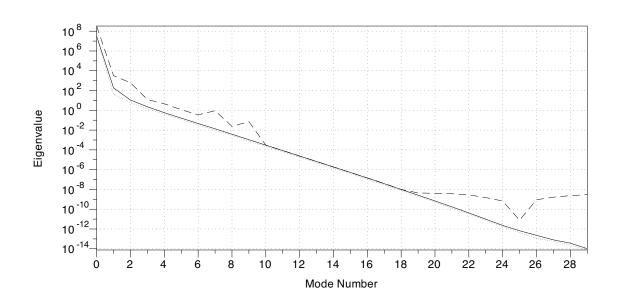
Could be imaginary:

$$\vec{u} = \left(u_r(\vec{x},t), u_z(\vec{x},t), \sqrt{2(p(\vec{x},t))/\rho}\right)$$

Also has arbitrary constant:

$$\vec{u} = \left(u_r(\vec{x}, t), u_z(\vec{x}, t), \sqrt{2(p(\vec{x}, t) + p_0)/\rho}\right)$$

Eigenvalues of Steady Problem



- ▶ 31 steady snapshots from Re = 0.1 to 100
- Eigenvalues exponentially decay
- Small number of modes can capture most of the energy
- ► Last five modes of Lapack DGESVD are negative

Generation of Reduced Order Model

► Failure of Galerkin Projection

$$\int_{\Omega} \left[\phi_r, \phi_z, \phi_p \right] \left[\begin{array}{c} \frac{\partial \vec{V}}{\partial t} + (\vec{V} \cdot \nabla) \vec{V} = -\nabla p + \mu \nabla^2 \vec{v} \\ \nabla \cdot \vec{v} \end{array} \right] d\Omega = 0$$

- ► Modes are all incompressible
- Continuity is always zero
- ightharpoonup ∇p term integrated by parts is zero
- Pressure modes may be undetermined

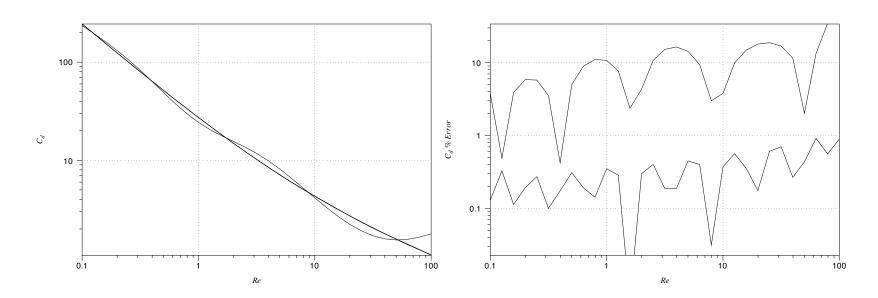
SUPG Projection

$$\sum_{e=1}^{n_{el}} \left\{ \int \int_{\Omega} \left[-\frac{\partial \vec{\phi}^T}{\partial \xi} \vec{e} - \frac{\partial \vec{\phi}^T}{\partial \eta} \vec{f} \right] d\Omega + \int_{\Gamma} \vec{\phi}^T \left(\vec{e}, \vec{f} \right) \cdot \vec{n}_{\Gamma} d\Gamma \right.$$

$$+ \int \int_{\Omega} \left[\frac{\partial \vec{\phi}^T}{\partial \xi} \frac{\partial \vec{e}}{\partial \vec{u}} + \frac{\partial \vec{\phi}^T}{\partial \eta} \frac{\partial \vec{f}}{\partial \vec{u}} \right] T \left[\frac{\partial}{\partial \xi} \vec{e} + \frac{\partial}{\partial \eta} \vec{f} \right] d\Omega \right\} = 0 \quad \forall \vec{\phi}$$

- ► Streamwise-upwind-Petrov-Galerkin variational approach
- \blacktriangleright Allows us to seek u_r, u_z, p with no pressure decoupling
- Upwinds all the terms in the governing equations consistently
- ► Results in a system of *M* ODE's (Solved using DIRK & Newton-Rhapson)

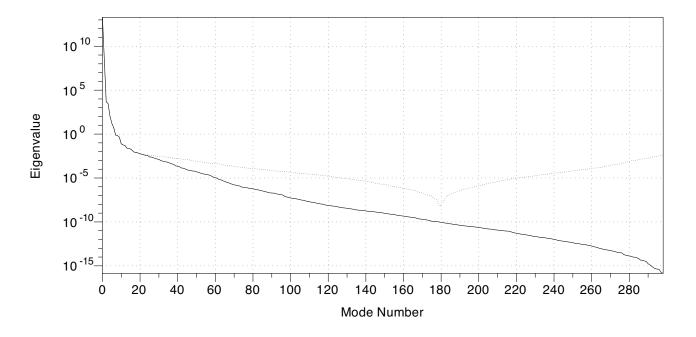
Drag Results - Steady



- ► Accuracy of drag prediction versus *Re* for 5 and 10 modes
- ➤ Significant improvement over DNS (10 vs. 21,000 degrees of freedom)
- ► Close to empirical correlations in performance
- ► All three sets of modes perform similarly

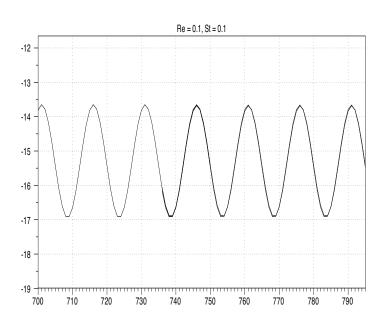
Unsteady Data

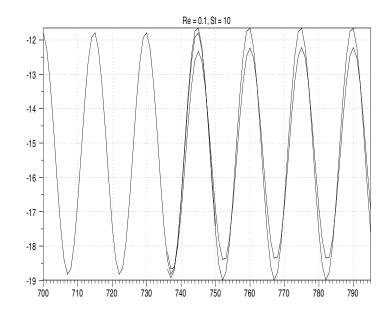
- $ightharpoonup Re = 0.1, 1, 10, 100 \times St = 0.1, 0.5, 1, 2, 10$
- ▶ 15 time-steps/period, 20x15 snapshots

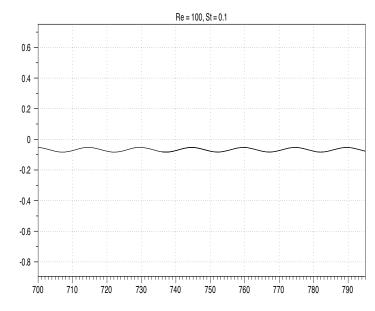


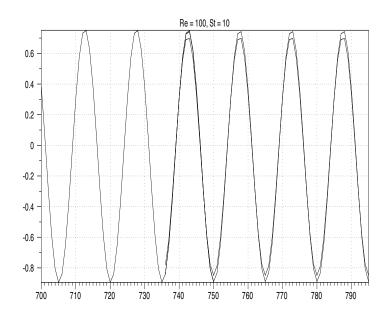
- ightharpoonup All eigenvalues after pprox 60 are probably round-off dominated.
- ► Using Lapack DGESVD, all modes beyond 180 have negative eigenvalues

Unsteady Results

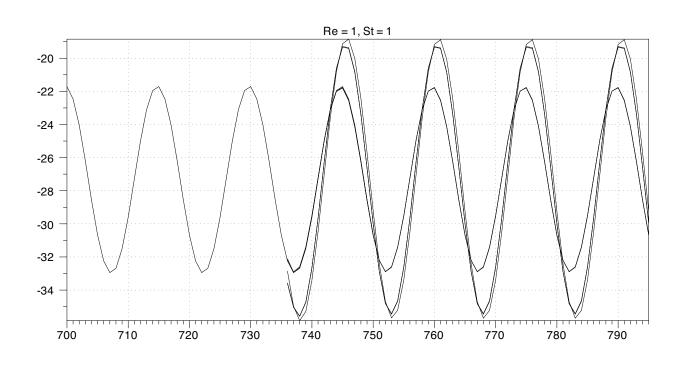








Comparison of Modes



- ightharpoonup Re = 1 and St = 1.
- ► SVD modes seem ok in spite of eigenvalue distribution.
- ▶ Low Mach # modes give similar results with 20 modes, but for 60 modes Newton diverges.

Conclusions

- ► The devil is in the details!!!
 - Need stable numerical methods
 - ► Round off error can be considerable
 - Not convinced modes are correct for incompressible flow
- Nonetheless, can derive compact and accurate reduced-order models.
- Can be used to generate actuator models or full flow-field models