363

Some Issues Related to Integrating Active Flow Control with Flight Control

David Williams, Illinois Institute Technology Tim Colonius, California Institute Technology Gilead Tadmor, Northeastern University Clancy Rowley, Princeton University

> Minnowbrook VI August 2009

Supported by AFOSR-MURI

Motivation

- Time varying control of C_L is necessary for integrating AFC and Flight Control
 - Gust load alleviation
 - Energy extraction maneuvers
- Lift response to actuation is usually only in the positive direction, so how can C₁ be decreased?
- Quasi-steady models of aerodynamic & actuator response quickly become inaccurate (k>0.1) in unsteady flow.
- Lift response to actuation has significant time delays that must be accounted for in the controller. How does this affect controller bandwidth?

Unsteady flow wind tunnel experiments

- Unsteady wind tunnel used to obtain
 - Models of lift and actuator dynamics
 - Demonstrate gust suppression experiment

filename: 04fixed_alpha_shutter_view.AVI

NASA/CP-2010-216112

Open-loop LEV control – steady state conditions

Continuous pulsed-blowing actuation concentrates vorticity at leading edge.

 $F^+ = fc/U = 1.1$ $C_{\mu} = .0074$

Steady lift enhancement with open-loop control

NASA/CP-2010-216112

Gust suppression: quasi-static approach

- Internal micro valves have no proportional control (on/off)
- Need to vary lift (+ other forces/moments) via actuation
- Duty-cycle approach
 - Pulsation frequency: 50 Hz (0.02 s)

 $U = 5.25 + 0.25 \cos(\omega t)$ m/s

- Actuation period: 0.3 seconds was chosen
- ⁶ Feed forward compensator

Use 'dynamic models' to obtain faster response

- Principal limitation is the phase lag (time delay) associated with change of lift force relative to
 - Actuator input
 - Unsteady freestream
- Amplitude/phase empirically determined from measured lift response as a function of freestream/actuation modulation frequencies

Feed forward control increases time response 5X

369

Further increase in bandwidth by considering actuator transient- pushing for 5 Hz

Note: wiggles are sting vibrations

 $w(k) = C\sum_{j} K(j)u(k-j)$

u = input signal

K = kernel (single-pulse response)

C = calibration

w = output signal

Lift response curves similar to results of Woo, et al. (2008) for 2D airfoil with pulse-combustion actuators

Lift response to 3, 5, & 10 pulses

- Actuator input at fixed pressure
- Pulse duration .017s on/0.017s off
- Convective time c/U 0.04s
 - 3-pulse input to actuator

NASA/CP-2010-216112

Quasi-linear behavior of lift response to actuation

INPUT = sequence of 0.017s pulses, 50% dtc used to create square wave pattern as input signal

OUTPUT = convolution between kernel and input 5 Hz

Black-box model agrees with pulse-response

- System Identification of a 'black-box' model (6th order state space) of the separated flow
 - Impulse response of black-box model matches single pulse response in experiment
 - Phase variation with frequency matches experimental measurements

- Time varying control of $C_{\rm L}$ is necessary for integrating AFC and Flight Control
 - Biasing allows for +/- changes in lift
- Time delays associated with actuation are long (~5.8 c/U) and must be included in controllers
- Convolution of input signal with single pulse kernel gives reasonable prediction of lift response

