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MotivationMotivation

• Time varying control of CL is necessary 
for integrating AFC and Flight Control U’ G

Feed forward
for integrating AFC and Flight Control

– Gust load alleviation

– Energy extraction maneuvers

• Lift response to actuation is usually 
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only in the positive direction, so how 
can CL be decreased? 

• Quasi-steady models of aerodynamic  
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Closed Loop& actuator response quickly become 
inaccurate (k>0.1) in unsteady flow. 

• Lift response to actuation has 
significant time delays that must be
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Closed Loop

significant time delays that must be 
accounted for in the controller. How 
does this affect controller bandwidth?
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Unsteady flow wind tunnel experiments
• Unsteady wind tunnel used to obtain

– Models of lift and actuator dynamics

Demonstrate gust suppression experiment– Demonstrate gust suppression experiment

L(t)

U’

Semicircular Wing Model

Re = 68 000

Semicircular Wing Model

Re = 68 000

Uo
 is fixed

U Rec  68,000

Pulsed-blowing actuation 
along leading edge

Rec  68,000

Pulsed-blowing actuation 
along leading edge
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Open-loop LEV control – steady state conditions

Continuous pulsed-blowing actuation 
concentrates vorticity at leading edge.

F+ = fc/U = 1 1 Steady lift enhancement with 

No Control 

F+ = fc/U = 1.1
Cµ = .0074

y
open-loop control
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Gust suppression: quasi-static approach

• Internal micro valves have no 
proportional control (on/off)

• Need to vary lift (+ other• Need to vary lift (+ other 
forces/moments) via actuation

• Duty-cycle approach
Pulsation frequency: 50 Hz (0 02 s)– Pulsation frequency: 50 Hz (0.02 s)

– Actuation period: 0.3 seconds was chosen

• Feed forward compensator
U = 5 25 + 0 25 cos( t) m/s

Limit: 0.2 Hz

U  5.25 + 0.25 cos( t)    m/s

Zero lift fluct. (not fast enough)

Re=68,000
5
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Use ‘dynamic models’ to obtain faster response
• Principal limitation is the phase lag (time delay) associated with change 

of lift force relative to
– Actuator input

– Unsteady freestream

• Amplitude/phase empirically determined from measured lift response 
as a function of freestream/actuation modulation frequencies

Lift-phase response to actuator Lift-phase lag due to aerodynamics

dφ/df

+ = td/tconv=5.8±0.5 k = fc/U
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Feed forward control increases time response 5XFeed forward control increases time response 5X

+6 dB

Suppressing & enhancing 1.0 Hz 
oscillation

+6 dB
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Further increase in bandwidth by considering actuator 
transient- pushing for 5 Hz p g

Lift response to single pulse

  jkujKCkw )()()( 
j

jkujKCkw )()()(

u = input signalp g

K = kernel (single-pulse response)

C = calibration

w = output signalNote: wiggles are w = output signalNote: wiggles are 
sting vibrations

Lift response curves similar to results of Woo, et al. 
(2008) for 2D airfoil with pulse-combustion actuators
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Lift response to 3, 5, & 10 pulses

• Actuator input at fixed 
pressurep

• Pulse duration .017s 
on/0.017s off 

• Convective time c/U = 
0.04s

3-pulse 
input to 
actuator

t+ = tU/c

actuator
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Quasi-linear behavior of lift response to actuation 

0.4 Hz 1.4 Hz

No forcing CL

5 HzINPUT = sequence of

Shift in 
C

5 HzINPUT  sequence of 
0.017s pulses, 50% dtc 
used to create square 
wave pattern as input 

mean CL
p p

signal 

OUTPUT = convolution 
between kernel andbetween kernel and 
input
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Black-box model agrees with pulse-response

• System Identification of a ‘black-box’ model (6th order 
state space) of the separated flow

Impulse response of black box model matches single pulse– Impulse response of black-box model matches single pulse 
response in experiment

– Phase variation with frequency matches experimental  
measurementseasu e e s
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Summary

• Time varying control of CL is necessary for integrating 
AFC and Flight Controlg
– Biasing allows for +/- changes in lift

• Time delays associated with actuation are longTime delays associated with actuation are long
(~5.8 c/U) and must be included in controllers

C f• Convolution of input signal with single pulse kernel 
gives reasonable prediction of lift response 
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